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Abstract. We examine the measurement of multidimensional poverty following the

counting approach. In contrast to earlier contributions, dimensions of human well-being

are not forced to be equally important but different weights can be assigned to different

dimensions. We characterize a class of individual multidimensional poverty measures re-

flecting this feature. In addition, we axiomatize an aggregation procedure to obtain a class

of multidimensional poverty measures for entire societies allowing for different degrees of

inequality aversion in poverty. Journal of Economic Literature Classification No.: D63.
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1 Introduction

An important development in the study of inequality and poverty in the recent past is

the shift of emphasis from a single dimension to a multidimensional framework. This is

because the well-being of a population and hence its inequality and poverty are dependent

on many dimensions of human life, such as housing, education, life expectancy, and income

is just one such dimension. In such a structure poverty is defined as a situation that reflects

failures in different dimensions of human well-being.

In this framework each person possesses a vector of several attributes that represent

different dimensions of well-being. For measuring multidimensional poverty, it then be-

comes necessary to check whether a person has “minimally acceptable levels” (Sen, 1992,

p.139) of these attributes. These minimally acceptable quantities of the attributes rep-

resent their threshold limits or cut-offs that are necessary for a subsistence standard of

living. Therefore, a person is treated as deprived or poor in a dimension if its consumption

level of the dimension falls below its cut-off. In this case we say that the individual is

experiencing a functioning failure. Poverty at the individual level is an increasing function

of these failures.

We are concerned with what Atkinson (2003) referred to as the “counting” approach to

deprivation. A counting measure of individual poverty is simply the number dimensions

in which a person is poor, that is the number of the individual functioning failures. But

this measure is rather ad hoc. It also treats all the dimensions symmetrically in the sense

that in the aggregation of individual’s failures the same weight (one) is assigned to each

dimension. Since some of the dimensions may be more important than others, a more

appropriate counting measure can be obtained by assigning different weights to different

dimensions and then summing up these weights. These weights may be assumed to reflect

the importance a policy maker attaches to alternative dimensions in a poverty alleviation

proposal.

Identification of the poor in a multivariate framework is still a debatable issue. One

obvious way of regarding a person as poor is if it is deprived in all dimensions and

this enables us to identify the number of poor as the total number of persons who are

deprived in all dimensions. This is known as the intersection method of identification of

the poor. But if a person is deprived in one dimension and non-deprived in another, then

trading off the two dimensions may not be possible. Bad health status, say, cannot be

compensated by housing. Clearly, such a person cannot be regarded as rich. In view of

this, a person may be treated as poor if it is poor in at least one dimension. This is the
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union method of identifying the poor (see Tsui, 2002, and Bourguignon and Chakravarty,

2003). In between these two extremes there lies the intermediate identification method

which regards a person as poor if it is deprived in at leastm dimensions, where 1 ≤ m ≤ K,

with K being the number of dimensions (or weighted sum of dimensions) on which human

well-being depends (see Mack and Lindsay, 1985, Gordon, Nandy, Pantazis, Pemberton

and Townsend, 2003, and Alkire and Foster, 2007). Evidently, the intermediate method

contains the union and the intersection methods as special cases for m = 1 and m = K.

It should be clear that the calculation of the individual counting measure does not depend

on any specific method of identification of the poor. More precisely, whatever the method

of identification of the poor, the general counting measure can be calculated.

The first aim of this paper is to characterize the generalized individual counting mea-

sure of poverty. We proceed further by axiomatizing a class of aggregate poverty measures

that permit us to compare different societies with respect to the poverty suffered by their

members. We wish to take into account inequality in the distribution of individual poverty.

The resulting distribution-sensitive measures are the extended symmetric means of order

r > 1 applied to the individual multidimensional poverty values. The restriction on the

possible values of the parameter r is a consequence of requiring strict inequality aversion

with respect to individual poverty.

2 Individual Multidimensional Poverty Measures

Suppose there are K ∈ N \ {1} attributes that are relevant for the degree of well-being

of an individual, such as health status, housing conditions, access to certain goods and

services, employment status, ability to satisfy basic necessities. These characteristics are

the same across societies and represented by binary variables: a value of one indicates that

the individual is poor with respect to this attribute, a value of zero identifies a character-

istic with respect to which the individual is not poor. Thus, an individual characteristics

vector is an element of P = {0, 1}K and an individual multidimensional poverty measure

for individual i is a function Pi:P → R. This paper is concerned with the aggregation

of individual poverty over characteristics and the across-society aggregation of these in-

dividual measures into a social measure of multidimensional poverty. We begin with a

discussion of individual multidimensional poverty.

Let 0 be the vector consisting of K zeroes and, for all j ∈ {1, . . . , K}, let 1j be the

2



K-dimensional vector defined by

1j
k =

{
1 if k = j

0 if k ∈ {1, . . . , K} \ {j}.

We require Pi to possess the following properties.

Zero normalization. For all j ∈ {1, . . . , K},

Pi(1
j) > Pi(0) = 0.

Additivity. For all x, y ∈ P such that (x+ y) ∈ P ,

Pi(x+ y) = Pi(x) + Pi(y).

The normalization assumption is very standard: when the individual is not poor in any

attribute we require the value of the index to be zero. The additivity property we use is

very straighforward as well. Many social index numbers have an additive structure.

Additivity entails a separability property: the contribution of any variable to the

overall index value can be examined in isolation, without having to know the values of the

other variables. Thus, additivity properties are often linked to independence conditions

of various forms.

These two properties characterize the class of measures identified in the following

theorem.

Theorem 1 An individual multidimensional poverty measure Pi satisfies zero normaliza-

tion and additivity if and only if there exists α ∈ RK
++ such that, for all x ∈ P,

Pi(x) =

{
0 if x = 0∑

j∈{1,...,K}:xj=1 αj if x 6= 0.
(1)

Proof. ‘If.’ Clearly, the measures defined in (??) satisfy the required axioms.

‘Only if.’ Suppose Pi satisfies zero normalization and additivity. That Pi(0) = 0

follows immediately from the equality in normalization. Define, for all j ∈ {1, . . . , K},
αj = Pi(1

j). By the inequality in the definition of zero normalization, it follows that

αj > 0 for all j ∈ {1, . . . , K}. Finally, consider the case in which x 6= 0. Writing x as

x =
∑

j∈{1,...,K}:
xj=1

1j,
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additivity requires

Pi(x) =
∑

j∈{1,...,K}:
xj=1

Pi(1
j) =

∑
j∈{1,...,K}:

xj=1

αj

which completes the proof.

3 Aggregate Multidimensional Poverty Measures

Given the individual multidimensional poverty measures Pi for each individual in a so-

ciety, we use an aggregate multidimensional poverty index to obtain an overall measure

of poverty that allows us to compare multidimensional poverty across societies. In the

comparison among societies we want to take into account inequality in the distribution of

individual poverty. (For a discussion of distribution-sensitive multidimensional poverty in-

dices in the case of continuous functionings see Tsui, 2002.) The more equally distributed

the latter is, the lower aggregate poverty. For instance, consider two societies, A and B,

where two attributes are equally relevant for the evaluation of individual well-being. Sup-

pose that, while in society A only one individual is poor in both attributes, in society B

there are two individuals poor in one attribute each. Is multidimensional poverty the same

in A and B? This does not seem to be the case—poverty is more severe in society A than

in B. We proceed by implicitly assuming that the individual aggregation across poverty

dimensions is performed first and the second step consists of aggregating the resulting

indicators across individuals in a society to arrive at an overall measure of multidimen-

sional poverty. This choice is motivated primarily by our desire to keep the exposition

simple. To describe the second part of the aggregation process, let N = N \ {1, 2} and

Ω = ∪n∈NRn
+. Now consider a function P: Ω → R+, to be interpreted as a measure that

assigns an aggregate value of multidimensional poverty P(p) to each vector of individual

poverty values p = (p1, . . . , pn) ∈ Ω, where n ∈ N is the population size corresponding

to p. For all n ∈ N , the restriction of P to Rn
+ is denoted by Pn.

The aggregate multidimensional poverty measures we propose are the extended sym-

metric means of order r > 1 of individual multidimensional poverty indices, that is, we

employ the indices Pr defined by

Pr(p) =

(
1

n

n∑
i=1

pr
i

)1/r

for all n ∈ N and for all p ∈ Rn
+. Note that we exclude all values of the parameter r that

are less than or equal to one. This is the case because the corresponding means fail to be
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strictly S-convex. As r approaches one, the index approaches the arithmetic mean.

For n ∈ N , let 1n denote the vector consisting of n ones. We employ the following

axioms in our characterization of the extended symmetric means of order r.

Equality normalization. For all n ∈ N and for all a ∈ R+,

Pn(a1n) = a.

Continuity. For all n ∈ N , Pn is continuous.

Monotonicity. For all n ∈ N , Pn is strictly increasing.

Strict S-convexity. For all n ∈ N , for all p ∈ Rn
+ and for all bistochastic n×n matrices

B,

(i) Pn(Bp) ≤ Pn(p);

(ii) if Bp is not a permutation of p, then Pn(Bp) < Pn(p).

Linear homogeneity. For all n ∈ N , for all p ∈ Rn
+ and for all λ ∈ R++,

Pn(λp) = λPn(p).

Let, for any n ∈ N , for any p ∈ Rn
+ and for any non-empty proper subset Is of

{1, . . . , n}, ps be the subvector of p corresponding to the elements of Is and let pc be the

subvector of p indexed by the elements of the complement Ic = {1, . . . , n} \ Is of Is. A

non-empty proper subset Is of {1, . . . , n} is strictly separable from its complement Ic in

Pn if and only if, for all p,q ∈ Rn
+,

Pn(ps,pc) ≥ Pn(qs,pc) ⇔ Pn(ps,qc) ≥ Pn(qs,qc).

Complete strict separability. For all n ∈ N , any non-empty proper subset of {1, . . . , n}
is strictly separable from its complement in Pn.

See Blackorby, Primont and Russell (1978) for a detailed discussion of complete strict

separability and generalizations of this property.

Poverty Wicksell population principle. For all n ∈ N and for all p ∈ Rn
+,

Pn+1 (p,Pn(p)) = Pn(p).

See Blackorby and Donaldson (1984) for a discussion of this property and its link to

general averaging principles.

We obtain
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Theorem 2 A function P: Ω → R+ satisfies equality normalization, continuity, mono-

tonicity, strict S-convexity, linear homogeneity, complete strict separability and the poverty

Wicksell population principle if and only if there exists r > 1 such that P = Pr.

Proof. The ‘if’ part of the theorem statement is straightforward to verify. To prove the

‘only if’ part, suppose P satisfies the required axioms.

Consider first the fixed-population-size case. It is well-known that, for any n ∈ N , the

class of symmetric means of order rn > 1 is characterized by the fixed-population restric-

tions of the axioms equality normalization, continuity, monotonicity, strict S-convexity,

linear homogeneity and complete strict separability; see, for instance, Hardy, Littlewood

and Pólya (1934), Kolm (1976), among others. Note that the possible values of the pa-

rameter rn are restricted due to our assumption of strict S-convexity. Furthermore, note

that, without invoking additional properties, the parameter rn can depend on the popu-

lation size n and only vectors of dimension n can be compared according to Pn. Thus,

we have, for all n ∈ N and for all p ∈ Rn
+,

Pn(p) =

(
1

n

n∑
i=1

prn
i

)1/rn

where this function can be used to compare vectors of population size n.

We complete the proof of the theorem by using the poverty Wicksell population prin-

ciple to establish that the rn must be identical for all n and that the resulting function P

can be employed in the comparison of any two vectors of different dimensions as well.

Let n ∈ N and define r = rn+1. Thus,

Pn+1(p) =

(
1

n+ 1

n+1∑
i=1

pr
i

)1/r

(2)

for all p ∈ Rn+1
+ .

Now let p ∈ Rn
+. By the poverty Wicksell population principle and (??), we must

have

Pn(p) = Pn+1 (p,Pn(p))

=

(
1

n+ 1

(
n∑

i=1

pr
i + (Pn(p))r

))1/r

and, solving for Pn(p), we obtain Pn(p) = Pn+1
r (p). Thus, the same parameter value r

can be used for population size n and for population size n + 1. Because this is true for

all values of n, P is an extended symmetric mean of order r > 1, as was to be established.
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Hardy, G.H., J.E. Littlewood and G. Pólya (1934), Inequalities, Cambridge University

Press, Cambridge.

Kolm, S-C. (1976), “Unequal Inequalities I,” Journal of Economic Theory, 12, 416–442.

Mack, J. and S. Lindsay (1985), Poor Britain, George Allen and Unwin Ltd., London.

Sen, A.K. (1992), Inequality Re-examined, Harvard University Press, Cambridge, MA.

Tsui, K.-Y. (2002), “Multidimensional Poverty Indices,” Social Choice and Welfare, 19,

69–93.

7


