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Abstract

Individual well-being is inherently a multidimensional concept. Any attempt to

measure inequality of well-being should take this multidimensionality explicitly into

account. In this paper we propose to measure well-being inequality by a multidi-

mensional generalization of the Gini coe¢ cient. We follow a normative procedure

and derive two Gini indices of well-being inequality from their underlying multidi-

mensional social evaluation functions. The social evaluation functions themselves

are conceived as a double aggregation functions. One aggregation is across the di-

mensions of well-being. The other aggregation is across individuals and depends

on the level and the position of the individual in the total distribution. The two

social evaluation functions considered only di¤er with respect to the sequencing of

both aggregations. We investigate the role of the sequencing on the compliance

of the proposed indices to a multidimensional version of the Pigou-Dalton transfer

principle and their sensitivity to changes in the correlation between the dimensions.

The resulting multidimensional Gini inequality indices are illustrated using Russian

household data on three dimensions of well-being: material standard of living, health

and education.

Keywords: objective well-being, multidimensional inequality, single parameter

Gini index, multidimensional transfer principle, Russia

�Koen Decancq: Center for Economic Studies, Katholieke Universiteit Leuven, Naamsestraat 69, B-
3000 Leuven, Belgium. E-mail: koen.decancq@econ.kuleuven.be
Maria Ana Lugo: Department of Economics, University of Oxford, Manor Road Building, Manor Road,
OX1 3UQ, Oxford, UK. E-mail: maria.lugo@economics.oxford.ac.uk
We thank Rolf Aaberge, Anthony Atkinson, André Decoster, Stefan Dercon, Jean-Yves Duclos, James
Foster, Luc Lauwers, Erwin Ooghe, Erik Schokkaert and John Weymark for very helpful comments and
suggestions to this or earlier versions of the paper. Remaining errors are all ours. This is a preliminary
version, please do not quote without permission.

1



1 Introduction

Individual well-being is a multidimensional notion (Rawls 1971, Sen 1985, Streeten 1994).

Indeed, individuals care about many di¤erent aspects of their lives, including their ma-

terial standard of living, health and educational outcomes, for instance. These outcomes

are neither freely tradable nor perfectly correlated with income. Yet, the bulk of the

studies on inequality con�ned themselves to an analysis of one dimension only, being in-

come inequality. However, if one takes the multidimensionality of individual well-being

seriously, a description of well-being inequality should take its multidimensionality ex-

plicitly into account. To do so, one can think of two broad procedures.1 We will illustrate

these procedures by looking at a speci�c example: the Russian well-being inequality be-

tween 1995 and 2003. In this period, the Russian Federation underwent a fundamental

transition from a centrally planned to a free market economy. Moreover, Russia was hit

by a severe �nancial crisis in August 1998. Both events had a big impact on many aspects

of Russian daily live. It is therefore interesting to analyze the evolution of well-being in

Russia, when including, in addition to income, also other dimensions such as health and

education.

The �rst procedure is to start by computing the inequality of the relevant dimensions

of well-being separately, for instance by making use of the standard Gini coe¢ cient,

and then to aggregate these coe¢ cients to come to one overall judgement of well-being

inequality. By now it has been well-documented that over the considered period, the

Russian income inequality showed a reverse U-shaped pattern (Gorodnichenko, Sabiri-

anova Peter, and Stolyarov 2008); health inequality increased considerably (Moser, Shkol-

nikov, and Leon 2005) and educational inequality remained quite stable (Osipian 2005).

The overall conclusion about well-being inequality will depend on how the di¤erent in-

equalities are weighted. This procedure moves beyond a sole focus on income inequality

and has the advantage of being relatively easy to implement. However, it has one im-

portant drawback: it ignores the correlation between the dimensions and hence remains

blind for the di¤erence between a Russian society where one individual is top-ranked in

all dimensions, another is second-ranked and so forth and a Russian society with the

same distributional pro�le in all dimensions but a more mixed ranking of the individuals

over the di¤erent dimensions. One can argue that the change in correlation between

the dimensions is an important aspect of the change of a multidimensional well-being

distribution and of the current transition in Russia in particular.2

1See for instance Kolm (1977), Dutta, Pattanaik and Xu (2003), Foster, Lopez-Calva and Szekely
(2005) and Pattanaik, Reddy and Xu (2008).

2The importance of correlation between the dimensions in the analysis of multidimensional inequality
has been suggested by Atkinson and Bourguignon (1982), Rietveld (1990), Dardanoni (1996) and Tsui
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The second procedure is the mirror image of the �rst and computes �rst for every Russian

individual an objective measure of her well-being.3 In a second step the inequality of

these well-being measures is analyzed. A multidimensional index of well-being inequal-

ity following this procedure, is not a-priori insensitive to the correlation between the

dimensions, but is obviously more demanding than the �rst procedure with respect to

its data-requirements, since we need information for all (representative) individuals on

all dimensions, whereas the �rst procedure allows us using di¤erent data-sources for the

di¤erent dimensions.

In this paper we develop two multidimensional Gini indices according to both procedures

described above and compare their theoretical properties and empirical results based on

a particularly rich dataset obtained from the Russian Longitudinal Monitoring Survey

(RLMS).

The one-dimensional Gini coe¢ cient is probably the best known inequality index in

economics. Apart from its interpretation related to the area above the Lorenz curve or

as the sum of all pair-wise distances between the individuals, the one-dimensional Gini

coe¢ cient can be obtained as a normative inequality index from its underlying rank-

dependent social evaluation function. The welfare-weights of the individuals in such a

rank-dependent social evaluation function depend on their rank or position in the total

distribution. In the present paper we follow the latter normative approach to derive two

multidimensional Gini indices from their underlying multidimensional rank-dependent

social evaluation functions.4 Both social evaluation functions are two-step aggregation

functions combining an aggregation across dimensions and one across individuals. In both

procedures, the two-step aggregation functions satisfy the same properties imposed on

each aggregation so that the only di¤erence between the procedures is in the sequencing

of the aggregations. An example of a multidimensional Gini index which �rst aggregates

across individuals and then across dimensions is given by Gajdos and Weymark (2005).

We will argue that the second procedure which �rst aggregates across dimensions and

(1999).
3The well-being measures are computed in the same way for all members of society and permits well-

being judgements that are not purely subjective, but interpersonally justi�able and comparable (Gaspart
1998). A potential concern with the �objective�well-being approach is that it is overly paternalistic or
perfectionist, since it represents the preferences of the external observer about what constitutes a good
life for the individuals, and not the preferences of the individuals themselves (Fleurbaey 2005). On the
impossibility of combining di¤erences in individual preferences with multidimensional egalitarianism, see
Fleurbaey and Trannoy (2003).

4For a recent survey on the normative approach to derive multidimensional inequality measures, the
reader is referred to Weymark (2006). Measures of multidimensional inequality lead to a complete or-
dering, but require agreement about the set of underlying value judgements. An alternative approach,
based on multidimensional stochastic dominance allows for some disagreement about the value judge-
ments, but leads inevitably to an incomplete ordering, so that some societies can be ordered with respect
to their well-being inequality, but others can not. This indecisiveness may be informative in its own
right, but for policy purposes a complete ordering is more convenient. Therefore we focus in this paper
on the derivation of a measure of well-being inequality. Trannoy (2006) provides a recent survey of the
multidimensional dominance literature.
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then across individuals is more attractive, since it does not exclude the index to be

sensitive to the correlation between the dimensions.

Besides the normative approach, two other broad strategies have been followed to gen-

eralize the Gini coe¢ cient into multiple dimensions, each extending an alternative one-

dimensional de�nition of the Gini coe¢ cient.5 Koshevoy and Mosler (1996) introduced

the Lorenz zonoid as a multidimensional generalization of the standard Lorenz curve.

From the volume of the Lorenz zonoid, a multidimensional Gini index can be derived

naturally (Koshevoy and Mosler 1997). An alternative strategy is followed by Arnold

(1987), Koshevoy and Mosler (1997) and Anderson (2004), who extend the de�nition

based on the sum of all distances between pairs of individuals. In particular, they pro-

pose a multidimensional distance measure to measure the pair-wise distances between the

vectors of outcomes. These non-normative approaches have the virtue of being relatively

easy to implement, but the essential underlying value judgements are made implicitly,

which makes them less attractive to measure well-being inequality, in our view.

The rest of the paper is structured as follows. Section 2 surveys some attractive properties

for the aggregation across individuals and dimensions. Depending on the sequencing of

the aggregation two multidimensional Gini social evaluation functions are derived. Mul-

tidimensional distributional concerns are introduced in section 3, paying special attention

to a multidimensional generalization of the one-dimensional Pigou-Dalton transfer prin-

ciple and the e¤ect of changes in correlation between dimensions. Both multidimensional

Gini social evaluation functions are compared with respect to their compliance to these

distributional concerns. From the resulting social evaluation function, a multidimen-

sional single parameter Gini inequality index is derived in section 4. Section 5 illustrates

the use of this index based on Russian household data. Section 6 concludes the paper.

2 Two multidimensional S-Gini social evaluation functions

In this section we derive two alternative social evaluation functions to compare multidi-

mensional distributions. Given the multidimensional setting, the social evaluation func-

tions involve a double aggregation. One aggregation is over the dimensions of well-being

and the other is across the individuals. The two social evaluation functions presented

will di¤er in the sequencing of both aggregations, but are equivalent in terms of the

properties imposed to each aggregation. We present the two sequences of aggregation,

5Many alternative de�nitions and interpretations exist in the literature. See Sen and Foster (1997),
Anand (1983) and Yitzhaki (1998). Arnold (2005) gives a survey of the recent developments on multidi-
mensional generalizations of the Gini coe¢ cient.
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the set of attractive properties, and the resulting social evaluation functions.

We assume that there are m relevant dimensions of well-being (e.g. income, health,

educational outcomes) for a population of n individuals.6 Each distribution matrix X

in Rn�m+ represents a particular distribution of the outcomes for the n individuals in

the m dimensions. An element of the distribution matrix xij denotes the outcome of an

individual i in a dimension j. A row of matrix X refers to the outcomes of one individual

and a column refers to the outcomes in one dimension. Distribution matrices can be

compared by making use of a social evaluation function Wn�m that maps all positive

n�m distribution matrices to the nonnegative real line. A higher mapping on the real line
re�ects a socially preferred situation. As mentioned above, the social evaluation function

carries out a double aggregation. The aggregation over the m dimensions (columns) of

well-being will be performed by aggregation function Wm. It can be interpreted as an

index of multidimensional well-being. The other aggregation, carried out by functionWn;

is across the n individuals (rows) and can be interpreted as a standard one-dimensional

social evaluation function. The sequencing of both aggregations will turn out to play a

crucial role in the following.

Let us describe two procedures. In the �rst procedure, we �rst aggregate across the

di¤erent individuals by making use of Wn in each dimension. This step obtains for each

dimension a summary statistic and generates a single m-dimensional row vector. Then

this row vector is aggregated using Wm. Kolm (1977) calls this �rst procedure a speci�c

one. In the second procedure, the order of aggregation is reversed: the �rst step attaches

to each individual a level of well-being and generates an n-dimensional column vector; in

the second step this column vector is aggregated using Wn. Following Kolm (1977) this

second procedure will be referred to as an individualistic one. The following diagram

summarizes both procedures:

Procedure 1 : Rn�m+
Wn�! Rm+

Wm�! R+ : X 7�!W 1
n�m(X) �Wm [Wn(x1); :::;Wn(xm)] ;

Procedure 2 : Rn�m+
Wm�! Rn+

Wn�! R+ : X 7�!W 2
n�m(X) �Wn

�
Wm(x

1); :::;Wm(x
n)
�
:

Both procedures split the complex multidimensional aggregation into two (easier) one-

dimensional aggregations, which have been studied extensively in the literature before,

see Ebert (1988) for an overview. We present and discuss a list of interesting properties

for a generic one-dimensional aggregation function Wk :
S
k Rk+ ! R+ that maps a non-

negative vector x = (x1; :::; xk) on the nonnegative real line. The aggregation functions

6Throughout the analysis, the number of dimensions is assumed to be �xed, whereas we allow for
variable population size. We do not discuss which dimensions of well-being should be included, rather
we assume that these are either obtained by a democratic process or given by philosophical reasoning
like the primary goods de�ned by (Rawls 1971), the list of �functionings�proposed by (Nussbaum 2000),
or the basic needs approach advocated by (Streeten 1994).
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Wm and Wn are examples of such aggregation functions. The properties crystallize dif-

ferent value judgements on how the aggregation should be done. We do not claim that

the set of properties laid down here is the only one possible, au-contraire, but we sug-

gest that it represents an attractive set for the problem of measuring societal well-being.

We restrict ourselves to continuous aggregation functions, so that the result is not overly

sensitive to small changes in one of its entries, for instance caused by measurement errors.

Property 1. Monotonicity (MON) Wk(y) > Wk(x) whenever y > x:7

Property 2. Symmetry (SYM) Wk(Px) =Wk(x) for any k � k permutation matrix
P:

Property 3. Normalization (NORM) Wk(�1k) = � for all � > 0:8

Monotonicity captures the intuition that all entries of x are desirable. If a vector is

obtained by increasing at least one entry of another, it should be preferred to the initial

one. Monotonicity is an attractive property for aggregation functions across dimensions

as well as across individuals. Symmetry states that any information other than the

quantities stated in the entries of x are unimportant in the aggregation. Symmetry is

an attractive property in the aggregation across individuals since it assures an impartial

treatment of all individuals. In the aggregation across dimensions, however, one might

want to treat the dimensions di¤erently to give priority to certain dimensions. Therefore

we will not impose symmetry in the aggregation across dimensions. Normalization makes

sure that whenever all entries of x are equal to �, the result should be � as well.

For all k-dimensional vectors x and all k0-dimensional vectors x0, let (x; x0) denote a k+k0

dimensional vector of which the �rst k elements make up x and the last k0 make up x0:

The next property we introduce is separability.

Property 4. Separability (SEP) Wk+k0(x; x
0) > Wk+k0(y; y

0) whenever Wk(x) =

Wk(y) and Wk0(x
0) > Wk0(y

0):

Separability is a practical property, since it imposes that in the comparison of two vec-

tors, the magnitude of the "unconcerned" entries should not matter. An example helps

to clarify. Let Wm aggregate across three dimensions of well-being: income, health and

education, and suppose two individuals who have the same outcome in the income di-

mension and di¤erent outcome levels in health and education. Separability asserts that

7Let the vector inequality y > x denote that yl � xl holds for all its entries l = 1; :::; k and yl > xl for
at least one entry l:

8Let 1k denote a k-dimensional vectors with all entries equal to 1.
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the exact level of income is not important to order the individuals with respect to their

well-being. Separability implies, for instance, that the marginal rate of substitution be-

tween health and education is independent of the income level of the individuals. It is

a commonly made, but arguably strong property to aggregate across dimensions (for a

discussion see Deaton and Muellbauer (1980)). Moreover, separability excludes all con-

siderations about the position or rank of the entries in the total vector. Yet, in recent

work on self-reported well-being it has been documented that individuals do not only

care about the levels of their outcomes, but also about the relative position vis-à-vis

other individuals in the distribution (Ferrer-i Carbonell 2005, Luttmer 2005). To allow

considerations about the positions to play a role in the aggregation across individuals,

we use a weakening of the separability property, which states that the comparison of two

vectors is not a¤ected by the magnitude of common entries in both vectors as long as the

initial ranking is maintained. This property allows us to take both the level and position

in the distribution into account. Let r(x) denote the vector of ranks of vector x. That

is, ri = 1 if the level xi of entry i is the highest one; ri = 2 if xi is the second highest;

and so forth.

Property 5. Rank-dependent Separability (RSEP) Wk+k0(x; x
0) > Wk+k0(y; y

0)

whenever r(x; x0) = r(y; y0);Wk(x) =Wk(y) and Wk0(x
0) > Wk0(y

0):

Next, we impose three invariance properties. These properties specify which transfor-

mations or standardization procedures of the data will leave the ordering of two vectors

x and y una¤ected. In any multidimensional analysis the transformation and standard-

ization of the data is an essential step to make the potentially very di¤erent dimensions

comparable.9

Property 6. Weak ratio-scale invariance (WSI) Wk(x) > Wk(y) if and only if

Wk(�x) > Wk(�y) for all positive �:

Property 7. Strong ratio-scale invariance (SSI) Wk(x) > Wk(y) if and only if

Wk(�x) > Wk(�y) for all positive diagonal matrices �:

Property 8. Weak translation invariance (WTI) Wk(x) > Wk(y) if and only if

Wk(x+ �1k) > Wk(y + �1k) for all �.

9On the issue of making meaningful comparisons of multidimensional outcome vectors, see (Ebert
and Welsch 2004). Alternatively, we could assume the data to be standardized from the beginning to
leave the invariance to the standardization outside the characterization of the measure. We prefer to
incorporate the standardization into the characterization given its potential e¤ects on the �nal result,
see e.g. Decancq, Decoster and Schokkaert (2009).
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The sixth property, weak ratio-scale invariance, states that a rescaling of all entries of

the two vectors x and y with the same positive number does not a¤ect their ordering.

Doubling all outcomes, for instance, should not lead to a reordering of both vectors.

This property is standard in the aggregation across individuals and assures, for instance,

that Wn is una¤ected by a general in�ation. In the aggregation across dimensions, it is

an appealing property when the units of measurement of the entries are the same, for

example, when the entries are di¤erent sources of income or incomes at di¤erent points in

time. We will impose this property to the aggregation functions both across dimensions

Wm and across individuals Wn.

The seventh property, the strong ratio-scale invariance, is a much stronger property

and requires that a rescaling of all entries should not lead to a reordering of x and y.

This rescaling factor is allowed to di¤er across the entries of vectors. Strong ratio-scale

invariance is especially useful in the aggregation across dimensions when the variables are

expressed in very di¤erent units of measurement, such as income in dollars and education

in years. The property allows the entries of both vectors to be standardized by an entry-

speci�c rescaling such as a division by their respective mean (that is, e.g. individual

income divided by the mean income, and individual education by the mean education

level of the distribution). However, this property will turn out to be fairly restrictive in

terms of the functions satisfying it.

The last invariance property, weak translation invariance, imposes that the ordering of

two vectors by Wk is not a¤ected if a common amount � is added to all entries. We

will impose weak translation invariance together with weak ratio-scale invariance to the

aggregation across individuals to come to a parsimonious aggregation function which is

invariant to common linear transformations of the entries.

The �nal two properties will allow us to compare k-dimensional vectors with a variable

size k. Since we assume the number of relevant dimensions m to be �xed throughout

the analysis, these properties will only be imposed on the aggregation function across

individuals Wn. Together, they permit the comparisons of distributions of di¤erent

population sizes. We say that z is a replication of x if z is obtained by cloning x l-times,

so that z = (x; x; :::; x)(l-times):

Property 9. Replication invariance (REP) Wlk(z) =Wk(x) if z is a replication of

x.

Property 10. Restricted aggregation (RA) Wk+k0(x; x
0) =Wk+1(x;Wk0(x

0)) when-

ever max(x) � min(x0).
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If we impose replication invariance to Wn; the aggregation takes place on a per-capita

basis. Replication invariance has been introduced in the literature on one-dimensional

inequality measurement by Dalton (1920). Restricted aggregation asserts that the ag-

gregation of the total vector is equivalent to an aggregation in which the outcomes of

the better-o¤ subgroup are �rst aggregated into one aggregate. This property has been

studied by Donaldson and Weymark (1980).

The result below summarizes the properties imposed to the aggregation function across

dimensions Wm and derives the sole class of functions satisfying them all.

Proposition 1. A continuous aggregation function Wm : Rm+ ! R+ satis�es
(a) MON, NORM, SEP, WSI, if and only if for each x in Rm+ we have

Wm(x) =

0@ mX
j=1

wj(xj)
�

1A(1=�) ; (1)

where wj > 0 and
Pm
j=1wj = 1;

(b) MON, NORM, SSI, if and only if for each x in Rm+ we have

Wm(x) =
mY
j=1

xj
wj ; (2)

where wj > 0 and
Pm
j=1wj = 1:

Proof. See for (a) (Blackorby and Donaldson 1982) and for (b) (Tsui and Weymark 1997)

Result (a) de�nes the aggregation across dimensions to be a Constant Elasticity of Substi-

tution (CES) function, where parameter � re�ects the degree of substitutability between

the dimensions of well-being. In particular, � is related to the elasticity of substitution

between the dimensions � and equals 1�1=�. When � = 1; the dimensions of well-being
are seen as perfect substitutes. As � tends to �1, the dimensions tend to perfect com-
plementarity; at the extreme, individuals are judged by their worst outcomes.10 Result

(b) (itself a limiting case of the previous when � = 0) is in some respects disappointing

and reveals how restrictive the requirement of strong ratio-scale invariance can be. In

the presence of the other properties, strong ratio-scale invariance is only satis�ed by a

so-called Cobb-Douglas well-being function which has unit elasticity of substitution, that

10This extreme case is excluded by the monotonicity property and should be considered as a limiting
case.
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is, � = 1. Other elasticities between the dimensions cannot be obtained without relaxing

this property. One has to make a painful trade-o¤ here: it is impossible to obtain results

that are robust to alternative rescaling procedures of the di¤erent dimensions if one de-

sires more �exibility in the functional form. In other words, this functional �exibility can

only be obtained when one can rely on a theoretically sensible and ethically justi�able

standardization procedure of the original dimensions.

The weighting scheme w = (w1; :::; wm) consists of the weights wj , which are all positive

and sum to 1 and re�ects the relative importance of the di¤erent dimensions. In interplay

with parameter � and the standardization chosen, the weights determine the marginal

rates of substitution or trade-o¤s between the dimensions (Decancq and Lugo 2008).

The well-being functions characterized by proposition 1 are popular measures of well-

being in the literature. The Human Development Index advocated by the UNDP, for

instance, is a special case of expression (1) with � = 1, and weights wj equal to 1=3. Other

examples may be found in the literature on multidimensional inequality measurement:

Maasoumi (1986), for instance, derives a CES well-being function based on di¤erent

considerations rooted in information theory.

An analogous result can be obtained for the properties imposed on Wn, the aggregation

across individuals.

Proposition 2. A continuous aggregation function Wn :
S
nRn+ ! R+ satis�es MON,

SYM, NORM, RSEP, WSI, WTI, REP and RA if and only if for each x in
S
nRn+ we

have

Wn(x) =
nX
i=1

"�
ri

n

��
�
�
ri � 1
n

��#
xi; (3)

where � > 0 and ri is the rank of individual i on the basis of the levels xi.

Proof. See Ebert (1988).

The class of social evaluation functions obtained is a convenient one, since it consists

of weighted averages whose welfare weights and the associated value judgements are

captured by a single parameter �. It is the underlying social evaluation function of the

popular class of S-Gini inequality indices (Donaldson and Weymark 1980, Kakwani 1980,

Yitzhaki 1983). The parameter � captures the bottom-sensitivity of the social evaluation

function. If � equals 1, the social evaluation function becomes an unweighted average in

the utilitarian tradition. The higher the �, the more weight is given to the bottom of the

distribution, with as limiting case � = +1, which leads to a Rawlsian social evaluation
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function where only the worse-o¤ individual is counted for the social evaluation.11 For

values of � between 0 and 1 the best-o¤ individuals are given more weight. The standard

Gini social evaluation function is obtained by setting � = 2.

By substituting the obtained one-dimensional aggregation functions (1) and (3) into the

two initial two-step procedures we obtain the following two multidimensional aggregation

functions:

W 1
n�m(X) =

264 mX
j=1

wj

0@ nX
i=1

24 rij
n

!�
�
 
rij � 1
n

!�35xij
1A�
375
(1=�)

; (4)

where � > 0; all weights wj > 0;
Pm
j=1wj = 1; and r

i
j denotes the rank of individual i in

dimension j. Similarly,

W 2
n�m(X) =

nX
i=1

"�
ri

n

��
�
�
ri � 1
n

��#0@ mX
j=1

wj(x
i
j)
�

1A(1=�) ; (5)

where � > 0; all weights wj > 0;
Pm
j=1wj = 1; and ri is the rank of individual i on

the basis of the levels
Pm
j=1wj(x

i
j)
�: The �rst alternative, W 1

n�m is a special case of the

multidimensional generalized Gini social evaluation functions proposed by Gajdos and

Weymark (2005). The second social evaluation function, W 2
n�m has, to the best of our

knowledge, not yet been introduced in the literature. In the following section we will

compare both aggregation procedures with respect to their sensitivity to two speci�c

multidimensional distributional concerns and investigate the empirical di¤erences based

on a Russian dataset.

3 Multidimensional distributional concerns

The reader will note that so far we have not introduced any property that captures dis-

tributional concerns. In the standard one-dimensional analyses, distributional sensitivity

is obtained by imposing some form of the Pigou-Dalton transfer principle. The principle

states that a transfer of income from a poorer to a richer individual leads to a decrease

in social welfare. Some proposals have been made to generalize the one-dimensional

Pigou-Dalton principle to the multidimensional setting. In this section we focus on two

popular generalizations and investigate their e¤ect within the multidimensional frame-

work of the previous section. The two distributional concerns a¤ect both aggregation

functionsWn andWm at the same time and are therefore de�ned as properties ofWn�m.

11Again, this extreme case is excluded by the monotonicity property and should be considered as a
limiting case.
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In view of the empirical analysis in the following section, we are especially interested in

the parameter-restrictions imposed by the distributional concerns on the parameters �

and � in expression (4) and (5) :

The �rst distributional concern asserts that if a uniform mean-preserving averaging pro-

cedure is carried out in all dimensions, the resulting distribution matrix is socially pre-

ferred to the original one. The formalization of the concern is rooted in multidimensional

majorization theory and referred to as uniform majorization (Kolm 1977, Marshall and

Olkin 1979, Tsui 1995, Weymark 2006). A uniform mean-preserving averaging procedure

can be obtained by applying the same bistochastic transform to all dimensions.12

Property 11. Uniform Majorization (UM) Wn�m(Y ) > Wn�m(X) whenever Y =

BX, for some n� n bistochastic matrix B that is not a permutation matrix.

An example can clarify uniform majorization. Consider the following matrices,

B =

2664
0:75 0:25 0

0:25 0:75 0

0 0 1

3775 ;X =

2664
50 80

90 20

10 50

3775 and Y =

2664
60 65

80 35

10 50

3775 ;
where indeed Y = BX so that Y is obtained fromX by a bistochastic transform. Uniform

majorization imposes that distribution matrix Y should be preferred to X:

Atkinson and Bourguignon (1982) identify another distributional concern. They argue

that a social evaluation should be sensitive to the correlation between the dimensions.

Tsui (1999) formalized this notion of correlation by de�ning a correlation increasing

transfer, which is a rearrangement of the outcomes of two individuals such that one

individual gets the highest outcomes in all dimensions and the other the lowest.

De�nition 1. Correlation Increasing Transfer (CIT) For all distribution matrices

X and Z, Z is obtained from X through a CIT if X 6= Z, X is not a permutation of Z,

and there are two individuals k and l such that (i) zkj = maxfxkj ; xljg for all dimensions
j, (ii) zlj = minfxkj ; xljg for all dimensions j and (iii) yi = xi for all i =2 fk; lg.

Based on the notion of a correlation increasing transfer, the second distributional con-

cern can be formalized. It says that a distribution matrix Z that is obtained from X by

any �nite series of correlation increasing transfers, is socially inferior. This concern is

called correlation increasing majorization. In other words, if two distribution matrices

12A bistochastic transform of a distribution matrix X involves a premultiplication of the distribution
matrix by a bistochastic matrix, which is a square nonnegative matrix with all row and column sums
equal to 1.
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have identical marginal distributions, the one with lower correlation between the dimen-

sions is preferred. Correlation increasing majorization captures the idea of compensating

inequalities among di¤erent dimensions, hence implicitly assuming that dimensions are

substitutes.13

Property 12. Correlation Increasing Majorization (CIM)Wn�m(X) > Wn�m(Z)

whenever Z is obtained from X by a �nite sequence of correlation increasing transfers.

Consider the following example,

X =

2664
50 80

90 20

10 50

3775 and Z =

2664
50 20

90 80

10 50

3775 :
Distribution matrix Z is obtained fromX by a correlation increasing transfer between the

�rst two individuals. The �rst individual in Z gets the lowest outcomes in all dimensions,

whereas the second individual in Z gets the highest outcomes of the �rst two individuals

of X: Correlation increasing majorization imposes that X is preferred to Z:

We investigate the impact of introducing both distributional concerns to the two multidi-

mensional S-Gini social evaluation functions derived in the previous section summarized

in expression (4) and (5). We start by the social evaluation function resulting from the

�rst procedure W 1
n�m.

Proposition 3. A continuous double aggregation function W 1
n�m : Rn�m+

Wn�! Rm+
Wm�!

R+, where Wn satis�es MON, SYM, NORM, RSEP, WSI, WTI, REP and RA; and Wm

satis�es MON, NORM, SEP, WSI,

i) satis�es UM if and only if W 1
n�m satis�es equation (4) with � > 1;

ii) cannot satisfy CIM.

The formal proof of this proposition and the following are left to the appendix. The

intuition for the �rst part of this result is the following: the bistochastic transform leads

to more equally distributed dimensions, so that any aggregation across individuals with

a preference for equality (that is, � > 1) leads to larger summary statistic than the

one corresponding to the initial distribution. Monotonicity of the aggregation across

dimensions assures that the distribution matrix after the mean preserving averaging

13Bourguignon and Chakravarty (2003) suggest that depending on the nature of the dimensions, the
opposite could be considered. Here, dimensions are considered �substitutes�or �complements�according
to the Auspitz-Lieben-Edgeworth-Pareto (ALEP) de�nition, in terms the second cross-partial derivative
of the utility function (Atkinson 2003).
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is preferred. The impossibility result involving correlation increasing majorization has

been formally proven in Gajdos and Weymark (2005). Intuitively, a dimension-speci�c

summary statistic looses all information about the individual outcomes and hence also

about the correlation between the dimensions, so that a social evaluation function derived

according to the �rst procedure is always insensitive to any correlation increasing transfer.

Imposing both distributional concerns on the social evaluation function W 2
n�m obtained

by the second procedure, leads to the following restrictions on the parameter-space.

Proposition 4. A continuous double aggregation function W 2
n�m : Rn�m+

Wm�! Rn+
Wn�!

R+, whereWm satis�es MON, NORM, SEP, WSI; andWn satis�es MON, SYM, NORM,

RSEP, WSI, WTI, REP and RA,

i) satis�es UM if and only if W 2
n�m satis�es equation (5) with � < 1 and � > 1;

ii) satis�es CIM if and only if W 2
n�m satis�es equation (5) with � > �0(X;Z;w; �):

For both distributional concerns to be satis�ed, the degree of substitutability � should

be smaller than 1 and the bottom-sensitivity of the aggregation across individuals Wn

should be �large enough�, that is larger than a lower-bound �0. The result is summarized

in �gure 1. The quadrant where � < 1 and � > 1 represents the pairs of parameters

(�; �) for which uniform majorization is satis�ed. Correlation increasing majorization is

satis�ed in the light-shaded area, above lower-bound �0 represented by the full line. In

general, the exact location of the lower bound depends on the initial distribution matrix

X, the distribution matrix after correlation increasing transfer Z, the weighting scheme

w and the degree of substitutability �. However, in the quadrant where � > 1 and � > 1

correlation increasing majorization is always satis�ed.

Insert Figure 1 about here

The di¤erence between both aggregation procedures concerning their compliance with

both distributional concerns is essential. Concerning uniform majorization, the �rst pro-

cedure imposes no restrictions on the degree of substitutability in the aggregation across

dimensions, whereas the second procedures does. More importantly, aggregating accord-

ing to the �rst procedure excludes a-priori any compliance with correlation increasing

majorization, whereas an aggregation according to the second procedure allows correla-

tion increasing majorization to be satis�ed for a speci�c subset of the parameter-space

above lower-bound �0. Unfortunately, this subset depends on the data at hand, which is

quite inconvenient from an applied perspective.14

14A conservative procedure to get an idea about the lower bound �0 is to simulate all possible matrices
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Therefore, we consider a weakening of correlation increasing majorization, the so called

unfair rearrangement principle. According to this principle, the sequence of correlation

increasing transfers that makes one individual top-ranked in all dimensions, another

individual second ranked in all dimensions and so forth, leads to social inferior situation.

It has been introduced in the literature on multidimensional inequality by Dardanoni

(1996). Instead of requiring that any sequence of correlation increasing transfers leads

to an inferior distribution matrix, the unfair rearrangement principle restrict attention

to one speci�c sequence of correlation increasing transfers.

Property 13. Unfair Rearrangement Principle (URP) Wn�m(X) > Wn�m(Z�)

whenever Z� is obtained from X by the sequence of correlation increasing transfers that

makes one individual in Z� top-ranked in all dimensions, another individual second

ranked in all dimensions and so forth.

Again, an example can clarify this principle,

X =

2664
50 80

90 20

10 50

3775 and Z� =

2664
10 20

90 80

50 50

3775 :
In distribution matrix Z� the �rst individual is bottom-ranked in all dimensions, the

second individual is top-ranked in all dimensions and the third one is middle-ranked, so

that the dimensions are perfectly correlated. Practically, by restricting our scope to the

speci�c sequence of correlation increasing transfers leading to an unfair rearrangement,

the minimal bottom sensitivity �� = �(X;Z�; w; �) can be obtained such that for all

� > ��, an unfair rearrangement of a given distribution matrix X for a given weighting

scheme w and a degree of substitutability � leads to a decrease in societal well-being.

Note that for any given X;w and �; the lower bound on the bottom sensitivity for

compliance with the unfair rearrangement principle �� is smaller or equal to the lower

bound on the bottom sensitivity for compliance with the correlation increasing principle

�0. In the empirical section, we obtain estimates for �� for a series of parameters �

conditional on the dataset at hand X and the weighting scheme w.

that can be obtained by a sequence of CITs from a given distribution matrix X, and selecting the
maximal lower bound that assures CIM to hold. For realistic datasets this is a computational very
intense exercise and moreover this procedure easily leads to the extreme values for the lower bound �0 so
that the intersection with the area where UM holds is virtually empty (computations for the empirical
examples in section 5 are available upon request from the authors).
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4 Two multidimensional S-Gini inequality indices

In the one-dimensional normative approach, a relative inequality index is derived from

its underlying social evaluation function as the fraction of total welfare wasted due

to inequality (Atkinson 1970, Kolm 1969, Sen and Foster 1997). In a seminal article,

Kolm (1977) generalizes the one-dimensional de�nition to the multidimensional setting

by de�ning multidimensional inequality to be the fraction of the aggregate amount of

each dimension of a given distribution matrix that could be destroyed if every dimen-

sion of the matrix is equalized while keeping the resulting matrix socially indi¤erent to

the original matrix (see also Weymark (2006)). Formally, a multidimensional relative

inequality index I(X) is de�ned as the scalar that solves

Wn�m ((1� I(X))X�) = Wn�m (X) ; (6)

where X� is the equalized distribution matrix de�ned such that all the elements in the

j�th column of the matrix are the dimension-wise mean �(xj). Substituting W 1
n�m

obtained in (4) to expression (6) the following multidimensional S-Gini inequality index

I1 can be obtained,

I1(X) = 1�

24Pm
j=1wj

 Pn
i=1

"�
rij
n

��
�
�
rij�1
n

��#
xij

!�35(1=�)
�Pm

j=1wj�(xj)
�
�1=� : (7)

Based on the social evaluation function W 2
n�m summarized in expression (5) and the

de�nition of a relative inequality index in expression (6) ; I2 can be derived as follows,

I2(X) = 1�

Pn
i=1

��
ri

n

��
�
�
ri�1
n

����Pm
j=1wj(x

i
j)
�
�1=�

�Pm
j=1wj�(xj)

�
�1=� : (8)

Both multidimensional inequality indices are generalizations of the S-Gini inequality

index and lead to the one-dimensional S-Gini index for m equal to 1. By inspection of

expressions (7) and (8) it is clear that their di¤erence arises from two elements. First,

the sequence of the summations across individuals and dimensions di¤ers and second, the

weights attached to each individual are di¤erent. The inequality index I1 uses individual

weights depending on rij ; that is their rank in the distribution of each dimension j. In

contrast, in the inequality index I2; the individuals�weight depends on their rank in the

overall distribution of well-being, that is ri. Both elements may lead to very di¤erent
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empirical results, when I1 and I2 are computed for the same distribution matrix X. A

priori it is even hard to predict which of both indices will show more inequality.

However, from proposition 4 it follows that I2(X) < I2(Z�) whenever � > �� (i.e.

when the unfair rearrangement principle holds) where Z� is the distribution matrix

introduced in the previous section obtained from X by an unfair rearrangement. Since

I1 is not sensitive to changes in correlation, it always holds that I1(X) = I1(Z�): When

all dimensions are perfectly correlated, the ranks rij equal r
i for all dimensions j;moreover

if � equals 1, both aggregations across individuals and dimensions are weighted averages

so that the order can be switched without a¤ecting the results, hence I1(Z�) = I2(Z�)

whenever � = 1: In sum, in the speci�c case for � > �� and � = 1; I2 shows always less

inequality than I1. In the general case however, the comparison between both indices

depends on the inequality within each dimension and the correlation structure between

the dimensions as will be illustrated in the next section based on a Russian dataset.

5 Empirical illustration: RussianWell-being Inequality be-

tween 1995 and 2003

As an empirical illustration, we consider the question whether the Russian society is more

equal in 2003 than it was in 1995. During this period, the Russian Federation underwent

a fundamental transition and was hit by a severe �nancial crisis. Many studies have

documented that inequality in expenditures increased over the period preceding the crisis

(Gorodnichenko et al. (2005)). Others have studied the e¤ects of the transition on other

aspects of well-being such as health or education (see, respectively, Moser, et al. (2005)

and Osipian (2005)). We will analyze the evolution of well-being inequality by including,

in addition to expenditure data, other dimensions such as health and education.

Data come from the Russian Longitudinal Monitoring Survey (RLMS), a series of nearly

annual, nationally representative surveys designed to monitor the e¤ects of Russian re-

forms on health and economic welfare. We use three indicators for the respective dimen-

sions of well-being: equivalent real household expenditures, a constructed health indi-

cator and years of schooling. First, equivalent real household expenditures are widely

used in the literature as an indicator of material standard of living.15 We use the square

root of household size as the equivalence scale. For the health dimension, the RLMS is

particularly rich in objective health indicators. We aggregate eight of these indicators to

obtain a composite index of health status. The weights attached to each indicator are

15The nominal household expenditures are corrected for yearly in�ation and use 1994 as reference year.
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derived from an ordinal logit regression of self-assessed health status on the objective

health indicators.16 By this procedure, the constructed measure is as close as possible

to the self-reported health status of the individual, while making sure that individuals

with the same objective characteristics obtain the same health measure, for a similar

procedure, see van Doorslaer and Jones, (2003) and Nilsson, (2007). Third, years of

schooling is constructed by their highest grade reported and an indicator whether they

completed higher education or not.

We restrict the analysis to adults with complete information in all three indicators,

leaving us with a sample of approximately 6,000 individuals in each wave (see table

4 in appendix B for some summary statistics). Table 5 in appendix B includes two

members of the class of one-dimensional S-Gini inequality indices, the standard Gini

coe¢ cient (� = 2) and a more bottom sensitive Gini index (� = 5). Given that the

sample represents a fraction of the total Russian population, we use a bootstrapping

procedure to compute the standard errors of the inequality indices and their respective

intervals at 95% con�dence level.17

Figures 2 and 3 show the evolution of the S-Gini inequality index of the three dimensions

separately for a bottom sensitivity parameter of 2 and 5. The inequality indices are

normalized to 1995 to compare changes in inequality more easily.18 Income inequality

increases approximately by 10% between 1995 and 1998. After the �nancial crisis income

inequality decreases continuously (though still not reaching 1995 values) and rises again

in 2003. These �ndings are in line with the literature (Gorodnichenko, Sabirianova Peter,

and Stolyarov 2008). By contrast, health inequality increases throughout the period and

educational inequality remains relatively stable. In short, all three dimensions experience

rather distinct patterns hence highlighting the need for a multidimensional approach to

the analysis of the distribution of well-being.

Insert �gure 2 about here

Insert �gure 3 about here

16 More precisely, for every individual, the composite index of health is the predicted value of the latent
variable of a pooled ordered logit health regression with the following explanatory variables: indicators
of diabetes, heart attack, anaemia or other health problems; indicators of a recent medical check-up,
hospitalization or operation; life-style indicators such as smoking, regular exercises or jogging and age
and gender dummies. All variables are highly signi�cant and have the expected sign. The results can be
found in Appendix B (table 3). The predicted values from this regression for each individual are linearly
transformed such that the most unhealthy individuals from the sample obtains slightly more than 0 and
the healthiest almost 1.
17From the original sample repeatedly (1000 times) a new sample is drawn with replacement, of the

same size as the original sample. For each of the 1000 new samples, we keep track of all the computed
S-Gini inequality indices and report the interval that contains 95% of the results.
18This normalization is particularly helpful given that the indicators used for each dimension di¤er

in their bounds and measurement characteristics. More precisely, income is unbounded and continuous
while health is bounded (between 0 and 1) and continuous and education is bounded to 16 and is discrete.
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In order to compute both multidimensional Gini indices presented in the preceding sec-

tion, we are inevitably forced to make four crucial choices about the parameters. These

are on (1) the appropriate standardization for each dimension, (2) the degree of substi-

tutability �, (3) the weighting scheme w = (w1; :::; wm) and, (4) the bottom sensitivity

parameter �. In the present illustration we standardize every dimension by dividing the

outcomes by its dimension-wise mean in 2000. Second, we set � equal to 0, so that the

aggregation across dimensions follows expression (2). The reason for this choice is that,

for � = 0 the results are robust to alternative standardization procedures involving a

dimension-wise rescaling. This is an attractive property when the indicators are of very

di¤erent nature as it is the case here. Third, we use equal dimension weights (wj = 1=3)

for simplicity.19 Finally, we will compare two values for the bottom sensitivity parameter

�, the �rst corresponding to the standard Gini coe¢ cient (� = 2) and the other giving

higher weight to individuals at the bottom of the distribution (� = 5).

The selection of the parameters is an essential and di¢ cult step in the computation of

any index of well-being inequality. Inevitably, the parameters imply value judgements

about the nature of well-being and the contribution of each dimension to it. It is thus

important to make these choices in an explicit and clear way so that they can be open to

public scrutiny. To clarify what our parameter-choices mean in terms of the well-being

function, we present the implied marginal rates of substitution in table 1. An average

Russian in 2000 who spends 4,457 rubles per month, attended 6 years of school and has

a health indicator of 0.635 (on a scale of 0 to 1) is willing to pay about 702 rubles for

an increase of 0.1 on the health scale (which means, for instance, roughly 600 rubles for

not being hospitalized) or 718 rubles for an extra year of education.20

MRS Expenditures Schooling Health

Expenditures 1

Schooling -718 1

Health -702 -0.98 1

Table 1: Implied Marginal Rates of Substitution between the dimensions of well-being.

RLMS, 2000.

We �rst check whether the parameters selected lead to compliance of the indices with

the distributional concerns introduced in section 3. Following the conditions obtained
19On the issue of setting weights in multidimensional measures of well-being and deprivation, see

Decancq and Lugo (2008).
20A more detailed overview of the distribution of marginal rates of substitution between income and

health for individuals with a di¤erent incomes and health status can be found in table 6 in appendix
B. These implied marginal rates of substitution should ideally be compared and to alternative studies
based on questionnaires or market behaviour. Unfortunately we are not aware of these data in a Russian
context.
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in proposition 3, index I1 satis�es uniform majorization for the parameters chosen and

is not sensitive to the correlation between the dimensions. Index I2 satis�es uniform

majorization for the parameters selected. We check the unfair rearrangement principle

for a wide range of parameters and summarize the results in �gure 4. This �gure depicts

a part of the normative space given by the degree of substitutability � and bottom

sensitivity �. In every point of the normative space, multidimensional inequality of the

distribution matrix at hand X is compared to its Z�; the distribution matrix obtained

by an unfair rearrangement. The curves connect the points where I2 (X) equals I2 (Z�)

for a given year. Above the curve, the unfair rearrangement principle is satis�ed and

below the curve it is not. Hence, for a degree of substitutability � of 0 and a bottom

sensitivity parameter � equal to 2 or 5, it is clear that the unfair rearrangement principle

is satis�ed for all years.

Insert �gure 4 about here

Table 2 summarizes the evolution in multidimensional well-being inequality using I1 and

I2, with con�dence intervals computed based on bootstrapped standard errors.

I1 I2

� = 2 � = 5 � = 2 � = 5

Year Index Conf.Interval Index Conf.Interval Index Conf.Interval Index Conf.Interval

1995 0:315 [0:309; 0:322] 0:561 [0:555; 0:568] 0:329 [0:322; 0:336] 0:516 [0:508; 0:523]

1996 0:333 [0:327; 0:340] 0:580 [0:573; 0:586] 0:349 [0:342; 0:356] 0:538 [0:531; 0:545]

1998 0:344 [0:336; 0:355] 0:589 [0:581; 0:598] 0:359 [0:350; 0:369] 0:548 [0:540; 0:557]

2000 0:342 [0:335; 0:348] 0:585 [0:578; 0:591] 0:352 [0:346; 0:359] 0:546 [0:539; 0:553]

2001 0:332 [0:327; 0:339] 0:578 [0:572; 0:584] 0:343 [0:336; 0:350] 0:539 [0:532; 0:545]

2002 0:328 [0:324; 0:334] 0:576 [0:570; 0:582] 0:339 [0:334; 0:345] 0:541 [0:535; 0:548]

2003 0:339 [0:333; 0:346] 0:586 [0:580; 0:592] 0:351 [0:344; 0:358] 0:551 [0:544; 0:558]

Table 2: Russian multidimensional inequality measured by two S-Gini indices for � = 2

and � = 5. Own calculations based on the RLMS 1995-2003.

The losses due to well-being inequality are about 30% for � equal to 2 and 50% for � equal

to 5. Well-being inequality increases during the �rst four years and shows afterwards an

U-shaped pattern. This pattern is consistent for both indices and both �0s: In �gures 5

and 6, the evolution of multidimensional well-being inequality according to I1 is depicted

by the full black line and the evolution of I2 by the dashed line. Again, all �gures are

normalized such that 1995 equals 100. For reference, the grey lines depict the dimension-

wise trends in inequality. Note that the multidimensional inequality follows a pattern

similar to the one income inequality for (�gure 5), but that for the more bottom sensitive
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index (�gure 6) the relative evolution resembles much more the one of health inequality.

In other words, in this empirical example the multidimensional analysis o¤ers a clear

added value to an approach focussing on just one dimension.

Insert �gure 5 about here

Insert �gure 6 about here

We see that for � equal to 2, I2 shows a less pronounced relative change than I1, whereas

the opposite holds for � = 5: Both measures clearly diverge for the more bottom-sensitive

measures (� = 5): And, although the di¤erence is not statistically signi�cant, both indices

disagree about the change in inequality between 2001 and 2002 for � equal to 5. To

understand these observations, we have to turn to their essential di¤erence, which is the

sensitivity to correlation between the dimensions of well-being. Figure 7 shows the sum

of the three pairwise correlation coe¢ cients between the dimensions of well-being. The

summed correlation between the dimensions of well-being shows a clear increase over the

considered period (see also Decancq, (2008)).

Insert �gure 7 about here

From the analysis in the preceding section, it follows that I1 is always insensitive to

the correlation between the dimensions, so that the trend of I1 is an aggregate of the

evolution of the inequality within each dimension. Index I2 is additionally also sensitive

to the correlation between the dimensions. The more weight is given to the bottom of the

distribution (the higher �) the more correlation increasing transfers lead to an increase

in inequality and the more the increasing correlation which can be seen in �gure 7 is

translated in a higher inequality of I2: This additional aspect of multidimensional well-

being inequality following from the increase in correlation leads to a sharper increase

of inequality measured by I2 when considerable weight is given to the bottom of the

distribution and even o¤sets the small decrease in inequality in the dimensions separately

captured by I1 between 2001 and 2002.

This illustration highlights the di¤erence between both multidimensional Gini inequality

indices. Although they are both derived from a two-step social evaluation function

respecting similar properties in each step, the sequencing of both steps makes them very

di¤erent with respect to their sensitivity to correlation between the dimensions. As

shown in this empirical example, this is not only a theoretical concern but also a¤ects

the empirical results. The comparison of both indices reveals an additional aspect of the

Russian fast transition: the increase of correlation between the dimensions.
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6 Conclusion

In this paper, we have proposed two indices of well-being inequality that take the mul-

tidimensionality of well-being explicitly into account. The resulting indices are multi-

dimensional generalizations of the popular Gini coe¢ cient. To derive the indices, we

followed a normative approach in which the inequality indices are derived from their

underlying rank-dependent multidimensional social evaluation functions. These multi-

dimensional social evaluation functions are conceived as explicit two-step aggregation

functions, which allowed us to derive them from existing results in the one-dimensional

literature. In both steps, respectively aggregating across dimensions and individuals,

we imposed a set of properties to come to a single class of functions. We think that

the set of properties suggested in this paper entails an acceptable compromise between

functional �exibility and the parsimony needed to come to an applicable and practically

manageable measure of well-being inequality.

The sequencing of both aggregations turns out to be essential in terms of the underlying

principles. Aggregating �rst across individuals and then across dimensions leads to a

index which is a-priori insensitive to the correlation between the dimensions. In our

view this is a serious drawback of this procedure. The second procedure, in which �rst is

aggregated across dimensions and then across individuals leads to a index which can be

sensitive to correlation between the dimensions for speci�c choices on parameter-values.

We show that researchers, who want to obtain a correlation sensitive rank-dependent

inequality index, have to be willing to give a (potentially) large weight to the bottom of

the distribution.

To apply the multidimensional indices in a satisfactory way to real-world data, hard

choices have to be made about the appropriate parameter values (on standardization,

weighting, substitutability between the dimensions and bottom-sensitivity). Theoretical

guidelines on how these parameter choices can and should be made, are needed to bring

the existing multidimensional measures of inequality to real-world datasets. Furthermore

there is an urgent need to collect more and richer individual data including non-monetary

dimensions of well-being, so that multidimensional inequality can be analyzed in a way

sensitive to the correlation between its dimensions.
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Appendix A. Proofs

Proposition 3. A continuous double aggregation function W 1
n�m : R

n�m
+

Wn�! Rm+
Wm�!

R+, where Wn satis�es MON, SYM, NORM, RSEP, WSI, WTI, REP and RA; and Wm

satis�es MON, NORM, SEP, WSI,

i) satis�es UM if and only if W 1
n�m satis�es equation (5) with � > 1;

ii) cannot satisfy CIM.

Proof. For i) concerning uniform majorization (UM), let Y = BX, so that W 1
n�m sat-

is�es UM if and only if W 1
n�m (Y ) > W 1

n�m (X) : By construction, in every dimension

j it holds that yj = Bxj , so that for all strictly Schur concave aggregation functions

across individuals it holds that Wn(yj) > Wn(xj) (Marshall and Olkin 1979). Schur

concavity of Wn is obtained by restricting � to be larger than 1 (Ebert 1988). If in

all dimensions j Wn(yj) > Wn(xj) holds, by monotonicity of Wm it is the case that

Wm (Wn(y1); :::;Wn(ym)) > Wm (Wn(x1); :::;Wn(xm)) :

Part ii) concerning correlation increasing majorization (CIM), follows straight from Gaj-

dos and Weymark ((2005); theorem 10).

Proposition 4. A continuous double aggregation function W 2
n�m : R

n�m
+

Wm�! Rn+
Wn�!

R+, whereWm satis�es MON, NORM, SEP, WSI; andWn satis�es MON, SYM, NORM,

RSEP, WSI, WTI, REP and RA,

i) satis�es UM if and only if W 2
n�m satis�es equation (4) with � < 1 and � > 1;

ii) satis�es CIM if and only if W 2
n�m satis�es equation (4) with � > �

0(X;Z;w; �):

Proof. A double aggregation function W 2
n�m satis�es the required properties on Wm and

Wn if and only if it can be written as:

W 2
n�m (X) =

nX
i=1

aiWm(x
i); (9)

with ai =
��

ri

n

��
�
�
ri�1
n

���
and Wm(x

i) =
hPm

j=1wj(x
i
j)
�
i(1=�)

for all i.

For i) let Y = BX so that W 2
n�m satis�es uniform majorization (UM) if and only if

W 2
n�m (Y ) > W 2

n�m (X). According to Kolm (1977; theorem 6) UM holds if and only

if W 2
n�m is (a) Wm is strictly concave, (b) Wn is increasing and (c) Wn is strictly Schur

concave.
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Note that (a) is ful�lled if and only if � < 1; since for all � < 1; Wm is strictly quasi-

concave (Wm (�x+ (1� �)x0) > min[Wm (x) ;Wm (x
0)]) and any strictly quasi-concave

function taking only positive values that satis�es LHOM is strictly concave (reference);

(b) is ful�lled by monotonicity ofWn and; (c) is ful�lled if and only if � > 1. (Ebert 1988)

For ii), let Z be obtained from X by a CIT between two individuals k and l so thatW 1
n�m

satis�es concerning correlation increasing majorization (CIM) if and only ifW 1
n�m (X) >

W 1
n�m (Z).

Consider two individuals k and l having initial well-being measurements Wm(x
k) and

Wm(x
l) with ranks rk and rl, respectively. Without loss of generality assume that

Wm(x
k) � Wm(x

l). After the CIT, individuals k and l obtain well-being measurements

Wm(z
k) and Wm(z

l) and all other individuals remain una¤ected so that Wm(x
i) =

Wm(z
i) for i 6= k; l. The CIT may lead to some re-ranking so that individuals k and l

obtain ranks rk
0
and rl

0
which are not necessarily equal to rk and rl anymore.

>From monotonicity of Wm it follows that

Wm(z
k) < Wm(x

k) �Wm(x
l) < Wm(z

l): (10)

Let us de�ne " =Wm(x
k)�Wm(z

k) > 0 and � =Wm(z
l)�Wm(x

l) > 0.

Substituting this in equation (9), we obtain that CIM is satis�ed if and only if:

a1Wm(x
1) + :::+ ak

h
Wm(z

k) + "
i
+ :::+ al

h
Wm(z

l)� �
i
+ :::+ anWm(x

n) >

a1Wm(x
1) + :::+ ak

0
Wm(z

k) + :::+ al
0
Wm(z

l) + :::+ anWm(x
n):

After rearranging one obtains:

ak"� al� > a1Wm(x
1) + :::+ ak

0
Wm(z

k) + :::+ al
0
Wm(z

l) + :::+ anWm(x
n) (11)

�
h
a1Wm(x

1) + :::+ akWm(z
k) + :::+ alWm(z

l) + :::+ anWm(x
n)
i
:21

Two parameters -implicit in the above conditions- are of special interest here: � and �.

Let us �rst consider the bottom sensitivity �. For � > 1 the weights ai are decreasing in

ri, so that ak > al. The right-hand-side of (11) is equal to 0 in case there is no reranking

and always nonpositive in case of reranking since the sum between square brackets gives

the highest weight to the smallest well-being measure and so forth. This can never be

larger than any other combination of weights and well-being measures). Similarly, for

� � 1 the weights ai are non-decreasing in ri, so that ak � al and the right-hand-side of
(11) is always nonnegative.
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Second, let us consider the degree of substitutability �. If � > 1, Wm has negative

cross-derivatives and hence Wm(x
k) �Wm(z

k) > Wm(z
l) �Wm(x

l) or " > � (Marshall

and Olkin 1979). For � � 1, Wm has nonnegative cross-derivatives and hence " � �.

Four cases have to be analyzed:

1. � > 1 and � > 1

If � > 1 inequality (11) reduces to ak" � al� > 0, so that CIM is satis�ed if and

only if:
al

ak
<
"

�
: (12)

Since � > 1, ak > al and from � > 1 it follows that " > �, so that expression (12)

is always ful�lled.

2. � > 1 and � � 1:

Since � > 1, ak > al and from � � 1 it follows that " � �, so that inequality (12)
is ful�lled if � > �0(X;Z;w; �):

3. � � 1 and � > 1

>From � � 1; it follows that ak � al and by � > 1 it holds that " > �, moreover
the right-hand-side of (11) is always nonnegative, so that equation (11) only holds

for al=ak arbitrary large or equivalently if � > �0(X;Z;w; �):

4. � � 1 and � � 1

Since � � 1; it follows that ak � al and that the right-hand-side of (11) is always
nonnegative. Moreover, � � 1 implies that " � �, so that equation (11) can never
be ful�lled.
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Appendix B. Tables and �gures

Table 3: Health equation, RLMS, pooled ordered logit regression.

Self-assessed Health

diabetes -0.645*** (0.0456)

heart attack -0.973*** (0.0542)

anemia -0.596*** (0.0481)

health problem -1.637*** (0.0212)

hospitalized -0.771*** (0.0417)

check up -0.216*** (0.0237)

operation -0.230*** (0.0484)

smokes -0.187*** (0.0221)

jogged 0.234*** (0.0466)

exercise 0.404*** (0.0296)

age 20 -0.276*** (0.0320)

age 30 -0.885*** (0.0328)

age 40 -1.481*** (0.0327)

age 50 -1.986*** (0.0368)

age 60 -2.567*** (0.0378)

age 70 -3.317*** (0.0430)

age 80 -4.036*** (0.0659)

age 90 -4.533*** (0.163)

male 0.520*** (0.0205)

N 58,166

R2 (pseudo) 0.2270

Standard errors in parentheses

� : p < 0:05; �� : p < 0:01; � � � : p < 0:001

30



Table 4: Summary Statistics. Russia from 1995 to 2003.

Variables mean sd min max

1995 (N = 5,011)

Expenditures (in Rubles) 5,289 5,923 10 160,250

Schooling (in years) 5.01 3.72 1.00 16.00

Health (between 1 and 5) 3.10 0.44 1.45 4.00

1996 (N = 5,305)

Expenditures (in Rubles) 4,972 6,277 61 177,450

Schooling (in years) 5.35 4.02 1.00 16.00

Health (between 1 and 5) 3.10 0.45 1.53 4.00

1998 (N = 5,717)

Expenditures (in Rubles) 3,837 6,992 35 203,583

Schooling (in years) 5.73 4.29 1.00 16.00

Health (between 1 and 5) 3.10 0.47 1.39 4.00

2000 (N = 6,221)

Expenditures (in Rubles) 4,457 6,277 30 124,256

Schooling (in years) 6.20 4.60 1.00 16.00

Health (between 1 and 5) 3.08 0.46 1.39 4.00

2001 (N = 7,047)

Expenditures (in Rubles) 5,024 6,601 61 251,334

Schooling (in years) 6.53 4.72 1.00 16.00

Health (between 1 and 5) 3.07 0.47 1.49 4.00

2002 (N = 7,648)

Expenditures (in Rubles) 5,244 6,228 10 181,401

Schooling (in years) 6.79 4.81 1.00 16.00

Health (between 1 and 5) 3.08 0.47 1.38 4.00

2003 (N = 7,700)

Expenditures (in Rubles) 5,920 9,452 61 235,387

Schooling (in years) 7.05 4.94 1.00 16.00

Health (between 1 and 5) 3.09 0.48 1.47 4.00

Source: RLMS, authors�calculations
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Table 6: Implied willingness to pay (in ruble) for not having to go to the hospital in 2000

for individuals with a di¤erent income (columns) and health status (rows).

MRS 1175 1655 2125 2619 3096 3719 4454 5612 8102

0.03 3320 4676 6004 7399 8747 10507 12584 15855 22890

0.1 996 1403 1801 2220 2624 3152 3775 4757 6867

0.2 498 701 901 1110 1312 1576 1888 2378 3434

0.3 332 468 600 740 875 1051 1258 1586 2289

0.4 249 351 450 555 656 788 944 1189 1717

0.5 199 281 360 444 525 630 755 951 1373

0.6 166 234 300 370 437 525 629 793 1145

0.7 142 200 257 317 375 450 539 680 981

0.8 124 175 225 277 328 394 472 595 858

0.9 111 156 200 247 292 350 419 529 763

1 100 140 180 222 262 315 378 476 687

beta

d
e
l
t
a

0 1

1

CIMUM

δ’

Figure 1: Compliance of Multidimensional S-Gini Social welfare function W 2
n�m for dif-

ferent � and � parameters.
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Table 7: Spearman rank correlation coe¢ cient. Russia from 1995 to 2003.

1995 (N=5,011) Expenditures Schooling Health

Expenditures 1

Schooling 0.1268* 1

Health 0.0487* 0.5070* 1

1996 (N=5,305) Expenditures Schooling Health

Expenditures 1

Schooling 0.1438* 1

Health 0.0692* 0.5351* 1

1998 (N=5,717) Expenditures Schooling Health

Expenditures 1

Schooling 0.1252* 1

Health 0.0912* 0.5825* 1

2000 (N=6,221) Expenditures Schooling Health

Expenditures 1

Schooling 0.1417* 1

Health 0.1144* 0.6041* 1

2001 (N=7,047) Expenditures Schooling Health

Expenditures 1

Schooling 0.1344* 1

Health 0.1128* 0.6153* 1

2002 (N=7,648) Expenditures Schooling Health

Expenditures 1

Schooling 0.1647* 1

Health 0.1287* 0.6384* 1

2003 (N=7,700) Expenditures Schooling Health

Expenditures 1

Schooling 0.1743* 1

Health 0.1486* 0.6572* 1

Source: RLMS, authors�calculations
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Multidimension SGini Inequality Index(RLMS) (delta=2)
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Figure 2: The evolution of Russian Inequality measured by a dimension-by-dimension

S-Gini inequality index (for � = 2). Author�s calculations based on the RLMS 1995-2003.

Multidimension SGini Inequality Index (RLMS) (delta=5)
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Figure 3: The evolution of Russian Inequality measured by a dimension-by-dimension

S-Gini inequality index (for � = 5). Author�s calculations based on the RLMS 1995-2003.
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Figure 4: Compliance of the Russian dataset with the unfair rearrangment principle

for di¤erent years and di¤erent � and � parameters. Author�s calculations based on the

RLMS 1995-2003.
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Figure 5: The evolution of Russian Inequality measured by two multidimensional S-Gini

inequality indices (for � = 2). Author�s calculations based on the RLMS 1995-2003.
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Multidimension SGini Inequality Index (RLMS) (delta=5)
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Figure 6: The evolution of Russian Inequality measured by two multidimensional S-Gini

inequality indices (for � = 5). Author�s calculations based on the RLMS 1995-2003.
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Figure 7: Evolution of summed rankcorrelation coe¢ cients between each pair of dimen-

sions. Author�s calculations based on the RLMS 1995-2003.
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