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1 INTRODUCTION

1 Introduction

There have been several attempts, in the economic literature, to explain the statistical reg-

ularities of the wealth distribution first showed by Pareto (1897) (see Mandelbrot (1960)

and Champernowne and Cowell (1998), Cap. 11, and for a review Atkinson and Harrison

(1978), Cap. 3, and Davies and Shorrocks (1999)). However, as remarked in Davies and

Shorrocks (1999), “research has shifted away from a concern with the overall distributional

characteristics, focusing instead on the causes of individual differences in wealth holdings”.

One of the main reasons of the loss of interest in this field is the lack of a precise economic

interpretation of the stochastic processes proposed as explanation of the observed wealth

distribution. In the words of Davies and Shorrocks (1999) “[these] models lack of an explicit

behavioural foundation for the parameter values and are perhaps best viewed as reduced

forms”. This makes these stochastic models useless both to understand the causes of an

increase in income/wealth inequality and to provide some guide to public policy. Vaughan

(1978) and Laitner (1979) represent an attempt to overcome this critique.

The shape of the wealth distribution has also recently rose considerable interest in the

econophysics community.1 The focus has been mostly put on empirical analyses of exten-

sive data sets and on simple models of exchange which largely abstract from microeconomic

considerations (see Chatterjee et al. (2005)). Hence, in spite of their relative success in repro-

ducing empirical results, these papers do not face the fundamental drawback (at least from

an economic point of view) to give a sound economic explanations of the stochastic laws of

wealth accumulation.

In the present paper we try to fill the gap proposing a microfoundation of the dynamics

of wealth distribution based on a model where dynasties with different wealth have con-

stant marginal saving rates, firms’ productivities are subject to idiosyncratic shocks and fac-

tors’returns are determined in competitive markets.2 Moreover, we consider a Government,

which taxes capital and labour incomes and redistributes the revenues to the individuals.

We explicitly calculate the equilibrium distribution of wealth and we find that the shape

of the top tail of the distribution follows a Paretian law, whose exponent, which represents

a synthetic index of the degree of inequality of the top tail of distribution, depends on the

saving rate, the net return on capital, the growth rate of population and the degree of diver-

sification of portfolio. On the contrary, the bottom tail mostly depends on the characteristics

of the labour market.

1See Chatterjee et al. (2005) for a wide sample of articles on this topics.
2 Atkinson and Harrison (1978), p.202 distinguish between individual and distributional models, where

the first “derive the relationships governing individual wealth-holding and then aggregate these to obtain the

overall distribution”, while the second “formulate the problem directly in terms of the size distribution”. Our

approach belongs to the first type of models, but uses the distribution dynamics tools of the second. It is worth

noting that already Brown (1976), p.85, suggests this line of research.
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1 INTRODUCTION

In particular, an increase in the taxation of capital income and/or in the degree of diversi-

fication of portfolio increases the Pareto exponent. On the contrary, a decrease in the saving

rate and/or in the growth rate of population has ambiguous effects on the Pareto exponent:

a negative direct effect due to the lower accumulation of wealth is contrasted by a positive

induced effect due to the increase in the return on investment. We show that when tech-

nology is Cobb-Douglas there exists an inverted U-shaped relationship between the Pareto

exponent and both the saving rate and the growth rate of population. In general, any factor

increasing the net return on investment decreases the Pareto exponent. Therefore a techno-

logical change favouring capital leads to a decrease in the Pareto exponent via an increase

in the return on investment.

The bottom tail of the equilibrium distribution of wealth is instead crucially affected

by the structure of labour market, in particular by the cross-section distribution of wages.

If the labour market is completely flexible, so that individual wages immediately respond

to idiosyncratic shocks, the support of the equilibrium distribution of wealth includes also

negative values; on the contrary if all workers receive the same wage, i.e. bargaining in

the labour market is completely centralized, shocks are only transmitted through capital

returns and the wealth distribution is bounded away from zero. Therefore less flexibility in

the labour market means less wealth inequality in the bottom tail of the wealth distribution.

Finally, we show that there could exist an inverted U-shape between the Pareto exponent

and the growth rate of the economy if growth is endogenous, while we do not find any

relationship if growth is exogenous.

In the final section we corroborate our theoretical results by an empirical analysis. We

study the recent trends of wealth inequality in Italy (1987-2004) and United States (1989-

2004); the analysis is respectively based on the Survey of Household Income and Wealth

(SHIW) and on the Survey of Consumer Finances (SCF). In both countries the top tail of

the wealth distribution follows a Pareto distribution. The estimated Pareto exponent is de-

creasing for both countries in the considered periods. We argue that our model can help

to individuate the factors to the base of this decline by pointing to the decrease in the tax-

ation of capital income in both countries; in addition, for Italy a change in its technology

in favour of capital and an increase in its saving rate, given its high initial level, while for

U.S. a decrease in its saving rate, given its initial low level. Demographic factor seems not to

play a relevant role in both countries. Finally, we argue that the increase in the bottom tail

of the wealth distribution in both countries (this is more evident for Italy) can be explained

by the increase in the flexibility of labour markets: in both countries we find evidence of a

lower power of Trade Unions and of an increase in the cross-section variance of the distribu-

tion of labour incomes; in addition in Italy we observe a strong increase in the share of non

permanent jobs.

The theoretical model is in the spirit of Vaughan (1978), but he considers only two classes
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2 THE MODEL

of individuals and factors’ returns are not determined in competitive markets. The latter is

crucial for many findings of the model, as the nonlinear relationships between the Pareto ex-

ponent and the saving rate and the growth rate of population and the effects on the bottom

tail of distribution of the different degree of flexibility of labour markets. Shorrocks (1975)

proposes a similar approach, but he does not consider a general competitive equilibrium

model. Garcia-Peñalosa and Turnovsky (2005) proposes a model similar to ours, but they as-

sume an AK technology and aggregate shocks to production. Finally, Levy (2003) provides a

general discussion on which properties must have the stochastic process of wealth accumu-

lation in order to have an equilibrium distribution of wealth which satisfies the Pareto law.

He finds that every agents must have the same investment talent, i.e. the same probability

distribution of the returns on her investments; in our model this happens by the competi-

tive capital market, which ensures that every individual has the same investment opportu-

nities. In this respect we generalize Levy (2003)’s results considering also labour incomes

and calculating the analytical expression of the equilibrium distribution of wealth. Cagetti

and DeNardi (2005) survey the studies of the dynamics of the wealth distribution based on

optimizing agents (see, e.g., Alvarez-Pelaez and Diaz (2005), who however follow a deter-

ministic approach).

With respect to the econophysics literature, well summarized by Chatterjee et al. (2005),

our paper addresses the main criticisms raised to this approach, see e.g. Chatterjee et al.

(2005), p. 51, by providing a microeconomic foundation of the wealth distribution dynam-

ics. This allows us to relate additive stochastic terms in the wealth dynamics to the labour

market and multiplicative terms to the capital market. In addition, we provide an explicit

relation between the Pareto exponent and key parameters in the economy.

Finally, as regards as the empirical analysis Atkinson (2003) provides a detailed discus-

sion on how the recent dynamics of the distribution of income in OECD countries can be

explained by changes in the net return to capital income and technology; his results largely

agree with the results of our theoretical model and with our empirical evidence. Piketty

(2006) et al. provide further evidence on the factors affecting the wealth inequality in France.

The paper is organized as follows: Section 2 presents the theoretical model; Section 3

shows the evolution of wealth distribution and characterizes the properties of the equi-

librium distribution of wealth. Section 4 discusses the empirical evidence supporting our

theoretical results. Section 5 concludes. All proofs are relegated in the appendix.

2 The Model

We model a standard competitive economy in which firms demand capital and labour. We

assume all the wealth is owned by dynasties, who inelastically offer capital and labour and

decide which amount of their disposable income is saved. Wages and interest rate adjust

6



2.1 Firms 2 THE MODEL

to respectively clear the labour and capital markets. For the sake of simplicity we consider

just one type of capital. Hence human capital can be represented by different labour endow-

ments and/or included in the capital stock (in the latter case it is accumulated at the same

rate of physical capital).

From a technical point of view, we follow a standard approach to model a stochastic

economy, see, e.g., Chang (1988) and Garcia-Peñalosa and Turnovsky (2005). We derive

continuum time stochastic equations for the evolution of the wealth distribution. We do

this by first analysing the dynamics over a time interval [t, t + dt) and then we let dt →
0. Stochastic shocks are modelled by differentials of Wiener processes and we focus on

the long-run equilibrium.3 This approach neglects the highly debated issue of time-scale

adjustment of different economic variables and the out-of-equilibrium dynamics (see Hicks

(1986)).

2.1 Firms

Consider an economy with F firms. Every firm j has the same technology q (.). Its out-

put over the period (t+ dt), dyj(t), is the joint product of its technology and of a random

idiosyncratic component dAj (t):

dyj(t) = q[kj(t), lj(t)]dAj(t), (1)

where kj(t) and lj (t) are respectively the capital and the labour of firm j at time t and dAj is

a random shock to production. We assume that at time t firm j knows only the distribution

of dAj (see Section 2.4 for the characteristics of the stochastic components of economy).

The presence of a labour augmenting exogenous technological progress can be taken

into account assuming that lj (t) = l∗j (t) exp (ψt), where ψ is the growth rate of technological

progress. All the following analysis remains the same, except for the meaning of the per

capita variables, which are to be interpreted in efficient units of labour (see Chang (1988), p.

163).

We make the standard assumption that q (.) is an homogeneous function of degree one

(i.e. technology has constant returns to scale), with positive first derivatives and negative

second derivatives with respect to both arguments. Since q (.) is an homogeneous function

of degree one we have that:

q (k, l) = lg (k/l) with g′ (λ) > 0 and g′′ (λ) < 0, (2)

3A different method to derive continuous time stochastic differential equations is that of assuming a discrete

stochastic dynamics over very small time intervals ǫ. Then increments over times dt≫ ǫ are obtained summing

dt/ǫ increments of the discrete dynamics. Under suitable conditions for the dependence of the the mean and

the variance of stochastic increments, the Central Limit Theorem can be applied to yield a stochastic dynamics

over time increments dt with Gaussian noise.
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2.2 Dynasties 2 THE MODEL

where λ = k/l is the capital per worker.4

Every firm j maximizes its expected profits over the period (t+ dt) dπj :

max
kj ,lj

E [dπj (t)] = q[kj(t), lj(t)]E [dAj(t)] − kjdr (t) − kjdb (t) − ljdw (t) , (3)

at given dr, dw and db, the market interest, the market wage and the capital depreciation

respectively over the period (t+ dt). From the first order conditions of Problem (3) we have

that:

dr + db =
∂q

∂kj

E [dAj] and (4)

dw =
∂q

∂lj
E [dAj] . (5)

Since q (.) is an homogeneous function of degree one we have:

q =
∂q

∂kj

kj +
∂q

∂lj
lj, (6)

which with Eqq. (3), (4) and (5) implies that in equilibrium the profits of each firm are zero.

After the realization of shock dAj firm j gets its output and it rewards its factors accord-

ing to their marginal productivity (see Eqq. (4) and (5)):5

drj =
∂q

∂kj

dAj − db =
(dr + db) dAj

E [dAj]
− db; (7)

dwj =
∂q

∂lj
dAj =

dw dAj

E [dAj]
. (8)

2.2 Dynasties

Economy is populated by N dynasties and at time t. We use a subscript i to denote dynasty

i. Let li and pi be respectively the stock of labour and the current wealth of dynasty i.6 Her

gross income over the period (t+ dt), dyi, is given by:7

dyi (t) = pi (t)
F
∑

j=1

θi,j (t) drj (t) + li

F
∑

j=1

φi,j (t) dwj (t) , (9)

4The CES production function q(k, l) = [εkγ + (1 − ε) lγ ]
1/γ with ε ∈ (0, 1) satisfies these hypotheses. Here

γ < 1 tunes the elasticity of substitution between k and l, which is 1/ (1 − γ). For γ → 0 we get the Cobb-

Douglas production function q(k, l) = kεl1−ε. The function g(λ) is given by g (λ) = [ελγ + 1 − ε]
1/γ , while in

the Cobb-Douglas case g (λ) = λε.
5Here we assume that workers’ incomes are subject to the same risk of entrepreneurs. In the real world it

is more likely that wages are fix in the short run and the returns on capital absorbs all risk. In Section 3.2.3 we

address this possibility and show the crucial implication for the wealth distribution.
6Different amounts of labour could be interpreted as different level of abilities (productivities) among indi-

viduals. In fact, the wage rate is defined in terms of an unit of labour service: the labour income for dynasty i

is equal to lidw.
7If k represents both physical and human capital then dr is the average return of this composite variable.

8



2.2 Dynasties 2 THE MODEL

where θi,j (t) is the fraction of wealth pi invested in firm j at time t (
∑F

j=1 θi,j = 1) and

φi,j (t) is the fraction of labour that dynasty i works in firm j at time t (
∑F

j=1 φi,j = 1). Both

coefficients φi,j (t) and θi,j (t) should be thought of as the resulting allocation arising from

market interactions at time t. In particular, for any interest rate and wage, they depend on

the individual preferences (e.g. the attitude toward risk) and on the possible transaction

costs in labour and capital markets (e.g. the presence of a fix cost of investment).

The disposable income is the result of taxation and redistribution. We assume that capital

and labour income are taxed at a flat rate τk and τl respectively. The resources collected

from taxes are redistributed to individuals by lump-sum transfers. Therefore the dynasty i’s

disposable income over the period (t+ dt), dyD
i , is given by:

dyD
i = (1 − τk)

F
∑

j=1

piθi,jdrj + (1 − τl)
F
∑

j=1

liφi,jdwj +
τk
N

F
∑

j=1

kjdrj +
τl
N

F
∑

j=1

ljdwj (10)

We assume that dynasty i takes her decision according to the following Keynesian con-

sumption function:8

dci = dc̄+ cdyD
i + dcppi, (11)

where c is the marginal propensity to consume with respect to disposable income, dc̄ cap-

tures the presence of a minimum consumption dc̄ ≥ 0, which is independent of the level of

income and dcp is the marginal propensity to consume with respect to wealth.9

Consumption function (11) appears to be a good compromise between the necessity to

consider all the possible relevant variables affecting the individuals consumption decision

and the more rigorous method to derive the consumption function from the intertemporal

optimizing problem of individual i.10 In fact, the lack of a closed solution to the latter, ex-

cluding a very limited number of cases, would prevent us to find an analytical expression

of the the equilibrium distribution of wealth. Moreover, Chang (1988) shows that Eq. (11)

with dc̄ = dcp = 0 can represent the consumption function of an intertemporal optimizing

8The consumption function in the original Keynesian version does not include a term for wealth.
9In the empirical section we discuss how dc̄ could depend on the average wealth of economy. This is not

surprising considering that the minimum consumption should reflect the minimum standard of living, which

is strongly relate to the level of development of a country.
10See Cagetti and DeNardi (2005) for a survey on the models analysing the wealth distribution with in-

tertemporal optimizing individuals. The key point of this approach is to endogenize the saving rate. A general

results is that the actual wealth distributions are not matched under the assumption of homogeneous individ-

ual preferences and this is because, under such approach, wealthy individuals tend to save less relatively their

income. This is in stark contrast with our assumption of constant marginal saving rate and with the empirical

evidence we will show in Section 4. Some authors circumvent this drawback assuming that heterogeneity in

the individual saving behaviour of individuals is due to different degrees of risk aversion (i.e. there exist ”en-

trepreneurial” and ”worker” individuals) and adding the assumption of altruistic behaviour. From another

point of view Eq. (11) can be thought of as the leading order expansion of a generic consumption function

dc(dyD
i , pi) which neglects higher order differentials.
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2.3 Equilibrium 2 THE MODEL

agent with infinite lifetime when utility function is CES and technology is Cobb-Douglas;

in such case Chang (1988), p. 163, shows that s is equal to the intertemporal elasticity of

substitution.11 Finally, in Section 4 we show that consumption function (11) finds a strong

empirical corroboration in the Italian data.

Given Eq. (11), dynasty i accumulates her wealth according to:

dpi = sdyD
i − dc̄− dnipi, (12)

where the first term sdyD
i , with s ≡ 1 − c, reflects the relationship between savings and

disposable income (s is the marginal saving rate), while the last term, dni, arises from the

term dcp, but it may also include demographic effects and any other effect which can directly

affect the dynasty i’s wealth. We shall assume that dni has a stochastic component and for

simplicity in the following we will refer to dni as a demographic component.

2.3 Equilibrium

In the equilibrium of capital market we have that:

P =
N
∑

i=1

pi =
F
∑

j=1

kj = K, (13)

while in the equilibrium of labour market:

N
∑

i=1

li =
F
∑

j=1

lj = L. (14)

From Eqq. (7) and (8) we have:

E [drj] = dr = ∀j and (15)

E [dwj] = dw ∀j. (16)

From Eqq. (4), (5), (15) and (16) we have that:

kj

lj
= k̄ =

K

L
=
P

L
= λ ∀j, (17)

11A limit of our theoretical analysis is to ignore the possible effect of changes in fiscal policy on saving rate.

However, ex-ante such effect is ambiguous. In the empirical section we show that in response to a decline in

the tax rates both in Italy and in U.S. the saving rate increased in Italy and decreased in U.S.. In Italy such

increase could be partially explained by precautionary saving, due to the increase in the expected volatility of

future incomes (see Jappelli and Pistaferri (2000b)) and to the change in social security in 1990s (see Attanasio

and Brugiavini (2003)). In this regard, to our purposes it is preferable to take saving rates as a parameter to be

estimated, being the latter observable, rather than to consider unobservable variables, like the expectations of

future incomes, and/or change in welfare policy, which are not easily measurable.
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2.4 The Continuum Time Limit 2 THE MODEL

that is every firm j utilizes the same production technique; k̄ is the firms’ endowment of cap-

ital per unit of labour. For convenience we also define the per capita wealth p̄ = ΣN
i=1pi/N =

P/N and the per capita labour endowment l̄ = ΣN
i=1li/N = L/N . In equilibrium firm j

rewards its factors at the following rates:

drj = dAjg
′ (λ) − db and (18)

dwj = dAj [g (λ) − λg′ (λ)] . (19)

2.4 The Continuum Time Limit

Let us now make the dependence of differentials on the time infinitesimal dt explicit. In

particular, we take:

dr = ρdt; (20)

db = βdt; (21)

dw = ωdt; (22)

dA = E [dAj] = adt; (23)

dn = E[dni] = νdt and (24)

dc̄ = χdt, (25)

where ρ is the interest rate, β the depreciation rate, ω the wage rate, a a scale parameter, ν

the growth rate of population plus the marginal effect of wealth on consumption and χ the

minimum consumption.

For productivity and demographic shocks we define:

dζj =
dAj − E [dAj]

a
and (26)

dξi = dni − E [dni] , (27)

so that E [dζj] = E [dξi] = 0. We assume that these two sources of randomness, dζj and dξi,

are Wiener increments with the following properties:

E [dζjdζj′ ] = ∆dtδj,j′δ (t− t′) and (28)

E [dξidξi′ ] = Γdtδi,i′δ (t− t′) , (29)

where ∆ and Γ are respectively the variances of productivity and demographic shocks,

δj,j′ = 1 if j = j′ and δj,j′ = 0 otherwise, whereas δ (t− t′) is Dirac’s δ distribution (ran-

dom shocks are temporally independent and uncorrelated).

Finally, from Eqq. (7)-(8), (20)-(23) and (26)-(27) we have:

drj = ρdt+ (ρ+ β)dζj and

dwj = ωdt+ ωdζj.
(30)
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2.5 The Evolution of Wealth Distribution 2 THE MODEL

The allocation of capital and labour among firms should be such to satisfy the equilib-

rium conditions (13)-(17). For example, the case in which each dynasty i works just in a

single firm j∗ (i) (i.e. φi,j∗(i) = 1 and φi,j = 0 for j 6= j∗ (i)) may not be compatible with market

equilibrium because this may not ensure that every firm has the optimal ratio of capital and

labour λ (see Eq. (17)). On the other hand the allocation where each dynasty invests an equal

share of her wealth (i.e. θi,j = 1/F ) and contributes the same amount of labour to each firm

(φi,j = 1/F ) is always compatible with the market equilibrium.

Consistency with market equilibria imply that the coefficients θi,j and φi,j carry some

dependence on the dynamical variables pi. Still, market equilibrium is not sufficient to de-

termine unambiguously the value of the coefficients θi,j and φi,j . In what follows, we will

largely neglect the dependence of allocations on dynamical variables and treat θi,j and φi,j

as parameters of the economy specifying the degree of concentration of capital and labour

investment. Actually, we find it convenient to introduce the variables

Θi,i′ =
F
∑

j=1

θi,jθi′,j, Ωi,i′ =
F
∑

j=1

θi,jφi′,j and Φi,i′ =
F
∑

j=1

φi,jφi′,j. (31)

These characterize the structural properties of the economy i.e. the degree of intertwine-

ment of economic interactions. For example Θi,i′ is a scalar which represents the overlap of

investments of dynasty i with those of dynasty i′.

2.5 The Evolution of Wealth Distribution

Proposition 1 shows the dynamics of the dynasty i’s wealth.

Proposition 1 Given the definitions above, the dynasty i’s wealth obeys the following stochastic

differential equation:12

dpi

dt
= s

[

(1 − τk) ρpi + (1 − τl)ωli + τkρp̄+ τlωl̄
]

− χ− νpi + ηi, (32)

where ηi is a white noise term with E [ηi (t)] = 0 and covariance:

E [ηi (t) ηi′ (t
′)] = δ (t− t′)Hi,i′ [~p] , (33)

where

Hi,i′ [~p] = ∆s2
{

(1 − τk)
2 (ρ+ β)2 pipi′Θi,i′ + (1 − τl)

2 ω2lili′Φi,i′ +

+ (1 − τk)(1 − τl) (ρ+ β)ω [pili′Ωi,i′ + lipi′Ωi′,i] +

+
τk(ρ+ β) + τlω/λ

N
[(1 − τk)(ρ+ β)(piϑi + pi′ϑi′) + (1 − τl)ω(liϕi + li′ϕi′)] +

+
[τk(ρ+ β) + τlω/λ]2

N2

F
∑

j=1

k2
j

}

+ Γδi,i′p
2
i ,

12Here we adopt the notation of Langevin equations, see Gardiner (1997).
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3 INFINITE ECONOMY

and

ϑi =
N
∑

i′=1

Θi,i′pi′ , ϕi =
N
∑

i′=1

Ωi,i′pi′ . (34)

Proof. See Appendix A.

Eq. (33) in Proposition 1 shows that the correlation in the shocks hitting two dynasties

i and i′ arises either because both are investing in the same firms (Θi,i′), or because one is

investing in the firm in which the other is working (Ωi,i′) or because both are working in

the same firm (Φi,i′). Terms ϑi and ϕi are respectively the average capital of the firms where

dynasty i is investing and working.

3 Infinite Economy

In this section we focus on the limit of infinite economy, where we assume that N and F →
∞. In particular, we focus on the case where F = fN , where f is a positive constant. This

assumption is not a relevant limit to the analysis because in a real economy N may be of the

order of some million and the same applies for the number of firms (or more precisely for the

number of possible different types of investment). Given these assumptions, we restrict our

attention on the properties of the equilibrium, i.e. we analyse the behaviour of the economy

in the limit t→ ∞.

Below we first derive the evolution of the aggregate variables and then we focus on two

cases: i) the stationary/exogenous growth case and ii) the endogenous growth case.

3.1 Evolution of Aggregate Variables

To derive the dynamics of per capita wealth p̄ consider Eq. (32), from which:

1

N

d

dt

N
∑

i=1

pi =
dp̄

dt
= s

(

ρp̄+ ωl̄
)

− vp̄− χ+ η̄,

where

η̄dt =
1

N

N
∑

i=1

[dpi − E (dpi)] =
s(ρ+ β + ω/λ)

N

F
∑

j=1

kjdζj +
ν

N

N
∑

i=1

pidξi.

Proposition 2 shows under which conditions limN→∞ η̄dt = 0, that is the dynamics of p̄ is not

stochastic.

Proposition 2 Assume that there exists a constant θ̄ > 0 such that:

N
∑

i=1

θi,j ≤ θ̄ ∀j,N (35)

13



3.2 Stationary/Exogenous Growth Case 3 INFINITE ECONOMY

and that:

lim
N→∞

1

N2

N
∑

i=1

p2
i = 0. (36)

Then the per capita wealth p̄ follows a deterministic dynamics given by:

dp̄

dt
= s

(

ρp̄+ ωl̄
)

− χ− vp̄. (37)

Proof. See Appendix B.

Assumption (35) states that the total share of dinasties’ investment in each firm is bounded

above; this is a equivalent to saying that investment cannot be too unevenly distributed.13

Notice that taking the sum on j in Assumption (35) yields θ̄ ≥ 1/f = N/F ; this requires that

the number of firms growth at least as fast as the number of dynasties. Assumption (36) is

a law of large numbers and, in particular, it is an assumption on the shape of the top tail of

the distribution of pi. In fact, if the probability distribution density (pdf ) of pi behaves for

large p as f(p) ∼ p−α−1 with α > 1, as we will find later, then Assumption (36) holds. If

Assumption (36) does not hold then per capita wealth follows a stochastic process and the

dynasty i’s wealth will fluctuate both for the idiosyncratic shocks and for the fluctuations of

the aggregate variables.

Substituting for ρ and ω in Eq. (37) from Eqq. (15)-(16) and (20)-(23) we get:

dp̄

dt
= sag

( p̄

l̄

)

l̄ − χ− (sβ + v) p̄, (38)

which is the well-known equation of the Solow growth model augmented with the min-

imum consumption χ (note that ag
(

p̄/l̄
)

l̄ = aq
(

k̄, 1
)

l̄ is the per capita output adjusted

for the effective supply of labour of each individual, i.e. it would be per-capita output if

L = N ). Stiglitz (1969) shows that this model can generate many different dynamics accord-

ing to the parameters’ value and to the shape of the production function. In particular, we

can have an economy where per capita wealth is i) converging to a positive value/growing

at an exogenous rate, ii) growing at an endogenous rate or, finally, iii) converging toward

zero; the long-run equilibrium could also depend on the initial level of the per capita wealth.

To our purpose case iii) (economy with zero capital) is trivial, so that we analysis in details

only cases i) and ii).

3.2 Stationary/Exogenous Growth Case

Heuristically the condition to have an equilibrium with constant per capita wealth is that the

growth rate of per capita wealth becomes negative for large value of p̄. Moreover, depending

13As extreme example consider the case where all dynasties invest in the same firm j = 1 all their capital,

i.e. θi,1 = 1 and θi,j = 0 for j > 1 ∀i. Then Condition (35) is violated for j = 1.
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3.2 Stationary/Exogenous Growth Case 3 INFINITE ECONOMY

on the value of the production function in zero, we can have zero, one or two equilibria (even

if only one is stable). Let us remark that if there exists an exogenous technological progress,

p̄ is per capita wealth measured in efficient units; therefore in equilibrium the effective per

capita wealth will grow at the exogenous growth rate of technological progress ψ.

Proposition 3 states the conditions for the existence of an equilibrium with a constant

and positive per capita wealth.

Proposition 3 Assume that dynamics of the per capita wealth obeys Eq.(38) and

lim
p̄→∞

g′
(

p̄/l̄
)

<
sβ + ν

sa
. (39)

Then if

g (0) >
χ

sal̄
(40)

an equilibrium with constant and positive per capita wealth exists. Otherwise if:

g (0) <
χ

sal̄
(41)

and if

∃p̄1 < p̄2 such that sag
(

p̄h/l̄
)

l̄ = χ+ (sβ + v) p̄h for h = 1, 2, (42)

then p̄2 and p̄1 are respectively a local stable and unstable equilibria. Economy converges towards an

equilibrium with a per capita wealth equal to p̄2 if and only if p̄ (0) > p̄1, while if p̄ (0) < p̄1 economy

converges towards an equilibrium with zero per capita wealth.

When the conditions to have in equilibrium a positive per capita wealth p̄∗ are satisfied, then p̄∗ solves:

sag
(

p̄∗/l̄
)

l̄ = χ+ (sβ + v) p̄∗, (43)

while the interest rate and the wage rate are respectively equal to:

ρ∗ = ag′
(

p̄∗/l̄
)

− β and (44)

ω∗ = a
[

g
(

p̄∗/l̄
)

−
(

p̄∗/l̄
)

g′
(

p̄∗/l̄
)]

(45)

Proof. See Appendix C.14

Figures 1 and 2 provide the intuition of results in Proposition 3.

14In the case of CES technology the first of the two conditions corresponds to:

ε1/γ <
sβ + v

sa
for γ ∈ (0, 1) ,

while is always satisfied for γ ≤ 0. Condition (40) is satisfied for:

(1 − ε)
1/γ

>
χ

sal̄
for γ ∈ (0, 1) ,

while is never satisfied for γ ≤ 0. In the Cobb-Douglas case, i.e. γ = 0, Conditions (39) and (41) are always

satisfied, but p̄1 = 0.
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p̄

B

A

p̄∗

E C

D

O

Figure 1: economy with a global stable equi-

librium

p̄

B

A

p̄2 = p̄∗

E2 C

D

p̄1

E1

O

Figure 2: economy with a local stable equi-

librium

Figure 1 shows the case of single global stable equilibrium, whereas Figure 2 refers to the

case of two equilibria, only one of which is stable (the highest). In the latter case in order to

have an equilibrium with a positive per capita wealth it is necessary that the initial value of

per capita wealth is higher than p̄1.

Proposition 3 shows that p̄∗ positively depends on s and a and negatively on ν and β.15

The interest rate ρ∗ negatively depends on p̄∗ and β; note that the effect of a on ρ∗ is am-

biguous because it has a positive direct effect, but also a negative induced effect: in fact an

increase in a increase p̄∗, and therefore tends to decrease ρ∗. Finally, in equilibrium the wage

rate ω∗ depends positively on p̄∗.

3.2.1 The Equilibrium Distribution of Wealth

In the following we characterize the equilibrium distribution of wealth for every dynasty i,

when economy converges toward a constant and positive per capita wealth p̄∗ and we show

that Assumption (36) is satisfied in equilibrium.

Proposition 4 Assume that the infinite dynasty economy converges towards a positive and constant

per capita wealth p̄∗ and that s
[

(1 − τl)ω
∗li + τkρ

∗p̄+ τlω
∗l̄
]

> χ. Then the equilibrium distribu-

tion of pi is given by:

fi (pi) =

[

N
(a0 + a1pi + a2p2

i )
1+z1/a2

]

e
4

"

z0+z1a1/(2a2)√
4a0a2−a2

1

#

arctan

 

a1+2a2pi√
4a0a2−a2

1

!

, (46)

15This is straightforward given Eq. (43) and the properties of g (.): g′ (.) > 0 and g′′ (.) < 0.
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3.2 Stationary/Exogenous Growth Case 3 INFINITE ECONOMY

where

z0 = s
[

(1 − τl)ω
∗li + τkρ

∗p̄+ τlω
∗l̄
]

− χ;

z1 = ν − s (1 − τk) ρ
∗;

a0 = ∆s2 (1 − τl)
2 ω∗2l2i Φi,i;

a1 = 2∆s2(1 − τk)(1 − τl) (ρ∗ + β)ω∗liΩi,i and

a2 = ∆s2 (1 − τk)
2 (ρ∗ + β)2 Θi,i + Γ

and N is a constant defined by the condition
∫

∞

−∞
f (pi) dpi = 1.

Proof. See Appendix D.

Condition s
[

(1 − τl)ω
∗li + τkρ

∗p̄+ τlω
∗l̄
]

> χ ensures that dynasty with zero wealth have

an expected positive saving, i.e. she can escape from the zero wealth trap. This also ensures

that her average wealth will be positive (see Eq. (75)). Therefore this is not a source of

substantial limitation of our analysis.

For large pi f (pi) follows a Pareto distribution whose exponent is given by:

α = 1 + 2z1/a2 = 1 + 2
ν − s (1 − τk) ρ

∗

∆s2(1 − τk)2(ρ∗ + β)2Θi,i + Γ
. (47)

We stress that z1, a2 > 0 (see Condition (39) and Eq. (44)) and hence α > 1: this ensures that

Assumption (36) is indeed satisfied.

It is worth noticing that while the expected wealth of dynasty i does not depend on

individual characteristics of dynasty i, i.e. E [pi] = p̄∗, the distribution does. In particular,

f (pi) depends on Θi,i, which is an index of the diversification of the dynasty i’s portfolio; in

particular, Θi,i = 1 means no diversification and Θi,i = 0 maximal diversification.16

3.2.2 The Determinants of Pareto Exponent

Remark 5 shows the relationships between the top tail of the wealth distribution, i.e. the

Pareto exponent, and the main variables and parameters of the model.

Remark 5 The size of the top tail of wealth distribution measure by (the inverse of) α is an increasing

function of ∆, Θi,i, Γ and β, and a decreasing function of τk. Changes in ν, a and s have ambiguous

effects on the top tail of wealth distribution.

Remark 5 provides some insights on which forces affect the top tail of the wealth distri-

bution. First of all we note that labour income does not play any role, on the contrary of the

interest rate ρ∗. An increase of the latter tends to increase the size of the top tail by increasing

16 Castaldi and Milakovic (2006) suggest that also the frequency of the changes in the composition of the

wealthiest portfolios can affect the Pareto exponent.
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3.2 Stationary/Exogenous Growth Case 3 INFINITE ECONOMY

the return to accumulate wealth (i.e. ∂α/∂ρ∗ < 0). In this respect the ambiguous relation-

ships between α and s (ν) are due to two competing effects generated by an increase in s (ν):

a direct effect which tends to decrease (increase) α and an induced effect due to the decrease

(increase) in the interest rate ρ∗, in turn caused by an increase (decrease) in the equilibrium

per capita wealth p̄∗. Ex ante it is not possible to determine which effect prevails without

specifying the technology. These results highlight the importance to endogenize the returns

to factors in order to study the effect of changes in the saving rates (population growth rate)

on inequality. Finally, the ambiguous relationship between α and a is due the ambiguous

effect of a on ρ∗. In the following we analyse the case of Cobb-Douglas technology.

Cobb-Douglas technology Assume that technology is Cobb-Douglas , i.e. g = λε, with

ε ∈ (0, 1) and χ = 0; then in equilibrium:17

p̄∗ = l̄

(

sa

sβ + v

)1/(1−ε)

; (48)

ρ∗ =
ε (sβ + v)

s
− β; (49)

ω∗ = (1 − ε) a1/(1−ε)

(

s

sβ + ν

)ε/(1−ε)

and (50)

α = 1 + 2

{

ν [1 − (1 − τk) ε] + (1 − τk) (1 − ε) sβ

∆(1 − τk)2ε2(sβ + ν)2Θi,i + Γ

}

. (51)

First, note that a does not affect the equilibrium interest rate ρ∗ and therefore it has no effect

on α. As expected, α is negatively related to ε, which measures both the elasticity of product

to capital and the share of capital income on total product, via an increase of ρ∗.18

17We are in the case of two equilibria of Proposition 3, but an equilibrium is trivial, i.e. p̄1 = 0.
18Assuming CES technology and χ = 0 we have that:

p̄∗ = l̄

{

1 − ε

[(sβ + ν) /sa]
γ − ε

}1/γ

and

ρ∗ = εaγ

(

sβ + ν

s

)1−γ

− β,

from which:
∂ρ∗

∂γ
> 0 ⇔ s (a− β) > v.

Given Condition (39), we have that:

∂ρ∗

∂γ
R 0 for γ ∈ (0, 1) and

∂ρ∗

∂γ
< 0 for γ < 0.

Therefore the effect on α of a change in γ is ambigous for γ ∈ (0, 1) , while it is negative for γ < 0.
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The relationships between α and s and ν are more complex; in particular Remarks 6 and

7 show that these relationships can be nonmonotonic.

Remark 6 If Γ′ > ν2D then ∂α/∂s > (<) 0 for s < (>) ŝ, otherwise α is always increasing

in s, where ŝ = ν

[

− (1 +D) +
√

(1 −D)2 + 4Γ′/ν2

]

/ (2β) , Γ′ = Γ/
[

∆ (1 − τk)
2 ε2Θi,i

]

and

D = ν2 [2 − (1 − τk) (1 + ε)] / [(1 − τk) (1 − ε)].

Proof. The proof directly follows from the derivative of α expressed in Eq. (51) with respect

to s.

This nonmonotonic relationship is due to the alternate prevalence between the direct and

the induced effect, whose strengths depend on the level of per capita wealth, that is on the

level of saving rate. In particular, the induce effect prevails for low levels of s, while the

direct effect prevails for high values of s. Figure 3 reports a numerical example.19

1.65

0.3

1.645

0.4

1.64

0.2

1.635

0.10

s

0.5

1.655

Figure 3: the nonmonotonic relationship between the Pareto exponent and saving rate

Therefore a decrease in s can lead to a decline in the Pareto exponent if s is sufficiently

low (under 0.13 in Figure 3). Otherwise an increase in s determines a decrease in α. Remark

7 states that a similar nonmonotonic relationship holds also for ν.

Remark 7 If Γ′ > s2β2 then ∂α/∂ν > (<) 0 for ν < (>) ν̂, otherwise α is always increasing

in ν, where ν̂ = sβ

[

− (1 +D) +
√

(1 −D)2 + 4Γ′

]

/2, Γ′ = Γ/
[

∆ (1 − τk)
2 ε2Θi,i

]

and D =

[(1 − τk) (2 − ε) − 1] / [1 − (1 − τk) ε].

Proof. The proof directly follows from the derivative of α expressed in Eq. (51) with respect

to ν.

19The parameters assume the following values: ν = 0.01, β = 0.01, χ = 0, ε = 0.35, a = 0.5, l̄ = 1, τk = 0.20,

τl = 0.3, Γ = 0.015, ∆ = 9000, Θ = 0.1, Φ = 1, Ω = 1.
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In this case the direct effect prevails for low level of ν, while the induced effect prevails

for high values. Figure 4 reports a numerical example.20

0.03 0.05

1.2

0.040.020.010

1.6

1.5

v

1.4

1.3

Figure 4: the nonmonotonic relationship between the Pareto exponent and growth rate of

population

Countries with a low and declining growth rate of population (lower than 0.01, e.g. Italy)

should show a decline in α as well as countries with high and increasing growth rate of

population. This result could explained the empirical evidence in Laitner (2001).

3.2.3 Staggered Wages

We have just seen that labour market does not affect the top tail of the wealth distribution;

however it is crucial for the shape of bottom tail, i.e. for the poorest dynasties. We assumed

that wages are perfectly flexible, but in the real labour markets wages are generally fixed in

the short period and productivity shocks are absorbed by the returns on capital (see Garcia-

Peñalosa and Turnovsky (2005) for a similar point).21 To investigate the implications of

this fact on the wealth distribution we assume that all wages in the economy are set to the

expected level of productivity, that is:

dwj =
∂q

∂lj
E [dAj] = dw ∀j. (52)

This means that the cross-section variance of labour incomes is zero: this framework can

represent an economy in which Trade Unions have strong market power, such that the bar-

gaining on labour market is completely centralized. It is worth remarking that wages follow

20The parameters assume the following values: s = 0.2, β = 0.01, χ = 0, ε = 0.35, a = 0.5, l̄ = 1, τk = 0.20,

τl = 0.3, Γ = 0.015, ∆ = 9000, Θ = 0.1, Φ = 1, Ω = 1.
21In general, wages flexibility depends on many factors such as the presence in the labour markets of strong

Trade Unions and on the possibility to stipulate short-term labour contracts between workers and firms.
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the marginal productivity of labour and therefore there does not exist unemployment. The

actual profits are defined by:

dπj (t) = q[kj(t), lj(t)]dAj(t) − drjkj − dbkj − dwlj

and since in equilibrium dπj (t) = 0,22 we have that:

drj = q[kj(t), lj(t)]dAj(t)/kj − db− dwlj/kj. (53)

All the results in Proposition 1 are unchanged and therefore pi follows again Eq. (32),

with the noise term ηi which satisfies E [ηi (t)] = 0 and Eq. (33), but

lim
N→∞

Hi,i′ [~p] =
[

∆s2(1 − τk)
2(ρ+ β)2Θi,i′ + Γδi,i′

]

pipi′ . (54)

Eq. (54) reflects the fact that now labour market is not a source of shocks for the dynamics

of dynasty i’s wealth .

Under Assumption (36), again p̄ has a deterministic dynamics given by Eq. (37), so that

the results in Proposition 3 also hold in the case of staggered wages. Therefore the per

capita wealth, wages and interest rate are not affected by the assumption of staggered wages.

However, the equilibrium distribution of wealth changes.

Proposition 8 Assume that economy converges towards a positive and constant per capita wealth

p̄∗ and that s
[

(1 − τl)ω
∗li + τkρ

∗p̄+ τlω
∗l̄
]

> χ. Let fSW (pi) be the equilibrium distribution of pi

when N → ∞. Then:

fSW (pi) =
N SW

a2p
2(1+z1/a2)
i

e
−

“

2z0
a2pi

”

, (55)

where N SW is a constant defined by the condition
∫

∞

−∞
fSW (pi) dpi = 1 and z0, z1 and a2 are the

same as in Proposition 4.

Proof. See Appendix E.

For large pi the equilibrium distribution fSW (pi) follows a Pareto distribution whose

exponent is equal to αSW = 1 + 2z1/a2; this is the same of the model with perfectly flexible

wages (see Eq. (47)). The distribution is instead markedly different for small values of

pi. The intuition is that wages’ behaviour is crucial for the low wealth dynasties, and, in

particular, a lower volatility of wages decreases the size of the bottom tail of the wealth

distribution because poor dynasties have an income largely dependent of wages (the cross-

section volatility of wages is zero when wages are staggered). To support this intuition note

that limpi→0+ f
SW (pi) = 0, while limpi→0+ f (pi) > 0. Figure 5 shows a numerical example of

two wealth distributions when technology is Cobb-Douglas.23

22In the framework profits are zero because the returns on capital is residual with respect to the wages,

therefore the owners of capital takes all net product not distributed to the workers.
23The parameters assume the following values: ν = 0.01, s = 0.20, β = 0.01, χ = 0, ε = 0.35, a = 0.5, l̄ = 1,

τk = 0.20, τl = 0.3, Γ = 0.015, ∆ = 30, Θ = 0.1, Φ = 1, Ω = 1.
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Figure 5: comparison between the wealth distributions with perfectly flexible (thin line) and

staggered (thick line) wages

The thin line represents the density of wealth distribution f (pi) for the case of perfectly

flexible wages, while the thick line represents the density fSW (pi) for the case of staggered

wages. Figure 5 confirms that, when wages are staggered, the bottom tail of the wealth dis-

tribution has a lower size and there is no dynasties with negative wealth; finally, as expected,

the top tail is not affect from this change in the labour market.

3.3 Endogenous Growth Case

Figures 6 and 7 report two cases where the growth of per capita wealth in equilibrium is due

to the ongoing accumulation of wealth (and not by the possible exogenous technological

progress).

The worth of this case derives from: i) the major focus on the capital return, which de-

cides the shape also of the bottom tail of the wealth distribution and ii) the relationship

between the wealth inequality and the endogenous growth rate of economy.

Proposition 9 states the necessary and sufficient conditions under which per capita wealth
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Figure 6: Expanding economy

p̄
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p̄∗

Figure 7: Expanding economy with a unsta-

ble equilibrium

grows at a positive growth rate in equilibrium, i.e. there is endogenous growth.24

Proposition 9 Assume that:

lim
p̄→∞

g′
(

p̄/l̄
)

>
sβ + v

sa
; (56)

then if:

g (0) >
χ

sal̄
(57)

in equilibrium per capita wealth will be growing at the following rate:

ψEG = lim
p̄→∞

s[ag′
(

p̄/l̄
)

− β] − ν, (58)

indipendent of initial per capita wealth. Differently, if:

g (0) <
χ

sal̄
, (59)

then in equilibrium per capita wealth will be growing at constant rate ψEG if and only if the initial

per capita wealth is sufficient high. Assume that in equilibrium per capita wealth growth at rate ψEG;

then the factor returns are given by:

ρ→ ρ∗ = lim
p̄→∞

ag′
(

p̄/l̄
)

− β (60)

ω → ω∗ = lim
p̄→∞

a
[

g
(

p̄/l̄
)

−
(

p̄/l̄
)

g′
(

p̄/l̄
)]

. (61)

24Assuming CES technology Condition (56) corresponds to:

ε1/γ >
sβ + v

sa
for γ ∈ (0, 1) ,

while it is never satisfied for γ ≤ 0. Condition (57) is satisfied for:

(1 − ε)
1/γ

>
χ

sal̄
for γ ∈ (0, 1)

and it always satisfied for γ ≤ 0. For the Cobb-Douglas technology Condition (56) is never satisfied.
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Proof. See Appendix F.

It is worth noting that in equilibrium this economy has a behaviour similar to an AK

model ( Barro and Sala-i-Martin (1999)), i.e. a model where marginal and average product

of capital are constant (or, more precisely, are bounded below). Moreover, the equilibrium

interest rate ρ∗, taking β as given, is determined only by technology. Finally, ω∗ is finite.

The growth rate ψEG can be written as a function of interest rate, i.e.:

ψEG = sρ∗ − ν, (62)

which shows that growth rate ψEG is positively related to the level of saving rate s and

negative related to ν. Interestingly ψEG is independent of the flat tax rate on capital τk and on

the spread of individual portfolios Θi,i.
25 Moreover, ψEG positively depends on the return on

capital ρ∗. Therefore all changes in the technology which increases the capital return cause

an increase in ψEG as well. Assuming CES technology, i.e. g = [1 − ε+ ελγ]1/γ , we have that:

ψEG = saε1/γ − ν, (63)

from which it is clear that ψEG positively depend on ε and γ.

Proposition 10 shows the dynamics of the dynasty i’s wealth in the case of endogenous

growth.

Proposition 10 Let ui be the relative per capita wealth of dynasty i, i.e. ui = pi/p̄. The dynasty i’s

wealth obeys the following stochastic differential equation:

lim
p̄→∞

dui

dt
= sρ∗τk(1 − ui) + η̃i, (64)

where η̃i = ηi/p̄ is a white noise term with E [η̃i (t)] = 0 and covariance:

E [η̃i (t) η̃i′ (t
′)] = δ (t− t′)Hi,i′ [~u] , (65)

where:

lim
p̄→∞

lim
N→∞

Hi,i′ [~u] =
[

∆s2(1 − τk)
2(ρ∗ + β)2Θi,i′ + Γδi,i′

]

uiui′ .

Proof. See Appendix G.

In Proposition 10 the ongoing growth of wealth suggested to express the dynamics of

per capita wealth of dynasty i in term of the average per capita wealth. Notice that in the

limit p̄ → ∞ wages do not play any role in the dynamics of relative per capita wealth (see

Eq. (64)). This is essentially due to the fact that ω∗/p̄ goes to zero in the equilibrium.

Proposition 11 states the equilibrium distribution of the relative per capita wealth ui.

25The independence of ψEG from τk is due to the assumption of constant saving rate. In the endogenous

growth theory where the saving rate s is optimally chosen, s positively depends on the net return on capital

(1 − τk) ρ∗. Hence s decreases with τk.
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Proposition 11 Assume that per capital wealth is growing at the rate ψEG; then the equilibrium

distribution fEG (ui) of ui = pi/p̄ is given by:

fEG(ui) =
NEG

[∆s2(1 − τk)2(ρ∗ + β)2Θi,i + Γ]uαEG+1
i

e−(αEG
−1)/ui , (66)

where NEG is a constant defined by the condition
∫

∞

−∞
fEG (pi) dpi = 1 and

αEG = 1 + 2
sρ∗τk

∆s2(1 − τk)2(ρ∗ + β)2Θi,i + Γ
(67)

is the Pareto exponent.

Proof. The proof follows the same steps reported in Appendix E taking µ (ui) = sρ∗τk(1−ui)

and σ2 (ui) = [∆s2(1 − τk)
2(ρ∗ + β)2Θi,i + Γ]u2

i .

The Pareto exponent αEG is always greater than 1 for τk, s > 0 and therefore Assumption

(36) is satisfied. Notice that the limit τk → 0 of this result does not reproduce the behaviour

of the economy with τk = 0. It can be shown that in the latter case ui has a non stationary

lognormal distribution. Finally, notice that the Pareto exponent is continuous across the

transition from a stationary to an endogenously growing economy

lim
sρ∗−ν→0−

α = lim
sρ∗−ν→0+

αEG,

though it has a singular behavior in the first derivative (with respect to ν or s).

3.3.1 Pareto Exponent and the Growth Rate of Economy

As for the case of stationary/exogenous growth case the Pareto exponent αEG negatively

depends on τk and positively on Θi,i and β. However, now it is independent of ν: in fact,

in an economy where wealth accumulation is the source of the long-run growth the demo-

graphic factor does not affect the equilibrium interest rate (which is determined only by the

technology) and the level of per capita wealth. The relationships between α and saving rate

s and interest rate ρ∗ is again inverted U-shaped, as showed in Remarks 12 and 13.

Remark 12 ∂αEG/∂s > (<) 0 for s < (>) ŝ, where ŝ =
√

Γ
∆Θi,iρ∗τk

/ [(1 − τk)(ρ
∗ + β)]

Proof. The proof directly follows from the simple derivative of αEG reported in Eq. (67) with

respect to s.

Remark 13 ∂αEG/∂ρ∗ > (<) 0 for ρ∗ < (>) ρ̂∗, where ρ̂∗ =
√

β2 + Γ/ [∆s2Θi,i (1 − τk)]
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Proof. The proof directly follows from the simple derivative of αEG in reported Eq. (67) with

respect to ρ∗.

Remarks 12 and 13 can imply a nonmonotonic relationship between αEG and the growth

rate ψEG. In other words the relation between the inequality and growth is not univocal

because we could observe both an increase and a decrease in αEG as the economy increases

its growth rate ψEG.

Summing up, the endogenous growth model appears to be the limiting case where labour

market does not affect the shape of wealth distribution. In this respect it appears not very

realistic, but it gives us some insights on the possible relationship between growth rate and

the shape of the top tail of wealth distribution.

4 Empirical Evidence

In this section we contrast the theoretical findings of the previous section with empirical ev-

idence. Households appears the best unit of observation to test our model. We consider two

datasets: the Survey of Household Income and Wealth (SHIW), which provides information

on saving, income and wealth for a large sample of Italian households and the Survey of

Consumer Finances (SCF), which provides, among many other variables, the net wealth of

a large sample of U.S. households.26 The comparison of these two datasets is very complex;

therefore we will consider them separately.27

The analysis aims to test if our model is able to reproduce the qualitative changes in the

wealth distribution. Many reasons suggest to keep our analysis at qualitative level: i) our

datasets span at most 17 years, which may be a too short period for the convergence to

equilibrium of the wealth distribution;28 ii) our model does not take into account many

social/cultural factors affecting the distribution of wealth of a country and iii) many factors

can simultaneously push in the same directions (e.g. a contemporaneous decrease in capital

taxation and in the saving rate) and their effects are strongly nonlinear, so it may be hard to

disantagle the effect of each variable on the wealth distribution.

26In general net wealth includes all marketable assets of households. SHIW and SCF

are respectively available on the following websites: http://www.bancaditalia.it/ and

http://www.federalreserve.gov/pubs/oss/oss2/scfindex.html. We refer to these websites for more de-

tails on the two datasets.
27A first attempt to provide comparable data on these two datasets is LWS project, see

www.lisproject.org/lws.htm.
28Notice that Shorrocks (1975) shows that, for the type of stochastic process which describes the wealth

accumulation of dynasties, the estimate of the Pareto exponent can have a non monotonous behaviour as the

actual distribution converges to the equilibrium one.
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4.1 Italy

The SHIW includes data on many economic variables, among which net wealth, savings and

disposable income for about 8000 Italian families for the years 1987, 1989, 1991, 1993, 1995,

1998, 2000, 2002 and 2004.29 Brandolini et al. (2004) and Jappelli and Pistaferri (2000) present

a detailed analysis of the SHIW and we refer to them for more details. By the estimate of

transition matrix between the different waves of the net wealth, where states are defined by

the quintiles of distribution, we calculate the asymptotic half life, i.e. the speed of convergence

of actual distribution to the equilibrium distribution.30 It ranges from 2.04 in 1991-1993 to

3.66 in 1993-1995, and, on average, is equal to 2.55; this means that on average 10.2 (i.e.

2.55 × 2×number of lags) years are necessary to have the complete effect on the wealth

distribution of an exogenous shock (e.g. a change in the fiscal policy). Therefore the period

of observation appears to be sufficiently wide.31

4.1.1 The Saving Function

The average saving rates of Italian households in the period 1987-2004 are reported in Table

1.

Year 1987 1989 1991 1993 1995 1998 2000 2002 2004

Average saving rate 0.216 0.275 0.293 0.277 0.228 0.285 0.275 0.273 0.251

Table 1: Italian average saving rates. Source: SHIW

The average saving rate appears remarkable constant over time with exception of 1987

and 1995. In order to verify that Eq. (11) can represent the effective consumption function

of Italian families we estimate the following equation:32

Si = −χ+ syD
i − cppi,

for the eight different years, where all variable are expressed in nominal liras. Table 2 reports

the result of the estimates.

29In the SHIW the codes of the net wealth, the disposable income, the labour income, the entrepreneurial

income, savings and the households’ weights are respectively W, Y2, YL, YM, S2 and PESOFIT.
30All the statistical analysis is performed by R and all codes and datasets are available on Davide Fiaschi’s

website (http://www-dse.ec.unipi.it/fiaschi/).
31The asymptotic half life between 1993 and 1995 calculated on the estimated transition matrix reported

in Jappelli and Pistaferri (2000) is equal to 3.62, but there the states are defined by the quartiles of the wealth

distribution.
32We test the possibility of a nonlinear relation between saving, disposable income and net wealth. While we

can reject this hypothesis for disposable income, net wealth appears to have a significant nonlinear relationship

with saving (which changes over time). We ignore this fact because, as it is clear from the estimates reported

in Table 2, the effect of net wealth on saving is negligible.
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Est.\Year 1987 1989 1991 1993 1995 1998 2000 2002 2004

χ̂ 6.62e+3 7.24e+3 9.00e+3 1.22e+4 1.46e+4 1.50e+4 1.74e+4 1.50e+4 2.47e+4

ŝ 0.4825 0.5052 0.5502 0.5802 0.608 0.6018 0.6363 0.5769 0.7389

ĉp 0.0080 0.00465 0.00359 0.00025 0.00674 0.00338 0.0042 0.00417 0.00842

Table 2: estimate of saving function (χ̂ is expressed in current million liras). Source: SHIW

All the estimated parameters result highly significant (we do not report t-statistics for

simplicity of exposition). The estimate of χ̂ is increasing over time; this is likely due to the

positive inflation rate and to the increase in the per capita wealth.33 The estimate of ŝ varies

from 0.4825 to 0.7389, but overall ŝ results increasing in the period. The estimates of ĉp is

more volatility, but the impact of net wealth on saving results negligible (see Paiella (2004)).

Moreover, the net wealth and the net disposable income result highly correlated (from 0.54

to 0.65) and this could introduce a bias in the estimates. Table 3 reports the estimates when

cp is neglected.

Est.\Year 1987 1989 1991 1993 1995 1998 2000 2002 2004

χ̂ 5.89e+3 7.35e+3 7.59e+3 1.21e+4 1.31e+4 1.32e+4 1.45e+4 1.43e+4 2.31e+4

ŝ 0.4331 0.4937 0.4984 0.5809 0.5338 0.5585 0.5604 0.5381 0.6535

Table 3: estimate of saving function without wealth (χ̂ is expressed in current liras). Source:

SHIW

Again all the estimated parameters result highly significant and overall ŝ is increasing.

Table 3 shows how year 1993 is a turning point in the estimate of s; after such year ŝ becomes

stable around 0.55-0.54. The big increase in ŝ recorded in 1993 should be due to the severe

crisis of Italian economy in 1992-1993, followed to the devaluation of lira and to the tight

fiscal policy. The increase in the economic uncertainty pushed households to increase their

savings (in particular their precautionary savings). In 2004 there was another big increase in

the marginal saving rate, but we cannot know if such increase is temporary.

Summing up Eq. (11) appears to be adequate to represents the consumption function of

Italian households and overall the saving rate appears to be increasing in the period.

4.1.2 Changes in the Top Tail of the Wealth Distribution

The estimates in Tables 2 and 3 show that between 1987 and 2004 there was a substantial

increase in the marginal saving rate (see Tables 2 and 3). In the same period there was

33As previously argued, the minimum consumption is to be related to a minimum standard of living. Then

an increase in the per capita wealth increases also χ. This intuition is confirmed by the fact that the ratio χ̂/p̄ is

nearly constant in the period.
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a remarkable decrease in the taxation of capital income. In particular, in the recent years

all capital gains are subject to a flat tax rate τk equal to 12.5% whereas taxation on personal

income34 which was strongly progressive until the mid of 1990s, has decreased starting since

1995 (e.g. the highest marginal tax rate on income decreased from 51% to 45.5%).

Another relevant phenomenon in the period was the decrease in the share of labour

income on the aggregate product (in our model given by ω∗/g
(

p̄∗/l̄
)

), from 0.46 in 1990 to

0.416 in 2004 (see Ministero dell’Economia e delle Finanze (2005)); the possible correction

for the self-employed workers does not change the scenario but only the magnitude of the

decrease (from 66.9 in 1990 to 59.0 in 2004, see also Jones (2003)). Assuming Cobb-Douglas

technology (see Eqq. (48)-(48)) ω∗/g
(

p̄∗/l̄
)

= 1 − ε, which would imply that ε has increased

and, as a consequence, the gross return on capital has increased as well.

The changes in the annual growth rate of population are negligible: it slightly increases

from 0.05% in the period 1981-1990 to 0.17% in the period 1991-2000, but its absolute magni-

tude is very low.35

Our model predicts that an increase in saving rate has an ambiguous effect on the Pareto

exponent. For high level of the saving rate such effect may be negative (see Remark 6). A

change in the fiscal policy in favour of capital income should unambiguously decrease the

Pareto exponent. The same effect obtains under a change in technology in favour of the re-

turn on capital. The change in the growth rate of population appears to be not significant.

Finally, the average growth rate of per capita GDP in 1991-2000 was the half of the one in

1981-1990 (i.e. 1.2% vs 2.4%).36 According to the endogenous growth model the relation-

ship between growth rate and Pareto exponent can be inverted U-shaped (see Section 3.3.1),

therefore the decrease in the growth rate starting from a low initial growth should lead to

a decrease of the Pareto exponent. Therefore, overall we expect a decrease in the Pareto

exponent.

Figures 8 reports in the y-axis the log of cumulative density of about top 800 Italian

households (10% of sample), and in the x-axis the log of normalized net wealth, i.e. the net

wealth of households normalized with respect to the average wealth (this is to control for

the growth of the average wealth over the period).

Figure 8 highlights how the relationship between the log of cumulative density and the

log of normalized net wealth is approximatively linear, which agrees with the theoretical dis-

tributions reported in Propositions 4, 8 and 9.37 Figure 9 reports the estimated of the Pareto

exponents of the top tail of distribution (10% of sample) for the eights years, corresponding

34Personal income includes income from labour and from profits. In the second part of 1990s a credit tax

(called DIT: dual income tax) was introduced for the firms reinvesting their profits: this further decreases the

effective taxation on profits.
35Source: Penn World Table 6.1 (http://pwt.econ.upenn.edu/).
36Source: Penn World Table 6.1.
37Adjusted R2 is equal to 0.99 for both years.
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to the expression in Eqq. (47) and (67), by the Hill’s Estimator.38

Figure 9 supports the predictions of our theoretical model.39 As we said, the presence

of nonlinearities and the availability of limited time-series make difficult to disentangle the

individual effects of the changes in the saving rates, fiscal policy and technology. Moreover,

it is not an easy task to have a plausible estimate of the variance of random components (i.e.

∆ and Γ) and of the portfolio diversification of dynasties (i.e. Θi,i).

To highlight the consequence of this decline in the Pareto exponent in terms of wealth

inequality Figure 10 reports the share of the net wealth of top 10% on the total net wealth.

The comparison of Figure 9 and 10 shows the strong correlation between the Pareto ex-

ponent and the share of the net wealth of top 10%: a rough linear regression shows that

Pareto exponent declines from 2.0 in 1987 to 1.79 in 2004 and the share of top 10% increases

38See Embrechts et al. (1997) for more details. We use a more general formula of the estimator of the one

reported in Embrechts et al. (1997), which allows for weighted observations. In particular, given the ranked

vector of households’ wealth (p1, p2, ..., pN ), where p1 ≥ p2 ≥ ... ≥ pN , and the vector of households’ weights

(λ1, λ2, ..., λN ), where ΣN
j=1

λj = N , we have that:

α̂z =
Σz

j=1
λj (log pj − log pz)

Σk
j=1

λj

represents the Hill’s Estimator of the Pareto exponent of the distribution of the z wealthy households (in our

case z is about 800 in every year). Embrechts et al. (1997), p. 336, show that this estimate is consistent and
√

Σz
j=1

λj (α̂z − α) −→ N
(

0, α2
)

.
39The small sample used in the estimates make the standard errors of the estimates very large, so that the

differences among the Pareto exponents of different years are only partially statistically significant (this can be

also due to the relative small period of observation). Moreover, here we are interested more to the tendency

over time than the exact values of the Pareto exponent. Moreover, in 1989, 1991 and 1993 the Hill’s plots

show that the estimate of Pareto coefficient is not convergent in the top first decile. This could mean that the

observed wealth distribution was far from its equilibrium in those years.
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from 0.43 in 1987 to 0.46 in 2004.

4.1.3 Change in the Bottom Tail of the Wealth Distribution

The comparison between Proposition 4 and 8 shows how labour market crucially affects

the bottom tail of wealth distribution, i.e. in the latter workers are the majority. This is

confirmed by data: Italian households with a positive labour income have an average net

wealth slightly below the per capita net wealth p̄ (0.96p̄ in 1987 and 0.92p̄ in 2004), while the

households with positive entrepreneurial income have an average net wealth slightly below

2p̄ (1.98p̄ in 1987 and 1.94p̄ in 2004).

The Italian labour market appears to be progressively increasing in flexibility: the share

of permanent jobs has decreased in favour of the share of non-permanent jobs and the mar-

ket power of Trade Unions is steadily declining. To have an idea of the magnitude of this

phenomenon Table 4 reports the share of non-permanent jobs on the total employees, ex-

cluding the self-employed (the share of the latter on the total employees is stable around

0.27-0.28 over the period 1993-2003).

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Share 0.062 0.068 0.073 0.073 0.079 0.086 0.095 0.101 0.098 0.097 0.097

Table 4: non-permanent jobs on the total employees, excluding the self-employed. Source:

Ministero dell’Economia e delle Finanze (2005).

Moreover, in the same period we observe a strong decrease in the net union member-

ship. The share of memberships, excluding self employed and retired, on the total labour

force declines from 36.5% in 1985 to 30.9% in 1997 (see Golden et al. (2004)). Both phenom-

ena should lead to an increase in the cross-section variance of labour incomes. Figure 11

corroborates this intuition.

Figure 11 reports the distribution of the log of normalized (gross) labour incomes of

Italian households in 1987 and 2004 (in both periods data are normalized to the average).

We observe a clear increase in the size of the bottom tail and, in general, an increase in

the variance of the distribution. The latter is confirmed by the increased Gini index of the

distribution of labour incomes, which rises from 0.583 in 1987 to 0.615 in 2004 (see Figure

12).40

The comparison between Propositions 4 and 8 suggest that an increase in the cross-

section variance of the distribution of labour incomes would imply an increase in the size of

the bottom tail of the wealth distribution (see Figure 5). Figures 13 and 14 respectively report

40See also Brandolini et. al. (2001), who find a wide increase in the earnings dispersion of the Italian house-

holds in the early 1990s.
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come distribution

the nonparametric estimate of the wealth distribution in 1987 and 2004 (only for households

with positive net wealth) and the share of households with negative net wealth for all avail-

able years.41

Both figures support the prediction that the size of the bottom tail of the wealth distribu-

tion has increased in the period 1987-2004 as a consequence of the increase in the flexibility

of Italian labour market.

To conclude, we observe that the changes in the top and bottom tails of the wealth distri-

bution suggest an increase in the inequality of wealth distribution; however, the inspection

of Figure 13 shows a strong increase in the density around the mean (1 in Figure 13), which

means less inequality in the middle of distribution. In a synthetic index of inequality the

latter effect may outweigh the increase in the inequality on both tails. Indeed the Gini index

of the wealth distribution shows a decrease from 0.622 in 1987 to 0.604 in 2004 (0.622 in 1987

is to consider very carefully since already in 1989 Gini index is equal to in 0.591).42

4.2 U.S.

We take the data on the wealth of U.S. households from the SCF: the following years are

available: 1989, 1992, 1995, 1998, 2001 and 2004. The number of U.S. households included in

the SCF is increased from 3143 in 1989 to 4442 in 2004. Data on the net wealth and income

41For the nonparametric density estimation we used the packages ”sm” with the standard settings (in par-

ticular the normal optimal smoothing bandwidth), see Bowman and Azzalini (2005).
42In particular, Gini index of wealth distribution is equal to 0.62 in 1987, 0.59 in 1989, 0.59 in 1991, 0.63 in

1993, 0.61 in 1995, 0.63 in 1998, 0.63 in 2000, 0.62 in 2002 and 0.60 in 2004.
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negative

are easily available on the SCF’s website, but unfortunately neither savings nor earnings are

available.43 Also panel information on households in the sample are not included. We refer

to Wolff (2004) for more details on the SCF.44

We partially try to fill this gap by using data on labour income reported in PSID.45 PSID

also reports data on wealth. However, the wealthy households are strongly underrepre-

sented, so that we prefer the SCF for studying the wealth distribution. Still the panel frame-

work of PSID allows us to have an estimate of the speed of convergence of actual wealth

distribution to the equilibrium distribution.46 The estimated asymptotic half life is equal to

3.46 in 1999-2001 and 3.81 in 2001-2003, i.e. on average it needs 14.5 year to have the com-

43The variable ”SAVING” in the SCF cannot be used in the estimate of the saving function because its defi-

nition does not match the standard definition of saving (i.e. it is not defined as the not-consumed disposable

income).
44It is worth noting that in our calculations we use the weights reported in SCF’s website and this determines

the differences with Wolff (2004)’s results (the main difference is for low wealth/income households, which

he says to be underrepresented in the sample). These differences are relevant both in magnitude, e.g. Gini

index of the wealth distribution is equal to 0.805 in 2001 in our calculations while it is equal to 0.826 in Wolff

(2004) and over time, e.g. Gini index is slightly decreasing between 1989 and 2001 in Wolff (2004) (0.832 in

1989 vs 0.826 in 2001) and increasing in our calculations (respectively 0.787 vs 0.805). In this regard Davies

and Shorrocks (1999), in suggesting to use SCF for the analysis of U.S. wealth distribution, warn about the

controversy on which weights must be used.
45We take data directly from website http://psidonline.isr.umich.edu/.
46In particular we use the following variables (we report the PSID code): ER417, S517 and S617 (households’

wealth in 1999, 2001 and 2003 respectively) and FCWT99, ER20394 and ER24179 (sample weights for 1999,

2001 and 2003)
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plete effect of a shock on the wealth distribution. Also in this case the period for which data

are available appears to be sufficiently wide.

4.2.1 Change in the Top Tail of the Wealth Distribution

Table 5 highlights that the average tax rate has slightly decreased over the period 1985-2003,

but the main benefits are for the top 1% income people (about -6.5%), while top 25% and

top 50% income people have a lower decrease (about -2.5%); it is worth remarking that the

major changes happened at the end of 1980s.

Year Total Top 1% Top 5% Top 10% Top 25% Top 50%

1985 13.89 30.87 24.07 21.34 17.80 15.59

2003 11.90 24.31 20.74 18.49 15.38 13.35

Table 5: average tax rates on income 1985-2003. Source: IRS (http://www.irs.gov/taxstats/)

Also the tax on capital income decreased. Table 6 reports the average and the marginal

federal tax rates on the corporate profits in 1994 and in 2002.47

Year 1994 2002

Average tax rate 27.43 25.58

Marginal tax rate 26.82 23.63

Table 6: federal corporate tax rates in 1985 and in 2002. Source: our calculations on IRS data

The decline in taxation of corporate profits is particularly strong in the marginal tax rate

and the marginal tax rate is lower than the average tax rate (this is due to the higher tax

credit to the biggest corporations). Finally, the Jobs and Growth Tax Relief Reconciliation

Act of 2003 provides further concessions for households and a major cut in the tax rates on

capital gains and dividends.

Table 7 shows how average saving rates of U.S. households has fallen in the period 1985-

2003, starting from an already low initial level.

As regards possible changes in technology in the period 1985-2004 the share of labour

income on the aggregate product did not change appreciably and it was about equal to 0.67

(see Jones (2003)).

There is virtually no change in the annual growth rate of population: 0.93% in the period

1981-1990 and 0.97% in the period 1991-2000.48 Finally, the average growth rate of per capita

47Average tax rate is the ratio between the total income after tax credit and income subject to tax, while the

marginal tax rate is the same ratio calculated for the corporations in the highest class in terms of assets (over

2.500 millions of dollars).
48Source: Penn World Table 6.1.
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Year 1985 1990 1995 2000 2001 2002 2003 2004

Average saving rate 9.0% 7.0% 4.6% 2.3% 1.8% 2.4% 2.1% 1.8%

Table 7: average saving rates of the US households 1985-2004. Source: BEA

(http://www.bea.doc.gov/bea/dn1.htm)

GDP in 1991-2000 is the same of the one in 1981-1990 (i.e. 2.2% vs 2.3%).49

Our theoretical model suggests that the decrease in the tax rate on capital income should

lead to a decrease in the Pareto exponent of the distribution of wealth. Also the decrease in

the saving rate could induce a decrease in the Pareto exponent given its low initial level (see

Remarks 6 and 12). Finally, the growth rate of population and per capita GDP would not

affect the Pareto exponent given their substantial stability.

In the calculation of the Pareto exponent we consider top 10% of U.S. households, exclud-

ing top 0.5% because the extreme top tail appears to be underrepresented and this could

bias the estimate of Pareto exponent.50 For example to respect the privacy of the richest

U.S. households, SCF does not explicitly consider the 400 wealthiest people included in the

Forbes list whose total wealth account for 1.5% in 1989 and 2.2% in 2001 of total U.S. wealth

(see Kennickell (2003), p. 3). For the wealthiest people we refer to Klass et al. (2006), who

show that the distribution of wealth for the people in the Forbes list follows a Pareto distri-

bution, whose Pareto exponent decreased from 1.6 in 1988 to 1.2 in 2003 (see also Castaldi

and Milakovic (2006)).
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Figure 15 shows that top tail follows a Pareto law in 1989 and 2004. The linear regression

in Figure 16 highlights that Pareto exponent decreases from 1.25 in 1989 to 1.19 in 2004; this

49Source: Penn World Table 6.1.
50Comparable results are obtained by excluding 0.1% of top tail. We choose to exclude 0.5% of top tail

because regressions presents an higher adjusted R2.
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agree with Klass et al. (2006)’s results. Figure 17 confirms the inverse relationship between

the Pareto exponent and the size of top tail distribution: a decline in the Pareto exponent

from 1.25 to 1.19 implies an increase in the share of top 10 from 0.67 to 0.69.

Finally, it is worth noting that Wolff (2004) says that a big increase in the inequality of the

U.S. wealth distribution happened between 1983 and 1989. We did not analyse data of 1983

but, given the strict relationship between the Pareto exponent and the wealth inequality, we

could argue that the decrease in the progressivity and in the average tax rates during 1980s

reported in Tables 5 and 6 could be one of the sources of this increase in the inequality.

4.2.2 Change in the Bottom Tail of the Wealth Distribution

As we discussed above the labour market is the key aspect for the shape of the bottom tail of

the wealth distribution according to our model. In the U.S. labour market the share of non-

permanent jobs has not changed significantly in the last 15 years, but the net union density

sharply declined from 17.2 in 1985 to 13.5 in 2000 (see Golden et al. (2004)). Figure 11 reports

the estimate of distribution of the log of normalized (gross) labour income in 1989 and 2001

and Figure 19 the Gini index of labour income distribution for the years 1981, 1989, 1996 and

2002.51
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The peak of the estimated density shows a clear shift below 1 and a consequent increase

in the size of the bottom tail. The increase in the cross-section variance of distribution is

51In particular in the estimate we consider the labour income of the head of family (in PSID database

ER24116, ER12080, V18878 and V8690 are the codes for labour income in 2002, 1996, 1989 and 1981 respectively

and ER24179, ER12084, V18945 and V8727 for sample weights for 2002, 1996,1989 and 1981 respectively).
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confirmed by the increase in the Gini index of distribution of labour incomes, which rises

from 0.43 in 1989 to 0.456 in 2002 (see Figure 19). Therefore we should expect an increase in

the bottom tail of the wealth distribution.

Figure 20 reports the estimated U.S. distribution of wealth in 1989 and 2001 (only house-

holds with positive wealth), while Figure and 21 the share of U.S. households with negative

net wealth.

0.
00

0.
05

0.
10

0.
15

0.
20

Log of normalized net wealth (log scale)

D
en

si
ty

2004
1989

0 3e−04 0.0025 0.0183 0.1353 1 7.3891 54.5982

Figure 20: comparison between the U.S. dis-

tributions of wealth in 1989 and in 2001 (only

households with positive wealth)

0.
07

0
0.

07
2

0.
07

4
0.

07
6

0.
07

8
0.

08
0

Year

S
ha

re
 o

f U
.S

. h
ou

se
ho

ld
s 

w
ith

 n
eg

at
iv

e 
ne

t w
ea

lth

1989 1992 1995 1998 2001 2004

Figure 21: share of U.S. households with neg-

ative net wealth

The comparison between the wealth distributions of 1989 and 2004 reported in Figure 20

highlights that the share of U.S. households with a positive net wealth below the average

has increased (the two distributions cross in correspondence of about 0.38 in Figure 21. The

share of households with negative net wealth appears to be almost constant (see Figure 21)

between 1989 and 2004.

Overall, the changes in the top and bottom tails of the wealth distribution suggest that

the inequality of wealth distribution has increased. The downward shift in the peak of the

distribution also contributes to the increase in inequality. This is confirmed by the Gini index

of the wealth distribution which is increases from 0.787 in 1989 to 0.808 in 2004.

5 Conclusions and future research

This paper can be seen as a first step toward a general equilibrium theory of the distribu-

tion of wealth. We characterize the equilibrium distribution of wealth in an economy with a
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large number of firms and dynasties, who interacts through the capital and the labour mar-

kets. The top tail of the equilibrium distribution of wealth is well-represented by a Pareto

distribution, whose exponent depends on saving rate, net return on capital, growth rate of

population, tax on capital income and the degree of portfolio diversification. On the con-

trary the bottom tail mostly depends on the institutional setting of labour market: a labour

market with a centralized bargaining implies a lower wealth inequality. We also highlight

how shocks to firms’ productivity and dynasties’ wealth can affect the wealth distribution,

even when the economy is very large. Moreover, we find that the passage from a stationary

(or exogenously growing) regime to an endogenously growing one is mirrored by changes

in the wealth distribution. First, the labour and the capital sectors decouple in an economy

with endogenous growth, with labour having no effect on the stationary wealth distribu-

tion. Second, the Pareto exponent has a singularity across the transition. For example, the

exponent does not depend on the growth rate of population in the endogenous growth case,

whereas it depends on it in a possibly nonmonotonic way in the stationary economy.

However, our framework neglects important factors which have been shown to have

a relevant impact on the wealth distribution, such as for example the possible optimiz-

ing behaviour of agents, the age structure of the population and bequests (see Davies and

Shorrocks (1999)). Moreover, our results are relative to the equilibrium distribution of wealth:

the analysis of out-of-equilibrium behaviour seems a necessary extension, also to take into

account the speed of convergence of the actual distribution to its equilibrium and the pos-

sible nonmonotonic behaviour (see Atkinson and Harrison (1978), p. 227). In this respect

the Italian data we analysed shows clear deviations from equilibrium, over time scale of few

years. We conjecture that the latter are related to possible soaring in the real estate prices,

yet another effect not considered in our model.

The lack of space has limited our analysis in many stimulating directions. We did not

deepen the relationship between the distribution of wealth and the distribution of income.

Heuristically we can argue that in our model the wealth inequality is always higher than

the income inequality because generally only a small share of current income derives from

wealth (empirically plausible returns on wealth are well below 10%); the other part of in-

come derives from wages and from Government transfers, which are more equally dis-

tributed across dynasties.

Two further extensions look promising. The first is related to the cases where labour

market and capital market have different speeds of adjustment to equilibrium. It seems

realistic to assume that labour market adjusts at a slower pace than the capital sector. In

such a situation, productivity shocks would impact mostly the capital sector. In this sense,

the case of staggered wages considered here might be thought of as the extreme case where

wages evolve over infinitely slower time scales. Naively speaking, we expect that a slow

speed of adjustment in labour market decreases the cross-section variance of wages and
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hence reduces inequalities in the low tail of the wealth distribution. However, full account of

these issues would entail dealing with situations where firms are constrained in the choice of

the factors of production, with consequent underutilization of factors (i.e. unemployment).

The second interesting extension is the case in which aggregate wealth exhibits a non de-

terministic behaviour. In the light of our findings, this can arises because of correlations in

productivity shocks, which were neglected here, because dynasties concentrate their invest-

ments in few firms/assets or because the number of firms/assets is much smaller than the

number of dynasties. This extension would draw a theoretical link between the dynamics

of the wealth distribution, firm size distribution and the business cycle.
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A Proof of Proposition 1

Given Eqq. (12), (18) and (19) we have

dpi = s

{[

F
∑

j=1

(1 − τk) drjθi,jpi (t) + (1 − τl) dwjφi,jli

]

+

+
1

N

N
∑

i′=1

[

F
∑

j=1

τkdrjθi′,jpi′ (t) + τldwjφi′,jli′

]}

− dc̄− dni (t) pi. (68)

Taking a continuum time limit the dynamics of pi is described by the Langevin equation

(see Gardiner (1997)):
dpi

dt
= Fi [~p] + ηi, (69)

where E [ηi (t)] = 0 and the covariance of ηi is given by:

E [ηi (t) ηi′ (t
′)] = Hi,i′ [~p] δ (t− t′) .

In Eq.(69),

Fi [~p] = lim
dt→0

E [dpi]

dt
and (70)

Hi,i′ [~p] = lim
dt→0

1

dt
E [(dpi − E [dpi]) (dpi′ − E [dpi′ ])] . (71)

From Eq. (68) we have that:

E [dpi] = s
[

(1 − τk) drpi + (1 − τl) dwli + τkdrp̄+ τldwl̄
]

− dc̄− npi, (72)

which together with Eq. (70) and Eqq. (20)-(25) leads to:

Fi [~p] = s
[

(1 − τk) ρpi + (1 − τl)ωli + τkρp̄+ τlωl̄
]

− χ− νpi.

In order to compute Hi,i′ [~p] note that from Eqq. (68) and (72):

dpi − E[dpi] = s
F
∑

j=1

{(1 − τk) (ρ+ β) piθi,j + (1 − τl)ωliφi,j+ (73)

1

N
[τk (ρ+ β) + τlw/λ] kj

}

dζj − pidξi

from which:

Hi,i′ [~p] = ∆s2
{

(1 − τk)
2 (ρ+ β)2 pipi′Θi,i′ + (1 − τl)

2 ω2lili′Φi,i′ +

(1 − τk)(1 − τl) (ρ+ β)ω [pili′Ωi,i′ + lipi′Ωi′,i] +

+
τk(ρ+ β) + τlω/λ

N
[(1 − τk)(ρ+ β)(piϑi + pi′ϑi′) + (1 − τl)ω(liϕi + li′ϕi′)] +

+
[τk(ρ+ β) + τlω/λ]2

N2

F
∑

j=1

k2
j

}

+ Γp2
i δi,i′ ,
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where we used Definitions (21), (28) and (29) and the parameters Θi,i′ , Ωi,i′ and Φi,i′ are

defined in Eq. (31) and ϑi, ϕi in Eq. (34).

QED

B Proof of Proposition 2

From Eq. (73) we have that:

η̄dt =
1

N

N
∑

i=1

[dpi − E (dpi)] =

= s

F
∑

j=1

{

(1 − τk) (ρ+ β)

∑N
i=1 piθi,j

N
+

+ (1 − τl)ω

∑N
i=1 liφi,j

N
+

1

N
[τk (ρ+ β) + τlω/λ] kj

}

dζj −
∑N

i=1 pidξi
N

=

=
1

N

{

s (ρ+ β + ω/λ)
F
∑

j=1

kjdζj −
N
∑

i=1

pidξi

}

,

since kj =
∑N

i=1 piθi,j , lj =
∑N

i=1 liφi,j and kj = λlj ∀j. In order to have no stochastic fluctua-

tion in p̄ we need E [η̄dt] = 0 and E
[

(η̄dt)2] = 0. It is straithforward to see that:

lim
N→∞

E [η̄dt] = 0

and that:

lim
N→∞

E
[

(η̄dt)2] =

= lim
N→∞

1

N2

{

s2 (ρ+ β + ω/λ)2 ∆
F
∑

j=1

k2
j − Γ

N
∑

i=1

p2
i

}

dt = 0 ⇔ lim
N→∞

1

N

F
∑

j=1

k2
j = 0.

Since:
F
∑

j=1

k2
j =

N
∑

i=1

pipi′Θi,i′ ≤
N
∑

i=1

p2
i Θi,i′ =

N
∑

i=1

p2
i

F
∑

j=1

θi,j

N
∑

i′=1

θi′,j ≤ θ̄
N
∑

i=1

p2
i , (74)

here in the first inequality we used the Cauchy’s inequality (see Hardy et al. (1954)):

∑

k

akbk ≤
√

∑

k

a2
k

∑

k

b2k

setting k = i, i′ and ak = pi

√

Θi,i′ and bk = pi′
√

Θi,i′ . In the last passage of Eq. (74) we use

Assumption (35) and
∑F

j=1 θi,j = 1.

QED
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C Proof of Proposition 3

From Eq. (38) we see that Condition (39) ensures that for large value of p̄ dp̄/dt < 0; in fact:

lim
p̄→∞

dp̄

dt
< 0 ⇔ lim

p̄→∞

g
(

p̄/l̄
)

l̄

p̄
= lim

p̄→∞

g′
(

p̄/l̄
)

<
sβ + ν

sa
.

Condition (40) states that in p̄ = 0 dp̄/dt > 0. Since g (.) is continuos, always increasing and

concave, then there exists only one value of p̄, p̄∗, such that dp̄/dt = 0, i.e.:

sag
(

p̄∗/l̄
)

l̄ = χ+ (sβ + v) p̄∗.

On the contrary Condition (41) states that in p̄ = 0 dp̄/dt < 0. This means that p̄ = 0 is

an equilibrium. Condition (42) states that two other equilibria exist. Without an analytical

proof, a simple inspection of Figure 2 shows that the low equilibrium is unstable, while the

high equilibrium is locally stable. Eqq. (44) and (45) are directly derived by Eqq. (15) and

(16), taking into account Eqq. (18) and (19).

QED

D Proof of Proposition 4

In the infinite dynasty economy, when per capita wealth converges to its equilibrium level,

dpi/dt depends on the wealth of all the other dynasties only through the per capita wealth

p̄∗. Hence the determination of the marginal distribution of pi reduces to a single dynasty

problem:

dpi

dt
= µ (pi) + ηi; (75)

E [ηi (t) ηi (t
′)] = σ2 (pi) δ (t− t′)

where, from Proposition 1, we have:

µ (pi) = z0 − z1pi; (76)

σ2 (pi) = lim
N→∞

Hi,i [~p] = a0 + a1pi + a2p
2
i , (77)

with:

z0 = s
[

(1 − τl)ω
∗li + τkρ

∗p̄+ τlω
∗l̄
]

− χ;

z1 = ν − s (1 − τk) ρ
∗;

a0 = ∆s2 (1 − τl)
2 ω∗2l2i Φi,i;

a1 = 2∆s2(1 − τk)(1 − τl) (ρ∗ + β)ω∗liΩi,i;

a2 = ∆s2 (1 − τk)
2 (ρ∗ + β)2 Θi,i + Γ.
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Notice that the last two terms in braces in the expression ofHi,i [~p] vanish in the limitN → ∞.

The Fokker-Planck equation corresponding to Eq.(75) is given by (see Gardiner (1997)):

∂f (pi)

∂t
= −

[

∂µ (pi)

∂pi

− 1

2

∂2σ2 (pi)

∂pi

]

f (pi) .

Since z0 > 0, in equilibrium ∂f (pi) /∂t = 0, that is:

∂µ (pi)

∂pi

f (pi) =
1

2

∂2σ2 (pi)

∂p2
i

f (pi)

Take ϕ = σ2 (pi) f (pi), then:

2
µ (pi)

σ2 (pi)
=
∂ϕ

∂pi

,

that is:

ϕ = Be2
R

dpiµ(pi)/σ2(pi),

where B is a constant; finally:

f (pi) =

(

B

σ2 (pi)

)

e2
R

dpiµ(pi)/σ2(pi). (78)

The integral in Eq. (78) is given by:

∫

dpiµ (pi) /σ
2 (pi) = −

(

z1

2a2

)

ln σ2
pi

+ 2

(

z0 + z1a1

2a2
√

4a0a2 − a2
1

)

arctan

(

a1 + 2a2pi
√

4a0a2 − a2
1

)

,

from which:

f (pi) =

[

N
[a0 + a1pi + a2p2

i ]
1+z1/a2

]

e
4

 

z0+z1a1/(2a2)√
4a0a2−a2

1

!

arctan

 

a1+2a2pi√
4a0a2−a2

1

!

,

where N is such that
∫

∞

−∞
f (pi) dpi = 1. Finally we notice that the distribution f (pi) is well-

defined if
√

4a0a2 − a2
1 has real roots, that is 4a0a2 − a2

1 > 0. Since:

4a0a2 − a2
1 = 4

[

∆s2 (1 − τl) (1 − τk) (ρ∗ + β∗)ωli
]2 ∗

∗
{

Φi,iΘi,i + Φi,iΓ/
[

∆s2 (1 − τk)
2 (ρ∗ + β∗)2]− Ω2

ii

}

and therefore:

4a0a2 − a2
1 > 0 ⇔ Φi,i

{

Θi,i + Γ/
[

∆s2 (1 − τk)
2 (ρ∗ + β∗)2]}− Ω2

i,i > 0,

that is (see Eq. (31)):

F
∑

j=1

φ2
i,j

(

F
∑

j=1

θ2
i,j + Γ/

[

∆s2 (1 − τk)
2 (ρ∗ + β∗)2]

)

>

(

F
∑

j=1

θi,jφi,j

)2

.
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The latter always holds because:

F
∑

j=1

φ2
ij

F
∑

j=1

θ2
ij ≥

(

F
∑

j=1

θijφij

)2

.

given the Cauchy inequality, see Hardy et al. (1954).

QED

E Proof of Proposition 8

The proof follows the same steps of proof of Proposition 2 in Appendix D. When N → ∞
from Eqq. (32) and (54) we have:

µ (pi) = z0 − z1pi; (79)

σ2 (pi) = a2p
2
i , (80)

where:

z0 = s
[

(1 − τl)ω
∗li + τkρ

∗p̄+ τlω
∗l̄
]

− χ;

z1 = ν − s (1 − τk) ρ
∗;

a2 = ∆s2 (1 − τk)
2 (ρ∗ + β)2 Θi,i + Γ.

The marginal distribution satisfies:

fSW (pi) =

(

B

σ2 (pi)

)

e2
R

dpiµ(pi)/σ2(pi), (81)

where B is a constant. Therefore:

fSW (pi) =
N SW

a2p
2(1+z1/a2)
i

e
−

“

z0
a2pi

”

,

where N SW is such that
∫

∞

−∞
fSW (pi) dpi = 1.

QED

F Proof of Proposition 9

Condition (56) ensures that p̄ can grow forever, in fact from Eq. (37) we have that for large

value of p̄ dp̄/dt > 0∀p̄ > 0. If also Condition (57) holds then dp̄/dt > 0 for p̄ = 0. Therefore

for the concavity of g (.) dp̄/dt > 0 for all p̄ ≥ 0. This case is reported in Figure 6. Otherwise

if Condition (59) holds, then dp̄/dt > 0 for p̄ = 0. This means that there exists one value of p,
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p̄∗, such that dp̄/dt = 0 (see Figure 7). Economy will be growing in the long run if the initial

value of per capita wealth is higher than p̄∗, otherwise p̄ converges towards zero. Finally,

Eqq. (60) and (61) are directly derived by Eqq. (15) and (16), taking into account Eqq. (18)

and (19).

QED

G Proof of Proposition 10

Given the definition of ui we have that:

dui

dt
=
dpi

dt
/p̄− ui

dp̄

dt
/p̄.

From Eq.(38) and (60) we have that:

lim
p̄→∞

dp̄

dt
/p̄ = (sρ∗ − v) ,

given that limp̄→∞ g
(

p̄/l̄
)

/
(

p̄/l̄
)

= limp̄→∞ g′
(

p̄/l̄
)

. Morevover, from Eq. (32) we have that:

lim
p̄→∞

dpi

dt
/p̄ = s [(1 − τk) ρ

∗ui + τkρ
∗] − νui + ηi/p̄,

given that limp̄→∞ ω∗ = 0 (see Eq. (61), taking into account that limp̄→∞ g
(

p̄/l̄
)

/
(

p̄/l̄
)

=

limp̄→∞ g′
(

p̄/l̄
)

). Therefore:

lim
p̄→∞

dui

dt
= s (1 − τk) ρ

∗ + η̃i,

where η̃i = ηi/p̄. The derivation of limp̄→∞ limN→∞Hi,i′ [~u] follows the same steps reported

in Proposition 1. In fact:

E [η̃i (t) η̃i′ (t
′)] =

1

p̄ (t) p̄ (t′)
E [ηi (t) ηi′ (t

′)] =
Hi,i′ [~p]

p̄ (t) p̄ (t′)
δ (t− t′) ,

where Hi,i′ [~p] is the same as in Proposition 1, taken into account that in the limit p̄→ ∞ only

the quadratic terms in pi = p̄ui survives.

QED
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