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Abstract  
 

When poverty is viewed as a matter of degree, i.e. as a fuzzy measure, two additional aspects are 
introduced into the analysis compared with the conventional poor/non-poor dichotomous 
approach: (i) the choice of membership functions i.e. quantitative specification of individuals' or 
households' degrees of poverty and deprivation; and (ii) the choice of rules for the manipulation 
of the resulting fuzzy sets, rules defining their complements, intersections, union and averaging. 
Specifically, for longitudinal analysis of poverty using the fuzzy set approach, we need joint 
membership functions covering more than one time period, which have to be constructed on the 
basis of the series of cross-sectional membership functions over those time periods. In this paper 
we propose a general rule for the construction of fuzzy set intersections, that is, rules for the 
construction of longitudinal poverty measures from a sequence of cross-sectional measures. On 
the basis of the results obtained, various fuzzy poverty measures over time can be constructed as 
consistent generalisations of the corresponding conventional (dichotomous) measures. Examples 
are rates of any-time, persistent and continuous poverty, distribution of persons and poverty 
spells according to duration, rates of exit and re-entry into the state of poverty, etc. 
The proposed rule has been developed in a logical, step-by-step, manner, satisfying the required 
marginal constraints. This is important since there are reasons to believe that, hitherto, the rules 
of fuzzy set operations in the context of multi-dimensional and longitudinal poverty analysis have 
not been well or widely understood. 
In an annex to this paper, we also present some numerical illustrations using survey data from the 
Italian European Community Household Panel, 1994-2001, with breakdown by Macro-region in 
Italy. The main objective, however, is to provide quantitative comparison between the 
conventional and fuzzy approaches. Noteworthy from a methodological point is the difference in 
the performance of the approaches concerning persistence of poverty. Movements in and out of 
poverty may be somewhat over-estimated (and hence the persistent or continuous poverty rates 
under-estimated) with the conventional approach, perhaps because it gives too much weight even 
to small movements across the poverty line. 
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1 Introduction 
Conventional analyses of poverty often have two main limitations: (i) they are unidimensional, 
considering only income poverty, and (ii) they need to dichotomise the population into the poor and the 
non-poor by means of a poverty line. While multidimensionality is being increasingly incorporated into 
poverty research, little attention has been devoted to the effect of the rigid poor/non-poor dichotomy 
on the results.  

When poverty is viewed as a matter of degree (as distinct from the conventional poor/non-poor 
dichotomy), that is as a fuzzy state, two additional aspects are introduced into the analysis. These 
concern the choice of (i) membership functions i.e. quantitative specification of individuals' or 
households' degrees of poverty; (ii) and of rules for the manipulation of the resulting fuzzy sets, rules 
defining their complements, intersections, union and averaging.  

We address the second of the above questions in this paper. Specifically, for longitudinal analysis of 
poverty using the fuzzy set approach, we need longitudinal joint membership functions covering more than 
one time period, which have to be constructed on the basis of the series of cross-sectional membership 
functions over those time periods.  

It is useful to begin by a brief clarification of the concept of treating poverty (or more generally, various 
forms of deprivation) as a matter of degree replacing the conventional classification of the population 
into a simple dichotomy. Figure 1 illustrates the basic idea. In principle all individuals in a population 
are subject to poverty, but to varying degrees. We say that each individual has a certain propensity to be 
poor, the population covering the whole range [0,1]. The conventional approach is a special case of 
this, with the population dichotomised as {0,1}: those with income below a certain threshold are 
deemed to be poor (i.e. are all assigned a constant propensity=1); others with income at or above that 
threshold are deemed to be non-poor (i.e. are all assigned a constant propensity=0). 

Figure 1. The basic idea of poverty or deprivation as a matter of degree: comparison with the 
conventional poor/non-poor dichotomy 

Fuzzy propensity to poverty: Conventional head count ratio:
defined for all individuals in the population dichotomised into two sub-populations

Poverty Rate=

Propensity to: Subpopulation:

poverty non-poverty poor non-poor + +
 

 

As to fuzzy sets, the basic idea is as follows. Given a set X of elements x∈X, any fuzzy subset A of X is 
defined as: 

 (x)} {x, A Aμ=   

where (x)Aμ : X→[0,1] is called the membership function (m.f.) in the fuzzy subset A. The value (x)Aμ  
indicates the degree of membership of x in A. Thus (x)Aμ = 0 means that x does not belong at all to 
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A, whereas (x)Aμ = 1 means that x belongs to A completely. When on the other hand 0< (x)Aμ <1, 
then x partially belongs to A and its degree of membership of A increases in proportion to the 
proximity of (x)Aμ to 1. 

For an early application of the ideas of fuzzy sets to the longitudinal study of poverty, see Cheli (1995); 
some further development of those ideas can be found in Betti, Cheli and Cambini (2004). 

In this paper, we take a fresh look at the methodology. The basic rules concerning fuzzy set operations, 
as relevant for the longitudinal analysis of poverty, are clarified in Section 2. 

In the rest of the paper, we develop a general rule for the construction of fuzzy set intersections, that is 
for the construction of a longitudinal ‘joint membership functions’ of individuals’ propensities to 
poverty, from a sequence of cross-sectional propensities to poverty. This rule is meant to be applicable 
to any sequence of “poor” and “non-poor” sets, and satisfies all the relevant constraints. On the basis 
of the results obtained, diverse fuzzy poverty measures over time can be constructed as consistent 
generalisations of the corresponding conventional (dichotomous) measures. 

We begin in Section 3 with the development and interpretation of what we have termed the 
‘Composite’ set operator for correctly obtaining the intersection of a pair of fuzzy sets, taking into 
account whether the two sets in the pair are of the same type (e.g., poor/poor) or are of different types 
(e.g., poor/non-poor). The Composite operator which replaces the widely used ‘Standard’ operator, 
was first proposed in Betti and Verma (2004). In Section 4 rules are developed for constructing 
longitudinal fuzzy measures of persistent poverty. In order to obtain consistent generalisation of these 
rules, we examine in detail in Section 5 the joint membership functions covering all possible patterns  
over three years, and present in Section 6 generalisation of the rules for constructing intersections of 
any sequence of fuzzy membership functions. A number of the longitudinal measures in section 4-6 
were first formulated, but without detailed proof, in Verma and Betti (2002). 

The fundamental objective of this paper is to clarify and formulate consistent rules for the construction 
of joint membership functions of the type described above. The aim is to clarify the application of 
general principles of fuzzy set operations to the specific task of longitudinal analysis of poverty and 
deprivation. 

2  Basic rules concerning fuzzy set operations  
We begin from the situation that, for a series of cross-sections (1,… T), each person’s propensity to be 
in poverty (i.e. the person’s membership function of the set “poor”) is given as: 

    tμ  ,  (t = 1, …, T)  ,  tμ ∈[0,1] (1) 

As necessary, we can also define the complements of the above at each time, i.e. the membership 
function (m.f.) of the set “non-poor” as tt 1 μ−=μ . 

Here we take that the degree to which a person is not a member of the set “poor”, he/she is a member 
of the set “non-poor”; in other words, the two sets are taken to form fuzzy partitions of the ‘universal’ 
set (with m.f.=1 for all units in the population). 

For analysis of poverty over time, we need joint membership functions (j.m.f.'s) covering more than one 
time period. Simple examples are the intersection 21 μμ ∩ giving the j.m.f. of the set  “poor at the both 
times 1 and 2”, and the union 21 μμ ∪  giving the j.m.f. of the set “poor at either of the two times”. 
Here we should clarify that logic operations involving fuzzy sets are defined on their membership 
functions. Moreover, we should use  a unique simbol for each operation: i( ), u( ) and c( ).Similarly 

21 μμ ∩  gives the propensity of being poor at time 1 but of escaping from poverty by time 2, and 

21 μμ ∩  gives the propensity of being non-poor at time 1, but falling into poverty by time 2. 
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Just as the mean of individual values such as tμ  of the m.f.'s can be seen as the (cross-sectional) 
poverty rate at time t, the mean of a j.m.f., of for instance 21 μμ ∩  gives the rate of persistent poverty 
over the two years. 

Fuzzy set operations are a generalisation of the corresponding ‘crisp’ set operations in the sense that 
the former reduce to (exactly reproduce) the latter when the fuzzy membership functions, being in the 
whole range [0,1], are reduced to a series of {0,1} dichotomies: 

           tμ  ,  (t = 1, …, T)  ,  tμ ∈{0,1}  (2) 

It would be better to find another symbol instead of )0(
tμ . In conventional analysis, using ordinary 

‘crisp set’ formulation, each unit (person) is classified categorically as being “poor” or “non-poor” 
depending on whether or not the person’s income falls below the fixed poverty line defined from 
income distribution at the time concerned. That is, at each time the individual is determined as 
belonging wholly to only one of the complementing sets, )0(

tμ  or )0(
tμ , and not at all to the other. 

The rules for constructing the j.m.f.'s covering more than one period are straightforward in the 
conventional case. They simply reflect counts of individuals in different states. For instance, joint 
membership function, )0(

2
)0(

1
)0(

2
)0(

1 μ⋅μ=μμ ∩ , is simply the product of the two cross-sectional m.f.'s, 
each coded {0,1}. The corresponding rate is simply the proportion of individuals coded 1 in both )0(

1μ  
and )0(

2μ . Similarly 1)0(
2

)0(
1 =μμ ∪  if either of the two m.f.'s equals 1, and 0 only if both equal 0. 

While fuzzy set operations are a generalisation of the corresponding ‘crisp’ set operations, there is more 
than one way in which the fuzzy set operations can be formulated, each representing an equally valid 
generalisation of  the corresponding crisp set operation. The choice among alternative formulations has 
to be made primarily on substantive grounds: some options are more appropriate (meaningful, useful, 
illuminating, convenient) than others, depending on the context and objectives of the application. 
While the rules of fuzzy set operations cannot be discussed fully in this paper, we need to clarify their 
application specifically for the study of poverty and deprivation. 

There are four types of fuzzy set operations on membership functions which are relevant to our 
application to longitudinal poverty analysis: 

 fuzzy intersection, 

 fuzzy union, 

 fuzzy complement, 

 aggregation (or averaging) over fuzzy sets. 

Fuzzy intersection and union 

Table 1 shows three commonly-used groups of rules – termed Standard, Algebraic and Bounded (Klir 
and Yuan, 1995) -  specifying fuzzy intersection and union. Such rules are 'permissible' in the sense that 
they satisfy certain essential requirements such as reducing to the crisp set operations with dichotomous 
variables, satisfying the required boundary conditions, being monotonic and commutative, etc. 

In this section we consider these operations applied to only a pair of fuzzy sets, and use simple and 
general notation as follows. Quantities a and b refer to the membership function of a given individual 
on the pair of fuzzy sets. These may refer to two time periods, or equally to two different dimensions 
of deprivation at the same time: the formal rules are identical in the two situations. Similarly, a and b 
may represent similar states (e.g. poor, poor), or dissimilar states (poor, non-poor), or even states 
differing to various degrees. 
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Table 1. Some basic forms of fuzzy operations 

 Intersection Union 
Type of operation ( ) bab,ai ∩= ( ) bab,au ∪=

Standard min(a,b)=imax max(a,b)=umin

Algebraic a*b a+b-a*b

Bounded max(0,a+b-1) min(1,a+b)

 

For our application, a most important observation is that the Standard fuzzy operations provide the 
largest (the most loose or the weakest) intersection among all the permissible forms; all other forms give 
a smaller, or at least no larger, value for the intersection. By contrast, the Standard form gives the 
smallest (the most tight or the strongest) union among all the permitted forms. It is for this reason that 
these operations have been labelled as imax and umin in Table 1.  

Secondly, it should also be noted that, among all the permissible forms, the Standard fuzzy intersection 
and union are the only ones which satisfy the intuitively and substantively desirable condition of 
‘idempotency’, namely: i(a,a) = a and u(a,a )= a. 

Fuzzy complement 

For the complement as well, different forms are permissible. Acceptable forms need to be “involutive”: 

 ( )( ) ( ) .aacacC ==  

The most commonly used and the simplest complement is its Standard form ( ) )a1(aac −== ,  
whichis also intuitively the most meaningful. We will apply this form throughout. 

It must be underlined that the permissible forms of the two operations, intersection and union, go in 
pairs: to be consistent, it is necessary to select the two from the same row of Table 1, so as to satisfy 
the De Morgan laws of set operations: 'B'A)'BA(;'B'A)'BA( ∩=∪∪=∪ , which in the fuzzy case 

can be written as: 

 ( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )[ ]bc,acib,auc;bc,acub,aic == . 

Consistency also requires an appropriate form of the complement. Any of the three intersection-union 
pairs in Table 1 is consistent with the Standard form of the complement, c(a)=1−a.  

Fuzzy aggregation and averaging 

Aggregation of membership functions over different sets is related to the concept of fuzzy partitions. The 
above definition of the complement is a simple example of a fuzzy partition: the m.f.'s in a pair of 
complementing sets add up to 1: 1aa =+ . The two sets are taken as fuzzy partitions of the ‘universal 
set’ X with m.f.=1 for every unit in the population. 

More generally, if for each unit in the population, its m.f. μ  in a certain set is decomposed into 
components jμ  such that jjμΣ=μ , then the jμ  values constitute m.f.'s corresponding to fuzzy 
partitions of the original set. 

This concept of fuzzy partitions is relevant in the specification of marginal constraints which the fuzzy 
set operations must satisfy, as well be discussed in Section 3 below. 
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A graphical representation 

To elucidate these fuzzy set operational forms, which are central to our methodology, we have 
developed a graphical representation as shown in Figure 2. The “universal set” X is represented by a 
rectangle of unit length, and within it are placed the individual's membership functions (0≤a≤1, 0≤b≤1) 
on the two subsets. Different placements correspond to different types of fuzzy set operations. 

In the Standard form, appropriate for similar sets, the two memberships (a,b) are placed on the same 
base, so that the smaller (say b) lies completely within the larger (say a). Consequently, their intersection 
is maximised, so as to equal the smaller of the subsets. By the same token, their union is minimised, so 
as to equal the larger of the two subsets. The union is represented in the lower part of Figure 2; it 
shows separately the amount (=a-b in this case) by which it exceeds the intersection of the sets 
concerned.  

By placing one set higher than the other within X, the overlap (intersection) is generally reduced, and 
the underlay (union) increased. 

In the Algebraic form, membership (b) is placed symmetrically over memberships (a) and (non-a), i.e. 
each of the two receiving a proportionate share of (b), respectively a*b and (1-a)*b. Hence a*b is the 
overlap (intersection), while the underlay (union) is [a+(1-a)*b]=[a+b-a*b]. 

In the Bounded form, appropriate for dissimilar sets, the two sets are placed at the opposite ends of X, 
thus further reducing their intersection to (a+b-1) (which is non-zero only if a+b>1); and increasing 
their union to (a+b), or to 1 if a+b>1.  

We believe that such a graphical representation which is our original proposal (or: which was originally 
proposed by Betti and Verma) greatly helps in clarifying the meaning of different forms of the fuzzy set 
operations.  
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Figure 2. Graphical representation of the fuzzy set operations 
Forms of fuzzy set intersection

b

(1-a).b

a.b

(S) standard (A) algebraic (B1) bounded (B2) bounded
(assuming a>b) a+b>1 a+b<1

=b =a*b =a+b-1 =0

Corresponding forms of fuzzy set union

b

(1-a).b

a.b

(S) standard (A) algebraic (B1) bounded (B2) bounded
(assuming a>b) a+b>1 a+b<1

=a =a+b-a.b =1 =a+b

a

a a a b

a

base

a a a

base

b

b b

base

base

b b

ba ∪

ba ∩

 
 

3. The Composite fuzzy set operator 
In order to clarify the application of general principles of fuzzy set operations to the specific task of 
longitudinal analysis of poverty, it is instructive to describe in some details the case involving only two 
time periods. The concept of the Composite fuzzy set operator was first developed in Betti and Verma 
(2004). 

Let a and b be the ‘cross-sectional’ m.f.'s of the sets “poor” at times 1 and 2, respectively, for a given 
individual unit. We can also define their complements, the m.f.'s of the corresponding “non-poor” sets, 
as  a1a −= , b1b −= . In longitudinal analysis, four intersection sets can be formed from these, with 
their joint membership functions under different set operations defined in Table 2. 
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Table 2. Application of different types of fuzzy intersections over two times periods 

Betti-Verma Composite operator Fuzzy 
intersection 

Standard 
operator 

Algebraic 
operator 

Bounded 
operator Type Intersection Union  

ba ∩  min(a,b) a*b max(0,a+b-1) Standard min(a,b) max(a,b) 

ba ∩  min(1-a,1-b)= 

1-max(a,b) 

(1-a)*(1-b) max(0,1-a-b) Standard 1- max(a,b) 1- min(a,b) 

ba ∩  min(a,1-b) a*(1-b) max(0,a-b) Bounded max(0,a-b) 1-max(0,b-a) 

ba ∩  min(1-a,b) (1-a)*b max(0,b-a) Bounded max(0,b-a) 1-max(0,a-b) 

Note: The same rules as above in fact also apply unchanged for the construction of the intersection of two 
different dimensions of deprivation at a given time. 

 

Table 3. Marginal constraints for fuzzy intersection over two time periods 

Time 2 
Time 1 

Poor (1) Non-poor (0) Total 

Poor (1) ba ∩  ba ∩  a  

Non-poor (0) ba ∩  ba ∩  a  

Total b  b  1 

 

The results of these operations need to satisfy certain marginal constraints. These arise from the 
following considerations. In conventional analysis, to which the fuzzy analysis must reduce with 
dichotomous m.f.'s, the four intersection (or longitudinal) sets shown in Table 3 correspond to four 
exhaustive and non-overlapping classes, as do the original cross-sectional sets ( ) ( )b,banda,a . 
Obviously, they must satisfy the marginal constraints shown in Table 3. This is true both at the micro-
level (where, in the conventional analysis, only one of the internal cells in the table equals 1 and all 
other cells equal 0), and hence also at the aggregate level where quantities averaged in cells of the table 
represent various proportions or rates. These marginal constraints apply with fuzzy sets as well, since it 
is precisely these proportions or rates which we wish to estimate and compare with conventional 
analysis. 

Cells of Table 3 therefore constitute fuzzy partitions of the universal set with m.f.=1 for all units in the 
population. 

As noted, the Standard operators provide the largest intersection and the smallest union among all the 
permitted forms. It is this factor which makes it inappropriate to use the Standard set operations uniformly throughout 
in our application to poverty analysis. If the Standard operation were applied to all the four intersections, 
( ) ( ) ( ) ( )b,a,b,a,b,a,b,a  in Table 3, the sum of membership functions of an individual can be verified 
to equal ( )( )δ−+ ,0maxs.21 1 , where s1=min(a,b),  and δ=(a+b-1), i.e., to equal (1+2.s1) for δ≤0, and 
1+2.(1-s2) for δ>03, where s2=max(a,b). 

                                                 
3 For details, see Betti and Verma (2004). 



 9

Hence, because of the 'expansive' nature of the standard intersection, the sum of the resulting 
membership functions for the four subsets exceeds 1. However, this is in conflict with substantive 
requirements of our situation, as noted above in the comparison with the conventional approach. 

Similarly, it can be verified that uniform application of the Bounded intersection operation would give a 
sum of the membership functions which generally falls short of 1. 

Now it can be easily seen that the Algebraic form "A", applied to all the four intersections, is the only 
one which meets this condition. But despite this numerical consistency, we do not regards the Algebraic 
form to give results which, for our particular application, would be generally acceptable on intuitive or 
substantive grounds. In fact, if we take the liberty of viewing the fuzzy propensities as probabilities, 
then the algebraic product rule i(a,b) joint probability (a,b)=a*b implies zero correlation between the 
two forms of deprivation, which is clearly at variance with the high positive correlation we expect in the 
real situation for similar states. The rule therefore seems to provide an unrealistically low estimate for the 
resulting membership function for the intersection of two similar states. The Standard rule, giving 
higher overlaps (intersections) are more realistic for (a,b) representing similar states. 

By contrast, in relation to dissimilar states ( )b,a  and ( )b,a  (lack of an overlap between deprivations in 
two dimensions), the Algebraic rule tend to give unrealistically high estimates for the resulting 
membership function for the intersection, and hence this is true also the Standard rule. The reasoning 
similar to the above applies: in real situations, we expect large negative correlations (hence reduced 
intersections) between dissimilar states in the two dimensions of deprivation. In fact, it can be easily seen 
by considering some particular numerical values for ( )b,a  or ( )b,a  that Bounded rule, for instance, 
gives more realistic results for dissimilar states. 

Rule 1: The Composite fuzzy set operation 

Given the preceding considerations, the specification of the fuzzy intersection i(a,b) that appears to be 
the most reasonable for our particular application and that satisfies the above mentioned marginal 
constraints is of a ‘composite’ type as follows: 

o For sets representing similar states - such as the presence (or absence) of poverty at both times - the 
Standard operation (which provides a larger intersection than the Algebraic operation) is used. 

o For sets representing dissimilar states - such as the presence of poverty at one time but its absence at 
the other time - we use the Bounded operation (which provides a smaller intersection than the 
Algebraic operation).  

By applying this Composite intersection, the elements of Table 3 are specified as shown in the three 
right-hand columns of Table 2. Figure 3 illustrates the Composite operation graphically. 
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Figure 3. The Composite fuzzy set operations 

(assuming a>b)

standard standard bounded bounded

base

a

b

intersection of sets of the same type intersection of sets of opposite types
e.g. (poor, non-deprived); (non-poor, deprived)

base

e.g. (poor, deprived); (non-poor, non-deprived)

a

b

ba∩

a

b

ba ∩

b
ba ∩

a

∅=∩baba ∩ ba ∩ ba ∩

 
Note that the satisfaction of the marginal controls implies that the intersection operators are 
distributive: ( ) abbababa =+=+ ∩∩∩ . This is obviously true of the Algebraic operators. It is also 
true of the Betti-Verma Composite operators since ( ) ( ) aba,0maxb,aminbaba =−+=+ ∩∩ . 

Any other type of operators, including the Standard and Bounded ones, are not distributive in this 
sense. 

Table 4. Longitudinal measures of interest over two time periods for individual i 

 Measure  Membership function Description  

1 Never in poverty ( )iiii b,amax1ba −=∩  Poverty at neither of the two years 

2 Persistent in poverty ( )iiii b,aminba =∩  Poverty at both of the years 

3 Exiting from poverty ( )iiii ba,0maxba −=∩  Poverty at time 1, but non-poverty at time 2

4 Entering into poverty ( )iiii ab,0maxba −=∩  Non-poverty at time 1, but poverty at time 2

5 Ever in poverty ( )iiii b,amaxba =∪  Poverty at at least one of the two years 

 

Note that the propensity to be ever in poverty (i.e. in at least one of the two years) equals max(a, b), 
which can be viewed as any of the three entirely equivalent forms: 

o As the complement of cell “0-0” (non-poor/non-poor) in Table 4, or 

o As the sum of the membership functions in the other three cells, or 

o As the union of (ai, bi). 

For measures 1, 2 and 5 in Table 4, we are normally interested in population rates. For instance, with wi 
as individual sample weights: 

Persistent poverty rate =  ( ) ( ) iiiiiiiiiiii wb,amin.wwba.w ΣΣ=ΣΣ ∩ . 
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For measures 3 and 4, the appropriate denominator is the “at risk” population: 

Exit rate = ( ) ( ) iiiiiiiiiiiiii a.wba,0max.wa.wba.w Σ−Σ=ΣΣ ∩ . 
Entry rate = ( ) ( ) ( )iiiiiiiiiiiiii a1.wab,0max.wa.wba.w −Σ−Σ=ΣΣ ∩ . 

Briefly, the analysis variables and the cross-sectional fuzzy membership functions have been 
constructed as follows. 

Conventional poverty measures 

For the computation presented, each unit (person) is classified as poor or non-poor in relation to a 
poverty line defined as 60% of the national median. (These computations are performed separately for 
each wave or each pair of consecutive waves of the survey, and then the results are averaged over 
those.) 

Fuzzy poverty measures 

For each survey wave, the membership function ( iμ ) for the set “poor” has been specified for each 
individual i (indexed according to increasing size of equivalised income yi) following the “Integrated 
Fuzzy and Relative” (IFR) approach developed in Betti, Cheli, Lemmi and Verma (2005) which 
combines the two approaches of Cheli and Lemmi (1995) and Betti and Verma (1999)4. The details of 
this approach will not be described in this paper, except to note that the fuzzy membership function 
for (or the propensity to) income poverty is formulated so as to take into account both the share of 
individuals less poor than the person concerned and the share of the total equivalised income received 
by all individuals less poor than the person concerned: 

 ( ) ( )[ ]
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

>

>

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

>

>
=−−=μ

∑

∑

∑

∑

γ
γγγ

γ
γγγ

−α

γ
γγ

γ
γγ

−α

1

i

1

1

i

i
1

ii yy|yw

yy|yw
.

yy|w

yy|w
FL1.F1 , (3)  

where Fi is the distribution function of the income distribution, L(Fi) is the corresponding Lorenz 
ordinate, and parameter α  is chosen so that the mean of the iμ  equals to conventional head count 
ratio H. 

The measure as defined above is expressible in terms of the generalised Gini measures (the standard 
Gini coefficient corresponds to αG  with α=1), which weights the distance (F-L(F)) between the line of 
perfect equality and the Lorenz curve by a function of the individual's position in the income 
distribution, giving more weight to its poorer end. It is defined (in the continuous case) as: 

 ( ) ( )( ) ( )( )[ ]dF.FLF.F1.1.G
1

0

1
∫ −−+αα= −α

α , giving 

 
( ) H

1.
G

=
+αα

+α
=μ α . 

Increasing the value of exponent α  implies giving more weight to the poorer end of the income 
distribution. In the illustrations here, we have determined this parameter empirically by matching μ  to 
H averaged over the 8 ECHP waves for Italy as a whole. This gives α =4.81, which happens to be   
close to 1/H  with H=0.19. 

                                                 
4 Although we are convinced that an adequate analysis of poverty should be carried out according to a multidimensional 
approach that include a variety of living conditions indicators of the non-monetary type, for the sake of this research it 
will be enough to confine our attention to the analysis of income poverty alone. 
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Applications 

In an annex to this paper we provide numerical illustration of the various types of longitudinal 
measures which can be constructed using the above formulations. The annex tables shows some 
measures of substantive interest for Italy and her Micro-regions. We compare fuzzy measures against 
the corresponding conventional measures. 

The data used for all illustrations are from Italian European Community Household Panel Survey 1994-
2001. In relation to this section, we consider pairs of consecutive waves. Often, for economy in 
presentation results averaged over 7 such pairs (formed from 8 annual waves of the survey) only will be 
shown. 

4 Persistence of poverty 
Analysis of the persistence of poverty over time requires the specification of j.m.f.'s of the type 

 T21T ........I μμμ= ∩∩   and 
 T21T ........U μμμ= ∪∪  , 

where the first expression is the intersection of a series of T cross-sectional m.f.'s for any individual 
unit, and the second expression is their union. 

Rule 2 

Since all sets T1 .....,, μμ  are of the same type (all being propensities to “poverty” rather than to 
“non-poverty”), the Standard operations apply: 

 ( )Tt21T .....,......,,,minI μμμμ=  (4) 
 ( )Tt21T .....,......,,,maxU μμμμ= . (5) 

Clearly these expressions are commutative and associative. 

IT represents the individual’s propensity to be poor at all T periods. 

UT is the propensity to be poor at at least one of the T periods; the propensity to be non-poor over all T 
periods is its complement TT U1U −= . The same result is obtained by considering intersection of 
non-poor sets: 

( ) ( ) TT21Tt21T U1,.......,,max1.....,......,,,minI −=μμμ−=μμμμ= . 

The propensity of experiencing poverty over any specific sequence of t out of T years is given by the 
minimum value of cross-sectional propensities μ over those particular years, representing the 
intersection between the t similar states. 

In line with the principle of maximising the intersection when the Standard operation is used, we take 
the maximum among the values of this intersection over all possible (T!/t!(T-t)!) sequences of t out of 
T years as the m.f. for the set “poor for at least t out of T years”.5 

Figure 4 illustrates these concepts. The same results can be expressed more easily by considering the 
ordered sequence 

 [ ] [ ] [ ] [ ]( )Tt21Tt21 ......)......,........,,( μ≥μ≥≥μ≥μ⇒μμμμ . 

The figure on the right shows the same information arranged according to [t]. Clearly: 

                                                 
5 A more precise proof is given in Section 6 based on ‘Rule 5’ defined there 
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Any time poverty: 

  membership function of the set "poor for at least one year" = μ[1] . 

Continuous poverty:  

membership function of the set "poor for all the T years" = μ[T]. 

These are particular cases of the propensity to be poor for at least t out of T years  = μ[t], the tth largest 
value. 

Persistent poverty.  

We may define persistent poverty as the propensity to be poor over at least a majority of the T years, 
i.e. over at least t years, with 

 t=int(T/2)+1, the smallest integer strictly larger than (T/2). 

For instance, for a T= 4 or 5 year period, ‘persistent’ would refer to poverty for at least 3 years; for T 
=6 or 7, it would refer to poverty for at least 4 years, etc. The required propensity to persistent poverty 
is the [int(T/2)+1]th  largest value in the sequence (μ1,……μT). 

 

Figure 4. Time spent in poverty according to its duration 

 UT  1

 IT  

1 2 3 4 5

[t]= [3] [5] [1] [2] [4] [t]= [1] [2] [3] [4] [5]
t= 1 2 3 4 5

cross-sectional propensities to poverty t propensity to be poor at least t years

t propensity to be poor for exactly t years

3

4

μ[1]

μ[5]

0

2

 

The propensity to be poor for exactly t years turns out to be: 

Tto0t,]1t[]t[ =μ−μ + , with μ[0] defined as 1 and μ[T+1] as 0.  

These propensities are displayed as lightly shaded areas in Figure 4. 
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The above are all generalisation of the corresponding concepts in the conventional analysis, and are 
reduced to the latter with dichotomous {0,1} membership functions. 

With the conventional poor/non-poor dichotomy, any individual spends some specified numbers of 
years between 0 and T in the state of poverty during the interval T. With poverty treated as a matter of 
degree, any particular individual is seen as contributing to the whole distribution, from 0 to T, of the 
number of years spent in poverty. 

Over an interval of T years the proportion of the time spent in poverty by the i-th individual is: 

 ( ) TTtt
T

t
t

T

t
]t[]t[i ∑∑

==
+ =−⋅=

11
1 μμμ ,   However this concept does not convince me… 

i.e. simply the mean over the T periods of an individual’s cross-sectional propensities to poverty, and 
the distribution of the population according to the number of years (from 0 to T) spent in poverty is 
estimated as  

 ( )∑ ∑+μ−μ= i i ii],1t[i],t[it wwp  

where i refers to an individual unit and wi to its sample weight. 

Marginal constraints 

It is desirable that operational rule (equation 4) defining the intersection of the sets (μ1,……μT) is 
consistent with marginal constraints in the following sense.  

The above sequence is just one of all possible sequences of length T, in which any element t can take 
one of two values, tμ  and its complement )1( tt μ−=μ . There are 2T such sequences. In the 
conventional analysis, these represent 2T exhaustive and non-overlapping classes, with each individual 
unit belonging to one and only one of these, i.e. having some particular pattern (k) of poverty and non-
poverty over the T years. Population totals or proportions over any grouping of these patterns are 
clearly additive. The same consistency must also hold under fuzzy conceptualisation. 

(1) Overall constraint 

The most important marginal constraint is that, with fuzzy conceptualisation as well, the individual’s 
propensities over all possible patterns k sum up to 1: 

 1I
T2

1k

)k(
T =∑

=

, (6) 

where index k refers to a particular pattern. In other words, each joint membership functions ( )( )k
TI  

refers to one of the 2T fuzzy partitions of the universal set. 

(2) Row marginals 

Next in importance are marginal constraints of the form 

 Tto1t,III 1tt1tt ==μ+ −− ∩   (7) 

where It is the intersection of the first t term in the time sequence (μ1,… μt,…μT), i.e.  

 ( ) ( )t1t21t .......min........I μμ=μμμ= ∩∩ . (8) 

Note that for t=2, this reduces to the marginal constraint for 2 periods (Table 3), 



 15

 12121 μ=μμ+μμ ∩∩ , 

Observing that, by Rule 2,  ( )t1tt1tt ,IminII μ=μ= −− ∩ , 

equation 7 requires that the second term on its left is defined using the Bounded intersection (in exactly 
the same way as for two periods described earlier) as follows: 

 ( )[ ] [ ]t1tt1t21t1t I,0max,......,,min,0maxI μ−=μ−μμμ=μ −−− ∩ . (9) 

We may also write an expression similar to equation 7 for the complementing sets: 

 1tt1tt III −− =μ+ ∩ ,  

where tI is the intersection of first t terms in the sequence ( )T21 ,........,, μμμ . 

 (3) All other marginals 

The marginal constraint described so far correspond to control totals for rows in a table like Table 3. 

There are also additional constraints to be considered, such as of the type: 

 ( ) ( ) ( )31321321 μμ=μμμ+μμμ ∩∩∩∩∩ , 

in which aggregation is taken over complementing elements of a pair which occurs before the last 
element in the time sequence (over pair 22 , μμ  in the above example). Such constraints correspond, for 
instance, to column totals in Table 3. 

Constraints of this type may perhaps be considered less important in practice than constraints of the 
type (2) and (1) described above. At the same time they are more difficult to define. We will return to 
these additional constraints in the next section; these are not covered (though also not necessarily 
violated) by Rule 3 below defining j.m.f. for a sequence of a particular type, namely 

),........,,( T1T21 μμμμ −  or its complementing type ),........,,( T1T21 μμμμ − . 

Rule 3 

Equation 9 means that the intersection of a sequence of t sets, given that the first (t-1) sets are of the 
same type (eg, each term representing the individual’s propensity to poverty) and the last term is of the 
opposite type (representing propensity to non-poverty) is to be determined as follows. 

(i) First the intersection of the first (t-1) terms of the same type is taken using the Standard 
operation. 

(ii) And then the intersection of the result of (i) is taken with the last set t of the opposite type, using 
the Bounded operation. 

Consider all possible intersections which can be formed from a general sequence over years 1 to t. 
There are 2t such operations. 

Since at each year we have two complementary sets, these can be seen as 2t-1 pairs of sets: a pair being 
formed by the two longitudinal sets in which the first (t-1) elements are identical, and the last elements 
are complements of each other. Let ( )k

tI and ( )k
tI′  be the complementing sets in pair k, with k=1 to 2t-1. 

Equation 9 ensures that the system satisfies 2t-1 marginal constraints of the form: 
( ) ( ) ( )k

t
k

t
k

1t III ′+=− . 

This rule is a generalisation of the Composite rule defining the intersection of pairs of cross-sectional 
sets (Rule 1, Section 3) and of Rule 2 in this section defining the intersection of a sequence (μ1, 
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μ2,……) of sets of the same type. Note that unlike the earlier rules, this generalisation is generally  
NOT commutative or associative.6 

Hence condition in equation 7 may be interpreted as implying marginal constraints as follows. Given 
the joint membership function It-1 of similar states up to time (t-1), the j.m.f.'s of the two 
complementing sets formed from it in the following period are its fuzzy partitions. 

Repeating this procedure from t=T back to t=1 implies that the overall constraint (equation 6) is 
automatically satisfied by the procedure. 

Applications 

Using a balanced panel over 8 waves of the Italian ECHP, the above procedures have been applied to 
estimate the following measures.7 

1. Rate of continuous poverty, i.e. poverty over all of the 8 years covered in the panel. 

2. Rate of persistent poverty, i.e. poverty over at least 5 of the 8 years. 

3. Rate of any-time poverty, i.e. experience of poverty over 1 or more of the 8 years. 

4. Mean proportion of the time spent in poverty. 

5. Distribution of the population according the number of years, 0 to 8, spent in poverty. 

Numerical results, also comparing these measures using the conventional (poor/non-poor) approach 
with those using the fuzzy approach, are presented and discussed in an annex to this paper. 

 

5 Joint membership functions covering 3 time-periods  

The 8 intersection (or longitudinal) sets for 3 time-periods 

In order to generalise the above rules further, it is instructive to consider the longitudinal situation 
involving 3 time-periods in some details. 

The 23 = 8 intersections are shown in Table 5. 

Again we use simplified notation, with (a,b,c) as the cross-sectional propensities to poverty at year 1, 2 
and 3, respectively, and ( )c,b,a  as their complements. 

The table shows only a subset of marginal constraints, each concerning a pair of complementing sets 
involving candc , such as the pair  ( )cba,cba . 

The marginals are simply the 4 intersections determined by applying Rule 1 (the Composite operator) 
to the first 2 time periods. As already seen in Section 3, these intersections themselves satisfied all the 5 
marginal constraints involved in a 2 time period situation shown earlier (Table 3). Note specifically that 
they sum to 1 for any individual as required by the overall constraint. 

                                                 
6 For instance, expressions like ( ) ( ) ( ) ( )312321 or μμμμμμ ∩∩∩∩  do not necessary equal to ( ) 321 μμμ ∩∩  as 
defined above. In fact, the intersection between the two components in parenthesis in either of the first two expressions 
has not been defined so far in this paper, it involves intersection of components which are neither entirely similar nor 
entirely dissimilar to each other. 
7 A balanced panel means that only individuals present in all the 8 waves in the sample are retained in the analysis. 
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Table 5. Membership functions for the 8 intersections sets for 3 time-periods 

c c  marginal 

b (1)  

min(a, b, c)  

(2)  

max(0, min(a,b)-c) 

(1)+(2)= 

min(a, b) 
a 

 

b  
(3)  

max[0, min(a, c)-b] 

(4) 

max(0, a-max(b,c)) 

(3)+(4)= 

max(0, a-b) 

b 
(5) 

max(0, min(b, c)-a) 

(6) 

max[0, b-max(a, c)] 

(5)+(6)= 

max(0, b-a) 
a  

b  
(7) 

max(0, c-max(a, b)) 

(8) 

1-max(a, b, c) 

(7)+(8)= 

1-max(a, b) 

 

Cells (1) and (8) are determined by application of Rule 2. 

Cells (2) and (7) are determined by application of Rule 3. In accordance with that rule, the row marginal 
constraint for each pair ((1)+(2), and (7)+(8)) is automatically satisfied. 

For instance, min(a, b, c) + max(0, min(a, b) – c) ≡ min(a, b). 

We may also interpret the above as follows. Given the marginal constraint (1)+(2) (determined from 
Rule 1), and the value in cell (1) (determined by the Rule 2), it is required that their difference, (2), is 
determined as by Rule 3. The same applies to cell (7). 

Rule 4 

Cells (4) and (5) involve sequences of the same type: ( ) ( )cbaorcba . 

We propose to construct the j.m.f. over such sequences in the following form: 

 ( ) ( ) ( )[ ]c,bmaxa,0maxcbacba −== ∩∩∩∩  
 ( ) ( ) ( )[ ]ac,bmin,0maxcbacba −== ∩∩∩∩ . 

That is, we first take the intersection of the two adjoining similar states (eg, cb∩ ) using the Standard 
operator, and then take the intersection of the result with the state ( )a  of a different type using the 
Bounded operator. 

It is useful to formulate this rule in somewhat broader terms so that it is a generalisation of Rule 3 
involving any number of time periods. 

Consider a sequence of cross-sectional propensities of the following form: 

 ( )T2t1tt21 .......,,,,......,, μμμμμμ ++ , 

i.e. the first t terms are all of the same type, and the remaining (T-t) are all of the opposite type. The 
intersection of these T sets is interpreted as the propensity (the j.m.f.) of being in poverty continuously 
for the first t years, and then of continuously being non-poor for the remaining (T-t) years. We propose 
to construct this j.m.f. as follows. 
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Figure 5. Application of Rule 4 for intersections involving 3 time periods 

a b c a c

b c a

b

 

          ( )c,bmax1cb −=∩    ( )c,bmincb =∩  

          ( )cba ∩∩      ( )cba ∩∩  

 ( )[ ]c,bmaxa,0max −=    ( )[ ] 0ac,bmin,0max =−=  

 

 ( ) ( )T2t1tt21

T2t1tt21

............
............f

μμμμμμ=
μμμμμμ=

++

++

∩∩∩∩∩
∩∩∩∩∩

 

That is:  

(i) We first construct the intersection for each of the 2 parts (each made up of consecutive similar 
states) using the Standard operators. 

(ii) And then we construct the intersection of the two resulting sets of different types by using the 
Bounded operator. 

This gives the result: 

 f=max[0, min(μ1, μ2, ….. , μt) – max(μt+1, μt+2, …… , μT)]. 

The application of this rule gives cells (4) and (5) of Table 5. This rule is illustrated graphically in 
Figure 5. We consider cells (3) and (6) in the next section. 

6 Generalisation to the intersection of any sequence of fuzzy membership functions 
Cells (3) and (6) in Table 4 have been obtained from cells (4) and (5) as defined above, and the marginal 
constraint for the rows concerned. 

It can be seen that in order to ensure consistency, these results require the following grouping for the 
construction of the required intersections in cells (3) and (6): 

 ( ) bcacba ∩∩∩∩ = ; and similarly ( ) bcacba ∩∩∩∩ = . 

This procedure can be seen as involving a rearrangement of the elements in the sequence into two 
groups, formed by putting together all elements of the same type, irrespective of their actual temporal 
location. 
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Figure 6 shows the operations involved graphically. With correct placement of the m.f.'s  of different 
types at opposite ends of the unit rectangle, it can be seen that the order of elements is immaterial in 
determining their intersection. Intersection cba ∩∩ , for example, is simply the area when all the three 
elements – a, b  and c – overlap. Such consistent representation gives a strong intuitive justification for 
the rule proposed. 

On the basis of the above, we formulate the following rule in somewhat broader terms. Consider any 
sequence of cross-sectional propensities. It can always be expressed in the form: 

 ( ) ( )....,,........,...,.
21 tt μμ  

where t1 indicates T1 elements of the same type in one group, and t2 indicates T2 elements of the 
opposite type in the other group; clearly T1 + T2 = T. 

Rule 5 

(i) Sort the elements into 2 groups by type, for instance all T1 elements of one type followed by all 
T2 elements of the other type. 

(ii) Construct the intersection for each group involving elements of the same type using the 
Standard operator. 

(iii) Finally, construct the intersection of the two results of the above operation using the Bounded 
operator. 

Rules 5 subsumes all previously observed rules, which are merely special cases of it. 

Since the temporal order of cross-sectional propensities is immaterial in the construction of their 
intersection using this rule, those propensities are entirely inter-changeable in the application of the 
rule. It follows that Rule 5 satisfies all the required marginal constraints, and not only the ones along 
rows of a table such as Table 5.  

Also with the results being independent of the temporal order, we may view the application of this rule 
as being “without memory”. 8 More precisely perhaps, we may designate it as a procedure ”without 
chronology”: the outcome depends on the whole ‘history’ (i.e., the specified type of cross-sectional sets 
in the time sequence t=1 to T, and the associated membership functions); but it does not depend on 
the actual chronology, the temporal sequence, of those cross-sections. 

An illustration: Persistent poverty 

The following is a more transparent proof of the result obtained in Section 4 above.  

The propensity to be poor in exactly t out of T years is the sum of j.m.f.'s over all sequences with t 
cross-sectional sets of the type "poor" and the remaining (T-t) of the type "non-poor". For any 
particular sequence of this type, rearrange the sets such that the first t terms are of the  type "poor". 
With Rule 5, the j.m.f. for the particular sequence is: 
 f=max[0, min(μ1, μ2, ….. , μt) – max(μt+1, μt+2, …… , μT)], 
which is non-zero only for one sequence in which the first group contains the t largest m.f.'s. With [t] 
denoting the ordered sequence of decreasing μ values, the required j.m.f. becomes: 
 Poor (exactly t out of T years):   μ[t] - μ[t+1], 
and by simple addition: 
 Poor (at least t out of T years)    μ[t],  the tth largest value. 

                                                 
8 In Betti, Cheli and Cambini (2004), we believe that a particular case of this rule was interpreted in error as being 
“with first-order memory”. 
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Figure 6. Application of Rule 5 for intersection involving 3 time periods. 

a c a c

original time sequence rearranged to group together 
elements of the same type

b b

 

      ( ) ( )[ ]bc,amin,0maxbcacba −== ∩∩∩∩  (Note. In this illustration, cca =∩ .) 

 

Rates of exit and re-entry  

Given the state of poverty at time 1, and also at a later time (t-1), what is the proportion exiting from 
poverty at time t=2, 3, …?  

Given the state of poverty at time 1, but of non-poverty at a later time (t-1), what is the proportion 
which has re-entered poverty at time t=3, 4, ….? 

In conventional analysis, the above rates are computed simply from the count of persons in various 
states: 

For exit rate, the numerator is the count of persons poor at times 1 and (t-1), but non-poor at time t; 
the denominator is the count of all persons who are poor at times 1 and t-1 (and are present in the 
sample at time t). 

For re-entry rate, the numerator is the count of persons poor at time 1, non-poor at time (t-1), but poor 
again at time t. The denominator is the count of persons who are poor at time 1 and non-poor at 
time (t-1) (and are present in the sample at time t). 

The construction of these measures using fuzzy m.f.'s is also straightforward. With μt as a person’s 
propensity to poverty at time t, the person’s contribution of these rates is as follows. 

Exit rate: 
Numerator      ( ) ( )[ ]t1t1t1t1 ,min,0max μ−μμ=μμμ −− ∩∩  
Denominator  ( ) ( )1t11t1 ,min −− μμ=μμ ∩  
Re-entry rate: 
Numerator      ( ) ( )[ ]1tt11tt1t1t1 ,min,0max −−− μ−μμ=μμμ=μμμ ∩∩∩∩  
Denominator  [ ]1t11t1 ,0max −− μ−μ=μμ ∩  
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Figure 7. Exit and re-entry properties of an individual 

μ1 μ1 μ1

1 t-1 t 1 t-1 t 1 t t-1

RE-ENTRY
(re-arranged)

EXIT RE-ENTRY
(original order)

tμ

1t−μ

1t−μ

tμ tμ

1t−μ

 

   1t1 −μμ ∩           t1 μμ ∩  

   ( ) t1t1 μμμ − ∩∩     t1t1 μμμ − ∩∩     ( ) 1tt1 −μμμ ∩∩  

 

Figure 7 illustrates the procedure for constructing the required intersections, given a person’s 
propensities to poverty at time 1, (t-1) and t. 

Note that the result is identical in the two versions of the graphical representation of re-entry 
propensities. However, rearranging, the time periods as in the second version is illuminating and 
directly gives the required analytical expressions. 

Gross exit rate over a period 2 to T years has been defined as the sum of exit rates experienced by 
population poor at the starting point and also at the immediately preceding time, even though some of 
these exits may have been preceded by other exits and re-entries at earlier periods, 

Similarly, gross re-entry rate is the sum of yearly re-entries from year 3 to Y. 

The difference between the two gross rates gives the net exit rate, aggregated over the period. It 
approximates net change in the cross-sectional rates between the beginning and the end periods. 

Applications 

As before we have constructed these measures for Italy and her Macro-regions using Italian ECHP 
survey. 

Numerical results, also comparing these measures using the conventional (poor/non-poor) approach 
with those using the fuzzy approach, are presented and discussed in an annex to this paper. 

Noteworthy from a methodological point is the difference in the performance of the conventional and 
the fuzzy approaches, especially concerning the estimated incidence of continuous poverty. It appears 
that movements in and out of poverty tend to be somewhat over-estimated (and hence the persistent or 
continuous poverty rates under-estimated) with the conventional approach, presumably because it gives 
too much weight even to small movements across the poverty line. 

7. Concluding remarks 
When poverty is viewed as a matter of degree in contrast to the conventional poor/non-poor 
dichotomy, that is, as a fuzzy state, two additional aspects are introduced into the analysis. 
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(i) The choice of membership functions i.e. quantitative specification of individuals' or households' 
degrees of poverty and deprivation.  

(ii) And the choice of rules for the manipulation of the resulting fuzzy sets, rules defining their 
complements, intersections, union and averaging. Specifically, for longitudinal analysis of poverty using 
the fuzzy set approach, we need joint membership functions covering more than one time period, which 
have to be constructed on the basis of the series of cross-sectional membership functions over those time 
periods.  

We have aimed to address in this paper the second of the above questions. 

We have proposed a general rule for the construction of fuzzy set intersections, that is for the 
construction of a longitudinal poverty measures from a sequence of cross-sectional measures under 
fuzzy conceptualisation. This general rule is meant to be applicable to any sequence of “poor” and 
“non-poor” set, and it satisfies all the marginal constraints. On the basis of the results obtained, various 
fuzzy poverty measures over time can be constructed as consistent generalisations of the corresponding 
conventional (dichotomous) measures. 

The proposed rule has been developed in a logical, step-by-step, manner, satisfying the required 
marginal constraints. This is important since there are reasons to believe that, hitherto, the rules of 
fuzzy set operations in the context of multi-dimensional and longitudinal poverty analysis have not 
been well or widely understood. 

Figure 8 illustrates the proposed rules for the construction of fuzzy set intersections. 

We begin with two most important and basic rules. The first, termed here ‘Rule 1’, defines the 
intersection of a pair of fuzzy sets taking into account whether the two sets in the pair are of the same 
type (e.g., poor/poor), or of different types (e.g., poor/non-poor). This is the Composite set operator 
which replaces the Standard operator which has been used mostly (where? In other contexts?). 

‘Rule 2’ deals with a sequence of sets of the same type (e.g., a series of cross-sectional propensities to 
poverty, or to non-poverty). It provides the basis for the study of persistence of poverty over time 
using the fuzzy conceptualisation. 

These two rules imply as matter of logical consistency what we have called ‘Rule 3’; the latter is also a 
generalisation of and subsumes the preceding rules. All these rules can be viewed as applied 
successively, term by term starting from the first, in the original time sequence of the constituent sets9: 

 ( ){ }[ ] T1T321T1T321 ............. μμμμμ=μμμμμ −− ∩∩∩∩∩∩∩∩∩∩ . (10) 

‘Rule 4’ is a generalisation of Rule 3 (and of course also of the preceding rules). However, this may not 
be the only possible generalisation. It involves dealing separately with two sequences, each of a uniform 
type but different from the other, and putting them together only at the end. Unlike equation 10, 
however, this rule cannot be viewed as applied successively in the original time sequence of the 
constituent sets. 

The final rule (‘Rule 5’) is a generalisation of all of the above, and in this sense the only rule needed. In 
fact, it is implied by them as matter of logical consistency.  

 

                                                 
9 All intersections up to μT-1 for sets of the same type are constructed using the Standard operator, and the intersection of 
the result with the last term of the opposite type using the Bounded operator. 
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Figure 8. Fuzzy set intersection: Rules for the construction of a longitudinal measure (joint 
membership function) from a sequence of cross-sectional measures (membership functions) 

  … 
1t

μ  …  … 
2tμ  …  Sets of opposite types, at any 

time periods t1 and t2 respectively

           

    1μ   2μ     Rule 1 (the Composite operator) 

           

1μ  2μ  … 1T−μ  Tμ       Rule 2 (sequence of sets of the 
same type) 

           

 1μ  2μ  … 1T−μ   Tμ     Rule 3 (sequence, followed by a 
cell of the opposite type) 

           

 1μ  2μ  … 1t−μ   tμ  1t+μ … Tμ  
Rule 4 (sequence, followed by 
sequence of the opposite type) 

           

 1μ  2μ  3μ  4μ   … 2T−μ 1T−μ  Tμ  Sequence of any types of sets 

          ⇓ 

1μ  4μ  ....
1t

μ  2T−μ  1T−μ   2μ  3μ  ....
2tμ Tμ  

Rule 5 (sets rearranged into two 
groups of opposite types) 

 

We have discussed elsewhere approaches and procedures for constructing measures (propensities) of 
income poverty and of combining them with similarly constructed measures of non-monetary 
deprivation using the fuzzy set approach (Betti, Cheli, Lemmi and Verma, 2005). In fact, the 
procedures for combining fuzzy measures in multiple dimensions at a given time are identical, in formal 
terms, to the procedures described here for combining fuzzy cross-sectional measures over multiple 
time periods, as noted in Section 2. 

We plan to present, in a separate paper, numerical results of these procedures applies to measures of 
multidimensional poverty and deprivation, and to combinations of such measures. 

References 
Betti G., Cheli B., Cambini R. (2004), A statistical model for the dynamics between two fuzzy states: theory and 

an application to poverty analysis, Metron, 62, pp. 391-411. 

Betti G., Cheli B., Lemmi A., Verma V. (2005), On the construction of fuzzy measures for the analysis of 
poverty and social exclusion, International Conference to Honour Two Eminent Social Scientists C GINI and 
MO LORENZ, University of Siena 23-26 May 2005. 

Betti G., Verma V. (1999) Measuring the degree of poverty in a dynamic and comparative context: a multi-
dimensional approach using fuzzy set theory, Proceedings, ICCS-VI, Vol. 11, pp. 289-301, Lahore, Pakistan.  



 24

Betti G., Verma V. (2004), A methodology for the study of multi-dimensional and longitudinal aspects of 
poverty and deprivation, Università di Siena, Dipartimento di Metodi Quantitativi, Working Paper 49. 

Cheli B. (1995), Totally Fuzzy and Relative Measures in Dynamics Context, Metron, 53 (3/4), pp. 83-205. 

Cheli B. and Lemmi A. (1995), A Totally Fuzzy and Relative Approach to the Multidimensional Analysis of 
Poverty, Economic Notes, 24, pp. 115-134. 

Klir G.J. and Yuan B. (1995), Fuzzy Sets and Fuzzy Logic. New Jersey: Prentice Hall. 

Verma V., Betti G. (2002) Longitudinal measures of income poverty and life-style deprivation, Università degli 
Studi di Padova, Dipartimento di Scienze di Statistiche, Working Paper 50. 

 

Annex: Summary of the procedure 
Let, for a series of cross-sections (1,…t,…T), each person’s propensity to be in poverty (i.e. the 
person’s membership function of the set “poor”) be given as: 
 ( ) [ ]1,0,.....,,......., Tt21 =μμμμ .  

We also define the complements of the above at each time, i.e. the membership function (m.f.) of the 
set “non-poor” as tt 1 μ−=μ . 

Let S(1,2,….,T) be a particular pattern of T "poor" and "non-poor" sets for which the j.m.f. is required. 
Let the elements (cross-sectional sets) of this pattern be grouped into two parts: 
 ( )....,t...,.S 11 = ,   ( )....,t,....S 22 = ,  
where t1 indicates any of T1 elements of the same type (say, "poor") in the first group, and t2 any of T2 
elements of the group of the opposite type ("non-poor"), with T1 + T2 = T. Let: 
 ( )....,...,.minm

1t1 μ= ;  ( )....,,....maxM
2t2 μ= .  

The required j.m.f. for the particular pattern of interest is given by: 
 ( )21 Mm,0maxJMF −= . (11) 
Different types of longitudinal measures correspond to, or can be simply derived from, different 
patterns S.  
For instance, for the propensity to be poor at time 1, non-poor at time 2, and then re-entering poverty 
at time 3, we have:  
 ( )3,1S1 = , ( )2S2 = ,  ( )( )231 ,min,0maxJMF μ−μμ= .  

For "continuously poor", S1=S, S2=0, giving: 
 ( )Tt21 ,.....,,.......,minJMF μμμμ= .  

We can also express (11) in terms of cross-sectional propensities to be "non-poor". Noting that 
( ) ( )μ−=μ max1min , an equivalent expression is: 

 ( )12 Mm,0maxJMF −= , (12) 

where ( ) 1t1 m1....,...,.maxM
1

−=μ= , ( ) 2t2 M1....,,....minm
2

−=μ= . 

For instance, for "never poor"(or "continuously non-poor"), all the elements of the particular sequence 
S of interest are of the type "non-poor", hence S2=S, S1=0, giving: 
 ( ) ( )Tt21Tt21 ,.....,,.......,max1,.....,,.......,minJMF μμμμ−=μμμμ= .  

The propensity to be "ever poor" is the complement of the above: 
 ( )Tt21 ,.....,,.......,maxJMF μμμμ= .  
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