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Abstract

This paper tests for robust multidimensional poverty comparisons across
six countries of the West African Economic and Monetary Union (WAEMU).
Two dimensions are considered, nutritional status and assets. The estima-
tion of the asset index is based on two factor analysis methods. The first
method uses Multiple Correspondence Analysis; the second is based on the
maximization of a likelihood function and on bayesian analysis. Using De-
mographic and Health Surveys (DHS), pivotal bootstrap tests lead to statisti-
cally significant dominance relationships between 12 of the 15 possible pairs
of the six WAEMU countries. Multidimensional poverty is also inferred to
be more prevalent in rural than in urban areas. These results tend to support
those derived from more restrictive unidimensional dominance tests.
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1 Introduction
The literature on poverty measurement generally follows two approaches. The
first one is based on monetary indicators (e.g., Chen and Ravallion 2001 and
Atkinson 1998) and essentially treats income or consumption as a unidimensional
proxy for welfare; the second approach makes use of a broader set of multidimen-
sional variables (see for instance Streeten, Burki, UL HAQ, Hicks, and Stewart
1981 or Maasoumi 1999). The second approach has gained significantly in pop-
ularity since the seminal work of Sen (1985). It also underlies the promotion of
the Millenium Development Goals (MDG) by the United Nations, since the MDG
focus on deprivation in multiple dimensions.

Although it is indeed now common to assert that poverty is a multi-
dimensional phenomenon, there exist, however, significant difficulties in imple-
menting a truly multidimensional analysis of poverty. In performing such a task,
a number of intrinsically arbitrary measurement assumptions are often made, con-
sisting inter alia in choosing aggregation procedures across dimensions of well-
being, aggregation procedures across across individuals, and multidimensional
poverty lines to separate the poor from the non-poor. Each of these choices raises
concerns over the possible non-robustness of the results that are obtained.

For instance, an important branch of the literature that considers multiple di-
mensions of welfare — of which the best-known example is the Human Devel-
opment Index of the United Nations Development Program (1990) — aggregates
simple summary measures of welfare (in terms of life expectancy, literacy, and
GDP) into a single one-dimensional index. The across-dimension and across-
individual aggregation procedures used in that exercise can easily be criticized
— see for instance Kelley (1991) — and several alternative procedures can be
(and have been) proposed that lead to alternative views of poverty across time and
space.

To allay such concerns over issues of arbitrariness and non-robustness, an al-
ternative to comparing summary indices of multidimensional poverty is to seek
poverty comparisons that are valid for a broad class of measurement assumptions.
Dominance (or robustness) tests have been in existence in the context of unidi-
mensional comparisons of poverty for many years now (e.g., Atkinson 1987, Fos-
ter and Shorrocks 1988a, Foster and Shorrocks 1988b, Anderson 1996, Davidson
and Duclos 2000 or Barrett and Donald 2003). It is well-known that one important
advantage of such tests is that they are capable of generating poverty comparisons
that are robust to the choice of both poverty indices and unidimensional poverty
lines. Multidimensional poverty dominance tests have been the object of more
recent attention (see for instance Bourguignon and Chakravarty 2002, Atkinson
2003 and Duclos, Sahn, and Younger 2006), even though, as Anderson (2005)
points out, adding dimensions to welfare analysis can change one’s comparisons
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of poverty across time and space. In performing multidimensional dominance
tests, one is seeking robustness over aggregation procedures across dimensions of
welfare, robustness over aggregation procedures across individuals, and robust-
ness over choices of multidimensional poverty lines.

One difficulty with tests for multidimensional poverty dominance is due to
the “curse of dimensionality” (see Bellman 1961), a curse that affects all non-
parametric comparisons of distributions with multiple variates. This curse is likely
to strike in many practical applications of the above multidimensional dominance
methodology. The monitoring of the MDG suggests for instance that one should
look jointly at a variety of income, health, mortality, educational and environmen-
tal indicators. The typical “poverty reduction strategies” drawn by many develop-
ing countries draw attention to several dozens of welfare indicators. Comparing
the joint distributions of these various indicators across time and space will often
prove to be statistically too demanding.

As an alternative to the above, this paper proposes and implements a procedure
that stands as a compromise between a desire for greater robustness to measure-
ment assumptions than is usually found in the multidimensional poverty literature,
and a practical need for statistical and empirical tractability. To do this, the paper
estimates asset indices that incorporate various attributes of difficult-to-aggregate
individual indicators of living standards. This is done in the spirit of Sahn and
Stifel (2000) and Sahn and Stifel (2003), for instance, which apply factor analy-
sis on multiple welfare indicators to derive a unidimensional welfare index, and
on the basis of which they then perform tests for unidimensional dominance in
poverty over time and across countries. An important advantage of this approach
is to avoid having to use difficult-to-assign index values to various goods and ser-
vices. The paper subsequently performs a two-dimensional dominance analysis
that takes into account an additional indicator of welfare, this time in the dimen-
sion of health and nutrition, an indicator that may be distributed quite differently
from the above asset index. Hence, we compare welfare using two dimensions,
an asset index and health, allowing significant flexibility in mixing up the two
dimensions while enforcing sufficient statistical and informational manageability.

Testing for multidimensional dominance then involves comparing joint dis-
tribution functions over an infinite number of combinations of possible poverty
thresholds in each dimension. This raises obvious computational and statisti-
cal difficulties. Another contribution of the paper is thus to extend a recently
proposed statistical inference procedure for univariate distributions to the case
of multivariate distributions. This is done by applying the empirical likelihood
method suggested by Davidson and Duclos (2006) to test the existence of two-
dimensional poverty dominance relationships. The outcome is the derivation of
an intersection-union test procedure that enables inferring strict dominance rela-
tionships in a multivariate context.
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The above measurement and statistical methodology is then applied to com-
paring poverty across six members of the West African Economic and Monetary
Union: Benin, Burkina Faso, Côte d’Ivoire, Mali, Niger, and Togo. Wide dis-
parities are observable across these countries, with Côte d’Ivoire accounting for
nearly 40% of the output of the Union. Poverty is also compared within each
country across rural and urban areas, in part to check whether the usual mone-
tary comparisons that show lower poverty in urban areas also carry over to the
case of multiple dimensions. It is indeed possible that, even with low overall av-
erage incomes, rural inhabitants may possess greater assets, may have better and
more direct access to agricultural produce, and may be better nourished than city
dwellers, who must frequently pay a higher price for what may be lower-quality
foodstuffs.

The rest of the paper is as follows. Section 2 presents the methodology for
estimating the asset index. Section 3 explains what two-dimensional stochastic
dominance is and sets up the techniques for testing it. The data description and
the empirical results are found in Section 4. Section 5 concludes.

2 Estimating the welfare indicators
We first define the two indicators of welfare used for the paper’s multidimensional
poverty analysis. The first indicator is a measure of nutrition and health; the
second measures assets and is derived from two estimation procedures, i.e., an
inertia method based on Multiple Correspondence Analysis (MCA) and a factor
analysis procedure using likelihood.

2.1 Calculating an indicator of health and nutrition
Several measures of health and nutrition are used in the literature, the main ones
being weight-for-height indices, height-for-age indices, and weight-for-age in-
dices. These indices are obtained from comparisons of weights or heights with
the mean or median value of a reference population. For children, Sahn and Stifel
(2002) argue for the use of a height-for-age index since it is not as much affected
as other indices by episodes of stress, diarrhoea, malaria, or other conditions that
may temporarily modify the health and nutritional status of an individual. Instead,
height-for-age indices tend to capture the cumulative impact on health of longer-
term factors, such as average socio-economic conditions and public health policy
— vaccination programs, efforts to combat endemic diseases and other chronic
illness, or sanitation programs for instance.
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A height-for-age Z_score for a child i can be computed as

Z_scorei =
Ti − Tmedian

σT

, (1)

where Ti is the child’s body-height, Tmedian is the median body-height of a healthy
and well-nourished child from the reference population used by the United States
National Center for Health Statistics, and σT is the standard deviation of body-
heights in the reference population. The children in question are between 3 and
35 months. By convention, a child with a Z_score falling below -2 (a nutritional
poverty "threshold") is usually deemed to be suffering from malnutrition.

2.2 Estimating the asset index
2.2.1 An inertia approach

An inertia approach is used to derive an asset index. Let each of N individuals,
indexed i = 1, . . . , N , exhibit J welfare attributes, j = 1, . . . , J . These N indi-
viduals can be represented by a cloud of points around a centroid (the weighted
means) in the space of the J attributes, with each point having some weight. The
total inertia of the cluster of points is the weighted sum of the distance of each
point from the centroid.

The main issue is how to proceed to the estimation of an asset index for each
household using a weighted sum of the welfare attributes. Let Xi be the asset
index for individual i, xij be his endowment of attribute j, and αj be the weight
assigned to each attribute. Xi is then given by

Xi = α1xi1 + . . . + αJxiJ . (2)

In order to check for robustness over the choice of the inertia method for the
data reduction operation implicit in (2), two methods are used, both being suit-
able when we deal with qualitative variables. The first one, a MCA procedure, is
well-known and will not be described in detail here (see for instance Greenacre
1993 and Greenacre and Blasius 2006). The second method, which involves a
maximum likelihood procedure, has proven to be quite useful in social sciences
(such as psychology) and is based on confirmatory factor analysis with qualitative
variables. Since it is less familiar to economists, we outline it below.

2.2.2 factor analysis approach

The literature has essentially proposed two procedures, one based on an underly-
ing response variable and another one based on a response function (see for in-
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stance Moustaki 2000 and Jöreskog and Moustaki 2001). With the first procedure,
each of the qualitative indicators is supposed to be generated by an unobserved,
continuous response variable (a latent variable) that is distributed normally. For
the second procedure, a conditional distribution for each possible configuration of
J-dimensional responses is specified as a function of the latent factors, assuming
that the responses to the various variables are independent — see Bartholomew
(1983), Bartholomew (1984) and Moustaki (2000), among others. Jöreskog and
Moustaki (2001) suggest three estimation methods for each of these two proce-
dures, each with the benefit of estimating the parameters in a single step. We
choose the so-called Underlying Multivariate Normal (UMN) method.

To see this better, consider the following model,

x∗ij = λjfi + εij, j = 1, 2, . . . , J and i = 1, 2, . . . , N. (3)

The factor fi, which is specific to each individual i, captures the individual’s
unobserved welfare level. The error term, εij , also unobserved, is specific to each
household and to each variable. The difference with the linear model of Sahn and
Stifel (2000) and Sahn and Stifel (2003) is that the continuous response variable
x∗ij is unobserved in the present case. The model in (3) also differs from standard
limited dependent variable models in that fi is unobserved. Dropping the index i
(without loss of generality), x∗j and xj (which is observed) are linked as follows:

xj = a ⇐⇒ γ
(j)
a−1 < x∗j ≤ γ(j)

a , a = 1, 2, . . . , mj, (4)

where γ
(j)
0 = −∞, γ

(j)
1 < γ

(j)
2 < . . . < γ

(j)
mj−1, γ

(j)
mj = +∞ are the threshold

parameters. Thus, for mj categories of response for a given variable, there are
mj − 1 threshold parameters. Since the mean and the variance of x∗j are not
identified, we set them equal to 0 and 1, respectively. We also assume that f and εj

are independently and normally distributed with f ∼ N(0, 1) and εj ∼ N(0, ψj).
Since the first two moments of x∗j have been normalized to 0 and 1 respectively,
we have that ψj = 1 − λ2

j . The distribution of x∗1, . . . , x
∗
J is then multivariate

normal with mean zero, variance one, and a correlation matrix Γ = (ρjk), where
ρjk = λjλk. The parameters to be estimated are the threshold parameters γ

(j)
a and

the coefficients of the factors λj , with j = 1, 2, . . . , J and a = 1, 2, . . . , mj − 1.
The total number of parameters to be estimated is then ΣJ

j=1mj .
Let θ be the set of parameters to be estimated and r be one of the possible

configurations of J respective responses on the level of the J qualitative variables.
The probability of the realization of that specific configuration is then given by:

πr(θ) = Pr(x1 = a1, x2 = a2, ..., xJ = aJ),

=

∫ γ
(1)
a1

γ
(1)
a1−1

∫ γ
(2)
a2

γ
(2)
a2−1

. . .

∫ γ
(J)
aJ

γ
(J)
aJ−1

φJ (ε1, ε2, . . . , εJ |Γ) dε1dε2 . . . dεJ . (5)
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φJ is the normal multivariate density function with J dimensions. The log-
likelihood function is then given by:

LUMN (θ) =
∑

r

Pr ln πr(θ), (6)

where Pr = nr

N
, nr is the number of realizations of configuration r observed in the

sample, and N is sample size. Maximizing L(θ) with respect to θ, we obtain a set
of full information maximum likelihood estimators.

When J > 4, however, the numerical maximization of (6) can be computation-
ally demanding. This is why Jöreskog and Moustaki (2001) advocate estimation
based on an Underlying Bivariate Normal (UBN) procedure. Rather than calcu-
lating the probabilities of all of the various configurations of the J responses, one
is interested in π

(j)
a — the standard probability of obtaining a response in category

a for variable j — and in the probabilities of simultaneously having a response
in category a for variable j and a response in category b for variable h. These
expressions are respectively given by:

π(j)
a (θ) =

∫ γ
(j)
a

γ
(j)
a−1

φ1 (u) du, (7)

π
(jh)
ab (θ) =

∫ γ
(j)
a

γ
(j)
a−1

∫ γ
(h)
b

γ
(h)
b−1

φ2 (u, v|ρjh) du dv, (8)

where φ1 (u) is a standard normal density function and φ2 (u, v|ρ) is a normal
bivariate density function with correlation coefficient ρ. The parameters are then
estimated by maximizing:

LUBN (θ) =
J∑

j=1

mj∑
a=1

P (j)
a ln π(j)

a (θ) +
J∑

j=2

j−1∑

h=1

mj∑
a=1

mh∑

b=1

P
(jh)
ab ln π

(jh)
ab (θ). (9)

Even though this technique has no clear theoretical basis, Jöreskog and Mous-
taki (2001) find that it yields the same results as full information techniques based
on the entire response function method. The technique is, however, considerably
less demanding in terms of processing time and it works well even when the num-
ber of qualitative variables is large.

The next step involves estimating the factor scores f . Note that in the case
of ordered variables, there is no linear relationship between the factors and the
observed variables. To estimate the score, Shi and Lee (1997) propose a Bayesian
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approach based on the a posteriori distribution of factors. In the following, f is a
scalar, λ, x and x∗ are (J×1) vectors, and ψ is a (J×J) diagonal matrix. If we let
p(f) be the density function of f , p(x∗|f) be the density function of x∗ conditional
on f , and Pr(x|f) be the conditional probability of x given f , then, according to
Bayes’ theorem, the conditional distribution of f given x is the solution to:

p(f |x) =
p(f) Pr(x|f)∫

R
p(f) Pr(x|f)df

. (10)

Using (10), we can estimate a score f for each individual i as

Xi = E(f |x) =
1

B
λ′ψ−1x∗W . (11)

The expressions for B and x∗W , and the steps needed to obtain them, are shown in
the appendix.

3 Multidimensional stochastic dominance
The dominance techniques used here are drawn from Duclos, Sahn, and Younger
(2006) and are multidimensional extensions to the stochastic dominance tech-
niques developed by Atkinson (1987), Foster and Shorrocks (1988a) and Fos-
ter and Shorrocks (1988b) for a one-dimensional framework. They make ordinal
poverty comparisons possible over classes of procedures for aggregating across
dimensions and across individuals. They also allow for robustness over areas of
possible multidimensional poverty “frontiers” — analogous to the usual unidi-
mensional poverty lines. We outline these techniques briefly below.

3.1 First-order dominance
Duclos, Sahn, and Younger (2006) start by defining a generic additive multidi-
mensional poverty index as

P (λ) =

∫ ∫

Λ(λ)

π (x1, x2; λ) dF (x1, x2) , (12)

where λ (x1, x2) is a function that captures overall welfare (analogous to a utility
function), λ (x1, x2) = 0 is a poverty “frontier” that separates the rich from the
poor, and Λ (λ) is the (x1, x2) area defined as λ (x1, x2) ≤ 0 within which the set
of poor people can be found.
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Note that the definition of λ (x1, x2) is general enough to encompass what
are known as union, intersection or intermediate definitions of the poor. This is
illustrated in Figure 1, where x1 and x2 are two dimensions of welfare. λ1(x1, x2)
provides an “intersection” definition of poverty: it considers someone to be in
poverty only if he is poor in both of the two dimensions. λ2(x1, x2) gives a union
poverty index: it considers someone to be in poverty if he is poor in either of
the two dimensions. λ3(x1, x2) provides an intermediate definition: someone can
be poor even if x1 > Z1, if his x2 value is sufficiently low to lie to the left of
λ3(x1, x2) = 0. Alternatively, someone can be non-poor even if x1 < Z1 if his x2

value is sufficiently high to lie to the right of λ3(x1, x2) = 0.

Figure 1: Definitions of union, intersection, and intermediate poverty

l (       ) = 03 x ,x1 2

l (       ) = 02 x ,x1 2

l (       ) = 01 x ,x1 2

0

A

x1

x2

Z1

Z2

The dominance test that Duclos, Sahn, and Younger (2006) propose then uses
a two-dimensional extension of the well-known FGT index (Foster, Greer, and
Thorbecke 1984)

Pα1,α2 (z1, z2) =

∫ z1

0

∫ z2

0

(z1 − x1)
α1 (z2 − x2)

α2 dF (x1, x2) , (13)

where F is the bivariate cumulative distribution function and α1 and α2 are non-
negative parameters that capture aversion to inequality in poverty in each of the
two dimensions. With dominance orders s1 and s2 set to s1 = 1 + α1 and s2 =
1 + α2, plotting (13) over an area of z1 and z2 provides a dominance surface for

9



a distribution F . The difference in that surface between distributions F and G is
then given by

∆P s1s2 (z1, z2) =

∫ z1

0

∫ z2

0

(z1 − x1)
s1−1 (z2 − x2)

s2−1 d(F−G) (x1, x2) . (14)

To show how (14) can serve to order distributions in terms of multidimensional
poverty, Duclos, Sahn, and Younger (2006) uses (12) to define the following first-
order class of poverty indices Ψ1,1 (λ∗):

Ψ1,1 (λ∗) =





P (λ)

∣∣∣∣∣∣∣∣∣

Λ (λ) ⊂ Λ (λ∗)
π (x1, x2; λ) = 0 if λ (x1, x2) = 0

∂π(x1,x2;λ)
∂x1

≤ 0 and ∂π(x1,x2;λ)
∂x2

≤ 0 ∀ x1, x2

∂2π(x1,x2;λ)
∂x1∂x2

≥ 0 ∀ x1, x2





(15)

The first row of (15) defines the maximum set of poor people. The second row
assumes continuity of the poverty indices along the poverty frontier. The third
row follows from an axiom of monotonicity and states that the indices should
be weakly decreasing in the attributes x1 and x2. The last row reflects an ax-
iom of attribute substitutability — essentially saying that the greater the value
of an attribute, the lesser the impact on poverty of an increase in the value of
the other attribute. Theorem 1 in Duclos, Sahn, and Younger (2006) on first-
order dominance then says that all of the multidimensional poverty indices in
the class of measures Ψ1,1 (λ∗) will be greater in F than in G if and only
∆P 1,1(z1, z2) > 0 ∀ (z1, z2) ∈ Λ (λ∗).

3.2 Higher-order stochastic dominance
It is possible to derive higher-order dominance conditions, but this requires fur-
ther assumptions on the sign of the derivatives of order higher than in (15). The
order of dominance can be increased in either of the dimensions individually, or
in both simultaneously, leading for example to such classes as Ψ2,1 (λ∗), Ψ1,2 (λ∗)
or Ψ2,2 (λ∗). Ψ2,1 (λ∗) is for instance defined as

Ψ2,1 (λ∗) =





P (λ)

∣∣∣∣∣∣∣∣∣∣

P (λ) ∈ Ψ1,1 (λ∗)
∂π(x1,x2;λ)

∂x1
= 0 if λ (x1, x2) = 0

∂2π(x1,x2;λ)

(∂x1)2
≥ 0 ∀ x1

∂3π(x1,x2;λ)

(∂x1)2∂x2
≤ 0 ∀ x1, x2





(16)
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The first row imposes compliance with the conditions of belonging to the class
Ψ1,1 (λ∗). The second row says that the first derivative with respect to x1 should be
continuous along the poverty frontier. The third imposes the well-known Pigou-
Dalton principle of transfer on attribute x1: it says that the poverty impact of
increasing x1 should decrease with x1, or alternatively that an equalizing transfer
in the x1 dimension should diminish poverty. The last row assumes that the equal-
izing effect of such a transfer should declines with x2; said differently, the greater
the value of x2, the lesser the importance of inequality in the dimension of x1.

Theorem 2 of Duclos, Sahn, and Younger (2006) then says that G dominates
F in poverty over for the class Ψ2,1 (λ∗) of poverty indices — namely, all of the
multidimensional poverty indices in the class of measures Ψ2,1 (λ∗) will be greater
in F than in G — if and only if ∆P 2,1 (z1, z2) > 0 ∀ (z1, z2) ∈ Λ (λ∗).

3.3 Statistical inference
From the above, non-dominance of distribution F by distribution G implies that
there exists a point (z1, z2) in Λ (λ∗) for which ∆P s1s2 (z1, z2) ≤ 0. This suggests
the following set of null and alternative hypotheses for tests of multidimensional
dominance:

H0 : ∆P s1s2 (z1, z2) ≤ 0 for some (z1, z2) in Λ (λ∗)

versus
H1 : ∆P s1s2 (z1, z2) > 0 for all (z1, z2) in Λ (λ∗) . (17)

H0 is a null of non-dominance of F by G. If this null is rejected, then all that is
logically left is dominance of F by G, which is the alternative H1.

To test for H0 against H1, we extend the use of the empirical likelihood ratio
(ELR) statistic suggested by Davidson and Duclos (2006) for univariate distri-
butions to the case of multivariate distributions. The ELR statistic captures the
“distance” between the empirical distributions and the null hypothesis of non-
dominance. It equals the difference between the unconstrained empirical likeli-
hood of the distributions and the empirical likelihood constrained by H0.

To see this more clearly, let nF
i represent the number of sample observations

that equal
(
xF

i1, x
F
i2

)
, where

(
xF

i1, x
F
i2

)
are the values of indicators 1 and 2 taken by

the ith observation of a sample of NF independently and identically distributed
observations drawn from distribution F — and analogously for nG

j . Also, let I (·)
be an indicator function assuming the value one when the argument is true, and
zero otherwise, and let P F

i and PG
j be the empirical probabilities for the observa-

tions of samples from F and G respectively. The ELR statistic (in log form) is
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then obtained by maximizing the following empirical likelihood function

max
P F

i ,P G
j

∑
i

nF
i log P F

i +
∑

j

nG
j log PG

j (18)

subject to

∑
i

P F
i = 1,

∑
j

PG
j = 1 (19)

and constrained — or not — by

∑
i

P F
i (z1 − xF

i1)
s1−1(z2 − xF

i2)
s2−1I

(
xF

i1 ≤ z1, x
F
i2 ≤ z2

)

≤
∑

j

PG
j (z1 − xG

j1)
s1−1(z2 − xG

j2)
s2−1I

(
xG

j1 ≤ z1, x
G
j2 ≤ z2

)
(20)

for some (z1, z2) in Λ (λ∗).
It can be checked that the maximization of (18) unconstrained by (20) is given

by N log N − NF log NF − NG log NG. As for the constrained maximum, if F
dominates G in the sample, then there is no cost to imposing (20); in this case, the
constraint is not binding and the ELR statistic equals zero. We cannot then reject
H0.

If instead G dominates F in the sample, we may distinguish between first-
order and higher-order dominance. If s1 = s2 = 1, the constraint in (20) becomes:

∑
i

P F
i I

(
xF

i1 ≤ z1, x
F
i2 ≤ z2

)
=

∑
j

PG
j I

(
xG

j1 ≤ z1, x
G
j2 ≤ z2

)
. (21)

Proceeding to (18) subject to (21) yields the following empirical probabilities:

P F
i =

nF
i Ii (z1, z2)

$
+

nF
i (1− Ii (z1, z2))

ψ
,

PG
j =

nG
j Ij (z1, z2)

N −$
+

nG
j (1− Ij (z1, z2))

N − ψ
, (22)

with
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Ii (z1, z2) = I
(
xF

i1 ≤ z1, x
F
i2 ≤ z2

)
, Ij (z1, z2) = I

(
xG

j1 ≤ z1, x
G
j2 ≤ z2

)
, (23)

$ =
N ×NF (z1, z2)

NF (z1, z2) + NG (z1, z2)
, ψ =

N ×MF (z1, z2)

MF (z1, z2) + MG (z1, z2)
, (24)

NF (z1, z2) =
∑

i

nF
i Ii (z1, z2) , NG (z1, z2) =

∑
j

nF
j Ij (z1, z2) , (25)

N = NF + NG, (26)
MF (z1, z2) = NF −NF (z1, z2) , MG (z1, z2) = NG −NG (z1, z2) .(27)

The ELR statistic is then obtained by the difference between the unconstrained
maximum and the maximum over (z1, z2) ∈ Λ (λ∗) of the constrained likelihood
(given by

∑
i

nF
i log P F

i +
∑
j

nG
j log PG

j using (22)). This yields:

1

2
LR (z1, z2) =





N log N −NF log NF −NG log NG

+NF (z1, z2) log NF (z1, z2) + NG (z1, z2) log NG (z1, z2)
+MF (z1, z2) log MF (z1, z2) + MG (z1, z2) log MG (z1, z2)
− (NF (z1, z2) + NG (z1, z2)) log (NF (z1, z2) + NG (z1, z2))
− (MF (z1, z2) + MG (z1, z2)) log (MF (z1, z2) + MG (z1, z2)) .





(28)

It is then a matter of notation to use Theorem 1 of Davidson and Duclos (2006)
to show that (28) is asymptotically equivalent to the square of an asymptotically
normally distributed t statistic used by Kaur, Rao, and Singh (1994) and given in
our context by

NF NG

(
F̂ (z1, z2)− Ĝ (z1, z2)

)2

NGF̂ (z1, z2)
(
1− F̂ (z1, z2)

)
+ NF Ĝ (z1, z2)

(
1− Ĝ (z1, z2)

) , (29)

where F̂ (z1, z2) and F̂ (z1, z2) are the empirical distribution functions of F and
G, respectively. We can also show that, on the frontier of the null H0 of non-
dominance, both the ELR statistic and (29) are asymptotically pivotal, that is, they
follow the same asymptotic distribution for all configurations of the population
distributions that lie on the frontier.

As in Davidson and Duclos (2006), therefore, we can perform bootstrap tests
to yield more satisfactory inference than tests based solely on the asymptotic dis-
tribution of the ELR statistic. To do this (again, this needs to be done only when
dominance of F by G exists in the sample), we compute the maximum of the
ELR statistic (28) over (z1, z2) ∈ Λ (λ∗) — denote this maximum as LR0 (z1, z2)
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— and calculate the associated probabilities in (22). These probabilities are then
used to generate a certain number (399 in the illustration below) of bootstrap sam-
ples for both distributions. For each pair of such bootstrap samples, a new ELR
statistic in (28) is computed. A bootstrap value p is computed as the proportion of
bootstrap ELR statistics that exceed LR0 (z1, z2).

For higher-order dominance, the same procedure can be followed, except that
there exists no analytical solution analogous to (22). Details of the computations
are provided in the Appendix for such cases.

4 Empirical comparisons of welfare in West Africa

4.1 The data
We apply the above methodology to comparing multidimensional poverty across
countries that are members of the West African Economic and Monetary Union
(WAEMU) and for period of the mid-90s (1996–98). The data come from nation-
ally representative Demographic and Health Surveys (DHS) of urban and rural
households, and cover six countries from West Africa: Benin, Burkina Faso, Côte
d’Ivoire, Mali, Niger, and Togo. Senegal, an important member of WAEMU, was
excluded because nutritional data were not collected for the period under consid-
eration. Basic descriptive information on the the surveys used can be found in
Table 1. All estimates take into account the sampling weight of each observation.

The DHS surveys provide the necessary information required for calculating a
nutritional index (Z_score) and an asset index (X). To compute the Z_score, we
use data on the body-height, age, and sex of children, as well as standard values
for the reference children population. We only count women for whom nutritional
data was collected on one child in the household. The asset index then takes into
account household well-being, and the nutritional index is based on child well-
being.

As to X , we estimate it from information on ownership of durable goods (ra-
dio, television, refrigerator, bicycle, motorcycle, car) and on access to other goods
and services (electricity, type of toilette, quality of flooring, potable water, educa-
tion). All variables are qualitative, which is why MCA and the UBN procedures
are used. We use all of the six samples combined to generate the factor scores.
For the UBN method, we first estimate the parameters by maximizing (9). These
estimates then contribute to the calculations of the factor scores in (11). For the
Monte Carlo simulation, 100,000 random vectors are generated from a uniform
distribution.

Descriptive statistics on these indices are presented in Tables 2 and 3. On
average, Côte d’Ivoire, Togo, and Mali post the best welfare levels, while Burkina
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Faso and Niger are weakest.
Table 4 presents a sensitivity analysis on the two methods used to estimate

the asset index. Whether the estimated indices describe welfare is informed by
whether the percentage of households not affording a good or a service declines
with movement from a lower to a higher quartile of the asset indices. Both the
MCA and the UBN procedures seem to work reasonably well. Table 5 also
demonstrates that these two indices are highly (though not perfectly) correlated,
with a correlation coefficient of 96 per cent for the entire sample. The UBN es-
timator is henceforth used for presenting the results of the dominance analysis,
although dominance is not said to be accepted below unless it is confirmed by
both the UBN and the MCA asset indices.

4.2 Results of the dominance tests
To test for multidimensional poverty dominance, one should in theory test over
the full set of points in Λ (λ∗). This, however, proves computationally tedious
when sample sizes are large. We therefore use a grid of points (z1, z2), rather than
consider all points in the two distributions F and G, with z1,

[
z−1 , z+

1

]
, and z2,[

z−2 , z+
2

]
. To constitute the grid, we consider 20 quantiles for the asset index and

10 quantiles (deciles) for the nutritional index, which we determine after merging
the two distributions to be compared. Moreover, rather than consider the quantiles
as such, the grid is created by taking the mean of each quantile. This yields a total
of 200 points for each comparison. All of the checks we have made suggest,
however, that the results below are robust to increasing the number of points with
that grid.

Table 6 presents the country-wise results of the first-order dominance tests.
The first country represents distribution F , and the second distribution G. The
test is conducted against the null hypothesis that G does not dominate F . With
the six countries, there are 15 possible comparisons, and thus 15 possible domi-
nance relationships. The results in Table 6 reveal the existence of 12 statistically
significant dominance relationships with p values lower than 10%, 10 with p val-
ues lower than 5%, and 8 with p values lower than 1%.

Aside from the case Burkina-CI (CI stands for Côte d’Ivoire), which is a dom-
inance relationship that extends over the full grid of Λ (λ∗) described above, the
11 other dominance relationships are more limited, in the sense that it is necessary
to exclude certain points on the grid (in the lower or upper extremities) to obtain
dominance. Still, dominance in these other relationships is both statistically quite
strong and normatively robust to both the choice of a wide area of possible poverty
frontiers (so long as they fall in Λ (λ∗)) and to the choice of multidimensional
poverty indices within the class Ψ1,1 (λ∗)).

The three cases of non-dominance shown in Table 6 correspond to situations
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in which there are several points of intersection between the two distributions,
such that it proves impossible to obtain significant differences in dominance sur-
faces. Côte d’Ivoire dominates all countries, followed by Togo, which dominates
3 countries, to wit Benin, Burkina Faso, and Niger. Benin and Mali dominate
Burkina Faso and Niger. We observe no dominance between Mali and Togo, Mali
and Benin, and Burkina and Niger.

Table 7 presents similar statistics for comparisons of welfare in rural and urban
areas within each of the six different countries, and for all countries taken together.
It clearly shows that the urban area dominates the rural one, for every country as
well as for the global sample. All p values are below 5%, and 4 of the 7 dom-
inance relationships for Burkina Faso, Mali, Togo, and the whole sample show
unrestricted dominance, namely, over the the widest possible

[
z−1 , z+

1

]⊗ [
z−2 , z+

2

]
and thus over the entire range of possible poverty frontiers. The other dominance
relationships are more restricted but still very robust.

To order the countries that are not ranked by Table 6, we may proceed to
tests for higher-order dominance. Table 8 shows the results. The nulls of non-
dominance still cannot be rejected for comparisons of Mali and Togo, even at
order 3. This is because the curves of the two distributions intersect for each of
these orders. This is not the case for the two other relationships, since Mali now
dominates Benin in the second order, while Niger dominates Burkina in the third
order.

Figure 2: Diagram of dominance among the countries of WAEMU
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Figure 2 depicts the classification of the countries in terms of dominance. A
solid arrow reflects first-order dominance, while a dashed arrow represents higher-
order dominance. The position of each country vis-à-vis the peak reveals its po-
sition in terms of welfare. While Côte d’Ivoire’s presence at the peak reflects the
fact that it has the lowest level of multidimensional poverty, Burkina Faso is at the
bottom with the highest level.

Figure 3: Diagrams of dominance of WAEMU countries, by area — rural on the
left, urban on the right

We use this tool to fine-tune our analysis by decomposing dominance with
respect to the rural-urban location of individuals. We thus obtain two diagrams in
Figure 3, representing country-wise dominance relationships for each of the rural
and urban areas, with the left-hand side representing dominance across rural areas,
and the right-hand side dominance across urban areas. Note that the dominance
relationships across rural areas are practically identical to those in Figure 2. The
only difference is that the Côte d’Ivoire’s rural zone dominates that of Mali only
in the second, as opposed to the first, order.

Urban dominance results in Figure 3 are much more surprising. Burkina,
which was previously dominated by all countries, is now dominated only by Côte
d’Ivoire, and it dominates Niger. Benin, which significantly dominated Niger and
Burkina, is now poorer than all in terms of its urban population. This situation
reveals an imbalance between urban and rural standards of living in some coun-
tries, notably in Burkina Faso, where urban monetary poverty has regularly been
estimated to be far less severe than the rural one.

This also points to the importance of disaggregating poverty comparisons
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within countries. Since the distribution of welfare across socio-economic groups
may differ significantly across countries, cross-country comparisons of national
poverty can indeed hide important discrepancies within countries. Uncover-
ing these discrepancies helps understand the context-specific sources of national
poverty.

5 Conclusion
Stochastic dominance has almost always been analyzed in the framework of uni-
variate comparisons of welfare. In most cases, formal statistical tests have not
been applied to the empirical comparisons. Sub-Saharan Africa, where poverty is
in all likelihood the greatest, has relatively rarely been the object of empirical tests
for poverty dominance, especially using data that are readily comparable across
countries and time.

This paper attempts to move forward in all of these aspects of performing wel-
fare comparisons. Drawing on recent work on making robust comparisons of mul-
tidimensional poverty, two dimensions of welfare are considered and compared,
nutritional status and assets, using a set of comparable variables drawn from the
easily accessible Demographic and Health Surveys of six West-African countries.
The estimation of the asset index is based on two factor analysis methods. The
first method uses Multiple Correspondence Analysis, and the second one is based
on confirmatory factor analysis with qualitative variables.

Statistical inference for the paper’s multidimensional poverty comparisons
uses a multivariate extension of a recently proposed empirical likelihood ratio
test. Because the test statistic that is derived and used is asymptotically pivotal,
we are able to perform bootstrap tests that can be expected to yield more satisfac-
tory inference than the usually considered tests that are based solely on analytic
asymptotic distributions.

The statistical multidimensional dominance tests we perform across Benin,
Burkina Faso, Côte d’Ivoire, Mali, Niger, and Togo confirm the usual (unidimen-
sional) result that poverty is more pronounced in the countryside than in the cities.
They also lead to statistically significant dominance relationships between 12 of
the 15 possible pairs of the six countries. Côte d’Ivoire dominates all other coun-
tries, followed by Togo, which dominates Benin, Burkina Faso and Niger. Benin
and Mali also dominate Burkina Faso and Niger. Higher-order dominance tests
cannot order Mali and Togo, but lead to Mali and Niger respectively dominating
Benin in the second order and Burkina in the third order.

The results also translate into the finding of a considerable heterogeneity of
the country-specific gaps between rural and urban poverty. The country rank-
ings depend indeed considerably on whether we compare urban or rural poverty.
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Burkina, which is found to be poorest when it comes to rural multidimensional
poverty, exhibits lower urban poverty than Niger and Benin, and is then domi-
nated only by Côte d’Ivoire. Benin is also inferred to be urban-wise poorer than
all other countries. This suggests that it may be useful and informative to disaggre-
gate multidimensional poverty comparisons within countries before proceeding to
country-wise comparisons of welfare.
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Table 1: Description of the Demographic and Health Surveys used

Benin Burkina CI Mali Niger Togo
Survey years 1996 1998-99 1998-99 1995-96 1998 1998
Number of households
- Total 4499 4812 2122 8716 5928 7517
- Urban area (%) 32 26 67 32 28 32
- Rural area (%) 68 74 33 68 72 68
Number of women
- Total 5491 6445 3040 9704 7577 8569
- Urban area (%) 33 26 68 36 31 36
- Rural area (%) 67 74 32 64 69 64
Number of men
- Total 1535 2641 886 2474 3542 3819
- Urban area (%) 33 30 66 36 34 35
- Rural area (%) 67 70 34 64 66 65
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Table 2: Descriptive statistics on the asset index (X)

Country UBN procedure MCA procedure
Mean Std-dev. Max Min Means Std-dev. Max Min

Benin 0.009 0.573 1.930 −0.486 0.020 0.587 2.819 −0.456
Burkina −0.150 0.472 2.045 −0, 486 −0.133 0.496 2.819 −0.456

CI 0.663 0.754 2.044 −0.481 0.566 0.788 2.819 −0.449
Mali 0.066 0.498 1.989 −0.490 −0.010 0.496 2.647 −0.456
Niger −0.179 0.482 2.009 −0.479 −0.159 0.485 2.819 −0.449
Togo 0.138 0.583 1.931 −0.491 0.104 0.580 2.819 −0.456
All 0.023 0.574 2.045 −0.491 0.000 0.572 2.819 −0.456

Table 3: Descriptive statistics on the nutritional indicator (Z_score)
Country Mean Std-dev. Max Min
Benin −1.265 2.724 19.527 −28.471

Burkina −1.749 2.512 17.108 −28.921
CI −1.350 2.312 7.294 −27.808

Mali −1.294 2.428 45.800 −23.978
Niger −1.762 1.944 10.954 −13.117
Togo −1.196 2.345 37.817 −29.016
All −1.449 2.389 45.800 −29.016
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Table 4: Sensitivity analysis on the asset index (X) — % of quartile not affording
a good or a service

UBN approach MCA
Quartiles of asset index 1st 2nd 3th 4th 1st 2nd 3th 4th

No electricity 100 100 100 57.3 100 100 99.7 57.0
No radio 82.7 31.6 35.2 18.9 72.0 56.2 20.7 16.7
No TV 100 100 100 59.0 100 100 99.8 58.5

No refrigerator 100 100 100 84.4 100 100 100 84.2
No bicycle 54.0 39.7 51.5 67.4 46.8 57.1 42.7 68.3

No motorbike 100 82.9 80.8 60.8 100 83.6 78.4 59.4
No car 100 100 99.9 87.4 100 100 99.9 87.2

Low quality floor 100 68.8 72.6 28.5 100 80.5 60.0 25.2
No toilet 100 95.0 36.0 14.8 100 78.4 45.5 18.2

No education 100 99.7 76.7 41.3 99.6 89.2 80.1 46.8
No water access 14.1 15.5 11.5 5.2 14.8 18.2 9.4 4.3

Table 5: The correlations between the asset indices produced by the UBN and
MCA procedures

Country Coefficients
Benin 0.97

Burkina 0.98
CI 0.94

Mali 0.96
Niger 0.97
Togo 0.96
All 0.96
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Table 6: Tests for first-order stochastic dominance, country F versus country G,
over a [z−, z+] interval

Countries [z−, z+] intervals p-value of rejecting
F −G Asset X Z_score non-dominance of F by G

Benin-CI [−0.46, 1.23] [−2.96, 2.18] 0.000∗∗∗

Burkina-CI [−0.48, 1.87] [−5.97, 2.23] 0.003∗∗∗

Mali-CI [−0.44, 1.52] [−3.27, 2.30] 0.000∗∗∗

Niger-CI [−0.45, 1.85] [−3.46, 1.85] 0.000∗∗∗

Togo-CI [−0.44, 1.00] [−2.87, 2.18] 0.000∗∗∗

Benin-Togo [−0.46, 0.24] [−2.92, 2.36] 0.090∗

Burkina-Togo [−0.47, 1.18] [−5.64, 2.23] 0.013∗∗

Mali-Togo − − no dominance
Niger-Togo [−0.44, 1.63] [−5.03, 1.97] 0.033∗∗

Benin-Mali − − no dominance
Burkina-Mali [−0.47, 1.08] [−5.46, 2.44] 0.000∗∗∗

Niger-Mali [−0.45, 1.62] [−3.47, 2.28] 0.000∗∗∗

Burkina-Benin [−0.47, 1.64] [−5.85, 0.44] 0.003∗∗∗

Niger-Benin [−0.44, 1.10] [−3.38, 2.11] 0.070∗

Burkina-Niger − − no dominance
*: significant at 10%; **: significant at 5%; ***: significant at 1%.

Table 7: Tests of first-order stochastic dominance, rural area (F ) versus urban area
(G) within different countries, over a [z−, z+] interval

Countries [z−, z+] intervals p-value of rejecting
Asset X Z_score non-dominance of F by G

Benin [−0.48, 1.58] [−3.00, 2.37] 0.018∗∗

Burkina [−0.48, 1.68] [−6.03, 2.43] 0.028∗∗

CI [−0.40, 1.92] [−2.86, 1.84] 0.013∗∗

Mali [−0.46, 1.57] [−5.02, 2.44] 0.033∗∗

Niger [−0.45, 1.62] [−4.88, 1.63] 0.025∗∗

Togo [−0.47, 1.58] [−5.08, 2.07] 0.008∗∗∗

Total [−0.47, 1.73] [−5.33, 2.27] 0.000∗∗∗

*: significant at 10%; **: significant at 5%; ***: significant at 1%.
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Table 8: Tests for higher-order stochastic dominance, country F versus country
G, over a [z−, z+] interval

Countries [z−, z+] intervals p-value of rejecting
F −G Asset X Z_score non-dominance of F by G

Benin-Mali (order 2) [−0.47, 0.10] [−3.23, 2.71] 0.020∗∗

Mali-Togo (orders 2 and 3) − − no dominance
Burkina-Niger (3) [−0.45, 1.69] [−5.44,−0.55] 0.040∗∗

*: significant at 10%; **: significant at 5%; ***: significant at 1%.
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Appendices

Appendix 1: Statistical inference for higher-order dominance
For a numerical solution to the problem of (18) with (19), (20) and s1, s2 > 1,

consider the following Lagrangian (L),

L =
∑

i

nF
i log P F

i +
∑

j

nG
j log PG

j + λF (1−
∑

i

P F
i ) + λG(1−

∑
j

PG
j )

− µ(
∑

i

P F
i Γs1,s2

F,i ()Ii (z1, z2)−
∑

j

PG
j Γs1,s2

G,j ()Ij (z1, z2)), (30)

with
∑

i

P F
i Γs1,s2

F,i ()Ii (z1, z2) =
∑

i

P F
i (z1−xF

i1)
s1−1(z2−xF

i2)
s2−1I

(
xF

i1 ≤ z1, x
F
i2 ≤ z2

)

and
∑

j

PG
j Γs1,s2

G,j ()Ij (z1, z2) =
∑

j

PG
j (z1−xG

j1)
s1−1(z2−xG

j2)
s2−1I

(
xG

j1 ≤ z1, x
G
j2 ≤ z2

)

and where λF , λG and µ ∈ R are Lagrange multipliers. The first-order conditions
are given by:

λF + λG = NF + NG = N, (31)

P F
i =

nF
i

λ + µΓs1,s2

F,i ()Ii (z1, z2)
and PG

j =
nG

j

N − λ− µΓs1,s2

G,j ()Ij (z1, z2) ,
(32)

with λ = λF . For given (z1, z2), it is then possible to solve the problem of maxi-
mizing (30) by searching for λ̂ and µ̂ as follows:

(λ̂, µ̂) = arg min
λ,µ∈R

−
∑

i

nF
i log(λ + µΓs1,s2

F,i ()Ii (z1, z2))

−
∑

j

nG
j log(N − λ− µΓs1,s2

G,j ()Ij (z1, z2)). (33)

For all pairs of thresholds (z1, z2), the probabilities P̂ F
i (z1, z2) and P̂G

j (z1, z2)

are obtained by replacing λ and µ in (32) by their estimates λ̂ and µ̂ at (z1, z2).
The likelihood ratio is then given as

LRs1,s2 = 2




−NF log NF −NG log NG +

∑
i

nF
i log nF

i +
∑
j

nG
j log nG

j

−∑
i

nF
i log P̂ F

i (z1, z2)−
∑
j

nG
j log P̂G

j (z1, z2).



(34)
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We can then use the techniques of Davidson (2007) to show that this ratio is
asymptotically equivalent to the square of a minimum t-statistic analogous to (29).
The rest of the procedures is similar to those outlined on page 13 for first-order
dominance.

Appendix 2: The Underlying Bivariate Normal (UBN) method
Consider the following:

p(f |x) =
p(f) Pr(x|f)∫

R
p(f) Pr(x|f)df

. (35)

p(f) can be derived from the assumption that the distribution of f is N(0, 1).
Since the conditional distribution of x∗ given f is N(fλ, ψ), we have:

Pr(x|f) = Pr




γ1
a1−1 ≤ x∗1 ≤ γ1

a1

·
·
·

γJ
aJ−1 ≤ x∗J ≤ γJ

aJ

∣∣∣∣∣∣∣∣∣∣

f




=

∫

Ω

(2π)−J/2|ψ|−1/2 exp

{
−(x∗ − fλ)′ψ−1(x∗ − fλ)

2

}
dx∗,

with

Ω =




γ1
a1−1 ≤ x∗1 ≤ γ1

a1

·
·
·

γK
aK−1 ≤ x∗K ≤ γK

aK




, (36)

p(f) Pr(x|f) = (2π)−(J+1)/2|ψ|−1/2

∫

Ω

exp

{
−g(x∗)

2

}
dx∗ (37)

and where

g(x∗) = f 2+(x∗−fλ)′ψ−1(x∗−fλ) = B

[
f − 1

B
(λ′ψ−1x∗)

]2

+x∗′Ax∗. (38)

We also have that:

B = 1 + λ′ψ−1λ (39)
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A = ψ−1 − 1

B
ψ−1λλ′ψ−1. (40)

When a quadratic loss function is used, the mean of the a posteriori distribution
of the factor score is the bayesian estimator that minimizes the posterior expected
loss. It is given by:

E (f |x) =

∫

R

fp(f |x)df (41)

=

∫
R

fp(f) Pr(x|f)df∫
R

p(f) Pr(x|f)df
(42)

=

∫
R

f
∫
Ω

exp
{
−g(x∗)

2

}
dx∗df

∫
R

∫
Ω

exp
{
−g(x∗)

2

}
dx∗df

(43)

=

∫
Ω

∫
R

f exp
{
−g(x∗)

2

}
dfdx∗

∫
Ω

∫
R

exp
{
−g(x∗)

2

}
dfdx∗

(44)

=

∫
Ω

exp
{−x∗′Ax∗

2

} ∫
R

f exp

{
− [f− 1

B
(λ′ψ−1x∗)]

2

2

}
dfdx∗

∫
Ω

exp
{−x∗′Ax∗

2

} ∫
R

exp

{
− [f− 1

B
(λ′ψ−1x∗)]

2

2

}
dfdx∗

. (45)

Without loss of generality, moving the mean of f from 0 to 1
B

λ′ψ−1x∗, it
follows from the properties of the normal density function that:

∫

R

exp

{
−

[
f − 1

B
(λ′ψ−1x∗)

]2

2

}
df = 1 and (46)

∫

R

f exp

{
−

[
f − 1

B
(λ′ψ−1x∗)

]2

2

}
df =

1

B
λ′ψ−1x∗. (47)
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This implies that

Xi = f̂B = E (f |x) =

∫
Ω

1
B

λ′ψ−1x∗ exp
{−x∗′Ax∗

2

}
dx∗∫

Ω
exp

{−x∗′Ax∗
2

}
dx∗

=
1

B
λ′ψ−1x∗W , (48)

with

x∗W =

∫
Ω

x∗ exp
{−x∗′Ax∗

2

}
dx∗∫

Ω
exp

{−x∗′Ax∗
2

}
dx∗

. (49)

Noting that exp {x∗′Ax∗/2} is proportional to the density function of the dis-
tribution N(0, A−1), Shi and Lee (1997) suggest a simple Monte Carlo method by
which L random vectors u1, ..., uL are generated, where each vector is generated
from a uniform distribution on Ω. Assuming that we have to estimate the integral∫
Ω

Q(x∗)dx∗, we have

V (Ω) [Q(u1) + ... + Q(uL)] /L →
∫

Ω

Q(x∗)dx∗ si L →∞ (50)

where V (Ω) denotes the volume of Ω. By applying this result to x∗W , we then find
that

D(u1) + ... + D(uL)

d(u1) + ... + d(uL)
→ x∗W , si L →∞ (51)

with

D(x∗) = x∗ exp

{
−x∗′Ax∗

2

}
et d(x∗) = exp

{
−x∗′Ax∗

2

}
. (52)
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