
 
Working Paper Series 

 
 
 
 
 
 
 

Inference on Income Inequality and Tax 
Progressivity Indices: U-Statistics and 
Bootstrap Methods 
 
Raquel Andres 
Samuel Calonge 
 
 
 
 
 
 
 

 
 

ECINEQ WP 2005 – 09 
 



 

 
ECINEQ 2005-09  

November 2005  
 

www.ecineq.org  

 
Inference on Income Inequality and Tax 
Progressivity Indices: U-Statistics and 

Bootstrap Methods 
 

Raquel Andres 
Centre for the Study of Wealth and Inequality, Columbia University 

and Centre of Research on Welfare Economics (CREB) 
 

Samuel Calonge* 
Department of Econometrics, Statistics and Spanish Economy, University of Barcelona 

and Centre of Research on Welfare Economics (CREB) 
 

Abstract  
This paper discusses asymptotic and bootstrap inference methods for a set of 
inequality and progressivity indices. The application of non-degenerate U-statistics 
theory is described, particularly through the derivation of the Suits-progressivity index 
distribution. We have also provided formulae for the “plug-in” estimator of the index 
variances, which are less onerous than the U-statistic version (this is especially relevant 
for those indices whose asymptotic variances contain kernels of degree 3). As far as 
inference issues are concerned, there are arguments in favour of applying bootstrap 
methods. By using an accurate database on income and taxes of the Spanish 
households (statistical matching EPF90-IRPF90), our results show that bootstrap 
methods perform better (considering their sample precision), particularly those 
methods yielding asymmetric CI. We also show that the bootstrap method is a useful 
technique for Lorenz dominance analysis. An illustration of such application has been 
made for the Spanish tax and welfare system. We distinguish clear dominance of cash-
benefits on income redistribution. Public health and state school education also have 
significant redistributive effects. 
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1 .  INTRODUCTION 

Numerous empirical studies in applied welfare economic analysis are based on a 

microeconomic framework where the input information consists in a sample of individuals or 

households. This information generally comes from household surveys or administrative 

records – or, in some cases, from a statistical fusion of both types of datasets. The range of 

these studies is quite wide, covering from income inequality and redistribution to tax and 

transfer incidence analysis or microsimulation of public policies.  

An important output from such analysis is the estimation of statistics, namely, vertical and 

horizontal inequality indices, Lorenz curves, redistributive effects and progressivity measures 

of a tax or a set of taxes. These indices are of primary interest, not only for academic purposes 

related to this field but also for policy makers to acquire knowledge of the welfare policies 

therein embedded.  

As well as the estimation of these indices, statistical inference is another quantitative aspect 

which needs to be considered. Although theoretical properties of global inequality and tax 

progressivity indices have been studied by many authors, statistical inference analysis has not 

been completely adopted in applied research. In the case of Gini-related inequality indices, we 

can find results in Fraser (1957), Gastwirth (1974), Cowell (1989). Results for the generalized 

entropy class of inequality measures are provided in Cowell (1989) and Thistle (1990). 

Bishop et al. (1998) derived the sampling distribution of Kakwani and Reynolds-Smolensky 

indices. These are only a few examples taken from the huge amount of important research in 

this field. The first part of this paper is related to this area. The U-statistics theory can be used 

as a unifying framework to derive the large-sample distribution of inequality and 

progressivity indices, particularly those which admit representation in terms of non-
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degenerate U-statistics. This property can be used to estimate the indices of interest and their 

corresponding sampling variances.  

Once the analytical expressions of the index variances are obtained, there are two alternative 

ways to estimate the elements of the variance formulae, namely estimators based on U-

statistics and those known as ‘plug-in’ estimators. The calculation via U-statistics mainly 

involves dealing with expressions of computational cost 3( )nΟ . Estimators based on the 

principle of substitution or ‘plug in’ estimators are of lower order, reducing the computational 

burden of the variance expressions.  The ‘plug-in’ estimators of sampling variances have been 

obtained in the paper for all the indices. We wish to highlight the derivation of the sampling 

variance of horizontal-inequality Atkinson-Plotnick index and particularly of the Suits 

progressivity-index, which has a very complicated variance formula.   

The next step is to set confidence intervals or hypothesis testing. Both the classical hypothesis 

testing based on the asymptotic approach and the bootstrap procedure can be used for 

inference. Focusing on bootstrap confidence intervals (CI), for example, we have an easy way 

to evaluate the index values regarding their sampling variability -see Mills and Zandvakili 

(1997) who compared bootstrap intervals of Gini and Theil indices with those obtained from 

the normal approximation. Another more recent study is from Biewen (2002) who extended 

the analysis to poverty and mobility measures and who also carried out a simulation study to 

analyse the finite sample behaviour of the two approaches.  

We have complemented these two studies by applying the bootstrap procedure to the 

inequality and progressivity indices as well as to the Lorenz curve ordinates corresponding to 

income deciles. The estimation and inference on Lorenz curves deserves special attention. 

Beach and Davidson (1983) derived the sampling distribution of Lorenz ordinates and 

proposed dominance tests. Davidson and Duclos (1997) and Duclos (1997) extended these 
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results for correlated samples and formalized estimation and inference on these indices by 

deducing the asymptotic distribution of a set of quantiles in the Lorenz curves.  

Bootstrapping indices or Lorenz curves present an important advantage with respect to the 

asymptotic formulae: bootstrapping incorporates the correlation structures existing in the 

microdata, such as dependency which occurs between pre-tax and post-tax income in a cross-

sectional study or between variables coming from consecutive panel-data waves. The 

asymptotic approach can also deal with these data dependencies but with a complex process 

of deriving the covariance structures. 

We have performed two empirical exercises.  

First, we compare the sampling performance of bootstrap inference results with those 

obtained from the normal approximation through a simulation analysis. This experiment uses 

a microdata set coming from the statistical matching EPF90-IRPF90 as the parent population. 

The simulation is carried out considering different sample sizes and for a set of selected 

indices. The performance of different bootstrap methods for the construction of confidence 

intervals together with the standard asymptotic interval is evaluated in terms of their coverage 

probability. Results reveal that bootstrap methods work better even for large samples, 

particularly those bootstrap methods yielding asymmetric CI. 

Second, we describe the progressivity and redistributive profile of the Spanish tax-benefit 

system as a whole by using data from EPF90-IRPF90. This empirical exercise is based on the 

estimation and bootstrapping of Lorenz and concentration curves. Within a multiple 

hypothesis-testing framework, dominance analysis has been made between different taxes and 

benefits to analyze their individual effect on income redistribution. These tests enable us to 

establish a statistical ordering of the components of the tax and benefit systems in terms of 

their progressivity and redistributive effects. 
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This paper is organized as follows: Section 1 is this introduction. Section 2 offers a general 

description of the approaches mentioned therein. First, the estimates of the respective indices 

based on U-statistics are presented along with the “plug-in” variance estimations. In addition, 

the detailed process of deriving the asymptotic distribution of a particular index is explained 

through the demonstration of the Suits progressivity-index (see Appendix A). Second, we 

describe bootstrap methods for the setting up of inference procedures and we also present 

multiple tests to be used in later sections. Section 3 provides results of the Monte Carlo 

exercise performed for the comparison of the asymptotic and bootstrap confidence intervals. 

In Section 4, bootstrap multiple tests are applied in order to test welfare dominance of taxes 

and benefits in Spain. A clear ordering of the different components of the Spanish tax and 

welfare systems has been established. Section 5 provides brief concluding remarks.  

 

 

2. INEQUALITY AND PROGRESSIVITY INDICES: U-STATISTICS AND 

BOOTSTRAP METHODS 

As mentioned in the introduction, U-statistics theory gives us a general setting for deducing 

the index asymptotic distributions and especially for assessing the asymptotic variance 

formulas to be applied in confidence intervals or hypothesis testing (non-parametric setting). 

A simple illustration is given by the well known Gini index, which can be expressed in terms 

of statistical functionals as follows: 1

2X
x

G η

µ
= , where 1 1 2 1 2( ) ( )x x dF x dF xη = −∫∫ , and x 

represents the pre-tax income variable with distribution function F(x) and xµ  is the 

population mean of x. In an earlier application, Hoeffding showed that the usual estimator of 

the functional η 1: 
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1
1ˆ

( 1) i j
i j

x x
n n

η

≠

= −

−

∑ , (1) 

which is known as the Gini mean difference statistic is itself a U-statistic, specifically the U-

statistic related to the kernel 1 2 1 2( , )h x x x x= − . Furthermore, any inequality or 

progressivity measure expressed in terms of functionals is consistently estimated by their 

corresponding U-statistics.  

Let X represent the pre-tax income variable and Y denote a general variable that in some cases 

will represent tax or benefit (T), and in others, the post-tax income, defined as Y=X-T 

(benefits can be treated as a negative tax and then should be added to X to get final income). 

Consider that X and Y are jointly distributed under H(x,y) with F(x) and G(y) the respective 

marginal functions of X and Y. Table I summarizes the index expressions in terms of 

statistical functionals.  

{ insert Table I} 

In addition, the U-statistics that estimate the respective functionals are shown in the last 

section of table I. Replacing every functional by its corresponding U-statistic in the index 

expression and by the application of Slutsky’s Theorem, we obtain consistent estimators of 

the indices. The following step- which is the central point- is to derive the asymptotic 

variances of the indices estimators.  

Some indices are U-statistic of degree 1, such as Theil and Atkinson inequality measures. In 

fact, they are functions of a sum of identical and independent random variables. Thus, they 

could be dealt with by simply applying the Central Limit Theorem (CLT), which is a 

particular case of Hoeffding’s theorem. The other indices are either functionals of degree 2 or 

emerge as combinations of functionals of degree 2. In these cases, the application of 

Hoeffding’s theorem 7.1 on the asymptotic multivariate normality of a vector of U-statistics 
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together with the Delta method leads to the index asymptotic variances. Consistent estimates 

of the variances can be obtained from estimators based on U-statistics.  

However, despite their very interesting properties (see Lee (1990) for example), the 

computation of the U-statistics which estimates the elements of the variance formulae implies 

averaging 
3

n 
 
 

 or 
2

n 
 
 

 terms. If the sample size n is large –which is the case for common 

household surveys- this computation can be costly.  Let us show, as an example, equation 

A11 in appendix A: the U-statistic which estimate the element (4,3) of the covariance matrix 

of the Suits index is O(n3) 1, whereas its plug-in estimator -see equation A16 in Appendix A- 

is O(n2). The plug-in method also leads to consistent estimators (assuming continuity of the 

functionals) and they are easier to program. Finally, the plug-in estimators corresponding to 

the asymptotic variances of the indices presented in table I are described in Table II.  

{insert Table II} 

After the respective standard errors are calculated, confidence intervals and hypothesis tests 

can be carried out to verify changes in income inequality or tax progressivity, issues that 

policy makers are frequently interested in. An example of asymptotic tests for assessing 

changes in income inequality and tax- progressivity in the context of tax reform is given by 

Bishop et al. (1998). This kind of test applies not only for independent samples, but also to 

correlated data: for example, comparing two indices from a single sample or from completely 

dependent samples (two waves from a balanced panel).  

An alternative method to estimate the sampling distribution and perform hypothesis tests 

based on these sampling results is given by bootstrap techniques. Basically, bootstrap is a 

resampling method for simulating the empirical distribution of an estimator, in our case, an 

                                                 
1 The estimators corresponding to the functionals which are multiplied by 4 in matrix A5 are O(n3).  
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inequality or progressivity index or the Lorenz curve ordinates, which we denote by I.  This 

procedure mainly consists in the extraction of R independent samples of size n drawn with 

replacement from the original sample data (bootstrap resample). The statistic is computed for 

each resample yielding *Î , the so-called bootstrap replication of the statistic Î . An 

estimation of the sampling variability of Î  is obtained by applying the expression of the 

standard deviation to the R-length vector of bootstrap replications. Let us now focus on 

estimating confidence intervals. We consider three procedures. First is the percentile method 

to estimate confidence intervals. This procedure is described as follows: from R bootstrap 

samples, an estimation of the empirical function ˆ
RF  of the statistic of interest I is obtained: 

( )*
,

1

1ˆ ˆ( )
R

R x i
i

F x I I
R −∞

=
= ∑  (2) 

For a significance level of α, the percentile method consists in computing the (α/2) and (1-

α/2) empirical percentiles, denoted by 1ˆ
2RF α−  

 
 

 and 1ˆ 1
2RF α−  − 

 
 respectively and finally 

computing the confidence interval as follows 2 

* * 1 1
1 2

ˆ ˆ ˆ ˆ, , 1
2 2L L R RI I F Fα α− −      = −          

 (3) 

Second is an improved version of the percentile method is BCa, “bias-corrected and 

accelerated”, based on a correction of the formulas corresponding to the empirical percentiles 

(see Efron and Tibshirani (1993), chapter 14). Third comes the bootstrap approach for the 

construction of confidence intervals which is bootstrap-t, based on the same logic that 

underlies the construction of the Student’s t  interval. This method consists in, first computing 

r
I r It
es r

*
*

*

ˆ ( )( )
ˆ ( )

−= , r = 1,…,R (4) 

                                                 
2 For the construction of confidence intervals, drawing at least R=1000 replications is suggested. 
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where rI *̂( )  and res*ˆ ( )  are the bootstrap replications of the statistic of interest and its standard 

error, respectively. Subsequently, a number of R replications of rt *( )  are generated in order to 

replicate the “bootstrap-t table”, by using the percentile method previously explained. Finally, 

the α-percentile is ( )t̂ α  so that { }* ( )

1

ˆ( ) /
R

r

I t r t Rα α
=

≤ =∑ . Hence, the bootstrap-t interval is 

defined as: 

(1 ) ( )ˆ ˆˆ ˆˆ ˆ,I t se I t seα α−− ⋅ − ⋅    (5) 

Both BCa and bootstrap-t are second-order accurate, i.e. the corresponding approximated 

coverage converges to the nominal coverage at a rate of 1/n, as compared to other bootstrap 

methods, the standard and percentile among them, which are first-order accurate (rate of 

n/1 ). An important drawback of the bootstrap-t concerns the estimation of the denominator 

in equation (4). When the analytic expression of the standard error of the index is unknown, it 

is necessary to compute its bootstrap estimate, which means two nested levels of resampling, 

which incurs resampling every resample. This notably increases the computational cost of the 

process as well as adding a new approximation error. 

From the idea that underlies bootstrap methods and the relationship between confidence 

intervals and hypothesis tests, inference is easy to carry out by computing an empirical 

approximation to the p-value of a test. We will consider the application of this procedure 

under two different scenarios that are quite common in income and tax related studies. The 

first scenario concerns the situation in which two separate samples are drawn from 

independent distributions: ),...,,( 21 nXXX , 1 2( , ,..., )mY Y Y . This would cover the case of 

inequality or progressivity comparisons between different years or countries by using 

independent samples. The second scenario refers to having correlated data. The observed data 
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in this case, ( ) ( ) ( ){ }nn YXYXYX ,,...,,,, 2211 , is assumed to come from a joint distribution and 

each observation of the sample consists of a vector of two components, for instance pre-tax 

income and post-tax income measured over the same individuals/households in a particular 

year or two consecutive observations extracted from panel waves. 

Now, suppose we are interested in testing the null 0 1 2:H I I=  against 1 1 2:H I I> 1 1 2( : )H I I< , 

which is redefined as 0 : 0H D =  against 1 : 0H D > ( 1 : 0H D < ). The testing procedure based 

on bootstrap involves to first computing the difference statistic 1 2
ˆ ˆ ˆD I I= − . Then, in a second 

step and under the first scenario, the resampling is performed separately on each sample, 

while under the second scenario, the joint sample is resampled as a whole, where each pair of 

observations that belong to a same individual/household is treated as a block or unit. Finally, 

the p-value of the test is computed from the bootstrap distribution of the statistic D̂  that is 

obtained after a fixed number R of iterations. 

The testing procedure is somewhat more complicated in the case of testing Lorenz dominance 

between two distributions, since the test statistic is no longer a single value but a vector of 

curve ordinates. This means we are in a multiple testing context. In this case, the bootstrap 

procedure is applied for computing the individual p-values corresponding to each individual 

hypothesis. The test statistic is defined as ˆ( ), 1,...,iD p i k= , that is, the estimated difference 

between the two curves evaluated in a set of ordinates, which are commonly established to be 

the deciles, that is, k=9 and, 1 0.1p = ,…, 9 0.9p = .  

At this stage we distinguish two types of multiple hypothesis testing. The first, and also the 

largest group, comprises those tests that aim to assess dominance between curves. For 

example, the assessment of Lorenz dominance can be used to test the progressivity and 

redistributive effect of a tax or benefit through income scale. The tests are set up in a way that 
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rejection of the null hypothesis implies dominance between the selected curves. In other 

words, the research hypothesis here is the alternative hypothesis since the researcher designs 

the test expecting the data to give evidence in favour of H1. The null hypothesis tests are 

expressed as a union of individual hypotheses, { }
9

0
1

: ( ) 0i
i

H D p
=

=∪ , whilst the alternative 

hypothesis is defined as the intersection of individual alternative hypotheses, H1: 

{ }
9

1
1

: ( ) 0i
i

H D p
=

>∩ or else { }
9

1
1

: ( ) 0i
i

H D p
=

<∩ . The decision rule consists in 

rejecting 0 jH p value j α
∧

⇔ <−  9,...,1=∀ j 3. For this group of tests, the Intersection-Union 

Tests (IUT) Theory (see Casella and Berger (1990) theorem 8.3.23) offers an upper limit for 

the global type I error (α* ), which is set as the highest of the individual significance levels, 

i.e. jMj αα ),..,1(
* sup ∈= , where jα  is the significance level corresponding to the j-th 

individual hypothesis, j=1,…,k. For example, by setting the individual level at 0.05, the global 

type I error is bound to be lesser or equal to 0.05. 

Now, assume we are interested in testing proportionality of a tax or benefit. We consider that 

a tax/benefit is proportional when the difference between the Lorenz income curve and the 

concentration tax curve equals zero for all the ordinates in the curve. Note that according to 

the way in which the null hypothesis in the tests already discussed (tests type I) is set up, its 

acceptance does not imply proportionality but ‘non-dominance’. Therefore, the assessment of 

proportionality claims for a different type of test. This second type of testing procedure is 

based on the Union-Intersection Test (UIT) Theory, which uses the Bonferroni inequality as a 

solution to the problem of multiplicity. The null hypothesis for this second type of test is 
                                                 
3 In the particular case of comparing the Lorenz curves of two distributions A and B, the non rejection of the H0 
will indicate that the differences between both curves are not statistically significant, but this statement neither 
implies the equality nor proportionality between distributions. 
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expressed as an intersection of individual hypotheses, { }
9

0
1

: ( ) 0
i

i

H D p
=

=∩ , whilst the 

alternative is expressed as a union of individual hypotheses: { }
9

1
1

: ( ) 0
i

i

H D p
=

≠∪ . The decision 

rule is set as follows4: the null hypothesis is rejected if and only if { } / 9min jj
p value α

∧

− < . 

Observe that to the contrary of the previous tests, the research hypothesis is now the null 

hypothesis.  

Finally, the relationship between bootstrapping and U-statistics is of interest. Helmers (1991), 

Arcones and Giné (1992), prove that the bootstrap approximation to the finite distribution of 

U-statistics implies an improvement of size of 1/ 2n−  with respect to the asymptotic approach.  

 

 

3. COMPARING ASYMPTOTIC AND BOOTSTRAP CONFIDENCE INTERVALS:  

EVIDENCE FROM A SIMULATION ANALYSIS 

This section aims to study the finite sampling behaviour of inequality and progressivity 

indices through the asymptotic and bootstrap approaches. In  particular, we compare the 

performance of bootstrap methods with those obtained from the normal approximation 

through a simulation study. The proposed confidence intervals in section 2 are then estimated 

on these samples.  

In our analysis, a large sample of approximately 21,500 observations (the Spanish EPF90-

IRPF90 statistical matching, Calonge and Manresa (2001), is regarded as the parent 

                                                 
4 The acceptance of H0 implies that both curves or distributions are proportional. However, note that the rejection 
of H0 is not conclusive about the statistically significant difference between the two curves, namely the ‘Lorenz 
dominance of A over B’ or vice versa within an income inequality context. 
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population from which, small samples of different fixed sizes are randomly drawn5. An 

important feature in this experiment is the fact that it uses real data on household income and 

taxes, in contrast to other studies, such a the one of Biewen (2002), where data is simulated 

from a parametric distribution. We have the opportunity to evaluate the behaviour of the 

proposed inference techniques regarding common problems, such as the presence of outliers 

in income and tax variables and censoring for the income-tax variable. These data 

characteristics, which may have an important effect on the estimated indices are, however, 

more difficult to reproduce in a classical simulation study where data is drawn from a pre-

fixed parametric distribution. Furthermore, the whole complexity of large household 

databases can barely be replicated in a simulated environment. 

This exercise is carried out for a proposed set of income inequality indices - Gini, Theil, 

deciles of income Lorenz curve - and Kakwani and Suits tax progressivity indices. Table III 

shows the population parameters of the mentioned indices computed on the reference 

population.  

{Insert Table III} 

We consider four types of confidence intervals. The first one is the classical standard interval 

based on the normal approximation. The second type of interval, named modified standard, is 

obtained from the first one by replacing the asymptotic standard error by its bootstrap 

estimation. The third and fourth are respectively the BCa and bootstrap-t intervals already 

mentioned. To evaluate the sampling accuracy of the proposed methods we focus on the 

estimated coverage level computed over each type of confidence interval. The coverage level 

                                                 
5 Briefly, this database links two sources of information: EPF90 Household Spanish Survey and a representative 
sample of 1990 income-tax payers. The database contains then  information on income, direct and indirect taxes 
and socio-economic characteristics of the members of the household. Household pre-tax income and tax/benefit 
payments have been equivalised by using the following scale: s=(A+0,5*C)0,5 , where A and C represent the 
number of adults and children in a household. 
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is defined as the percentage of times an interval includes the real parameter. The simulation 

runs 2000 replications of the following algorithm for three different sample sizes n (=200, 

1000, 2000).  

Repeat for i=1,…,S(=2000) the following steps: First, draw a random sample without 

replacement of size n from the simulation universe and compute the statistic of interest. 

Second, compute the standard interval for each index. Third, generate R=1000 bootstrap 

resamples (extractions with replacement the same size n as the original sample) from the 

sample obtained in the first step. In this procedure, the bootstrap distribution of the index is 

obtained and used for computing the bootstrap confidence intervals: modified standard, BCa 

and bootstrap-t. For each interval, accumulate the coverage indicator value (Ic=1 if the 

interval includes the parameter, 0 otherwise), compute the shape and length measurements. 

Finally, the approximate real coverage and the average values for shape, length and interval 

extremes are computed as the final results of the simulation.  

{ insert tables IV and V} 

Tables IV and V show the approximate coverage levels obtained from the Monte Carlo 

simulation already described. Results regarding shape, length and interval extremes are found 

in Appendix B (Tables B.I and B.II) In general traits, if we focus on coverage accuracy, 

results suggest that bootstrap confidence intervals are superior to those computed from the 

normal distribution. Particularly, the improved percentile method BCa and bootstrap-t achieve 

higher coverage accuracy compared to the modified standard. For the Gini index and the 

Lorenz curve deciles, the discrepancies between real and nominal coverage probabilities 

range from half to two percentage points when considering large samples (n=2000). Both 

methods BCa and bootstrap-t yield approximate coverage probabilities close to the nominal 
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value of 0.95. However, some of the simulated-p are out of the acceptance interval 

{ }ˆ 0.94,0.96p ∈  corresponding to the test 0 ˆ: 0.95H p =  for S=2000.  

Regarding the Theil index, results suggest a poorer performance for all the methods, denoted 

by coverage levels that are substantially distant from the nominal one. In any case, the 

coverage figures for bootstrap intervals still remain higher (for instance, in the case of 

n=2000 the standard method estimated coverage is 0.718 whereas the bootstrap-t presents a 

coverage value of 0.867, more than 14 percentage points higher).  

On the other hand, Kakwani and Suits indices show a very similar behavioural pattern, that is, 

bootstrap intervals are more efficient in terms of coverage accuracy. BCa and bootstrap-t 

intervals show the highest ‘real’ coverage probabilities, with discrepancies between them not 

higher than two percentage points. Results regarding the progressivity indices show higher 

coverage when the index is evaluated on indirect taxes as opposed to direct taxes. Coverage 

levels for direct tax indices show a poor performance and do not present a clear increasing 

pattern with the sample size. This could be partially due to the higher presence of extreme 

values or zero observations in the distribution corresponding to direct taxation, though further 

evidence is needed for a firm conclusion. 

Worthy of note are the differences between the intervals based on the normal approximation, 

namely the standard and the modified standard. Global results show a slightly better 

performance of the latter. More exactly, differences between the nominal and ‘real’ coverage 

probabilities reach values up to 23 and 18 percentage points in favour of the modified 

standard. These percentages correspond to the Theil index for n=2000. This indicates that 

even the simple alteration that the modified standard interval incorporates with respect to the 

standard one still implies an improvement. 



 

 

15

Finally, based on these results, we can conclude that bootstrap intervals are more accurate 

than the ones based on the normal approximation, yielding wider and asymmetric intervals 

that can better capture the characteristics of the index finite sampling distribution6. An 

important point to highlight is that BCa and bootstrap-t performances are very much alike, 

which gives a strong argument in favour of the use of the BCa, whose computational cost is 

lower.  

 

 
4. INFERENCE ON REDISTRIBUTION AND PROGRESSIVITY OF TAXES AND 

BENEFITS: AN APPLICATION TO THE SPANISH CASE. 

In this section we estimate the redistributive effect and progressivity of taxes and benefits in 

Spain. We illustrate this using micro-data from the 1990 statistical matching EPF-IRPF. To 

evaluate the effects of taxes and benefits on income distribution we need first to identify who 

bears the tax burden and who receives the public benefits (economic incidence). The 

allocation of taxes and benefits to the households has been made according to the one 

proposed by Calonge and Manresa (1997) who followed the annual approach pioneered by 

Pechman and Okner (1974)7.  

On the tax-side, the burden has been imputed for each household according to different 

assumptions. The income tax, employee and self-employed social security contributions have 

been allocated to the households whose members pay these particular taxes. One of the most 

crucial shifting assumptions is that related to the social security contributions paid by employers 

                                                 
6 Tables in Appendix B show the shape and length of the intervals. Bootstrap-t method shows more degrees of 
positive/negative asymmetry due to larger upper/lower limit estimations.  
7In some sense, incidence shifting-assumptions are due to the degree of uncertainty about how the tax-shifting 
operates. However, the assumed hypotheses are based mainly on evidence found in the Spanish literature. See 
Argimón and González Páramo (1987) for a discussion of the incidence of social security contributions in Spain. See 
Quirmbach et al. (1996) for a discussion of the incidence of corporate tax.  
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and the corporation income tax. We assume that two-thirds of this social security contribution is 

shifted to employees and one-third to consumption (by increasing the goods and services price). 

Regarding corporation income tax we explore two different incidence hypotheses. In the first 

one, one-third of the tax is allocated in proportion to capital income, one-third to the property 

income in general and one-third is shifted to consumption. In the second hypothesis, which is 

more progressive, two-thirds are allocated in proportion to the capital owners and one-third to 

consumption. Taxation on consumption (value added tax, excise taxes, car tax, and property tax 

on houses) has been computed for every household in the sample considering the expenditure its 

members declared on levied commodities and services. Import taxes are allocated proportionally 

to the expenditure made by each household with respect to the total expenditure.  

On the benefit-side, pension and unemployment benefits have been obviously allocated to the 

members of the households who received such benefits. The per-capita cost of benefits-in-kind 

provided by the public sector (education and health services) has been assigned to the members 

of the household who are considered recipients of those benefits . The overall taxes allocated to 

households represent 92% of the global revenue for the fiscal year 1990, which is a highly 

significant value of the total burden.  

A standard approach to measuring the effect of a tax on the income distribution is to calculate 

the difference between the pre-tax and post-tax concentration indices. Denote by X the pre-tax 

income of a particular household, T the tax liability and Y=X-T the post-tax income variable. The 

redistributive effect of a tax on income distribution RE is defined by the expression: 

X Y
tRE=G C = K

1-t
−  (6) 

 

where CY is the post-tax concentration index, GX is the Gini coefficient of pre-tax income, K is 

the Kakwani progressivity-index and t is the tax average rate on X. It is evident from this formula 
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that redistribution depends on two quantities: the liability progression measured by the Kakwani 

index and the average tax rate t. Thus, we can test if the RE of a particular tax/benefit is 

significant in statistical terms (H0: RE=0). In this case, we know that  if n → ∞ ,  the ratio 

�

�( )

RE

VAR RE
 tends to a standard normal distribution , where the variance can  be computed 

according to formula 4 in Table II .  

Instead of focusing on merely ‘single’ indices, we have considered the analysis throughout the 

income distribution by using the Lorenz dominance criterion.  We estimate the Lorenz and 

concentration curves underlying these indices and we perform tests of dominance between 

curves. We get a more detailed description of the redistributive patterns of tax and benefits by 

evaluating the following expression below (7), which is the counterpart of the one defined in (6) 

for a set of p-ordinates of the Lorenz curve, for example, the income deciles:  

X XRE(p)=C (p) - L (p) 0<p<1  (7) 

where CX (p) is the post-tax income concentration curve, LX (p) is the pre-tax income Lorenz 

curve and p are the pre-tax income deciles. The RE(p) distances and pre-tax income deciles are 

represented on the y and x axes respectively. Each estimated ordinate is represented together with 

its corresponding confidence interval obtained from the application of the BCa method to a 

sample of size n=2000, randomly extracted from the sample. The number of bootstrap replicates 

has been set to R=1000. We should notice first that the multiple test with null hypothesis H0: 

RE(p)=0 examines the dominance of the post-tax income concentration curve on the pre-tax 

income Lorenz curve. In other words; rejecting the null implies dominance of one curve over 

the other. Then, we test the existence of a “pro-poor” redistributive effect if RE(p) > 0 (which 

is the case when the post-tax income concentration curve lies above the pre-tax income 

Lorenz curve) and it is statistically significant. According to the way this particular multiple 
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test is defined, this is equivalent to the case when the RE confidence intervals computed on p-

ordinates do not cross the x-axis. On the contrary, a negative value for RE(p) indicates that we 

are testing a “pro-rich” redistributive effect: in this case, the post-tax concentration curve lies 

below the pre-tax income Lorenz curve. In both cases, the global redistribution achieved is 

measured by the area between the D(p)-curve and the abscissa-axis p,  which, when doubled, 

coincides with the Reynolds-Smolensky-index.  

Figure 1 shows the RE(p) curves evaluated on income deciles for the following variables: 

personal income tax (PIT), the corporate tax under the most progressive incidence assumption 

(CT(2)), direct taxes (DT) (which include PIT, CT(2) and the total amount of social security 

contributions allocated to employees), indirect taxes (IT) and benefits (BE).  

{Insert figure 1} 

At first view, figure 1 suggests that personal income tax, corporate tax, direct taxes and total 

benefits have a positive and statistically significant redistributive effect on income 

distribution since their confidence intervals calculated at α = 0.05 do not include the abscissa 

axis for any of the mentioned curves, except for some deciles of CT(2). Figure 1 also shows 

that the impact of indirect taxation on income distribution is also statistically significant but 

with a negative redistributive effect. In fact, when we perform the corresponding multiple 

tests of Lorenz dominance, the null H0: RE(p)=0  is rejected for all of them except for CT(2). 

In this last case, a more detailed look at the p-values of the individual tests show that the non-

rejection is due to the first estimated decile, with an individual p-value of 0.096. Another 

conclusion on the tax-side is obtained by looking at the slope of the curves. For example, the 

RE(p) for personal income tax achieves its maximum, 0.031, in the eighth decile. Hence, the 

income-tax redistributes 3,14% of the total post-tax income amount from the two top deciles 

to the rest of the distribution. 
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Another interesting issue other than the testing of whether a tax or benefit has a statistically 

significant redistributive effect is to establish a statistical ordering of the different taxes and 

benefits in terms of their redistributive capacity. This is achieved by means of the RE 

dominance test described in section 2. This test has been applied to a set of pairs of 

tax(es)/benefit(s) selected according to the ordering given in figure 1. Results are presented in 

table VII.  

{ insert table VII} 

All pairwise comparisons except for the pair DT-PIT present global p-values equal to zero, 

which means that the left-handside tax/benefit RE-dominates the right-handside one. 

Corporate tax under the most progressive assumption exhibits a similar redistributive profile 

to the income tax, although its redistributive effect is lower. 

The curve corresponding to direct taxes and the personal-income-tax curve cross, so a full test 

of dominance does not apply. However, individual p-values indicate that the direct taxes 

curve dominates the personal income tax curve up to the seventh decile. In other words, a 

multiple test of “partial” dominance on this part of the curve (deciles one to seven, both 

included) would clearly lead to the rejection of the null. So it would appear that income tax 

plays a prominent role in the highest part of the income distribution.  

The most impressive result is the considerable dominance of total benefits on direct taxes, 

which emphasizes the redistributive power that benefits play on income redistribution. This 

curve reaches its maximum in the sixth decile, indicating a redistribution of 7% of the total 

amount of final income from deciles higher than the sixth towards the rest of the population. 

A more detailed picture about benefits would be of interest. Figure 2 displays the RE(p) 

curves for different categories of benefits and Table VIII shows the global p-values 

corresponding to the RE-dominance tests performed to the pairs of benefits chosen. 
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{Insert figure 2} 

Results show first that the redistribution effect of cash benefits (CB) and benefits-in -kind 

(BiK) are both statistically significant. Figure 2 also indicates a clear dominance ordering 

between the two curves, illustrated by the non-overlapping between the ordinates’ interval 

estimates. Cash benefits have the largest redistributive effect on income distribution - all 

pairwise comparisons involving CB on the left hand-side result in p-values equal to zero, as 

shown in table VIII. The redistributive effect of BiK is also remarkable. Breaking it down into 

three categories –‘health services’ (HB), ‘primary and secondary education’ (EdI) and 

‘university education’ (EdII) – enable us to establish a dominance ordering. Health services 

have the largest RE followed by ‘primary and secondary education’.  

{Insert table VIII} 

In fact, as the positive-slope fragment of the benefit curves shows, 60% of the population with 

lower resources is benefit receiver as compared to a situation in which benefits are evenly 

distributed. Finally, public expenditure on university education has null redistributive effect: 

the test of proportionality computed on its RE curve results in a global p-value of 0.810, 

which indicates that the null hypothesis of proportionality can not be rejected (see also figure 

II).  

Once we have measured and evaluated the redistributive profile of a tax or benefit it is 

interesting to picture the contribution of each decile to the global redistribution (RE). The 

following difference  

i i-1RE(p )-RE(p )  (7) 

measures the “redistributive load” carried by decile i. If we take the personal income tax 

shown in figure 3 as an example, the ninth and tenth deciles account for percentages of 13.8% 

and 86,2% of RE, respectively. The redistributive effect induced by direct taxation as a whole 
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proves to be less progressive because in this case, taxpayers spread from the sixth to the tenth 

deciles. The contribution of the ninth and tenth deciles to the redistribution is of the order of 

33% and 55% respectively. Each receiver decile captures around 20-22% of the redistributive 

effect, except for the fourth that receives 15% of the overall income that is redistributed. 

{Insert figure 3} 

Figure 3 also reveals that indirect taxation causes regressive income redistribution. Note that 

the poorest deciles up to the seventh decile are punished in the sense that a larger net income 

would be expected, had the indirect tax been replaced by a proportional one. As a result of the 

regressivity of indirect taxes, the two highest deciles become “winners”. Particularly, the 

income redistributed towards the richest deciles due to indirect taxation amounts to 1,15% of 

the post-tax income, from which 87% is perceived by the top decile.  

In the same way as the redistributive profile was defined from the concept of RE(p) distance, 

we can define the progressivity profile of a tax as  

X TTR(p)=L (p) - C (p) . (9) 

where TR(p) indicates the difference between the pre-tax income Lorenz curve and the tax 

concentration curve (see figure 4). Twice the region defined between the TR(p) curve and the 

abscissas axis coincides with the Kakwani index8. The results on TR-dominance multiple tests 

are shown in table VIII. 

{Insert figure IV} 

{ Insert table IX} 

The following features can be drawn on the tax-side .  First, the personal income tax has 

clearly the most progressive profile, as indicated by the p-values corresponding to the 

                                                 
8 This  distance is interpreted as the fraction of total tax that is transferred from households with income less than 

100p percentile towards the upper side of the distribution as a result of the system’s progressivity. 
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pairwise comparisons between this tax and each of the remaining taxes. Comparing the CT 

progressivity profiles under the two different incidence assumptions is of a special interest. 

The corporate tax variant (2) has been tested as a progressive one against CT(1) tax.  In fact, 

the shape of the CT(1) curve rather suggests a proportional or regressive profile. However, the 

test of regressivity fails to reject the null hypothesis with a global p-value of 0.413 (observe 

the overlapping for some decile intervals with the x axis). Moreover, a second test of 

proportionality is not significant (the null hypothesis of proportionality is rejected). This 

illustrates that the acceptance of the null in a test of progressivity/regressivity (assessed by 

type I tests) does not imply the proportionality of the tax or benefit (assessed by type II tests). 

Hence, neither a regressive nor a proportional nature can be inferred for CT(1). It is obvious 

that the pattern of corporate tax is pretty sensitive to the incidence assumption adopted, and 

more research is needed about shifting assumptions. 

The direct taxes and the CT(2) curves cross at the fourth decile. However, by examining the 

individual p-values, we can establish a partial dominance of DT over CT(2) for the first three 

deciles, and a partial dominance of CT(2) over DT for the part of the curve that comprises the 

fifth to the ninth deciles (both included). As for the dominance of direct taxes over corporate 

tax variant (1), the test of TR-dominance fails to reject the null hypothesis with a global p-

value of 0.241. But once again, the partial test applied to deciles up to the seventh is rejected 

with a p-value of 0.022, which means that in this part of the curve, direct taxes are statistically 

more progressive than CT(1). 

The reading from these curves is just the opposite to that of the tax curves. A benefit curve 

lying under the abscissas axis will indicate progressivity of the benefit. The most striking 

feature that arises from figure 5 is the fact that all benefit curves except for the one related to 
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university education have similar shapes. Moreover, most of these curves cross each other, 

thus impeding a TR dominance ranking among them. 

University education exhibits the lowest progressivity profile among all the benefits 

considered. The test with null TR(p)=0 fails to be rejected for this type of benefits (with a 

global p-value of 0.206), indicating a non-significant progressive effect. At the same time, the 

corresponding test of proportionality fails to be rejected, which implies the statistically 

significant proportionality of university education. All tests of progressivity performed over 

the remaining benefit curves are significant, that is, the null hypothesis TR(p)=0 is rejected for 

all of them. 

{Insert Table IX}. 

Note that for these tests, the alternative hypothesis is TR(T1 )<TR(T2 ), which means that 

benefit T1 is more progressive than benefit T2. Regarding the setting up of a ranking, an 

examination of the p-values provided in Table IX reveals that cash benefits, benefits in kind 

and health benefits TR dominate university education. The rest of the pairs do not cross 

except for CB-BiK and EdI-EdII. For the first pair, the global dominance test cannot be 

rejected, with a p-value=0.376. A closer look at the individual p-values shows an important 

overlapping for deciles above the third one. This is not the case for the second pair of curves, 

for which, although presenting a global p-value of 0.346, the overlapping only occurs at the 

first decile . 

The main findings from the progressivity and redistributive effect analyses are summarized in 

the following lines. Although direct taxes play an important role in the redistribution made by 

the Spanish tax-benefit system, total benefits appear to be the component of the system that 

exerts the largest redistributive effect. A closer examination of the benefits shows that cash 

benefits followed by benefits in kind are those mainly responsible for the redistribution 
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induced. Indirect taxes cause a significant and negative redistributive effect. It is surprising to 

observe that corporate tax, even under the most progressive assumption, does not produce a 

statistically significant redistribution.  

In terms of progressivity, PIT is the most progressive tax and its TR curve statistically 

dominates the TR curves of the other the taxes. Opposite to PIT, indirect taxes present a 

significant regressive nature. Corporate tax variant (2) proves to be more progressive than 

under variant (1). The CT(2) and DT curves cross at the fourth decile. However, a partial TR 

dominance of CT(2) over DT for deciles higher than the fourth can be established.  
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5. CONCLUSIONS 
 

Inference methods on income, tax and benefit distributions are crucial in applied economic 

welfare. It is well-known that the asymptotic distributions of a set of inequality and 

progressivity indices can be derived by using non-degenerate U-statistics theory. As an 

application of this theory, we have described its main guidelines and derived the Suits-

progressivity index distribution. We have also provided a formula for the “plug-in” estimator 

of the variance indices, which are less onerous – in terms of computational cost – than the U-

statistic version (this is specially relevant for those indices whose asymptotic variances 

contain kernels of degree 3).  

As far as inference issues are concerned, there are arguments in favour of using bootstrapping 

as an alternative to the classic approach. By using the statistical matching EPF90-IRPF90 - 

which contains more accurate information on income and taxes than the merely EPF90 

household survey - our results show that bootstrap methods perform better (considering their 

sample precision), particularly those bootstrap methods yielding asymmetric CI).  

Another interesting application of the bootstrap technique is the formulation of multiple 

hypothesis tests for the assessment of Lorenz dominance and other related concepts. We have 

showed that the bootstrap method is a useful technique for Lorenz dominance analysis. 

Moreover, it can be applied even in the case when the independence-between-samples 

assumption does not hold.  

An illustration of such application has been made for the Spanish tax and welfare system. 

According to this analysis, we distinguish clear dominance of cash-benefits on income 

redistribution. Public health and state school education also have significant redistributive 

effects.  
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APPENDIX A 

DERIVATION OF THE SUITS INDEX ASYMPTOTIC DISTRIBUTION 
 

Let X be the pre-tax income variable and Y the tax/benefit variable, 
X

G  the pre-tax income 

Gini index and 
Y

CR  the relative concentration index corresponding to the tax or benefit Y. 

The Suit index of tax progressivity, Suits (1977), is defined as: 

Y XS CR G= −  (A1)

where  

1
2 cov( , ( ))Y

Y

CR Y F X
µ

=  (A2)

and 1
0

1
( ) ( )

x

X

F x ydF y
µ

= ∫  is the first moment distribution function of X, F is the distribution 

function of variable X, and Xµ  and Yµ  are the population means of X and Y, respectively. 

Given that the covariance term in A.2 can be decomposed as 1 1[ ( )] ( ) [ ( )]E YF X E Y E F X− , the 

formula A.1 for the Suits index is reformulated in terms of functionals as: 

 

32 1

2X Y X X

S
ηη η

µ µ µ µ
= − −
 
 
 

 (A3)

 

where 1η , 2η  and 3η  are defined in table I. Assume that an i.i.d. random sample is drawn 

from the joint distribution H(x,y), with F(x) and G(y) the respective marginal functions, then 

it follows from Slutsky’s theorem that a consistent estimator, Ŝ , for the Suits index is 

obtained from the U-statistics associated with the functionals 1η , 2η  and 3η  (see table I): 

32 1ˆˆ ˆˆ
2

S
xy x x

ηη η
= − −
 
 
 

 (A4)

 

Asymptotic normality of S is established by applying Hoeffding’s theorem 7.1 which is about 

the joint distribution of a vector of U-statistics, leading to the following lemma:  
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Lemma 1. Let H(x,y), F(x) and G(y) be continuous functions with finite second central order 

moments for F and G, that is ( )E X < ∞ , ( )E Y < ∞ and ( )2E X < ∞  ( )2E Y < ∞ , then the 

random vector [ ( )Xn x µ− , ( )Yn y µ− , 2 2ˆ( )n η η− , 

3 3ˆ( )n η η− , 1 1ˆ( )n η η− ] follows an asymptotically multivariate normal distribution with 

zero mean and variance-covariance matrix: 

( ) ( )
( ) ( )
( ) ( )

( )

( )
( )
( )
( )
( )

2
12 3

2
12 3

2 12 2 2 35 5

3 13 3

1 1

2 ,2 , 2 ,
2 ,2 , 2 ,
4 ,4 , 4 ,
4 ,4 ,
4 ,

XX XY X X

YY Y Y

υ µ ησ σ υ µ η υ µ η
υ µ ησ υ µ η υ µ η
υ η ηυ η η υ η η
υ η ηυ η η
υ η η

×

 
 
 
 Σ =
 
 
 
  

, (A5)

where 2
Xσ , 2

Yσ , XYσ  are the variances of  X and Y and covariance between them respectively. 

The terms (.)ijυ  represent the covariance between functionals. Next, the application of the 

Delta method leads us to the asymptotic distribution of Suits index: 

 

ˆ( ) (0, ')dn S S N J J− Σ →  (A6)

 

where J is the partial derivative of S with respect to 2 3 1( )́X Yη µ µ η η η= :  

2
2

1 1
( ) 1

1
2Y X

X YY

J CR G
η

µ µ µ

= − − −

 
 
 
 

 

 

can also be expressed as, 

 

2
2

1 1
1 0 0 0

10
2Y

X Y
X

Y

J CR G
η

µ µ µ
= − − −

       −  
      

 (A.7)

 

The asymptotic variance of the Suits index is established in the following theorem9:  

                                                 
9 The quadratic form defined in A.6 is equal to 

1 2

' ' '
1 2 2 12J J J J J JΣ + Σ − Σ  where j1 and j2 are the sub vectors 

in expression A.7. Note that the two first terms are the asymptotic variances of the relative concentration index, 

CRY , and Gini index, Gx, respectively.  
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Theorem 1. Under the same conditions set for Lemma 1, Ŝ  is a consistent estimate of S with 

asymptotic normal distribution, ( )2ˆ( ) 0, Sn S S N σ− →
� , where the variance is defined as  

]

2 2 2 1 2
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η
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= +


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(A.8) 

 

and 2
Gσ and 2

YCRσ are the variances of ˆ( )X Xn G G−  and 
^

( )Y YCR CRn − : 
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A.1 Variance estimator of Ŝ  based on U-statistics 

 

We illustrate the estimation of the covariance terms (.)ijυ . Let us consider –as an example- 

the element 2( , )Xυ µ η . First, we obtain the symmetric kernels that estimate functionals Xµ  

and 2η .  Given that x  and 2η̂  (see table I) are the U-statistics of Xµ  and 2η  respectively, the 

corresponding kernels are 1 1( )h X X=  and 

( ) ( )1 1 2 2 1 2 0 1 2 2 1 0 2 1(( , ), ( , ))h X Y X Y X Y I X X X Y I X X= < + <  with respective degrees am =1 

and bm =2.  Therefore, the coefficient related to this element is 2=bamm  and the functional 
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( ) ( )
( ) ( )

2 1 1 2 0 1 2 2 1 0 2 1 2

1 1 2 0 1 2 2 1 0 2 1

1 1 2 2 2

( , )

( , ) ( , )

X X

X

E X X Y I X X X Y I X X

x x y I x x x y I x x

dH x y dH x y

υ µ η µ η

µ η

 = < + < −   

= < + <  

× −
∫∫ ∫∫ , (A.9) 

 

is consistent estimated as follows:  

   

0 02 2
1

( ( ) ( )
( 1)

ˆ ˆ( , ) )[ ]i j i j j i j i
i j

X j iX X X Y I X X X Y I X X
n n

Xυ µ η η
<

= < + <
−

+ −∑ . 

 

Let us derive now another example, 
2 3

( , )υ η η , which leads to a kernel of degree three. 

Following the same procedure as the previous steps, the functional is derived as: 

( ) ( )

( ) ( )

2 3 1 2 0 1 2 2 1 0 2 1

1 0 1 3 3 0 3 1

1 1 2 2 3 2 3

( , )

( , ) ( , ) ( ) ,

x y I x x x y I x x

x I x x x I x x

dH x y dH x y dF x

υ η η

η η

= < + <  

× < + <  

× −

∫∫ ∫∫ ∫

 (A.10)

 

Its corresponding estimator based on U-statistics is computed by the following expression,  

2 3

2 3
( , , )

1ˆ( , )
( 1)( 2)

ˆ ˆ(( , ), ( , ), ( , )) ,
i i j j k k

i j k

i j k

n n n

h X X X X X X
π π π π π π

υ η η

η η

< <

Π

=
− −

  
 

× − 
 
  

∑

∑
 (A.11)

 

where the summation is over the set of all permutations of the n sample elements and (.)h  is 

the kernel defined as: 

( ) ( )
( ) ( )

1 1 2 2 3 3 1 2 0 1 2 2 1 0 2 1

1 0 1 3 3 0 3 1

(( , ), ( , ), ( , ))h X Y X Y X Y X Y I X X X Y I X X

X I X X X I X X

= < + <  

× < + <  
 

Other covariance elements of the matrix A.5 can be obtained following the same procedure.  
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A.2 Variance estimator of Ŝ  based on plug-in estimators 

 

Finally, we have calculated the plug-in estimators corresponding to the elements (.)ijυ . Let us 

focus again on the two functionals we have explained before. Consider, first, the functional 

2( , )Xυ µ η . A slight re-ordering of the integration variables in A.9 leads to the following 

expression: 

[ ]2 1 2 0 1 2 2 1 0 2 1 2 21

1 1 2 1 2 1 1 1 1 2

( , ) ( ) ( ) ( , )

( , ) ( , ) ( , )

X

X X

x x y I x x x y I x x dH x y

dH x y x x y dH x y

υ µ η

µ η µ η

 
= < + < 

 

× − = ∆ −

∫ ∫ ∫ ∫

∫∫
 (A.12)

 

where 2 1 1( , )x y∆  can be reformulated as 

[ ]2 1 1 1 1 1 1 1 1( , ) 1 ( ,·) ( )Y Xx y x H x y F xµ µ∆ = − +  (A.13)

 

and 
1

1 1 2 2 2
0 0

1( ,· ) ( , )
x

Y

H x y dH x y
µ

+∞

⋅ = ∫ ∫ . An unbiased and consistent estimator for 2∆  is:  

2

1
1i i i i i i i i i

nd X y g p Y x p Y X
n n

 
 = − + −   −  

 (A.14)

where ix  represents the mean income corresponding to individuals of the sample with income 

less than or equal to iX ; ig  is the mean tax for those individuals in the sample with income 

less than or equal to iX  and ip  is the percentage of individuals with income less than or equal 

to iX . From expression (A.12) the corresponding plug-in estimator can be obtained. The 

application of the principle of substitution twice leads to: 

 

2 2 2
1

1( , )
n

X i i
i

X d xd
n

υ µ η

=

= −∑�  (A.15)

 

In the same way, the plug-in estimator corresponding to functional 2 3( , )υ η η is defined as: 
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2 3 2 3 2 3
1

1( , )
n

i i
i

d d d d
n

υ η η

=

= −∑�  (A.16)

 

This procedure applies to the elements in matrix A.5. By replacing the elements (.)ijυ  in the 

index variance formulae with their respective plug-in estimators, we obtain the consistent 

estimate for 2
Sσ  defined in table II. The application of the principle of substitution twice does 

not necessarily imply consistency. Continuity of the functionals appears to ensure consistency 

of the plug-in estimators.  
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Table I. Formulas for indices, functionals and U-statistics.  
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where     ( ) 1 0

1
i j i j i j

i j

I X X if X X or if X X

or if X X

> = >

− <

=       
0
( ) 1 , 0

i j i j
I X X if X X otherwise< = <  

Notes:1.Gini, 2.Kakwani, 3.Suits, 4. Redistributive Effect, 5.Horizontal inequality, 6.Theil(l), , 7.Atkinson.  

The U-statistic that estimates 
( )k
Xµ  equals the respective sample moment. 
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 TABLE II. ASYMPTOTIC VARIANCE ESTIMATES OF INEQUALITY AND TAX PROGRESSIVITY 
INDICES. 
  

Formulae 
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 Expressions 
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Notes: The asymptotic variance of Cy is also represented by formula 1, after replacing x,η1 and d1 by y, η2 and 
d2, respectively. The asymptotic variance of CRy is derived in appendix A. I(A) represents the indicator function 
with value 1 if A is true, 0 otherwise. Theil and Atkinson variances are not included, they can be derived by 
conventional CLT methods. References for the variance of Gini and Kakwani/redistributive effect indices based 
on U-statistics formulae are Cowell (1989) and Bishop et al. (1998) respectively.  We noted a typographical 
error in equations 23 and 28 of Bishop et al.(1998): Gy should be replaced by Cy. 
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Table III. Parameters of the simulation: real values. 
Indices Real value 
    Gini  0.38505 

Theil(1)  0.27820 
Lorenz deciles  
  1st  0.02518 
  3th  0.11112 
  5th  0.24318 
  7th  0.42879 
  9th  0.70349 
Kakwani  
  Direct taxes  0.29947 
  Indirect taxes -0.14368 
Suits  
  Direct taxes  0.34553 
  Indirect taxes -0.15106 



 

 

37
 
Table IV. Simulation Analysis: Real approximate coverage for inequality indices, Lorenz ordinates and progessivity measures. 
Index n = 200 n =1000 n = 2000 n = 200 n =1000 n = 2000 

 Method Standard 1   BCa  
Gini  0.783 0.795 0.788 0.901 0.929 0.931 
Theil 0.948 0.779 0.718 0.83  0.852 0.858 
Lorenz Deciles 
1 
3 
5 
7 
9 

 
0.805 
0.807 
0.810 
0.789 
0.768 

 
0.829 
0.814 
0.812 
0.807 
0.794 

 
0.855 
0.829 
0.827 
0.790 
0.782 

 
0.844 
0.930 
0.930 
0.917 
0.881 

 
0.869 
0.938 
0.938 
0.933 
0.920 

 
0.949 
0.946 
0.941 
0.947 
0.920 

Kakwani (D) 0.839 0.826 0.841 0.892 0.881 0.901 
Kakwani (I) 0.803 0.837 0.823 0.881 0.926 0.930 
Suits (D) 0.680 0.685 0.716 0.878 0.855 0.855 
Suits (I) 0.826 0.846 0.851 0.864 0.924 0.925 
Notes: Nominal coverage: 0.95. 1Asymptotic estimate of the standard error 

 
Table V. Simulation Analysis: Real approximate coverage for inequality indices, Lorenz ordinates and progressivity measures. 
Index n = 200 n =1000 n = 2000 n = 200 n =1000 n = 2000 
 Method Standard 2   Bootstrap-t  
Gini  0.829 0.879 0.884 0.925  0.952 0.948 
Theil 0.699 0.755 0.771 0.818 0.866 0.867 
Lorenz Deciles 
1 
3 
5 
7 
9 

 
0.865 
0.868 
0.871 
0.851 
0.783 

 
0.886 
0.899 
0.893 
0.881 
0.849 

 
0.911 
0.910 
0.906 
0.896 
0.870 

 
0.823 
0.929 
0.934 
0.933 
0.903 

 
0.894 
0.950 
0.949 
0.948 
0.940 

 
0.961 
0.963 
0.957 
0.958 
0.938 

Kakwani (D) 0.864 0.826 0.855 0.901 0.882 0.925 
Kakwani (I) 0.857 0.897 0.913 0.918 0.935 0.948 
Suits (D) 0.828 0.809 0.832 0.878 0.883 0.899 
Suits (I) 0.848 0.891 0.906 0.906 0.929 0.943 

Notes: Nominal coverage: 0.95. 2 Bootstrap estimate of the standard error 
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Table VI. RE Lorenz dominance : taxes and benefits. 
H0=D(p)=RE(T1)-RE(T2) = 0   H1 = D(p)>0 
Pairwise comparisons Global-p-values 

BE-DT,   BE-PIT, BE-CT(2),  BE-IT 
DT-PIT,  DT-CT(2),DT-IT 
PIT-CT(2), PIT-IT 
CT(2)-IT 

0.000    0.000,    0.000    0.000 

0.039     0.000    0.000 
0.000    0.000 
0.000 

 
 
 

 

Table VII. RE Lorenz dominance: benefits.  
H0=D(p)=RE(T1)-RE(T2)=0   H1=D(p)>0  

Pairwise comparisons Global-p-values 

BE-BEiK, B-HB, BE-NUE, BE-UE  
BEiK-HB, BeiK-NUE, BeiK-UE 
HB-NUE, HB-UE 
NUE-UE 

0.003,   0.000,    0.000,   0.000 

0.001,    0.000,    0.000 
0.000,   0.000 
0.003 

 
 

 

 

Table VIII. TR Lorenz dominance: taxes.  
H0=D(p)=TR(T1)-TR(T2) = 0   H1 = D(p)>0  
Pairwise comparisons Global-p-values 

PIT-CT(2), PIT-DT, PIT-CT1, PIT-IT
CT(2)-DT, CT(2)-CT(1), CT(2)-IT 
DT-CT(1), DT-IT 
CT(1)-IT 

0.004,   0.003,    0.000,   0.000 

0.550    0.000,   0.000 
0.241    0.000 
0.052 

. 
 
 
 

Table IX. TR Lorenz dominance: benefits.  
H0=D(p)=TR(T1)-TR(T2) = 0   H1 = D(p)<0  
Pairwise comparisons Global-p-values 

BE-BEiK, B-HB, BE-NUE, BE-UE  
BEiK-HB, BeiK-NUE, BeiK-UE 
HB-NUE, HB-UE 
NUE-UE 

0.376    1.000     0.800    0.000 

0.846      0.555     0.015 
0.750    0.001 
0.3464 
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Figure 1.  Redistributive effects  
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 Figure 2. Benefit redistributive effects 
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Figure 3. Contribution to the global redistribution per decile. 
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 Figure 4. Progressivity profiles. 
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   Figure 5. Progressivity profile: benefits. 
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APPENDIX B 

 
Table B.1 Simulation Analysis: Interval length and shape(italics) for inequality indices, Lorenz coordinates and progressivity measures 
Index n = 200 n = 1000 n = 2000 n = 200 n = 1000 n = 2000 
 Method Standard 1  BCa  
Gini  0.08796 (1.000) 0.04371 (1.000) 0.03178 (1.000) 0.10862 (1.3797) 0.05980 (1.3535) 0.04752 (1.3943) 
Theil 0.29020 (1.000) 0.10993 (1.000) 0.08039 (1.000) 0.20412 (1.6633) 0.13644 (1.7072) 0.11082 (1.7047) 
Lorenz Deciles 
1 
3 
5 
7 
9 

 
0.00736 (1.000) 
0.02552 (1.000) 
0.04698 (1.000) 
0.06997 (1.000) 
0.08834 (1.000) 

 
0.00339 (1.000) 
0.01182 (1.000) 
0.02214 (1.000) 
0.03411 (1.000) 
0.04583 (1.000) 

 
0.00247 (1.000) 
0.00849 (1.000) 
0.01616 (1.000) 
0.02494 (1.000) 
0.03374 (1.000) 

 
0.01004 (0.8437) 
0.03489 (0.8884) 
0.06360 (0.8434) 
0.09405 (0.7730) 
0.11253 (0.6489) 

 
0.00475 (0.8695) 
0.01717 (0.8911) 
0.03177 (0.8597) 
0.04830 (0.8097) 
0.06329 (0.6991) 

 
0.00344 (0.8753) 
0.01274 (0.8821) 
0.02417 (0.8529) 
0.03764 (0.8034) 
0.05023 (0.7161) 

Kakwani (D) 0.09269 (1.000) 0.04968 (1.000) 0.03847 (1.000) 0.10862 (1.0833) 0.05980 (1.0721) 0.04527 (1.0834) 
Kakwani (I) 0.11048 (1.000) 0.05523 (1.000) 0.04057 (1.000) 0.14928 (0.9758) 0.07854 (0.9493) 0.06027 (0.9242) 
Suits (D) 0.12343 (1.000) 0.07678 (1.000) 0.05998 (1.000) 0.18381 (1.1158) 0.10773 (1.1238) 0.08781 (1.1949) 
Suits (I) 0.13922 (1.000) 0.06893 (1.000) 0.04940 (1.000) 0.17252 (1.0770) 0.09032 (0.9781) 0.06766 (0.9406) 
Notes: Nominal coverage: 0.95.  1Asymptotic estimate of the standard error 

 
 
Table B.2. Simulation Analysis: Interval length and shape(italics) for inequality indices, Lorenz coordinates and progressivity measures 
Index n = 200 n = 1000 n = 2000 n = 200 n = 1000 n = 2000 
 Method Standard 2 Bootstrap-t 
Gini  0.09029 (1.000) 0.04864 (1.000) 0.03782 (1.000) 0.14255 (1.6625) 0.06502 (1.4268) 0.04824 (1.3544) 
Theil 0.16421 (1.000) 0.10586 (1.000) 0.08435 (1.000) 0.27426 (1.7748) 0.17224 (1.8674) 0.13196 (1.9061) 
Lorenz Deciles 
1 
3 
5 
7 
9 

 
0.00851 (1.000) 
0.02979 (1.000) 
0.05350 (1.000) 
0.07790 (1.000) 
0.09069 (1.000) 

 
0.00396 (1.000) 
0.01426 (1.000) 
0.02625 (1.000) 
0.03961 (1.000) 
0.05059 (1.000) 

 
0.00285 (1.000) 
0.01045 (1.000) 
0.01971 (1.000) 
0.03025 (1.000) 
0.03940 (1.000) 

 
0.01074 (0.8229) 
0.03763 (0.8091) 
0.07060 (0.7705) 
0.11046 (0.6902) 
0.16172 (0.5252) 

 
0.00483 (0.8944) 
0.01744 (0.8769) 
0.03267 (0.8433) 
0.05095 (0.7852) 
0.07082 (0.6735) 

 
0.00342 (0.9173) 
0.01263 (0.9008) 
0.02408 (0.8644) 
0.03773 (0.8165) 
0.05186 (0.7148) 

Kakwani (D) 0.09291 (1.000) 0.04927 (1.000) 0.03866 (1.000) 0.12809 (1.3513) 0.06935 (1.4074) 0.05443 (1.2305) 
Kakwani (I) 0.12494 (1.000) 0.06516 (1.000) 0.04923 (1.000) 0.19634 (1.0196) 0.08935 (0.9951) 0.06142 (0.9457) 
Suits (D) 0.15775 (1.000) 0.09145 (1.000) 0.07402 (1.000) 0.24876 (1.8209) 0.15921 (1.4793) 0.117696 (1.2621) 
Suits (I) 0.14369 (1.000) 0.07483 (1.000) 0.05543 (1.000) 0.22349 (1.1719) 0.10279 (1.0413) 0.069043 (1.0761) 

Notes: Nominal coverage: 0.95. 2Bootstrap estimate of the standard error 




