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THE MEASUREMENT OF RANK MOBILITY

MARCELLO D’AGOSTINO AND VALENTINO DARDANONI

Abstract. In this paper we investigate the problem of measuring social mobility
when the social status of individuals is given by their rank. In order to sensibly rep-
resent the rank mobility of subgroups within a given society, we address the problem
in terms of partial permutation matrices which include standard (“global”) matrices
as a special case. We first provide a characterization of a partial ordering on partial
matrices which, in the standard case of global matrices, coincides with the well-known
“concordance” ordering. We then provide a characterization of an index of rank mo-
bility based on partial matrices and show that, in the standard case of comparing two
global matrices, it is equivalent to Spearman’s ρ index.

KEYWORDS: Mobility measurement, Concordance, Partial matrices, Sperman’s index.
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1. Introduction

When discussing social mobility issues, a basic distinction is usually made between
intergenerational mobility (how the distribution of some relevant measure of individual
status changes between different generations in a given society) and intragenerational
mobility (how the distribution of individual status changes among a group of individuals
over a given period of their lifetime). As a vehicle of discussion, we shall concentrate on
intergenerational mobility, but all our considerations and results could be easily trans-
posed to the intragenerational case. All the information about a social mobility context
is then contained in a bivariate cumulative distribution function, which describes the
distribution of two random variables capturing fathers’ and sons’ socio-economic sta-
tus. It is widely believed that socioeconomic mobility is somewhat an elusive concept,
difficult to define, let alone to measure: as remarked by Fields and Ok [FO99a] in a
recent survey “. . . the mobility literature does not provide a unified discourse of analy-
sis. . . . a considerable rate of confusion confronts a newcomer in the field.”1 This may
be contrasted with the literature on income inequality, where a consensus has emerged
on what concepts of inequality mean, on the correct theoretical procedures to measure
it, and on how to go from theory to empirical applications.

Date: 8 September 2007.
1See also Maasoumi [Maa98] for a survey on mobility measurement.
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2 MARCELLO D’AGOSTINO AND VALENTINO DARDANONI

One of the main challenges in mobility measurement is the precise definition of
individual socio-economic status, and its practical implementation using available data.
Typically, mobility studies use data such as current or permanent income, consumption,
occupational prestige, education etc. For ease of presentation, assume that income
data is used for this purpose. In this paper we explore the possibility that the socio-
economic status of each individual is given by his rank, i.e. by its relative position
in the generation to which he belongs. This way of defining individual status seems
quite natural and intuitively satisfying. Indeed, the Encyclopedia Britannica defines
social status as “the relative rank that an individual holds” and some analysts follow
this common-sense interpretation by equating the concept of social status with that of
rank. However, although being an interesting and much used notion, to the best of our
knowledge rank mobility has not been thoroughly investigated so far, and this paper
attempts to fill this gap.

To be precise, suppose (x1, y1), . . . , (xn, yn) describe the population distribution of
fathers’ and sons’ incomes in a society of n families. We make the simplifying assump-
tion that there are no ties in the marginal distributions. 2 Then, for our purposes, the
socio-economic status of the ith father is given by the number of fathers with income
less than or equal to yi, and the the socio-economic status of the jth son is given by the
number of sons with income less than or equal to xj. Hence, rank mobility comparisons
use only the information on the order of the x’s and y’s. Mobility comparisons which
use cardinal information on fathers’ and sons’ income are axiomatized, among others,
by [CBW85, Cow85, FO96, FO99b, GS02, Kin83, MZ86, MO98, RC04] and capture
different aspects of social mobility than the present paper. These contributions may
be considered more complementary than alternative to our approach. Fields ([Fie02],
chapter 6) compares some theoretical properties of various indices of income mobility
including some indices of rank mobility, and Buchinsky et. al. [BFFK05] compare
their empirical properties in an application to French income mobility.

Given our assumption of no ties in the marginal distributions, all the information
concerning the rank mobility of a society is contained in a permutation matrix P ,
with typical element P (i, j) equal to 1 if there is a family in this society whose father
has rank i and son has rank j, and 0 otherwise. The problem is how to turn this
information into a quantitative measure. 3 In order to achieve a faithful and consistent
representation of the rank mobility of subgroups within a given society, we address the
problem in terms of partial permutation matrices (defined in Section 2) which include
standard (“global”) matrices as a special case, and argue that a representation of the
rank mobility of a given subgroup of the population in terms of global matrices would be

2This case typically arises when (x1, y1), . . . , (xn, yn) is actually a random sample generated from
a continuous distribution (so that ties occur with probability zero).

3Note that if (x1, y1), . . . , (xn, yn) is a random sample and we multiply by 1
n the permutation matrix

P we obtain the so called empirical joint rank distribution function (see Block et al. [BCFS90]).
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paradoxical. After observing that a standard decomposability property — which is key
in the characterization of additively separable indices — cannot be sensibly assumed
in the context of measuring rank mobility, we take advantage of our representation
in terms of partial matrices to define a weaker form of decomposability which can
be safely assumed. As an intermediate step, in section 3 we provide (Theorem 1) a
characterization of a partial ordering on partial matrices which in the case of global
matrices coincides with the well-known “concordance” ordering. We then provide (in
Theorems 2 and 3) a rather natural and simple characterization (up to a monotonic
transformation) of an index of rank mobility based on partial matrices and show that,
in the standard case of comparing the mobility of two populations, this is equivalent
to Spearman’s ρ index. Our characterization seems to provide reasonable grounds for
adopting this kind of index (rather than other alternative ones, such as Kendall’s τ or
Spearman’s footrule) in the measurement of rank mobility.

2. Subgroup mobility and partial permutation matrices

Let F denote the set of all families who live in a given society and consider a subset
A ⊆ F ; examples of interesting subsets are the families which live in a given geograph-
ical location, or which belong to a given race, or whose fathers have a given education
level etc. Sometimes we may be interested in exploring how the status of individuals
change from one generation to the next for members of this particular subset. We
could call this kind of information the rank mobility of A with respect to F . Observe
that this is not the same as considering the rank mobility of A w.r.t. A, because indi-
viduals’ rank is calculated with respect to the whole of F . A simple example may help
to clarify. Consider a society F consisting of six families in which the distributions of
fathers’ and sons’ incomes is summarized in Table 1 below:

1 2 3 4 5 6
Fathers 100 150 200 250 300 350
Sons 150 200 100 250 350 300

Table 1. Incomes of fathers and sons in F .

Now, consider the subset A of F consisting only of the third, fourth and fifth families.
If we consider only A and calculate the rank of individuals with respect to this specific
subset, then there is no rank mobility from one generation to the next. Viceversa,
there is clearly a sense in which the families in A exhibit some status mobility, which
is made apparent when the status is calculated with respect to the whole of F : the son
of the third family has lost two positions with respect to his generation, while the son
of the fifth family has gained one position.

This kind of “partial” mobility information, i.e. restricted to a subset of a whole
set F of families, will then be described by an n × n matrix which differs from a
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permutation matrix because it can have rows and columns with zeros only. Such
matrices are called partial permutation matrices.4 When necessary for clarity, we shall
call ordinary permutation matrices global. More formally, the set Pn of n × n partial
permutation matrices is defined as follows: a matrix P belongs to Pn if and only if, for
all i = 1, . . . , n and j = 1, . . . , n, we have: (i) P (i, j) ∈ {0, 1}; (ii)

∑
i P (i, j) ≤ 1; (iii)∑

j P (i, j) ≤ 1. Notice that, under this definition, global matrices are nothing but a
special case of partial matrices.

Now, suppose A and B are disjoint subsets of a set F of n families. Clearly the
partial permutation matrices that describe the rank mobility of A and B with respect
to F , call them P and Q, will belong to Pn and will be disjoint in a related sense that
is expressed by the following definition:

Definition 1. P, Q ∈ Pn are disjoint if

P (i, j) = 1 and Q(m, k) = 1 ⇒ i 6= m and j 6= k.

Corollary 1. P, Q ∈ Pn are disjoint if and only if P + Q ∈ Pn, where + is the usual
sum of matrices.

Therefore, the rank mobility with respect to F of disjoint subsets of F is represented
by disjoint partial matrices. Notice that if we partition F into m mutually exclusive
and exhaustive subsets A1, . . . , Am, the rank mobility of these subsets with respect to
F will be described by mutually disjoint partial matrices P1, . . . , Pm such that P =
P1 + · · ·+ Pm. Let us say that a partial matrix P is atomic if there exists exactly one
i and one j such that P (i, j) = 1, that is, if we are considering a subset containing
exactly one family. We shall use the lower case letter p (possibly with subscripts) to
denote atomic matrices. Clearly, any partial permutation matrix in Pn will be equal
to a sum p1 + · · ·+ pk of k ≤ n atomic matrices, where k = n only for global matrices.

Observe that any n × n partial matrix P can be regarded as representing the rank
mobility of some set of families A with respect to some “society” F of size n that
includes it. Indeed, it is always possible to find an F such that the rank mobility
determined by the marginal distributions of fathers’ and sons’ income is represented
by a global matrix that includes P . So, the above corollary implies that the sum of
two disjoint partial matrices can always be regarded as representing the rank mobility
of some suitable subgroup A of a possible “society” F . Therefore, in this abstract
setting, we can forget about “real” families, groups and societies and concentrate only
on the partial matrices that represent their rank mobility. However, to avoid long-
winded sentences, we shall often abuse of the more concrete terminology and speak,
for instance, of “a society (group) P” to mean “a society (group) whose rank mobility
is represented by the (partial) matrix P”, or of “the family (i, j) (in a matrix P )” to

4See e.g. Horn and Johnson [HJ91] for definitions and some properties of partial permutation
matrices.
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mean “the family in which the father’s rank is i and the son’s rank is j (in a society
whose rank mobility is represented by P )”.

We are interested in axiomatizing the properties of some suitable ordering �M over
Pn such that P �M Q can be taken as meaning that the matrix Q exhibits at least the
same degree of social mobility as the matrix P .

3. Axiomatizing rank mobility orderings

In this section we shall start investigating the ordering relation �M . Given two
matrices P and Q in Pn, when can we say that Q displays at least the same rank
mobility as P? We introduce and discuss some plausible axioms to impose on �M

and then derive characterization theorems following an incremental approach. As a
first step, in Section 3.1, we shall only assume that �M is a quasi-ordering, that is a
reflexive and transitive binary relation on Pn, and shall not assume that the ordering
is complete. Then, we derive, in Theorem 1, a characterization of what we propose
as the basic rank mobility ordering from two basic axioms. Next, in Section 3.2, we
investigate the possible completions of this basic quasi-ordering, and add further axioms
which allow us to obtain sharper characterizations in Theorems 2 and 3.

3.1. The concordance ordering. While it is intuitively clear that it is meaningful to
compare two standard (i.e. global) permutation matrices representing the rank mobility
of two societies F and F ′, it is not quite as clear whether it is equally meaningful to
compare partial matrices — representing, say, the rank mobility of some subset A ∈ F
w.r.t. F and the rank mobility of some subset B ∈ F ′ w.r.t. F ′ — when they have
different marginal distributions.5 We shall therefore start by restricting the comparison
to a clear-cut case.

Definition 2.

(1) Two matrices P, Q ∈ Pn are similar if

{i|P (i, j) = 1 for some j} = {i|Q(i, j) = 1 for some j} and

{j|P (i, j) = 1 for some i} = {j|Q(i, j) = 1 for some i}.

(2) A matrix P ∈ Pn is monotone if, for all i, j,m, k such that P (i, j) = 1 and
P (m, k) = 1, we have (i−m)(j − k) > 0.

So, two matrices are similar when they have equal marginal distributions. Note that the
definition of similarity induces an equivalence relation on Pn. Moreover, observe that
within each similarity set there is a unique monotone matrix which can be considered
as displaying the least amount of mobility:

5Loosely speaking, by “marginal distributions” of a partial matrix P we mean the following: the
marginal distribution of the fathers is the set of all i such that P (i, j) = 1 for some j, and the marginal
distribution of the sons is the set of all j such that P (i, j) = 1 for some i.
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Axiom 1 (Monotonicity). For any distinct P, Q ∈ Pn such that P is monotone and
similar to Q we have P ≺M Q.

Notice also that if a matrix is monotone, then, and only then, there is a strictly
increasing function from fathers’ rank to sons’ rank.6

The second axiom requires that the sum of disjoint partial matrices is a monotonic
operation:

Axiom 2 (Subgroup Consistency). For every P1, P2, P3, P4 ∈ Pn such that P1 is dis-
joint with P2 and P3 is disjoint with P4

P1 �M P3 and P2 �M P4 ⇒ P1 + P2 �M P3 + P4.

Similar axioms are commonly used in the literature on income inequality [Sho88],
poverty [FS91] and mobility measurement [FO99b],7 where they usually imply a funda-
mental, and practically useful, decomposability property: given an arbitrary partition
of a population into k subgroups, the problem of measuring a certain feature in the
overall population can be reduced to the k separate problems of measuring that fea-
ture in each of the k subgroups.8 It must be stressed that the above axiom cannot be
interpreted as asserting a similar decomposability of the rank mobility of a society F
into the rank mobility of their subgroups. In the terminology used in the introduction,
this would amount to asserting that, given a partition of F into A1, . . . , Ak, the rank
mobility of F w.r.t. F , can be decomposed into the rank mobility of A1 w.r.t. A1, A2

w.r.t. A2, etc., where the rank of each individual is evaluated with reference to the sub-
group to which it belongs. However, this would clearly be paradoxical in the context
of measuring rank mobility.

To see why, recall the simple example given in Section 2 (see Table 1), considering
a society made of six families. Let A1 be the subgroup consisting of the third, fourth
and fifth families, and A2 the subgroup consisting of the first, second and sixth. Now,
it is clear that the rank mobility of the whole F w.r.t. F is greater than zero, while
the rank mobility of A1 w.r.t. A1 and the rank mobility of A2 w.r.t. A2 are both,
intuitively, equal to zero. Hence, we cannot hope that rank mobility enjoys such a
strong decomposability property.9 However, our axiom states a weaker decomposability

6The reader may find it helpful to compare our concept of similar matrices with the well-known
Frechet class of distributions with fixed marginals, and our monotonicity axiom with the lower bound
in the Frechet class (see e.g. Nelsen [Nel99]).

7Though such axioms are widely accepted in these contexts, for a critical discussion see Foster and
Sen [FS97].

8For this interpretation of the decomposability property in the context of social mobility see, for
instance, Fields and Ok [FO96]. The term decomposability has different interpretations in other
theoretical and applied contexts.

9Tha a mechanical application of standard decomposability properties is clearly nonsensical in this
context is remarked, for example, by Cowell [Cow85] page 144, who explicitly states that distance
measures based on ranks are not decomposable.
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property: given a partition of F into A1, . . . , An, the rank mobility of F w.r.t. F , can
be decomposed into the rank mobility of A1 w.r.t. F , A2 w.r.t. F , etc., where the rank
of each individual is evaluated with reference to the whole society F . Accordingly, the
axiom is expressed in terms of partial permutation matrices for a society F , which are
obtained from the global permutation matrix for F by omitting information concerning
some of the families, and are intended to represent the rank mobility of given subgroups
with respect to the whole of F . Our subgroup consistency axiom, therefore, cannot
be interpreted as allowing us to measure the rank mobility of a population in terms of
independent measurements of the rank mobility of its subgroups. Indeed, our axiom
is better understood as a monotonicity requirement on the sum of disjoint partial
permutation matrices, and, from this point of view, it expresses a basic logical property
that seems quite uncontroversial.

Suppose, now, that we have a matrix P such that, for the indices k < m and l < n we
have P (k, l) = P (m, n) = 1, and consider another matrix Q such that P (i, j) = P (i, j)
for all i 6= k,m and j 6= l, n, and Q(k, n) = Q(m, l) = 1. In words, Q differs from P
because there has been an inversion of social status between two families, such that
before the inversion the higher status father had the higher status son, while after
the inversion the lower status father has the higher status son. Intuitively, such an
inversion should be mobility-increasing.10 Under these circumstances we say that Q
has been obtained from P by inverting (k, l) and (m,n). We write P � Q whenever Q
can be obtained from P by means of such an inversion.

Suppose, a given matrix Q can be obtained from P by a sequence of inversions.
We can intuitively conclude that Q displays more social mobility than P , and write
P �C Q. Formally:

Definition 3. P �C Q if and only if there is a finite sequence of matrices P0, . . . , Pk,
with k ≥ 0, such that (i) P0 = P , (ii) Pk = Q and (iii) if k > 0, Pi−1 � Pi for all
i = 1, . . . , k.

It can be easily checked that �C is a partial order11 defined on each set of similar
matrices. The reason for the choice of the subscript “C” is that, when the similarity
class consists of the global matrices in Pn, �C is called the concordance ordering in the
mathematical statistics literature, see e.g. Tchen [Tch80] and Kimeldorf and Sampson
[KS87].

Theorem 1. Within each set of similar matrices, �C is the smallest12 quasi-ordering
which satisfies Axiom 1 and Axiom 2.

10Such swaps are well-known in the mathematical statistics [Tch80] and economics [ET80, Atk83,
Dar93] literature and it is often assumed that they are always mobility-increasing.

11That is, besides being reflexive and transitive, it is also antysimmetric, namely: P �C Q and
Q �C P imply that P = Q.

12In terms of set-inclusion.
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A proof of this theorem is given in Appendix A. The concordance ordering �C is a
very well established and much studied ordering of bivariate distributions. Atkinson
[Atk83] first applies the concordance ordering to mobility measurement; Dardanoni
[Dar93] applies it to a Markov chain model of social mobility, and shows the equiv-
alence of a version of this ordering to some very intuitive concepts of greater social
mobility. It is a partial ordering which, in the space of global permutation matrices, is
a subrelation of many important complete orders, for example, those induced by the
popular nonparametric indices of concordance such as Kendall’s τ and Spearman’s ρ,
see e.g. Schweizer and Wolff [SW81]. The theorem then says that all reflexive and
transitive relations �M which satisfy Axioms 1 and 2 must have a common area of
agreement equal to �C .

On the other hand, �C allows for comparisons between similar matrices only and,
while this restriction is immaterial when comparing global matrices, it makes the com-
parison of partial matrices impossible except for the artificial special case in which
the matrices have exactly the same marginal distributions. Moreover, being a partial
ordering, �C does not even allow for comparisons of all matrices in a given similarity
set. Thus, in order to be able to compare all mobility contexts in Pn, we must focus
on weak orderings,13 rather than quasi-orderings. Clearly, even assuming that �M is
a weak ordering, Axioms 1 and 2 are not sufficient to uniquely characterize it (since
there are several weak orderings, e.g. the above mentioned ρ and τ , that satisfy them.)
From this point of view, Theorem 1 only implies that every weak ordering �M that
satisfies the axioms must include �C , and so the properties expressed by the axioms
can be considered as minimal requirements on any suitable mobility ordering. So, in
the sequel, we shall take our mobility ordering �M to be a weak ordering and seek for
extra axiomatic properties that allow us to uniquely characterize it.

3.2. Completing the concordance ordering. In this section we investigate the
possible completions of the basic concordance ordering characterized in Theorem 1.
We shall therefore assume that our mobility ordering �M is a weak (i.e. transitive and
complete) ordering and consider the class of weak orderings �M satisfying Axioms 1
and 2. (As implied by Theorem 1, they must all include the concordance ordering.)
Our aim, now, is to investigate how these axioms can be expanded to single out a
suitable mobility ordering from this class.

There are two distinct intuitive aspects of the notion of “greater mobility” which
emerge from its conceptual analysis. One aspect, which is apparent in the standard
definitions of some well-known orderings — such as the concordance ordering and the
weak ordering based on Kendall’s function τ — stems from the idea that there is an
increase in mobility when two families interchange their relative position. On the other
hand, from a different angle, mobility is related to the distance between father’s and

13Recall that a weak ordering is a quasi-ordering which is also complete, namely such that, for all
P,Q ∈ Pn, either P �M Q or Q �M P .
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sons’s status within each family, and overall mobility of a group of families may be
construed as the aggregation of the degrees of mobility exhibited by all the families in
that group.14

Now, for a single family in a society F , such that father’s rank is i and son’s rank is
j, we can take |i− j| as measuring the social distance between father’s and son’s social
status. This basic intuition is captured by the following:

Axiom 3 (Atomic Monotonicity). For any two atomic matrices p, q ∈ Pn such that
p(i, j) = q(i′, j′) = 1,

p �M q ⇐⇒ |i− j| ≤ |i′ − j′|.

Notice that, although this axiom forces a unique weak ordering of atomic matrices, it
is not sufficient to uniquely characterize �M in the whole of its domain.

Let’s now introduce some notation which will simplify considerably the following
discussion. If “P” denotes a matrix in a given space Pn, then “Pm”, with m ≥ n, will
denote the matrix in Pm which coincides with P wherever P is defined and contains
only 0’s everywhere else, i.e. the matrix defined as follows:

Pm(i, j) = P (i, j) for all i, j ≤ n and

Pm(i, j) = 0 for any i, j such that i > n or j > n.

On the other hand, if “P” denotes a matrix in Pm, we shall attach no meaning to the
notation “P k” with k < m. Observe that, by definition,

(1) (P k)m = Pm for every m ≥ k
(2) (P + Q)m = Pm + Qm for every disjoint P, Q ∈ Pk with k ≤ m.

Let us say that a matrix P is null if i = j for all (i, j) such that P (i, j) = 1. Intuitively,
a null-matrix says that the subgroup for which it is defined displays no mobility at all.
The following axiom is an adaptation of the well-known Archimedean Property to our
setting:

Axiom 4 (Archimedean Property). For every m and all P, Q ∈ Pm, the strict inequal-
ity P ≺M Q holds if and only if there is an n ≥ m and a non-null R ∈ Pn, disjoint
with P n, such that

P n + R ∼M Qn.

Observe that, within a given space Pn, a partial permutation matrix P is uniquely
determined by the set S(P ) = {(i, j)|P (i, j) = 1}. We call S(P ) the characteristic set
of P .

Now, we can prove the following:

14Clearly these two concepts of mobility (one which considers the interplay of families and the
other which considers families in isolation) are interrelated, since single families cannot change relative
positions without affecting other families.



10 MARCELLO D’AGOSTINO AND VALENTINO DARDANONI

Theorem 2. �M is a weak ordering satisfying Axioms 1–4 if and only if there is a
strictly increasing and strictly convex function f : N → N such that, for all n and for
all P, Q ∈ Pn,

P �M Q ⇐⇒
∑

(i,j)∈S(P )

f(|i− j|) ≤
∑

(i,j)∈S(Q)

f(|i− j|).

A proof of this theorem is given in Appendix B. Theorem 2 shows that Axioms 1–
4 characterize (up to a monotonic transformation) a class of additive mobility indices
which depends on the choice of an appropriate weighting function f . It is interesting to
notice that, within the space of global matrices, two important indices of ordinal asso-
ciation which would seem appropriate to (im)mobility measurement, namely Kendall’s
τ and Spearman’s footrule (see e.g. Kendall and Gibbons [KG90] for definitions and a
discussion of their properties) do not belong to the class defined in Theorem 2.

Consider for example the global permutation matrices P , P ′ and P ′′ in P4 with the
following characteristic sets:

S(P ) = {(1, 1), (2, 4), (3, 3), (4, 2)}
S(P ′) = {(1, 3), (2, 1), (3, 4), (4, 2)},
S(P ′′) = {(1, 1), (2, 3), (3, 4), (4, 2)}.

Using any of the mobility indices, say M , in the class characterized by Theorem 2, the
mobility of P , P ′ and P ′′ will be equal to

M(P ) = H
(
f(0) + f(2) + f(0) + f(2)

)
,

M(P ′) = H
(
f(2) + f(1) + f(1) + f(2)

)
,

M(P ′′) = H
(
f(0) + f(1) + f(1) + f(2)

)
for some strictly increasing and strictly convex f and strictly increasing H. Now, if
we adopted Spearman’s footrule as a mobility measure, which corresponds to letting f
be the identity function, P and P ′′ would display the same amount of mobility, since
0+2+0+2 = 0+1+1+2. However, P can be derived from P ′′ by an inversion of the
families (2, 3) and (3, 4). Thus S ′′ ≺C S, and so Spearman’s footrule is inconsistent
with �C . This failure of Spearman’s footrule to satisfy the basic ordering �C makes
it unsuitable for measuring rank mobility.

On the other hand, it is easy to show that, in the class of global matrices, Kendall’s
τ does indeed agree with �C (see e.g. Schweizer and Wolff [SW81]). Nevertheless,
it cannot satisfy all our axioms, as can be seen by observing that P and P ′ have the
same value of Kendall’s τ , while any of the indices of Theorem 2 would deliver different
values, since in P ′ there are two families with social distance equal to 2 (as in P ), but,
in addition, there are also two families with positive social distance (since f is strictly
increasing).
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Now, while Theorem 2 characterizes a class of mobility indices which is small enough
to exclude some important indices, it clearly contains more than one possible mobility
index, so that its practical application is still dependent on the choice of the function f .
This choice can, however, be guided by the following argument: consider an inversion
of two families (i, j) and (i+1, j +1), so that 1 is the distance between the fathers and
1 is the distance between the sons before the inversion. We shall write P C Q when Q
is obtained from P by means of such an inversion.

It may be reasonable to assume that all the inversions of this type are minimal
inversions and that they all generate an equivalent mobility increase.15 This assumption
is expressed by the following axiom:

Axiom 5 (Minimal Inversion). For any matrices P, Q, R,∈ Pn,

P C Q and P C R =⇒ Q ∼M R.

Then we can prove the following:

Theorem 3. �M is a weak ordering satisfying Axioms 1–5 if and only if for any
P, Q ∈ Pn,

P �M Q ⇐⇒
∑

(i,j)∈S(P )

(i− j)2 ≤
∑

(i′,j′)∈S(Q)

(i′ − j′)2.

A proof is given in Appendix C. It can be easily verified that, within the set of global
matrices, Theorem 3 characterizes (up to a monotonic transformation) the well-known
Spearman index of ordinal association, since the latter (which is better described as
an immobility index) can be written as

ρ(P ) = 1−
6
∑

(i,j)∈S(P )(i− j)2

n3 − n

(see e.g. Kendall and Gibbons [KG90], page 8).
On the other hand, the ordering characterized in Theorem 3 is not restricted to

populations’ comparisons. For partial permutation matrices, the theorem provides a
means for comparing the status mobility of different subgroups when the concept of
social status we are interested in refers to the rank of individuals in the whole society.
As an example, recall again the society F considered in in Section 2 (see Table 1), and
assume that the third, fourth and fifth family belong to a first group, while the first,
second and sixth belong to a second group. It is then easily calculated that families in
the first group exhibit a greater level of rank mobility than those in the second, since
applying Theorem 3 we have 4 + 0 + 1 > 1 + 1 + 1.

15By contrast, we might assume that the increase of mobility generated by an inversion should
depend, somehow, also on the values of the father’s rank i and the son’s rank j in the inverted
families. In this case, of course, not all minimal inversions would be equivalent.
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Appendices

Appendix A. Proof of Theorem 1

Proof. We first show that the �C ordering (which, we recall, is defined on each set of
similar partial matrices) satisfies the axioms. It is obvious that it satisfies Axiom 1.
As for Axiom 2, suppose P1, P2 and P3, P4 are mutually disjoint, and P1 �C P3 and
P2 �C P4. Then there exists a sequence Q0, . . . , Qk of partial matrices in Pn such that
(i) Q0 = P1, (ii) Qk = P3 and (iii) Qi � Qi+1 for i = 0, . . . , k− 1. Similarly, there exists
a sequence R0, . . . , Rk′ of partial matrices in Pn such that (i) R0 = P2, (ii) Rk′ = P4

and (iii) Ri � Ri+1 for i = 0, . . . , k′ − 1. Suppose k′ > k. Then, it is easy to see that,
since P1, P2, and P3, P4 are mutually disjoint, the sequence

Q0 + R0, . . . , Qk + Rk, Qk + Rk+1, . . . , Qk + Rk′

is such that (i) Q0 + R0 = P1 + P2, (ii) Qk + Rk′ = P3 + P4, (iii) Qi + Ri � Qi+1 + Ri+1

for i = 0, . . . , k − 1, and (iv) Qk + Rj � Qk + Rj+1 for j = k, . . . , k′ − 1. Hence, by
definition of �C , we have that P1 + P3 �C P2 + P4. The argument is similar when
k > k′.

Next, we show that if a quasi-ordering �M satisfies the axioms, then it must include
the concordance ordering. This is sufficient to conclude that �C is the smallest quasi-
ordering satisfying the axioms.

Suppose �M satisfies the axioms. Let P and Q be two matrices such that P �C Q.
By definition, this means that P and Q are similar and there is a sequence of matrices
P0, . . . , Pk, with k ≥ 0, such that P0 = P , Pk = Q and, if k > 0, Pi � Pi+1 for all i =
1, . . . , k−1. Now consider the i-th inversion step, and suppose it is such that, for some
j, m, l, n with j < m and l < n, Pi−1(j, l) = Pi−1(m, n) = 1 and Pi(j, n) = Pi(m, l) = 1.
Consider the matrix P ∗

i−1 such that only P ∗
i−1(j, l) = P ∗

i−1(m, n) = 1, while all the other
entries are 0 (that is, its characteristic set S(P ∗

i−1) is equal to {(j, l), (m, n)}). Let also
P ∗

i be the similar matrix such that only P ∗
i (j, n) = P ∗

i (m, l) = 1, while all the others
are 0 (that is, its characteristic set S(P ∗

i ) is equal to {(j, n), (m, l)}).
Clearly

Pi−1 = (Pi−1 − P ∗
i−1) + P ∗

i−1 and Pi = (Pi − P ∗
i ) + P ∗

i .

Moreover, Pi−1 − P ∗
i−1 = Pi − P ∗

i and, since j < m and l < n, the matrix P ∗
i−1 is a

monotone matrix, so that P ∗
i−1 �M P ∗

i (by Axiom 1). Therefore,

Pi−1 = (Pi−1 − P ∗
i−1) + P ∗

i−1 �M (Pi − P ∗
i ) + P ∗

i = Pi

by Axiom 2. Hence, Pi−1 �M Pi. The same argument holds for all i, therefore P �M Q.
This shows that P �C Q implies P �M Q for all P, Q, i.e. �C is included in �M .
Since �M was an arbitrary quasi-ordering satisfying the axioms, �C is included in all
the quasi-orderings satisfying the axioms. �
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Appendix B. Proof of Theorem 2

B.1. Preliminary lemmas. The following lemmas turn out to be useful to make the
proof of Theorem 2 more readable.

Lemma 1. If �M is a weak ordering satisfying Axiom 4, then

P �M Q if and only if Pm �M Qm,

for all n, all P, Q ∈ Pn and all m ≥ n.

Proof. Suppose P �M Q and Pm 6�M Qm, that is Pm �M Qm, for some m ≥ n. Then,
by Axiom 4, there is an m′ ≥ m and a non-null R ∈ Pm′ such that R is disjoint with
Qm′

and

Qm′
+ R ∼M Pm′

.

Since m′ ≥ n, it follows again from Axiom 4, that Q ≺M P , against the hypothesis.
Hence:

(1) P �M Q =⇒ Pm �M Qm.

For the converse, suppose that for some m > n, Pm �M Qm and P �M Q. Then, by
Axiom 4,

(2) P k ∼M Qk + R,

for some k ≥ n and some non-null R ∈ Pk. Now, if k ≥ m, this implies, again by
Axiom 4, that Qm ≺M Pm against the hypothesis. If k < m, it follows from (2), by
(1), that Pm ∼M (Qk + R)m ∼M Qm + Rm. Since Rm is non-null, it follows, again by
Axiom 4, that Qm ≺M Pm, against the hypothesis. �

Lemma 2. If �M is a weak ordering satisfying Axiom 4, then

P �M P + R,

for all n, and all P, R ∈ Pn such that P + R ∈ Pn.

Proof. Suppose P �M P + R. Then, by Axiom 4,

Pm ∼M (P + R)m + S ∼M Pm + Rm + S

for some m ≥ n and some non-null S ∈ Pm. Since Rm + S is non-null, this would
imply, again by Axiom 4, that P �M P , which is impossible. �

Let us denote by ⊥n the unique matrix P ∈ Pn, that we call the empty matrix, such
that P (i, j) = 0 for all i, j, that is the n × n matrix which is totally undefined. By
definition, (i) ⊥n is a null matrix (ii) for every P ∈ Pn, ⊥n is disjoint with P , and (iii)
⊥n + P = P .
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Lemma 3. If �M is a weak ordering satisfying Axioms 2, 3 and 4, then

⊥n ∼M P ≺M Q

for every null matrix P ∈ Pn and every non-null matrix Q in Pn.

Proof. First, recall that (by Axiom 4)⊥n ≺M Q, for every n and every non-null Q ∈ Pn,
since ⊥n + Q = Q ∼M Q. Hence, we only have to show that P ∼M ⊥n for every null
P ∈ Pn. If P = ⊥n, then it is trivially true that P ∼M ⊥n. Consider, then, the
case that P 6= ⊥n. Let us first show that p ∼M ⊥n for every null atomic matrix p.
Suppose, that p �M ⊥n. Then, by Axiom 4, pm ∼M ⊥m + R = R for some m ≥ n
and some non-null R ∈ Pm. Since R is non-null, R = r + T for some non-null atomic
matrix r and some, possibly null, matrix T in Pm. By Axiom 3, pm ≺M r and, by
Lemma 2, pm ≺M r + T = R. This is a contradiction, since we had before concluded
that pm ∼M R. Suppose, then, that ⊥n �M p. By Axiom 4, pm + R ∼ ⊥m for some
m ≥ n and some non-null R ∈ Pm. Now, since ⊥m ≺M Q for every non-null Q ∈ Pm,
it follows that ⊥M ≺M R. Then, by Lemma 3, ⊥M ≺M pm + R against the previous
conclusion that ⊥M ∼M pm + R. Hence, since �M is a weak ordering, ⊥M ∼M p.

If P is not an atomic matrix and P 6= ⊥n, then P = p1 + · · · + pk for some k such
that 1 < k ≤ n, with each pi (1 ≤ i ≤ k) being a null atomic matrix. As we have
just established, pi ∼M ⊥n for all i = 1, . . . , k. Hence, by Axiom 2 (and recalling that
⊥n +⊥n = ⊥n), P ∼M ⊥n. �

Say that two matrices P and Q are atomically equivalent if, for every k ≥ 0, they
contain the same number of non-zero entries (i, j) with |i − j| = k. Clearly, if P and
Q are atomically equivalent, there are atomic matrices p1, . . . , pm and q1, . . . , qm, with
m ≤ n, such that P = p1 + · · ·+ pm, Q = q1 + · · ·+ qm and, by Axiom 3, pi ∼M qi for
i = 1, . . . ,m. Hence, by Axiom 2, if P and Q are atomically equivalent, then P ∼M Q.

Remark 1. Given any two matrices P, Q ∈ Pn, one can always find a sufficiently
large m and a matrix R in Pm such that R is atomically equivalent to Qm and disjoint
with Pm. For this purpose, it is sufficient to take m = 2n and R equal to the matrix
such that (i) R(i, j) = 0 for all i, j ≤ n and (ii) R(n + i, n + j) = 1 if and only if
Q(i, j) = 1. Using this method, if P1, . . . , Pk are matrices in Pn, one can always find
suitable matrices P ′

1, . . . , P
′
k ∈ Pkn such that (i) P kn

i ∼M P ′
i for i ≤ k and (ii) all the

P ′
kn are mutually disjoint.

Lemma 4. If �M is a weak ordering satisfying Axioms 2 and 4, then for all n, and
all P, Q,R, S ∈ Pn such that P is disjoint with R and Q is disjoint with S,

P ∼M Q and P + R ∼M Q + S =⇒ R ∼M S.

Proof. Let us assume that P ∼M Q and P + R ∼M Q + S. Suppose, ex absurdo, that
R 6∼M S.
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Case 1: R �M S. Then, it follows from Axiom 4, that Rm ∼M Sm + T for some
m ≥ n and some non-null T ∈ Pm. By Remark 1, there are m′ ≥ m and U ∈ Pm′ such
that U ∼M Pm′

and U is disjoint with Sm + T . Hence, by Lemma 1 and Axiom 2,

Pm′
+ Rm′ ∼M U + Sm′

+ T ∼ Qm′
+ Sm′

.

So, by Axiom 4, U + Sm′ ≺M Qm′
+ Sm′

(since T is non-null). However, by Axiom 2,
U +Sm′ ∼M Qm′

+Sm′
(since U ∼M Pm′ ∼M Qm′

by hypothesis and Lemma 1), which
is a contradiction.

Case 2: R ≺M S. This case is similar to Case 1 and is left to the reader. �

Now, consider the set P =
⋃∞

i=1Pi of all partial matrices. We define the subset ∆k,
k ≥ 0, of P as the set of all P ∈ P such that for all (i, j) ∈ S(P ), |i− j| ≤ k. Notice
that ∆k ⊆ ∆m whenever k ≤ m. The matrices in ∆0 are the null matrices. We shall
also write ∆n

k for ∆k ∩ Pn. Moreover, given two matrices P, Q ∈ Pn, let us say that Q
is contained in P if P (i, j) = 1 for all i, j ∈ {1, . . . , n} such that Q(i, j) = 1. Recall
that every partial matrix can be uniquely expressed as a sum of atomic matrices.

Lemma 5. If �M is a weak ordering satisfying Axioms 2, 3 and 4, then for all n and
all P, Q ∈ ∆n

1 , P �M Q if and only if the number of non-null atomic matrices contained
in P is less than or equal to the number of non-null atomic matrices contained in Q.

Proof. Suppose first that the number of non-null atomic matrices contained in P is less
than or equal to the number of non-null atomic matrices contained in Q. Let p1, . . . , pj

be the non-null atomic matrices in P and q1, . . . , qk the non-null atomic matrices in Q,
with j ≤ k ≤ n. Then P = p1+· · ·+pj+R for some null R ∈ Pn and Q = q1+· · ·+qj+S
for some possibly non-null S ∈ Pn. By Axiom 3 all the non-null atomic matrices in ∆n

1

are equivalent to each other and therefore, by Axiom 2, p1 + · · ·+ pj ∼M q1 + · · ·+ qj.
Moreover, by Lemma 3, R �M S. Hence, again by Axiom 2, P �M Q. Suppose now
that the number of non-null atomic matrices in P is strictly greater than the number
of non-null atomic matrices in Q. Let p1, . . . , pk the non-null atomic matrices in P and
q1, . . . , qj the non-null atomic matrices in Q, with j ≤ k ≤ n. So, P = p1 + · · ·+ pj +R
for some non-null R ∈ Pn and Q = q1 + · · ·+ qj + S for some null S ∈ Pn. Moreover,
by Lemma 3, S ≺M R and, as argued above, p1 + · · · + pj ∼M q1 + · · · + qj. So, by
Axiom 2, Q = q1 + · · · + qj + S �M p1 + · · · + pj + R = P . By Lemma 4, Q ∼M P
would imply that S ∼M R which, given that S is null and R is non-null, is ruled out
by Lemma 3. Therefore, we can conclude that Q ≺M P . �

Lemma 6. If �M is a weak ordering satisfying Axioms 2–4, then for every n and every
atomic matrix p ∈ Pn, there is an m ≥ n such that pm ∼M Q for some Q ∈ ∆m

1 .

Proof. Since every atomic matrix p ∈ Pn belongs to some ∆n
k , with k ∈ N, we prove

the lemma by induction on the index k of the smallest class ∆n
k to which p belongs. In

the course of the proof, and for the sake of clarity, we shall reserve the notation P̂ , Q̂,
etc. to refer to matrices in ∆1.
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Base: p ∈ ∆n
1 . Trivial.

Step: p ∈ ∆n
j+1. Assuming that the lemma holds for all atomic matrices in ∆n

j we
show that it holds also for all atomic matrices in ∆n

j+1.
Suppose p is an atomic matrix which belongs to ∆n

j+1 but does not belong to ∆n
j .

Then, p is non-null and, by Axiom 3, all atomic matrices in ∆n
j are strictly less than

p. Let now q be a non-null atomic matrix in ∆n
j . Then, q ≺M p and, by Axiom 4,

qm +R ∼M pm for some m ≥ n and some non-null R ∈ Pm. Since, qm is itself non-null,
this implies (again by Axiom 4) that R ≺M pm. Now, we argue that R must be in ∆m

j .
We reason by absurd. Suppose R 6∈ ∆m

j , then R = r+S for some atomic r ∈ Pm not in
∆m

j , and some (possibly empty) matrix S ∈ Pm. However (by Axiom 3) r �M pm and
(by Lemma 2) r + S �M pm. Hence, R �M pm against the conclusion, reached before,
that R ≺M pm. Thus, R must be in ∆m

j and so also qm + R is in ∆m
j . By inductive

hypothesis, there is an m′ ≥ m such that qm′
+Rm′ ∼m P̂ for some P̂ ∈ ∆m′

1 . So, since

pm ∼m qm + R, by Lemma 1, pm′ ∼M P̂ . This concludes the proof of the lemma.
�

B.2. Proof of the main theorem.

Proof. We leave it to the reader to prove that the ordering satisfies Axioms 1–4.
To show that any ordering �M which satisfies the axioms must be of the required

form, let P, Q be two matrices in Pn. First, recall that P and Q can be rewritten as
sums of atomic matrices,

P =
∑

(i,j)∈S(P )

p(i,j) and Q =
∑

(i,j)∈S(Q)

p(i,j),

where p(i,j) is the atomic matrix in Pn such that S(p(i,j)) = {(i, j)}.
By Lemma 6, for each atomic p(i,j) ∈ Pn, there is an k ≥ n such that pk

(i,j) ∼M P̂(i,j)

for some P̂(i,j) in ∆k
1. Observe that, by Remark 1, one can always find, for each

(i, j) ∈ S(P )∪S(Q), a suitable matrix P̂ ′
(i,j) in ∆K

1 , for some sufficiently large K, such

that (i) P̂ ′
(i,j) is atomically equivalent to P̂K

(i,j) (and therefore, by Lemma 1, also to

pK
(i,j)), (ii) all the P̂ ′

(i,j) such that (i, j) ∈ S(P ) are mutually disjoint, and (iii) all the

P̂ ′
(i,j) such that (i, j) ∈ S(Q) are mutually disjoint.
Thus, by Axiom 2,

PK =
∑

(i,j)∈S(P )

pK
(i,j) ∼M

∑
(i,j)∈S(P )

P̂ ′
(i,j)

QK =
∑

(i,j)∈S(Q)

pK
(i,j) ∼M

∑
(i,j)∈S(Q)

P̂ ′
(i,j).
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Hence, for all P, Q ∈ Pn

(3) P �M Q ⇐⇒ PK �M QK ⇐⇒
∑

(i,j)∈S(P )

P̂ ′
(i,j) �M

∑
(i,j)∈S(Q)

P̂ ′
(i,j)

Now, let

Sk
(i,j) = {Q ∈ ∆k

1|Q ∼M pk
(i,j)}

and

S(i,j) =
⋃
k∈N

Sk
(i,j)

We show that any two matrices in S(i,j) contain the same number of non-null atomic
matrices, and therefore this number depends only on i and j. Let Q1 and Q2 be any two
matrices in S(i,j). Then, for some k, k′, Q1 ∈ ∆k

1, Q2 ∈ ∆k′
1 , Q1 ∼M pk

(i,j) and Q2 ∼M

pk′

(i,j). We assume without loss of generality that k′ ≥ k. By Lemma 1, pk′

(i,j) ∼ Qk′
1 ,

and so Qk′
1 ∼M Q2. Since these two matrices are both in ∆k′

1 , by Lemma 5, they must
contain the same number of non-null atomic matrices. Moreover, the number of non-
null atomic matrices contained in Qk′

1 is the same as the number of those contained in
Q1. Thus, all the matrices in the set S(i,j) contain the same number of non-null atomic
matrices which depends only on i and j. Let us denote it by n(i,j) and let f be the
function N 7→ N such that, for every i, j, f(|i − j|) = n(i,j). So, since P ′

(i,j) belongs to

S(i,j), the number of non-null atomic matrices contained in P ′
(i,j) is equal to f(|i− j|).

Now, the matrices
∑

(i,j)∈S(P ) P̂ ′
(i,j) and

∑
(i,j)∈S(Q) P̂ ′

(i,j) in (3) are in ∆K
1 . So, by

Lemma 5, they can be compared by simply counting the number of non-null atomic
matrices contained in them. This is equal to the sum of the numbers of non-null atomic
matrices contained in each P ′

(i,j) which is, in turn, equal to f(|i− j|). Therefore:

(4)
∑

(i,j)∈S(P )

P̂ ′
(i,j) �M

∑
(i,j)∈S(Q)

P̂ ′
(i,j) ⇐⇒

∑
(i,j)∈S(P )

f(|i− j|) ≤
∑

(i,j)∈S(Q)

f(|i− j|).

Finally, from (3) and (4) it follows that:

P �M Q ⇐⇒
∑

(i,j)∈S(P )

f(|i− j|) ≤
∑

(i,j)∈S(Q)

f(|i− j|).

It is obvious, by Axiom 3, that f must be strictly increasing. To show that f must be
strictly convex, consider, for any k ≥ 0, the matrices P and Q such that:

S(P ) = {(1, k + 1), (2, k + 2), (k + 3, k + 3), (k + 4, k + 4), · · · }
S(Q) = {(1, k + 2), (2, k + 1), (k + 3, k + 3), (k + 4, k + 4), · · · }.

Hence, by Axiom 1, we must have that, for all k, 2f(k) < f(k + 1) + f(k − 1). �
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Appendix C. Proof of Theorem 3

Proof. Given Theorem 2, we can concentrate only on Axiom 5. The reader can easily
check that if f(k) = k2 the ordering satisfies Axiom 5.

To show that, in order to satisfy Axiom 5, f must be quadratic, suppose P, Q, R are
matrices in Pn such that:

S(P ) = {(0, 0), (1, 1), (0, k), (1, k + 1)}
S(Q) = {(0, 1), (1, 0), (0, k), (1, k + 1)}
S(R) = {(0, 0), (1, 1), (0, k + 1), (1, k)}.

Thus, P C Q and P C R, since the inversions that lead from P to Q and from P to R
are both minimal. Then, by Axiom 5, Q ∼M R and therefore:∑
(i,j)∈S(Q)

f(|i− j|) = 2f(1) + 2f(k) =
∑

(i,j)∈S(R)

f(|i− j|) = 2f(0) + f(k + 1) + f(k − 1).

Observe that, by definition of f , f(0) = 0, and f(1) = 1 (see above, Appendix B.2).
Therefore, to satisfy Axiom 5, since k is arbitrary and f is fixed for all n, we must have
that, for all k,

f(k + 1)− f(k) = f(k)− f(k − 1) + 2.

This difference equation has a unique solution, i.e. f(k) = k2. �
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