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Abstract

We study the project allocation mechanisms trade-off between mini-
mizing the waste of resources in the application process and maximizing
the match of needs and projects when the recipient’s needs and resources
are private information.

We propose a signaling mechanism where the set of signals available to
each agent is constrained by his capacity and by his truthful need of the
project. The principal can control, at a given cost, the agent’s application
cost and the utility of receiving the project by non-needy agents.

Our findings suggest that there exists a threshold in the principal’s
budget such that for smaller budgets, all instruments are used in the op-
timal mechanism, while for bigger budgets the optimal application com-
plexity is independent of the budget and waste of resources is a decreasing
share of the resources available.

1 Introduction
In many real life situations, like Foreign Aid and Research Grants, both prin-
cipals and agents play an active role in the information disclosure. On the one
hand, the principals, willing to obtain information on the quality/type of the
pool of applicants for funds, screen them with the design of application mecha-
nisms and disbursement schemes. On the other hand, applicants are not passive
players in the game. Applicants compete among them to obtain the funding and
hence see the application process as a signaling game to let the principals know
their type: "the better is my application, the more likely I am to be awarded the
funds".
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The design of application mechanisms, the evaluation of these applications,
and the design and monitoring of funds disbursements are costly activities. Prin-
cipals have a limited amount of funds to award projects and to cover all these
expenditures, therefore they face a trade-off between more refined application
mechanisms, that increase the probability of good matches of recipient’s type
and projects but "waste" more resources on design, evaluation and implemen-
tation, or less complex application mechanisms, that may decrease the average
quality of the agents being awarded a project.
Our objective is to study how to design a mechanism (application) to obtain

information on the agents’ needs when the agents have limited, and maybe
unobservable, capacity to signal their needs1. The principal can control, at a
given cost, the number of projects to be awarded, the difficulty for each type
of agent to fill in the application or his probability of being caught cheating,
and the utility of receiving the project by non-needy recipients, through in-
kind awards. The principal’s objective is to award the projects to the high
need agents, and among them give preference to the ones with lowest capacity,
maximizing sum of agent’s utility from the projects awarded minus application
expenditure, subject to his budget constraint.
The choice of the instruments available to the principal is motivated by two

existing mechanisms. On the one hand, Private Foundations, like the Bill and
Melinda Gates Foundation, are well known for complex application procedures
and specialization in a few topics, fact likely to reduce their application review
costs. On the other hand, institutional aid agencies, like the World Bank,
have traditionally had less complex application procedures and have linked the
project’s budget to in-kind transfers, decreasing the value of the project for non-
needy agents. Our objective is to study the appropriate mix of both technologies
for different sizes of projects, donor’s budgets, and needy agents and capacity
distributions.
We model the application process as a signaling game with unobservable ca-

pacity and needs, where the set of signals available to each agent is constrained
by his capacity and by his true need of the project. Our novelty is to introduce
in a lobbying game à la Esteban and Ray (2000, 2003, 2006) need dependent
signaling-lobbying costs (and hence type and wealth dependent feasible signals)
and to study the optimal mix of principal’s technologies that ensures the ex-
istence of a separating equilibrium on needs subject to the principal’s budget
constraint. Moreover, we study how the distribution of (unobservable) capacity
and needs affect the cost of the optimal application mechanism.
We consider two levels of capacity and two levels of needs, which leave us

with four types of agents. For simplicity of language and to avoid confusion
with needs, we call rich the high capacity agents and poor the low capacity
agents. Non-needy poor and needy rich agents will not be problematic, since
they are able to separate themselves when desired, not sending any signal (i.e.
not applying) or with the largest possible signal respectively (i.e. with the more

1 It is kwnoledged that capacity to fill application procedures can be an important constraint
for some potential candidates. For example, electricity availability to keep computers on,
sintesizing capacity,... are difficult to measure.
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complete application feasible). The problematic types are non-needy rich and
needy pour, and are the first type the ones whose binding incentive compatibility
constraint determines the separating equilibrium for a given combination of
parameters. For a separating equilibrium to exist, we need to make sure that
(1) if incentive compatibility constraint binds for the non-needy rich agents,
the needy poor have enough capacity to send the separating signal, and (2) if
non-needy rich resources constraint binds, the needy pour can signal themselves
without being imitated by non-needy rich.
We find that there exists a threshold in the donor’s budget, increasing in

percentage of needy agents and in the unit cost of providing the project, such
that separating signal and application requirements are increasing in number
of projects for budgets below and constant afterwards. For smaller budgets, all
instruments are used in the optimal mechanism whenever technology available
is cheap enough. Separating signal and complexity of the application process,
together with number of projects awarded, increase with budget until threshold
is reached. This implies that resources spend on the design of the application
process increase with the budget. For budgets over the threshold, separating
application is independent of number of projects awarded, and marginal appli-
cation cost for needy agents is decreasing with the share of needy agents and
independent of the number of projects awarded. Share of resources spend in the
mechanism decreases with budget.
Our results suggest that for expensive projects and large shares of needy

agents, both instruments are used in the welfare maximizing mechanism and
hence World Bank’s technology is necessary, together with Application Eval-
uation. For small percentages of needy agents and cheap projects, separating
signal only depends on rich agent’s wealth and a complex application mecha-
nism is the only instrument used. Hence, Bill Gate’s technology is an asset in
this situation.
The structure of the paper is as follows. We complete this section with

a brief review of related literature. Section 2 presents the structure of the
game, and Sections 3 presents the signaling game and the characteristics of the
separating equilibriums in needs. Section 4 presents the Social Welfare Function
and describes the Optimal Application Mechanism. And Section 5 concludes.

1.1 Related Literature

In the lobbying literature, Esteban and Ray (2000) present a license assignment
problem between productive and non-productive agents where the number of
licenses is smaller than the number of high types with constant wealth. Esteban
and Ray (2003) expands this setting to account for different wealth distributions,
and Esteban and Ray (2006) accounts for a lobby cost that depends on the
amount of lobby expenditures and on the wealth, but assumes no correlation
between productivity and wealth. We introduce need dependent signaling-
lobbying costs (and hence type and wealth/capacity dependent feasible signals)
and we study the optimal mix of principal’s technologies to ensure the existence
of a separating equilibrium on needs.
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Fernandez and Gali (1999) shows in a matching-assignment problem that
tournament allocations provide better matches than market and that welfare
is larger for a good enough tournament mechanism when there exist borrowing
constraints. We show that a tournament-application mechanism is always neces-
sary (with different degrees of complexity) when agents have limited resources,
but we allow for an additional instrument, the distortion on the non-needy’s
value of the projects2, and show that a mix is optimal when resources con-
straints are not binding for all types. Moreover, we approach the question from
a budget allocation perspective that accounts for the separability constraints
that a tournament-application requires.
We differ from income maintenance problems (Besley and Coase (1992,

1995), Shapiro (2001)) in that our two unobservables are independent on the
agent’s decisions, as opposite to income maintenance where the problem is to
avoid a decrease in labor supply to qualify for the program by high ability agents.
In this sense, our setting is closer to the direct and indirect taxation literature
with unobservable endowments and productivity, as in Cremer, Pestieau and
Rochet (2001), but we only have one instrument, the application, to handle
both unobservables.
Our signaling mechanism reminds of litigation procedures, where interested

parties can choose the information to disclose3 and the regulator can have dif-
ferent abilities to interpret this information. In our case, agents decide signal
to send in a mechanism designed by the principal according to his costs and
budget and distribution of the characteristics of the agents applying. Milgrom
and Roberts (1986) study how the regulator’s sophistication and the number of
applicants affect the information disclosure; Maggi and Rodriguez-Clare (1995)
show how falsification can be optimal since it helps to reduce information rents;
our results are aligned with theirs in the ambiguous effect of the falsification
technology, and we introduce an additional source of waste, number of projects
over needed, as an instrument for the principal to extract information from the
agents.

2 Design of the Application Mechanism
We present an application game where the principal’s objective is to award iden-
tical projects to a continuum of agents that differ in their capacity to complete
applications and in their need of the project, and where both these character-
istics are unobservable by the principal. The principal can choose, subject to
his budget, the number of projects to award and the resources to spend in the
design and evaluation of the application procedure.
The application procedure has two characteristics to be chosen by the prin-

cipal: (1) the complexity of the application to be submitted and the subsequent

2The parallelism in their school allocation setting would be low ability students feeling
inferior in a high quality school and performing even under their ability.

3 Sanchirico and Triantis (2008) studies the fabrication of evidence in mergers litigations.
Che and Severinof (2007) study how lawyer advice affects information disclosure.
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evaluation and monitoring of this information, and (2) the share of the total
value of the project to be awarded in-kind. Both this instruments determine, on
the one hand, the agent’s costs and benefits of submitting a request depending
on their valuation of the project and their capacity, and hence they determine
the agent’s willingness to participate in the process. On the other hand, these
instruments determine the cost for the principal of design and evaluation of the
applications, and the cost of awarding and managing the in-kind shares of the
projects. Figure 1 presents the timing of events: principal announces appli-
cation rules, agents decide to send their application and projects are awarded
according to the announced rules.

Principal:

Chooses the characteristics 
of the application 
mechanism and the rules to 
award the projects given the 
applications

Agents:

Given the rules of the 
application mechanism, 
decide if to send a signal 
(application).

“design the 
screening 
mechanism”

“ play the 
signaling 
game”

time

Projects awarded 
according to 
announced rules

Figure 1: Timing of events
Next sub-section presents the structure and notation of each step. We pro-

ceed backwards: In Section 3 we present the signaling game the agents face when
deciding if to apply for the project, and given their behavior we proceed in Sec-
tion 4 to analyze how the principal chooses the welfare maximizing application
mechanism given the instruments available and his budget.

2.1 Step 1: "Signaling" Application Game

We assume that each agent i gets a utility of being awarded the project Vi that
for the agents that need the project comes from its use, and for the non-needy
agents comes from the flow of funds the project involves. Therefore, as the in-
kind share of the project increases, the value of the project for non-needy agents
decreases as they can not use funds for alternative utility generating activities.
The principal announces the application procedure to be used to award the

projects. We model this application process as a signaling game, where as usual
to send a given signal is cheaper for the agents that value the project, but
feasible for all of them as long as they have capacity to send them.
Let wi be the capacity of agent i, p(a) the probability of being awarded the

project when an application of quality a is send and φia the cost for agent i to
send an application of quality a. The expected utility of agent i to send a signal
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a is given by
Ui(a) = p(a)Vi + (wi − φia)

and the feasible signals are subject to the capacity constraint

φia 6 wi

i.e. the set of feasible signals for each agent is constrained by his capacity and
by his need of the project.
We assume that there are two types of agents with respect to need: the ones

that need the project (high types), that have an application cost φh, and the
ones that do not need it (low types) with application cost φl > φh. Let β be
the proportion of high type agents. Rich/ high capacity agents are able to send
high signals since they have the resources/capacity to make them up, while poor
agents are only able to send high signals when they really need the projects. In
other words, if the agent does not need the project he faces a higher marginal
cost of producing a given quality signal since he has to ’fake’ the need4. This
difference in marginal application cost can also be interpreted as probability of
being caught lying and hence being disclassified from the application procedure
in case of a random audit. Cost of this threat would be bigger for needy agents.
The call for applications the principal publishes consists of minimal appli-

cation quality to be considered for a project, and the rules for the distribution of
the projects to the applications received. The equilibrium of the game consists
of three objects:

1. The quality of the submitted application, that maps (wi, φi, Vi) into a(wi, φi, Vi)
given the application process announced.

2. A function μ that maps application quality into posterior beliefs about
the need of the agent, consistent with Bayes’ rule when applicable.

3. A probability function p(a) that maps application quality to probability
of being awarded the project.

The equilibrium of the application game depends on the distribution of the
unobservables of the model (capacity and need) and on the quantity of projects
to be awarded (α), together with each agent’s application costs and valuation
of the project.

2.2 Step 2: "Screening" Design of the Application Proce-
dure Characteristics

Our objective is to design the application mechanism, given by (α∗, φ∗, C∗l ),
that maximizes social welfare given the budget of the principal, his cost of

4An example of this resources constraint would be the energy (wi) students need to com-
plete a term paper: it is function of how long the paper has to be (a, equal for every student)
and the difficulty of the subject (φi, different for each student given his ability), both ma-
nipulable by the professor when setting the conditions for the paper. Students with a lot of
energy can complete a long exam, but students with low energy can only complete it if they
have high ability.
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evaluating applications and his ability to alter the utility the project provides to
the non-needy agents. Moreover, the principal needs to ensure that the contract
proposed is such that a separating equilibrium in needs exists and hence the
signals of the agents contain information about needs. We present in Sections
3 and 4 the equilibrium of the signaling game for any level of the parameters
(α, φ,Cl), and in Section 5 we choose from the separating equilibrium candidates
the optimal as to maximize social welfare given the donor’s budget constraint.

3 Application_ Signaling Game
In the first step of the game, we study how the agents play the signaling game
given the announced rules. We start with the situation with two levels of need
and equal capacity for all agents, and we continue with the case of two unob-
servables, namely need and capacity. For each of this information frameworks,
we look at the existence of pooling and separating equilibriums with respect to
need. We analyze the conditions for the existence of a separating equilibrium in
needs, and the existence of partially separating equilibria with more than two
signals.

3.1 Two levels of needs and equal capacity for all agents

Let us start by presenting the equilibrium of the application game when all the
candidates have the same capacity w. Let β be the proportion of agents that
value the project. In this case, needy agents can always separate themselves
from the not needy by sending an application a such that

w

φh
> a >

w

φl

i.e. all applications that are better than w/φl come from an agent that needs
the project since low type agents are not able to send them. We consider both
pooling and separating equilibriums and see how their existence depends on the
number of projects available α, the capacity level w and the difficulty to fill
the application φ for needy and non-needy agents. Let Vh and Vl be the benefit
from being awarded the project for needy and non-needy agents respectively.
We assume Vh > Vl.

Proposition 1 (Pooling Equilibrium Constant Capacity) The exists a pool-
ing equilibrium where all players send the same application a∗ = 0 when

w >
Vh(1− α)φl

φh

Proof is provided in Appendix A. Intuitively, no needy agent deviates and
signals himself with an application that non-needy can not fill when capacity is
so big that the cost of resources to separate is greater than the expected benefit.
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Let us look for a separating equilibrium. We need to take into account
how the number of projects available compares with the number of needy agents:
if α > β, agents that not send a signal still have a positive probability of receiving
the project, and if α < β, even if a separating equilibrium in needs exists, there
will be needy agents that will not receive the project.
Let (a∗H , a

∗
L) be the candidate separating applications for high and low type

respectively, and let the application procedure be

μ(a) = 0 for a < a∗H

→ p̃(a) = 0 if α < β and p(a) =
α− β

1− β
if α > β (1)

μ(a) = 1 for a > a∗H

→ p̃(a) =
α

β
if α < β and p(a) = 1 if α > β (2)

Proposition 2 (Separating Equilibrium Constant Capacity) There exist
separating equilibrium when capacity is uniform among players where low types
do not apply and the application of the high types a∗ is such that:

For α < β: If w > αVl
β

, ã∗ =
αVl
βφl

if w <
αVl
β

, ã∗ =
w

φl

For α > β: If w > (1− α)Vl
(1− β)

, a∗ =
(1− α)Vl
(1− β)φl

if w <
(1− α)Vl
(1− β)

, a∗ =
w

φl

Equilibrium separating signal depends on the capacity and on the marginal
cost of signaling for each type: either resources constraint binds so incentive
compatibility for the low type can not bind, or incentive compatibility binds
when capacity allows. Proof is provided at Appendix A.
It is interesting to look at the allocative loss (L, match and mismatch of

projects and needs) and the bureaucratic cost (W, resources spend by the agents
in the application process) as function of the number of projects awarded, the
difficulty of the application process and the value of the project for the low type
agents. We consider two types of allocative losses: needy agents not getting the
project (L1), and non-needy agents getting the project (L2). Whenever α > β
there is always L2, since there are more projects than needy agents, but we
need to consider how this affects the equilibrium applications submitted and
ultimately application costs W .

Corollary 3 To award projects to non-needy agents decreases bureaucratic ap-
plication costs in a separating equilibrium for high enough level of capacity.
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Proof. For α = β, a∗ = ã∗. For a fixed β, and for w > max(αVlβ , (1−α)Vl(1−β) ), let
A(α) represent equilibrium signal as function of α

A∗(α) =

⎧⎪⎨⎪⎩
αVl
βφl

for α < β
Vl
φl
for α = β

(1−α)Vl
(1−β)φl

for α > β

A∗(α) is an increasing function of α for α < β and decreasing for α > β. Given
the separating equilibrium signal, the total application cost is given by

W = βφhA
∗(α)

that is decreasing with α for α > β. Allocative loss L1 decreases with α until
α = β and L2 increases with α after α = β. So waste of resources L2 may be
optimal to decrease bureaucratic application costs.

3.2 Two levels of needs and two levels of capacity

Let us consider the application procedure when both need and capacity differ
among agents and are not observable by the principal. The capacity unobserv-
ability assumption aims to reflect the difficulty to verify the resources available
for the agent to use in the application process: wealth, access to credit markets,
etc., that together with the agent’s marginal cost of the application φi determine
the applications the agent is able to present. We assume that even the richest
agents do not have enough resources to implement the project without aid.
We consider two capacity levels, wr > wp, and let σ be the proportion of rich

agents. Thus, we have four types of agents: needy rich (HR), needy poor (HP ),
not needy rich (LR) and not needy poor (LP ). Each of these agents faces a
different constraint on the set of feasible applications: needy rich agents are the
ones able to send the highest quality application, and the non needy poor are
the more restricted ones. The problematic groups are the intermediate: needy
poor and not needy rich. We need to consider three possibilities, wr/φl >
wp/φh, wr = wp/φh and wr/φl < wp/φh, and discuss the existence of signaling
equilibriums for each of the alternatives5.
Let us look for a separating equilibrium. Let (a∗H , a

∗
L) be the candidate

applications for high and low type respectively, and let the application procedure
be

μ(a) = 0 for a < a∗H

→ p̃(a) = 0 if α < β and p(a) =
α− β

1− β
if α > β (3)

μ(a) = 1 for a > a∗H

→ p̃(a) =
α

β
if α < β and p(a) = 1 if α > β (4)

5Following the education example, the professor’s objective is to separate high ability
students, not the high energy ones that may be able to write the same term paper.
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Proposition 4 (Separating Equilibrium for Needy and Not needy) There
exists a separating equilibrium where all high types apply and low types do not
apply that is given by a pair (0, a∗) such that

For α < β: If
αVl
βφl

6 min(wr

φl
,
wp

φh
), ã∗ =

αVl
βφl

if
wp

φh
>

αVl
βφl

>
wr

φl
, ã∗ =

wr

φl
<

wp

φh

if
wp

φh
<

wr

φl
<

αVl
βφl

, or
wp

φh
<

αVl
βφl

<
wr

φl
no separating equilibrium

For α > β: If
(1− α)Vl
(1− β)φl

6 min(wr

φl
,
wp

φh
), a∗ =

(1− α)Vl
(1− β)φl

if
wp

φh
>

(1− α)Vl
(1− β)φl

>
wr

φl
, a∗ =

wr

φl
<

wp

φh

if
wp

φh
<

wr

φl
<
(1− α)Vl
(1− β)φl

, or
wp

φh
<
(1− α)Vl
(1− β)φl

<
wr

φl
no separating equilibrium

Proof is provided in Appendix B. Structure of the proof is as follows:

1. Agents that send the low signal are identified as low types and are not
awarded the project. It is in their best interest to send the lowest possible
signal that is zero.

2. When Incentive Compatibility for LR does not bind, for αVl
βφl

> wr
φl

>
wp
φh
, no separating equilibrium exists since the LR would always deviate

and mimic the HP type. For these wealth levels, only an investment of
the principal to increase φl and/or decrease φh and/or Vl could make a
separating equilibrium feasible.

3. Whenever incentive compatibility for LR does bind, wp
φh

< αVl
βφl

< wr
φl
, we

need the low type to have enough capacity to send the application.

W. rich 

W poor wr=wp

wr=wp /Ф 

αVl/β 

αVl/β 

ФαVl/β 

ФαVl/β 

wr>wp /Ф

αVh/βФ 

αVh/βФ

Incentive 
Compatibility 
LR binds 
(wr> αVl/β) 
 

HP don’t have 
enough resources to 
send αVl/β signal 

W. rich 

W poor wr=wp 

wr=wp /Ф 

αVl/β 

αVl/β 

ФαVl/β 

ФαVl/β 

wr>wp /Ф

αVh/βФ

αVh/βФ 

Incentive 
Compatibility 
LR does not bind
(wr< αVl/β) 

LR has enough 
resources to imitate 
HP 

Figure 2 shows the graphical representation of (2) and (3) above: in both
cases there is an area of wealths where a separating equilibrium does not exist.

10



3.3 Existence of Separating Equilibrium by needs and Par-
tially Separating Equilibria

In the region of wealths where there does not exist a separating equilibrium,
the principal can look for an alternative signaling structure allowing three types
of applications, A1, A2 and A3, with two types of agents pooling in one of the
three alternatives as showed in Figure 3. Let A3 = 0, no application submitted,
as intuitive since lowest signal is likely to be identified with lowest need and
capacity agents and will not be awarded the project, and the two remaining
candidate application qualities, A1 > A2 > 0, can be interpreted as standard
application (A2) and application with Appendix (A1). Given that only one
instrument is available and the two unobservable characteristics affect the set
of available signals for each agent, Belief-Action Parity, as in Esteban and Ray
(2000, 2003, 2006), is required.

Definition 5 Belief-Action Parity states that if the beliefs are such that ex-
pected profitability is identical after two announcements, permissions should be
allocated to them with equal probability.

Belief-Action parity implies that no more than two positive announcements
can be served with positive probability. The proof is intuitive: if two an-
nouncements are served with positive probability, the one that has greater
expected profitability should be fully served; If three positive announcements
where served, two of them would be fully served, and no agent would send the
higher one.

 

HR HP LR LP Separating  

HR HP LR LP Partially Separating
Alternative A  

HR HP LR LP    Partially Separating 
Alternative B 

HR HP LR LP Partially Separating 
Alternative C 

Figure 3

At Alternative A, all needy agents send the same application, and LR and
LP separate themselves. This can only be a candidate equilibrium when

β < α < β + (1− β)(1− σ) = 1− σ + σβ

since otherwise LR would not get any project and so would have no incentive
to separate from LP , and there are not enough projects to cover up to the LP .
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Let the belief and award probabilities be such that

μ(A1) = 1→ p(A1) = 1 (5)

μ(A2) = 0→ p(A2) =
α− β

σ(1− β)
(6)

μ(A3) = 0→ p(A3) = 0 (7)

i.e. all high types get a project, and the remaining projects go to LR, since
belief to be high type is zero for both A2 and A3. This equilibrium only exists,
as the separating considered, when wr/φl 6 wp/φh, so does not provide an
improvement for the possible wealth distributions where needy and non needy
agents can be separated.

Proposition 6 (Partially Separating Equilibrium Alt. A) At a partially
separating equilibrium Alt. A, probability of getting the project for LR is greater
than in the separating equilibrium, and their application cost is equal or greater
than the application cost of the high types on the separating equilibrium, as long
as [α− β − σ(1− β)] > 0.
For the needy agents, they always get the project (α > β) but their application

cost is greater or equal than in a totally separating equilibrium.
And the set of wealths for which there does not exist a partially separating

alt. A coincides with the set where there does not exist a separating.

The Partially Separating Equilibrium (alt. A) has the following structure.
Let A1, A2 and A3 be the application standards and let p(A1), p(A2) and p(A3)
be as in (5), (6) and (7). For α such that β < α < 1− σ + σβ, A3 = 0
i. For wp < p(A2)Vl, Incentive Compatibility for LP can not bind so A2 =

wp/φl.
a. For wr < (1− p(A2))Vl + wp, Incentive Compatibility for LR can not

bind so A1 = wr/φl as long as wr/φl 6 wp/φh
b. For wr > (1 − p(A2))Vl + wp, A1 = (1 − p(A2))Vl + wp whenever

wp/φh > (1− p(A2))Vl + wp

ii. For Vl > wp > p(A2)Vl, A2 =
p(A2)Vl

φl
.

a. For wr < (1− p(A2))Vl + p(A2)Vl, Incentive Compatibility for LR can
not bind so A1 = wr/φl as long as wr/φl 6 wp/φh

b. For wr > (1−p(A2))Vl+p(A2)Vl, A1 = (1−p(A2))Vl+ p(A2)Vl
φl

whenever

wp/φh > (1− p(A2))Vl +
p(A2)Vl

φl

iii. For wp > Vl, A2 =
p(A2)Vl

φl
.

a. For wr < (1− p(A2))Vl +
p(A2)Vl

φl
, Incentive Compatibility for LR can

not bind so A1 = wr/φl as long as wr/φl 6 wp/φh and A1 > Vl
φl

b. For wr > (1− p(A2))Vl +
p(A2)Vl

φl
, A1 =

Vl((1−p(A2))φl+p(A2))
φl

whenever

wp/φh > Vl and A1 > Vl
φl
.

Proof is provided at Appendix B. The structure of the proof, common to all
the three-signals equilibriums considered, builds as follows:
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1. Either incentive compatibility for LP binds or resources constraint for LP
binds, with A2 = p(A2)Vl (ii) or A2 = wp/φl (i) respectively. And in (iii)
need to account for incentive compatibility so that LP does not want to
mimic the high types.

2. Either incentive compatibility for LR binds (case (b)) or resources con-
straint binds for LR (case (a)), for any possible situation on LP incentive
compatibility constraints.

3. And need to check that HL has enough resources to submitA1 that satisfies
all the incentive compatibility constraints described above.

At Alternative B, HR agents separate themselves, HP and LR pool and
LP do not apply, i.e. HP and LR that are not separable when wr/φl > wp/φh
are pooling, but HR can separate themselves. Alternative B is only feasible
when σβ < α < β+σ(1−β). If α > β+σ(1−β), A1 and A2 should award both
projects with probability one, and no agent would be willing to send A1. For α <
σβ, A2 and A3 would give the same zero probability of being awarded the project
and no agent would present the more expensive higher quality application A2.
Let the beliefs and probabilities of being awarded the project be such that

μ(A1) = 1→ p(A1) = 1 (8)

μ(A2) =
β(1− σ)

β + σ − 2βσ → p(A2) =
α− βσ

β + σ − 2βσ (9)

μ(A3) = 0→ p(A3) = 0 (10)

i.e. a project is awarded to all Applications with Appendix, that are send
by HR, and the remaining projects are awarded randomly among the regular
applicants (HP and LR).

Proposition 7 (Partially Separating Equilibrium Alt. B) In a partially
separating equilibrium Alt.B, HP send a signal smaller or equal than in the
separating equilibrium and is awarded the project with smaller probability when
α < 1/2, and β < 1/2. For α < β, probability of being awarded the project for
a HP is greater in the separating equilibrium whenever α > β2/(2β − 1). For
α > β, probability of being awarded the project for a HP is smaller than in the
separating equilibrium whenever σ > 1/2β.

Let A1, A2 and A3 be the application standards and let p(A1), p(A2) and
p(A3) be as in (8), (9) and (10). Assume σβ < α < β + σ(1− β) and wp > Vl
i. For Vl > wp > p(A2)Vl and min(wrφl ,

wp
φh
) > Vh(1− p(A2))

φh
+p(A2)Vl, and for

wp > Vl and min(wrφl ,
wp
φh
) > Vh(1− p(A2))

φh
+ p(A2)Vl > Vl, partially separating

equilibrium is given by

A1 =
Vh(1− p(A2))

φh
+ Vlp(A2), A2 = Vlp(A2), A3 = 0

13



ii. For wp < p(A2)Vl, and min(wrφl ,
wp
φh
) > Vh(1− p(A2))

φ +
wp
φl
,partially separating

equilibrium is given by

A1 =
Vh(1− p(A2))

φh
+

wp

φl
, A2 = wp/φl, A3 = 0

iii. For Cl > wp > p(A2)Vl and min(wrφl ,
wp
φl
) < Vh(1− p(A2))

φh
+ p(A2)Vl, and for

wp > Vl and min(wrφl ,
wp
φl
) < Vh(1− p(A2))

φh
+ p(A2)Vl,partially separating equilib-

rium is given by

A1 = max(
wr

φl
,
wp

φh
), A2 = Vlp(A2), A3 = 0

iv. For wp < p(A2)Vl, and min(wrφl ,
wp
φh
) < Vh(1− p(A2))

φh
+wp,partially separating

equilibrium is given by

A1 = max(
wr

φl
,
wp

φh
), A2 =

wp

φl
, A3 = 0

Proof is provided in Appendix B. Comparing A2 to the equilibrium application
on the separating equilibrium we obtain the values of the parameters for which
a partially separating in beneficial for the HP agents.
At Alternative C, HR separate from HP , and LR and LP pool. This can

only be an equilibrium when σβ < α < β, since otherwise there can not be sepa-
ration between HR and HP . But we can not find consistent beliefs according to
Belief Action Parity: both the signals send by HR and the send by HP would
have the same prior probability of being send by a needy agent, and so should be
awarded the project with the same probability. The only alternative would be to
allow high types to choose between high signal and getting the project for sure,
or a smaller signal and getting the project with smaller probability. That would
leave same condition as the Incentive Compatibility constraints of Alt.B, but
at the moment of separating HP from LR, the same problems as in a separating
equilibrium with α < β would appear. Alternative C would only imply greater
application costs and bias allocation of projects to the rich among the needy
agents, with no improvement on the wealth distributions where separation of
needs can be implemented.

4 Social Welfare Maximization
Let us define the Social Welfare Function as the sum of the agents’ utility from
the projects minus application costs. The principal’s objective is to maximize
social welfare subject to his budget constraint and to the existence of a sepa-
rating equilibrium in needs, i.e. maximize the matching of needs and projects
allocation subject to application and in-kind award costs, project costs and bud-
get constraint, and to the constraints on the existence of a separating equilibria.

14



4.1 Principal’s budget constraint:

We can distinguish four parts on the principal’s cost:

1. Unit cost of providing the project, that we denote by C.

2. Cost of evaluating the applications, E(a, φ), that depends both on the size
of the applications received a and on the complexity of the application
φ6. We assume Ea(a, φ) > 0 and Eφφ(a, φ) > 0, Eaa(a, φ) > 0 and
Eφ(a, φ) < 0, higher quality and more complex applications have higher
evaluation costs, and Eaφ(a, φ) < 0, marginal cost of evaluating a bigger
application is decreasing with the application complexity φ.

3. The cost of designing the application procedure so that marginal cost of
the application is lower for needy agents, G(φl − φh), that is increasing
and convex function on the difference (φl − φh). This cost can also be
interpreted as the cost of performing more random evaluations.

4. Cost of in-kind aid provision to reduce the value of the project for the
non-needy agents, F (Vh−Vl).This cost is for each of the projects awarded
since all of them receives same share in-kind. F () is an increasing and
concave function of the in-kind share provided.

Without loss of generality we set φl = 1 and assume Vh is independent of
the in-kind share of the project. We assume Vl has a lower bound Vmin > 0 to
ensure there is some interest from the non-needy agents to apply even when the
project is totally provided in-kind. The principal chooses (α∗, φ∗h, V

∗
l ) , i.e. size

of the application, complexity and share of in-kind award of the project, that
maximize the Social Welfare Function given his budget constraint.
Let N denote the type of the agent (N = h, l) and let f(w,N) be the joint

distribution function of capacity and needs. The Social Welfare function has
the form:

W =

Z
N

Z
w

[p(a∗(w,N))V (N) + (w − φ(N)a∗(w,N))] f(w,N)dwdN (11)

and the principal’s budget constraint is given by

B =

Z
N

Z
w

E(a∗(w,N), φ(N))f(w,N)dwdN +α [C + F (Vh − Vl)] +G(φl −φh)

(12)
The principal’s budget constraint determines the number of projects that is
feasible to award to maximize Welfare given the technology available to eval-
uate applications and to set φh and Vl. For each set of parameters, we de-
fine budgets B̂ and B̌ as the smallest budgets that maximize welfare providing
α̂ = (wrβ) /VH and α̌ = (wrβ) /Vmin projects respectively (i.e. incentive com-
patibility bins). And we define B̃ as the minimum budget that provides α∗ = β
projects.

6Following the example of the student’s term paper, the cost of grading increases with the
number of pages of the paper and with the dificulty.
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4.2 Existence of a separating equilibrium in needs con-
straint:

Whenever LR resources constraint binds, wr < αVl
β , to ensure that LR are

not able to mimic HP ’s signal, we need the additional constraint φh 6 wp/wr.
When is LR incentive compatibility constraint that binds, wr >

αVl
β we need to

make sure HP are able to send the signal so φh 6 wpβ/αVl is required.

4.3 Optimal application rules and in-kind share of projects:

Let us now look at the optimal (φh, Vl, α) triplet for each range of budgets. Let
w̄ be average capacity in the applicant pool. When a separating equilibrium
exists, (W − w̄) is independent of the existence of variability in capacity for
wr = w.

Claim 8 Threshold Budget B̂ (B̌), defined as the smallest budget to provide
α̂ = (wrβ) /VH (α̌ = (wrβ) /Vmin) projects, is increasing in the unit cost of
the project and in the share of needy agents. It is independent of share of poor
agents, non-increasing in lowest capacity level and increasing in highest capacity
level.

Proof. Budget B̂ (B̌) is defined as the utility maximizing cost to provide
α̂ = (wrβ) /VH (α̌ = (wrβ) /Vmin). At α̂ (α̌) incentive compatibility for LR
binds, and a∗ = wr =

α̂Vh
β (a∗ = wr =

α̌Vmin
β ). For a separating equilibrium to

exist, we need φ∗h 6 wp/wr, Budget is given by

B̂ = βE(wr, φ
∗
h) +

wrβ

VH
C +G(1− φ∗h)

B̌ = βE(wr, φ
∗
h) +

wrβ

Vmin
C +G(1− φ∗h) + F (Vh − Vmin)

that is increasing in β and C, increasing in wr and non-increasing in wp, given
φ∗h that is implicitly defined by

−Vh
C

£
βEφh(wr, φ

∗
h)−G0(1− φ∗h)

¤
= γ1 + βwr

Comparing both expressions we find that B̂ < B̌.

Proposition 9 For B̃ > B > B̂ , w = wr = a∗, V ∗l = Vh. There exists a budget
level Bw > B̂ such that φ∗h is independent of projects awarded and percentage
of rich agents for all greater budgets. Share of budget spend in designing the
procedure decreases with budget and number of projects awarded.

Proof. For B < B̃, α < β, and for B > B̂, α̂ > (wrβ) /VH and Incentive
compatibility LR does not bind, wr < αVh

β and w = wr = a∗. This is the
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cheapest signal, and only needy agents are served. The principal’s maximization
problem is

max
φh,Vl,α

W − w̄ = αVh − φhβwr

s.t. B = βE(wr, φh) + α [C + F (Vh − Vl)] +G(1− φh) (λ) (13)

φh 6 wp/wr (γ1) (14)

wr <
αVh
β

(γ2) (15)

We see that Vl does not appear in (W − w̄) and in the application cost, so
V ∗l = Vh. The First Order Conditions are:

−βwr − λ
£
βEφh(wr, φh)−G0(1− φh)

¤
− γ1 = 0

Vh − λC + γ2
Vh
β
= 0

→ either γ2 = 0 and λ =
Vh
C

> 0

→ or γ2 > 0, α
∗ =

βwr

Vh
and φ∗h determined by (13)

For the first case, we get that (φ∗h, α
∗) are given by (16) and (17) whenever

φ∗h 6 wp/wr

−Vh
C

£
βEφh(wr, φ

∗
h)−G0(1− φ∗h)

¤
= γ1 + βwr (16)

α∗ =
B − βE(wr, φ

∗
h)−G(1− φ∗h)

C
(17)

and φ∗h = wp/wr when (14) binds. From (16) we find that φ∗h is independent
of the number of projects awarded and independent on the percentage of rich
agents in the population. Marginal application cost for high types, φ∗h, is non-
decreasing with poor agent’s wealth and decreasing with the cost of the project
C. From (16) and (17) together, we find that number of projects awarded in-
creases with φ∗h and decreases with the project cost C. Since φ

∗
h is independent

of α, the share of resources spend on project design and evaluation is indepen-
dent of the number of projects awarded: the more resources the more projects
awarded when [βE(wr, φ

∗
h) +G(1− φ∗h)] has been covered.

For γ2 > 0 to hold, it should be the case that it is optimal to spend the
additional funds in decreasing φh instead of awarding more projects. That
could only be the case if

0 < Vh − βwr < λ
£
C + βEφh(wr, φh)−G0(1− φh)

¤
and since

£
βEφh(wr, φ

∗
h)−G0(1− φ∗h)

¤
is decreasing in φh, there exists a budget

Bw > B̂ such that φ∗h is given by (16) and (15) does not bind.
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Proposition 10 For B < B̂, a∗ = αVl
β . and either V

∗
l = Vmin or Ea(

αVh
β , φh) <

F 0(0) and V ∗l = Vh . Number of projects awarded is bounded above by α̂ =
(wrβ) /Vh or α̌ = (wrβ) /Vmin , α∗ decreases with φ∗h and V ∗l and increases
with B. This implies that expenditure in application design increases with the
budget and projects awarded.

Proof. For B < B̂, α̂ < (wrβ) /VH what implies wr > αVh
β , separating appli-

cation is a∗ = αVl
β and Social Welfare is given by

max
φh,Vl,α

W − w̄ = αVh − φhαVl

B = βE(
αVl
β

, φh) + α [C + F (Vh − Vl)] +G(1− φh) (λ) (18)

φh 6
wpβ

αVl
(γ1) (19)

wr >
αVl
β

(γ2) (20)

Vl 6 Vmin (ρ) (21)

Whenever incentive compatibility for LR (20) binds, we need to add the con-
straint that HP have enough resources to send the signal (19). Moreover, we
establish a lower bound for Vl to ensure low type agents would consider to apply.
We need to consider four situations depending on constraints (19) , (20) and (21)
binding. First Order Conditions are given by:

−αVl − λ

∙
βEφh(

αVl
β

, φh)−G0(1− φh)

¸
− γ1 = 0 (22)

−αφh − λα

∙
Ea(

αVl
β

, φh)− F 0(Vh − Vl)

¸
− γ1

wpβ

αV 2
l

− ρ− γ2
α

β
= 0 (23)

[Vh − φhVl]− λ

∙
Ea(

αVl
β

, φh)Vl + C + F (Vh − Vl)

¸
− γ1

wpβ

α2Vl
− γ2

Vl
β
= 0

(24)

We need to consider two cases for (23): whenever Ea(
αV min

β , φh) > F 0(Vh −
Vmin), this condition is not satisfied, the principal wants to decrease Vl as
much as possible, so either (21) binds or Ea(

αVmin
β , φh) < F 0(Vh − Vmin). We

know that D(Vl) = Ea(
αVl
β , φh) − F 0(Vh − Vl) is increasing in Vl, so as long as

Ea(
αVmin
β , φh) > F 0(0), some resources are spend on decreasing Vl.

For any possible combination of constraints (19) , (20) and (21) binding we
find that α 6 (wrβ) /Vh. When neither (19) nor (21) bind, putting together the
First Order Conditions and taking into account that γ = 0, we obtain

F 0(Vh − Vl) [Vh − φhVl]− φh [C + F (Vh − Vl)] = Ea(
αVl
β

, φh) (25)∙
F 0(Vh − Vl)−Ea(

αVl
β

, φh)

¸
αVl = φh

∙
G0(1− φh)− βEφh(

αVl
β

, φh)

¸
(26)
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that with the budget constraint determine (α∗, φ∗h, V
∗
l ) . We find that α∗ is

decreasing in φ∗h and V ∗l and increasing in B. This implies that φ∗h and V ∗l
decrease with budget available.

Claim 11 For B > B̃, more projects than needy agents are awarded, and
(φ∗h, V

∗
l ) equal the optimal choices when Incentive Compatibility does not bind

for LR agents and Bw < B < B̃,.

Proof. For B > B̃, α > β, w < (1−α)Vh
(1−β) or wr < (1−α)Vh

(1−β) and w = wr = a∗,
Social welfare is given by

max
φh,Vl,α

W − w̄ = βVh + (α− β)Vl − φhβwr

s.t. B = βE(wr, φh) + α [V + F (Vh − Vl)] +G(1− φh)

φh 6 wp/wr

wr <
(1− α)Vl
(1− β)

We see that both [W − w̄] and resources available increase with Vl, so V ∗l = Vh.
and φ∗h has same form as when Incentive Compatibility does not bind for LR
agents and α < β since first order conditions coincide.
To increase budget over the one that covers all needy agents only generates

waste of resources since application cost is independent of number of projects
awarded for this level of wealth.
Summarizing, there exist three budget levels B̂ < B̌ < B̃ and a number of

applications awarded α̂ = wrβ/Vh < α̌ = wrβ/Vmin < α̃ = β such that:

1. For B 6 B̂, as budget increases applications awarded increase and φh is
non-increasing. Incentive compatibility for LR binds, eitherEa(

αVh
β , φh) <

F 0(0) and V ∗l = Vh or V ∗l = Vmin and a∗ = α∗V ∗l
β < wr

2. For B̂ < B < B̌, either Ea(
αVh
β , φh) < F 0(0), V ∗l = Vh and Incentive

Compatibility for LR does not bind, and application is constant at wr, or
V ∗l = Vmin and a∗ =

α∗V ∗l
β < wr

3. For B̃ > B > B̂ incentive compatibility for LR does not bind, application
is constant at wr and φ∗h is given by

βwr = −
Vh
C

£
βEφh(wr, φ

∗
h)−G0(1− φ∗h)

¤
whenever Bw > B̂ or by φ∗h = wp/wr otherwise. For Bw > B̂, share of
resources spend on the application design, [βE(wr, φ

∗
h) +G(1− φ∗h)] /B,

is decreasing with B, and decreasing in the population’s share of needy
agent’s α.
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Budget  

Application 

B̂ B B̃

a∗  Vh
  

a∗  Vmin


IC for LR does bind: α increasing with 
budget, Ф non-increasing with budget 
 

 Evaluation and Design cost 
increase with budget. 

IC for LR does not bind: α increasing 
with budget, Ф constant 
 

 Evaluation and design costs 
constant with budget 

α=β 

a*=wr 

Figure 4
Figure 4 presents the optimal instruments for the principal for different sizes

of his budget: there exists a threshold in the donor’s budget such that separating
signal is increasing in number of projects for budgets below and constant after-
wards. For smaller budgets, all instruments are used in the optimal mechanism
when costs are low enough. Separating signal and complexity of the application
process increase with number of projects awarded and value of the project for
non-needy agents. For bigger budgets, separating application is independent
of number of projects awarded. Marginal cost of applying for needy agents is
independent of the number of projects awarded. Share of resources spend in the
mechanism decreases with budget.
When we have capacity unobservability, capacity dispersion affects optimal

marginal cost of application and affects budget threshold. But optimal mech-
anism is independent of the share of high capacity agents in the population.
Higher constant capacity and higher capacity for the richest agents implies
higher separating signal and less projects awarded for any given donor’s bud-
get. Higher difference between agent’s capacities imposes stricter constraints on
φh, and so number of projects awarded for a given budget is non-increasing in
(wr − wp)

5 Conclusions
We present a signaling model with two unobservables (need and income) and
only one signal, where the principal can choose, at a given cost, the marginal
cost of the signal for needy and non-needy agents and the value of the project
for non-needy agents.
We find that there is a budget threshold so that signal is increasing for

budgets smaller than the treshold and constant afterwards. This implies that
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resources spend on the design of the mechanism increase with budget until a
treshold and are constant afterwards, as is the application cost for needy agents.
We find that it is capacity inequality, the difference in capacity between

rich and poor, and not the share of poor agents that has a burden on the
project design. The greater inequality, the greater is the minimum application
complexity (in terms of marginal cost of application for needy agents) that we
need in order to obtain a separating equilibrium.
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A Appendix: Signaling Equilibrium with con-
stant capacity

Proof: Pooling Equilibrium Constant Capacity. Let a∗ be the pooling
quality of an application, and let the application rules be

μ(a) = 0 for a < a∗ → p(a) = 0

μ(a) = β for a∗ 6 a 6 w/φl → p(a) = α

μ(a) = 1 for a > w/φl → p(a) = 1

We need to check that neither high nor low type agents want to deviate from
the pooling equilibrium. Incentive compatibility constraints for the High type
are given by

aVh + (w − φha
∗) > w =⇒ a∗ 6 αVh

φh
(27)

αVh + (w − φha
∗) > Vh + (w − φh(a

∗ + εH)) =⇒ εH >
Vh(1− α)

φh
(28)

where (27) shows maximum needy agents are willing to pay to be in the pool,
and (28) shows maximum they are willing to pay over the pooling signal to be
identified as a high type. For a∗ to be send and (28) to be satisfied, we need
that

φh

∙
w

φl
− a∗

¸
> Vh(1− α)

the extra-payment to signal a = w/φl is greater than what he is willing to pay
to separate himself.
For the low type, incentive compatibility constraint is

αVl + (w − φla
∗) > w =⇒ a∗ 6 αVl

φl
(29)

Putting together all the incentive compatibility constraints we find that the
candidate for a pooling equilibrium should satisfy

0 6 a∗ 6 min
µ
w

φl
− Vh(1− α)

φh
,
αVl
φl

¶
and a∗ = 0 is a candidate with no resources lost in the application process when
w > Vh(1−α)φl

φh
. For smaller wealth, needy agents always want to separate and

there is no pooling equilibrium.
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Proof: Separating Equilibirum Constant Capacity. Let (a∗H , a
∗
L) be the

candidate separating applications for high and low type respectively, and let the
application procedure be

μ(a) = 0 for a < a∗H

→ p̃(a) = 0 if α < β and p(a) =
α− β

1− β
if α > β (30)

μ(a) = 1 for a > a∗H

→ p̃(a) =
α

β
if α < β and p(a) = 1 if α > β (31)

First we need to show that low types are not willing to apply. To prepare any
application of quality smaller than a∗H does not increase their probability of
being awarded the project, so choice is between not applying and getting the
projects with a probability according to (30) or try to mimic the high type.
Incentive compatibility constraint for the low type is given by

p̃(ã∗H)Vl + (w − φlã
∗
H) 6 w =⇒ ã∗H >

p̃(ã∗H)Vl
φl

if α < β (32)

p(a∗H)Vl + (w − φla
∗
H) 6 p(0)Vl + w =⇒ a∗H >

[p(a∗H)− p(0)]Vl
φl

if α > β(33)

For the high type, he is willing to send a signal a∗H when

p̃(ã∗H)Vh + (w − φhã
∗
H) > w =⇒ a∗H 6

p̃(ã∗H)Vh
φh

if α < β

p(a∗H)Vh + (w − φha
∗
H) > p(0)Vh + w =⇒ a∗H 6

[p(a∗H)− p(0)]Vh
φh

if α > β

For α < β, ã∗ = αVl/βφl is the maximum signal low types would send, (32)
binds, and is only feasible when

w

φh
> w

φl
> αVl

βφl

For w < αVl/β, incentive compatibility does not bind and separating equilib-
rium exists for ã∗ = w/φl, since would not be feasible for low types to mimic
the high types. Symmetrically, when α > β, we have that if w > (1−α)Vl

(1−β) ,

a∗ = (1−α)Vl
(1−β)φl

and if w < (1−α)Vl
(1−β) , a∗ = w

φl
.

B Appendix: Signaling Equilibrium with two
capacity levels

Proof: Separating Equilibrium Two Capacity Levels. Let (a∗H , a
∗
L)

be the candidate separating quality of an application for high and low type
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respectively, and let the application procedure be

μ(a) = 0 for a < a∗H

→ p̃(a) = 0 if α < β and p(a) =
α− β

1− β
if α > β (34)

μ(a) = 1 for a > a∗H

→ p̃(a) =
α

β
if α < β and p(a) = 1 if α > β (35)

First we need to show that low types are not willing to apply. To prepare any
application of quality smaller than a∗H does not increase their probability of
being awarded the project, so choice is between not applying and getting the
projects with a probability according to (34) or try to mimic the high type.
Incentive compatibility constraints for non-needy high capacity are

(LR) wr > p̃(a∗H)Vl + (wr − φla
∗
H) =⇒ a∗H >

p̃(a∗H)Vl
φl

if α < β (36)

p(0)Vl + wr > p(a∗H)Vl + (wr − φla
∗
H) =⇒ a∗H >

[p(a∗H)− p(0)]Vl
φl

if α > β

and for the low capacity not needy (low types) are

(LP ) wp > p̃(a∗H)Vl + (wp − φla
∗
H) =⇒ a∗H >

p̃(a∗H)Vl
φl

if α < β

p(0)Vl + wp > p(a∗H)Vl + (wp − φla
∗
H) =⇒ a∗H >

[p(a∗H)− p(0)]Vl
φl

if α > β

Incentive Compatibility constraints for each of the needy agents (high types)
are

(HR) p̃(a∗H)Vh + (wr − φha
∗
H) > wr =⇒ a∗H 6

p̃(a∗H)Vh
φh

if α < β

p(a∗H)Vh + (wr − φha
∗
H) > p(0)Vh + wr

=⇒ a∗H 6
[p(a∗H)− p(0)]Vh

φh
if α > β

(HP ) p̃(a∗H)Vh + (wp − φha
∗
H) > wp =⇒ a∗H 6

p̃(a∗H)Vh
φh

if α < β

p(a∗H)Vh + (wp − φha
∗
H) > p(0)Vh + wp

=⇒ a∗H 6
[p(a∗H)− p(0)]Vh

φh
if α > β

For α < β we need also to check that HR do not want to deviate over HP to
signal himself. Given (34) and (35) deviation does not increase probability of
getting the project, and this is consistent with the assumption that the principal
wants to award projects to needy agents giving preference to the poorest, so to
signal wealth on top of need is not on the agent’s best interest.
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For α < β, if αVl
βφl

6 min(wrφl
,
wp
φh
), incentive compatibility constraint (36)

binds and ã∗ = αVl
βφl

is the separating equilibrium. Whenever wp
φh

< wr
φl

< αVl
βφl
,

incentive compatibility binds but HP can not send the signal ã∗ = αVl
βφl

so
no separating equilibrium exists since LR would be able to imitate all HP
signals. If wp

φh
> αVl

βφl
> wr

φl
, (36) can not bind, so ã∗ = wr

φl
<

wp
φh

. Whenever
wp
φh

< wr
φl

< αVl
βφl
, incentive compatibility does not bind but HP can not send

signal ã∗ = wr
φl
, so no separating equilibrium exists. For α > β, the argument is

symmetric for a∗ = (1−α)Vl
(1−β)φl

.
Proof: Partially Separating Alt. A. We want to show that (A1, A2, A3)
with (p(A1), p(A2), p(A3)) is an equilibrium of the application game. The small-
est application does not get the project, so the application is the minimum one,
A3 = 0. For the pooling types, HR and HP , Incentive compatibility constraints
are given by

p(A2)Vh + (wr − φhA2) 6 Vh + (wr − φhA1)

p(A2)Vh + (wp − φhA2) 6 Vh + (wp − φhA1)

=⇒ φh(A1 −A2) 6 Vh(1− p(A2)) (37)

and for the LR it is given by

p(A2)Vl + (wr − φlA2) > Vl + (wr − φlA1)

=⇒ φl(A1 −A2) > Vl(1− p(A2)) (38)

Putting together (37) and (38) we get that

A1 >
(1− p(A2))Vl

φl
+A2

Incentive compatibility for LP have the form

p(A2)Vl + (wp − φlA2) 6 wp

=⇒ A2 >
p(A2)Vl

φl
(39)

Vl + (wr − φlA1) 6 wr

=⇒ A1 >
Vl
φl

(40)

To derive the equilibrium, we need to consider when incentive constraints can
bind given the resources. For LP , (39) binds when wp > p(A2)Vl. Otherwise,
A2 = wp/φl.Given A2, we obtain A1 from (38) and (40) as long as resources for
LR allow for (38) to bind. Otherwise, A1 = wr/φl as long as wr/φl 6 wp/φh
and (40) are satisfied.
Proof: Partially Separating Equilibrium Alt. B. We want to show
that (A1, A2, A3) with (p(A1), p(A2), p(A3)) is an equilibrium of the application
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game. The smallest application does not get the project, so the application is
the minimum one, A3 = 0.
For the HR applicants, incentive compatibility and resources constraints

are:

Vh + (wr − φhA1) > wr =⇒ A1 6
Vh
φh

Vh + (wr − φhA1) > p(A2)Vh + (wr − φhA2)

=⇒ Vh(1− p(A2)) > φh(A1 −A2) (41)

A1 6 min(
Vh
φh

,
wr

φh
) (42)

for the HP , we have

p(A2)Vh + (wp − φhA2) > wp =⇒ A2 6
p(A2)Vh
φh

p(A2)Vh + (wp − φhA2) > Vh + (wp − φhA1)

=⇒ φh(A1 −A2) > Vh(1− p(A2)) (43)

A2 6 min(
P (A2)Vh

φh
,
wp

φh
) (44)

Equations (42) and (44) show the resources constraints: agents are constrained
by income and ability on the set of applications they can present. For the LR
agents, the Incentive compatibility and resources constraints have the form:

p(A2)Vl + (wr − φlA2) > wr =⇒ A2 6
p(A2)Vl

φl
p(A2)Vl + (wr − φlA2) > Vl + (wr − φlA1) (45)

=⇒ φl(A1 −A2) > Vl(1− p(A2)) (46)

A2 6 min(
P (A2)Vl

φl
,
wr

φl
) (47)

and for the LP agents,

wp > Cl + (wp − φlA1) =⇒ A1 >
Cl

φl
(48)

wp > p(A2)Cl + (wp − φlA2) =⇒ A2 >
p(A2)Cl

φl
(49)

We need to obtain the values of A1 and A2 that together with p(A1) and p(A2)
form a signaling separating equilibrium where rich agents that value the project
send A1, and rich agents that do not value the project and poor agents that value
it pool at A2. Putting together (47) and (49) we obtain that both constraints
can only be satisfied if both bind,

Vh(1− p(A2)) = φh(A1 −A2)

A1 =
Vh(1− p(A2))

φh
+A2 (50)
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constraint (44) is satisfied by A1 and A2 from (50). From (42) and (44) we
find that for wp > Vl and min(wrφr ,

wp
φl
) > Vh(1− p(A2))

φh
+ p(A2)Vl > Vl, and for

Vl > wp > p(A2)Vl and min(wrφr ,
wp
φl
) > Vh(1− p(A2))

φ + p(A2)Vl, A2 = p(A2)Vl
and A1 given by (50) are an equilibrium. For wp < p(A2)Vl, LP will not mimic
any A1 and A2 greater than wp/φl, so A2 = wp/φl, and A1 given by (50) are
an equilibrium as long as max(wrφr ,

wp
φl
) > Vh(1− p(A2))

φh
+ wp. Otherwise, LR

and HP can not mimic HR, incentive compatibility constraints (42) and (44)
can not bind given the resources, and A1 = max(

wr
φl
,
wp
φh
) is enough for HR to

separate themselves.
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