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1 Introduction

In the economic literature there exists a large variety of economic indices (inequality, poverty,

social development, gross domestic product, health, welfare, etc.) for comparing and ranking

social situations across populations (see, for instance, Sen [15], Dagum [7], and Chakravarty and

Muliere [5, 6]). A thorough survey of the literature on inequality, poverty, and welfare can be

found in Chakravarty [3, 4]. The main difference between inequality or welfare and poverty lies

in their focus. Whereas inequality and welfare measurement involves the whole population, the

concern of poverty is focused on those who are worse-off.

Specifically, any poverty measure includes a method to identify the poor and an aggregative

measure. The identification step requires the specification of a poverty line that splits society into

two groups: the poor and the non-poor people. With respect to the aggregation stage, according

to Sen [14], any poverty index should be sensitive to the number of people below the poverty

line, to the extent of the income short-fall of the poor from the poverty line, and to the exact

pattern of the income distribution of the poor. In other words, every poverty measure should be

expressed as a function of these three poverty indicators, showing the incidence, the intensity

and the inequality of the poverty, respectively. Poverty changes can be more meaningful and

easily understandable if poverty indices can be decomposed into these underlying contributing

factors.

In this paper we introduce a new family of poverty measures based on the exponential means

in order to aggregate the normalized income gaps of the poor individuals. The exponential means

have already been used to define inequality and welfare measures. However, to our knowledge,

no relative poverty indices have been proposed involving the exponential means.

The family of poverty measures introduced in this paper has three interesting features.

Firstly, all the poverty measures proposed are invariant under changes in the unit in which

income is measured. Secondly, given a poverty line and a set of poor individuals, when all poor

individuals receive the same amount of extra income the reduction in the overall poverty level

depends only on that extra amount. Finally, all the members of the new family of poverty

measures are more sensitive to changes at the lower end of the income profile, that is, to what

happens to the poorest of the poor. In addition, the family parameter can be interpreted as a

measure of this sensitivity. None of the indices introduced in the literature are able to capture

these three issues together.

With respect to the decomposition of these indices in the three underlying contribution

factors, we propose to use the dual decomposition of aggregations function into a self-dual core

and anti-self-dual remainder as applied to the family of exponential means (see Garćıa-Lapresta
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and Marques Pereira [9]). We show that these two terms can be interpreted as measures of the

intensity and of the inequality among the poor, respectively. This decomposition allows us to

know if increasing poverty is due to more people becoming poor, or increasing deprivation of the

poor, or because income short-fall below the poverty line have become more unequal, or some

combination of the above. Therefore, the decomposition proposed can be useful to have a better

understanding of the measurement of poverty, particularly in a dynamical scenario.

The paper is organized as follows. Section 2 introduces basic notation and properties of ag-

gregation functions. Section 3 is devoted to summarize the dual decomposition of an aggregation

function into a self-dual core and an associated anti-self-dual remainder. In Section 4 we review

the class of exponential means and discuss their dual decomposition. In Section 5 we introduce

our proposal for measuring poverty using exponential means and propose a decomposition of the

indices into incidence, intensity, and inequality. An illustrative example is described. Finally,

Section 6 contains some concluding remarks.

2 Aggregation functions

In this section we present notation and basic definitions regarding aggregation functions on

[0, 1]n, with n ∈ N and n ≥ 2 throughout the text.

Notation. Points in [0, 1]n will be denoted by means of boldface characters:

x = (x1, . . . , xn), 1 = (1, . . . , 1), 0 = (0, . . . , 0). For x ∈ [0, 1], we have x · 1 = (x, . . . , x).

Given x ,y ∈ [0, 1]n, by x ≥ y we mean xi ≥ yi for every i ∈ {1, . . . , n}; by x > y

we mean x ≥ y and x 6= y . Given x ∈ [0, 1]n, with (x(1), . . . , x(n)) we denote the in-

creasing ordered version of x , i.e., x(i) is the i-th lowest number of {x1, . . . , xn}. Moreover,

x∗ = x(1) = min{x1, . . . , xn} and x∗ = x(n) = max{x1, . . . , xn}. Given a permutation on

{1, . . . , n}, i.e., a bijection σ : {1, . . . , n} −→ {1, . . . , n}, with xσ we denote (xσ(1), . . . , xσ(n)).

We begin by defining standard properties of real functions on [0, 1]n. On this, see Fodor and

Roubens [8], Calvo et al. [2], Beliakov et al. [1], Garćıa-Lapresta and Marques Pereira [9] and

Grabisch et al. [10].

Definition 2.1 Let A : [0, 1]n −→ R be a function.

1. A is idempotent if for every x ∈ [0, 1]:

A(x · 1) = x.

2. A is symmetric if for every permutation σ on {1, . . . , n} and every x ∈ [0, 1]n:

A(xσ) = A(x).
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3. A is monotonic if for all x,y ∈ [0, 1]n:

x ≥ y ⇒ A(x) ≥ A(y).

4. A is strictly monotonic if for all x,y ∈ [0, 1]n:

x > y ⇒ A(x) > A(y).

5. A is compensative if for every x ∈ [0, 1]n:

x∗ ≤ A(x) ≤ x∗.

6. A is self-dual if for every x ∈ [0, 1]n:

A(1− x) = 1−A(x).

7. A is anti-self-dual if for every x ∈ [0, 1]n:

A(1− x) = A(x).

8. A is invariant for translations if for all t ∈ [−1, 1] and x ∈ [0, 1]n:

A(x + t · 1) = A(x)

whenever x + t · 1 ∈ [0, 1]n.

9. A is stable for translations if for all t ∈ [−1, 1] and x ∈ [0, 1]n:

A(x + t · 1) = A(x) + t

whenever x + t · 1 ∈ [0, 1]n.

Consider the binary relation < on [0,∞)n given by

x < y ⇔
n∑

i=1

xi =
n∑

i=1

yi and
k∑

i=1

x(i) ≤
k∑

i=1

y(i) for every k ∈ {1, . . . , n− 1}.

(10) A is S-convex if for all x,y ∈ [0, 1]n:

x < y ⇒ A(x) ≥ A(y).

(11) A is S-concave if for all x,y ∈ [0, 1]n:

x < y ⇒ A(x) ≤ A(y).
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Let now {A(k)}k∈N be a sequence of functions, where A(k) : [0, 1]k −→ R and A(1)(x) = x for

every x ∈ [0, 1].

(12) {A(k)}k∈N is invariant for replications if for all x ∈ [0, 1]n and any number of replications

m ∈ N of x:

A(mn)(
m︷ ︸︸ ︷

x, . . . ,x) = A(n)(x).

(13) {A(k)}k∈N is decomposable (or separable) if, for any given subset of variables, every

variable in the subset can have its value replaced by the partial aggregated value of the

subset without altering the overall aggregated value of the full set of variables, for instance

if

A(n)(x1, . . . , xm, xm+1, . . . , xn) =

= A(n)
(
A(m)(x1, . . . , xm), . . . , A(m)(x1, . . . , xm), xm+1, . . . , xn

)
,

for all x ∈ [0, 1]n and m ≤ n.

Definition 2.2 A function A : [0, 1]n −→ [0, 1] is called an n-ary aggregation function if it

is monotonic and satisfies A(0) = 0 and A(1) = 1. For the sake of simplicity, the n-arity is

omitted whenever it is clear from the context. An aggregation function is said to be strict if it

is strictly monotonic.

Self-duality and stability for translations are important properties of aggregation functions.

In turn, anti-self-duality and invariance for translations are incompatible with the defining prop-

erties of aggregation functions, namely with the boundary conditions A(0) = 0 and A(1) = 1.

Nevertheless, anti-self-duality and invariance for translations play an important role in this pa-

per in so far as they are properties of important functions associated with aggregation functions,

as we shall discuss later. The following are standard facts concerning aggregation functions (see

Garćıa-Lapresta and Marques Pereira [9]).

Proposition 2.3 Let A : [0, 1]n −→ [0, 1] be an aggregation function.

1. A is idempotent if and only if A is compensative.

2. If A is strict, then A(x) = 0 if and only if x = 0, and A(x) = 1 if and only if x = 1.

3. If A is stable for translations, then A is idempotent.
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3 The self-dual core and the associated remainder

In this section we briefly summarize the decomposition of an aggregation function in the self-

dual core and the associated remainder included in Garćıa-Lapresta and Marques Pereira [9].

First we introduce the concepts of self-dual core and anti-self-dual remainder of an aggregation

function, establishing which properties are inherited in each case from the original aggregation

function. Particular emphasis is given to the properties of stability for translations (self-dual

core) and invariance for translations (anti-self-dual remainder).

Definition 3.1 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The aggregation function

A∗ : [0, 1]n −→ [0, 1] defined as

A∗(x) = 1−A(1− x)

is known as the dual of the aggregation function A.

Clearly, (A∗)∗ = A, which means that dualization is an involution. An aggregation function

A is self-dual if and only if A∗ = A.

Proposition 3.2 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The dual A∗ inherits

from the aggregation function A the properties of idempotency (hence, compensativeness), sym-

metry, strict monotonicity, continuity, self-duality, anti-self-duality, invariance and stability for

translations, invariance for replications and decomposability, whenever A has these properties.

In addition, A∗ is S-convex (resp. S-concave) whenever A is S-concave (resp. S-convex).

Proof. We only prove the last property: if A is S-concave, then A∗ is S-convex (the previous

ones are mechanical). It is easy to check that x < y ⇒ 1−x < 1−y . If A is S-concave, then

from x < y we have A(x ) ≤ A(y) and also A(1− x ) ≤ A(1− y). Consequently,

A∗(x ) = 1−A(1− x ) ≥ 1−A(1− y) = A∗(y),

i.e., A∗ is S-convex.

3.1 The core

Aggregation functions are not in general self-dual. However, a self-dual aggregation function can

be associated to any aggregation function in a simple manner. The construction of the so-called

self-dual core of an aggregation function A is as follows.
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Definition 3.3 Let A : [0, 1]n −→ [0, 1] be an aggregation function.

The function Â : [0, 1]n −→ [0, 1] defined by

Â(x) =
A(x) + A∗(x)

2
=

A(x)−A(1− x) + 1
2

.

is called the core of the aggregation function A.

Notice that Â is clearly an aggregation function, verifying the boundary conditions Â(0) = 0,

Â(1) = 1 and monotonicity. Since Â is self-dual, we say that Â is the self-dual core of the

aggregation function A.

It is interesting to note that the self-dual core reduces to the arithmetic mean in the simple

case of n = 2 but not in higher dimensions.

The following results1 can be found in in Garćıa-Lapresta and Marques Pereira [9].

Proposition 3.4 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if and only if

Â(x) = A(x) for every x ∈ [0, 1]n.

Proposition 3.5 The self-dual core Â inherits from the aggregation function A the properties

of idempotency (hence, compensativeness), symmetry, strict monotonicity, continuity, stability

for translations and invariance for replications, whenever A has these properties.

3.2 The remainder

We now introduce the anti-self-dual remainder Ã, which is simply the difference between the

original aggregation function A and its self-dual core Â.

Definition 3.6 Let A : [0, 1]n −→ [0, 1] be an aggregation function.

The function Ã : [0, 1]n −→ R defined by Ã(x) = A(x)− Â(x), that is

Ã(x) =
A(x)−A∗(x)

2
=

A(x) + A(1− x)− 1
2

,

is called the remainder of the aggregation function A.

Notice that Ã is anti-self-dual. For this reason we say that Ã is the anti-self-dual remainder

of the aggregation function A. Clearly, Ã is not an aggregation function. In particular, Ã(0) =

1Excepting that invariance for replications is inherited by the core (the proof is immediate).
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Ã(1) = 0 violates the boundary conditions and implies that Ã is either non monotonic or

everywhere null. Moreover, −0.5 ≤ Ã(x ) ≤ 0.5 for every x ∈ [0, 1]n.

The following results2 can be found in in Garćıa-Lapresta and Marques Pereira [9].

Proposition 3.7 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if and only if

Ã(x) = 0 for every x ∈ [0, 1]n.

Proposition 3.8 The remainder Ã inherits from the aggregation function A the properties of

symmetry, continuity, S-convexity, S-concavity and invariance for replications, whenever A has

these properties.

Summarizing, every aggregation function A decomposes additively A = Â + Ã in two

components: the self-dual core Â and the anti-self-dual remainder Ã, where only Â is an

aggregation function. The so-called dual decomposition A = Â + Ã clearly shows some analogy

with other algebraic decompositions, such as that of square matrices and bilinear tensors into

their symmetric and skew-symmetric components.

Since A∗ = Â− Ã, we have a new decomposition: A = A∗ + 2Ã.

The following result concerns two more properties of the anti-self-dual remainder based

directly on the definition Ã = A− Â and the corresponding properties of the self-dual core (see

Garćıa-Lapresta and Marques Pereira [9]).

Proposition 3.9 Let A : [0, 1]n −→ [0, 1] be an aggregation function.

1. If A is idempotent, then Ã(x · 1) = 0 for every x ∈ [0, 1].

2. If A is stable for translations, then Ã is invariant for translations.

These properties of the anti-self-dual remainder are suggestive. The first statement applies

to the class of idempotent aggregation functions. In such case, self-dual cores are idempotent

and therefore anti-self-dual remainders are null on the main diagonal. The second statement

applies to the subclass of stable aggregation functions. In such case, self-dual cores are stable

and therefore anti-self-dual remainders are invariant for translations. In other words, if the

aggregation function A is stable for translations, the value Ã(x ) does not depend on the average

value of the x coordinates, but only on their numerical deviations from that average value.

These properties of the anti-self-dual remainder Ã suggest that it may give some indication on

the dispersion of the x coordinates.
2Excepting that invariance for replications is inherited by the remainder (the proof is immediate).
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4 Exponential means

Quasiarithmetic means are aggregation functions that satisfy interesting properties. They were

simultaneously characterized in 1930 by Kolmogoroff [11] and Nagumo [13] (see also Fodor

and Roubens [8, pp. 112-114]) through five properties: continuity, idempotency, symmetry,

strict monotonicity and decomposability. Exponential means are quasiarithmetic means that

are stable for translations. Thus, their cores are also stable for translations, and their anti-self-

dual remainders are invariant for translations, joint with other interesting properties. This is

the reason why we consider these functions for defining appropriate measures in our setting.

Definition 4.1 Let A : [0, 1]n −→ [0, 1] be an aggregation function. We say that A is a

quasiarithmetic mean if there exists an order automorphism (bijective and increasing function)

ϕ : [0, 1] −→ [0, 1] such that

A(x) = ϕ−1

(
ϕ(x1) + · · ·+ ϕ(xn)

n

)

where ϕ is said to generate the quasiarithmetic mean A.

Exponential means are the quasiarithmetic means generated by the order automorphisms ϕα,

α 6= 0

ϕα(x) =
eαx − 1
eα − 1

.

The limit case, ϕ0(x) = x, generates the arithmetic mean.

Exponential means joint with the arithmetic mean are the only quasiarithmetic means that

are stable for translations.

Definition 4.2 Given α 6= 0, the exponential mean Aα is the aggregation function defined by

Aα(x) =
1
α

ln
eαx1 + · · ·+ eαxn

n
.

Proposition 4.3 For every α 6= 0, Aα is continuous, idempotent, symmetric, strictly mono-

tonic, compensative, stable for translations, invariant for replications and decomposable. In

addition, Aα is S-convex for every α > 0, and S-concave for every α < 0.

Proof. Continuity, idempotency, symmetry, strict monotonicity, decomposability and stability

for translations are well-known properties of exponential means, as mentioned above. Invariance

for replications is straightforward. It is routinary to see that Aα is convex if α > 0, and concave
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if α < 0. Then, by symmetry, Aα is S-convex for every α > 0, and S-concave for every α < 0

(see Marshall and Olkin [12, Chapter 3, Prop. C.2]).

Given α 6= 0, the dual of Aα is the aggregation function A∗α defined by

A∗α(x ) = − 1
α

ln
e−αx1 + · · ·+ e−αxn

n
,

i.e., A∗α = A−α.

Proposition 4.4 For every α 6= 0, A∗α is continuous, idempotent, symmetric, strictly mono-

tonic, compensative, stable for translations, invariant for replications and decomposable. In

addition, A∗α is S-concave for every α > 0, and S-convex for every α < 0.

Proof. By A∗α = A−α and Proposition 4.3.

Given α 6= 0, the self-dual core of Aα is the aggregation function Âα defined by

Âα(x ) =
1
2α

ln
eαx1 + · · ·+ eαxn

e−αx1 + · · ·+ e−αxn
.

Proposition 4.5 For every α 6= 0, Âα is continuous, idempotent, symmetric, strictly mono-

tonic, compensative, stable for translations, self-dual and invariant for replications.

Proof. It is a direct consequence of Propositions 3.5 and 4.3.

It is important to note that Âα is not decomposable (see Garćıa-Lapresta and Marques

Pereira [9, Remark 37]).

Given α 6= 0, the anti-self-dual remainder of Aα is the mapping Ãα defined by

Ãα(x ) =
1
2α

ln
(eαx1 + · · ·+ eαxn)(e−αx1 + · · ·+ e−αxn)

n2
.

Proposition 4.6 For every α 6= 0, Ãα(x) = 0 if and only if x1 = · · · = xn. Moreover, Ãα is

continuous, symmetric, anti-self-dual, invariant for translations and invariant for replications.

In addition, Ãα is S-convex for every α > 0, and S-concave for every α < 0.

Proof. It is a direct consequence of Propositions 3.8, 3.9 and 4.3, by the fact that Ãα(x ) = 0,

i.e.,
∑n

i,j=1 exi−xj = n2, implies x1 = · · · = xn; and because Ãα is convex for every α > 0, and

concave for every α < 0 (using the same arguments that in Proposition 4.3).
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Remark 4.7 If α > 0, then 0 ≤ Ãα(x ) ≤ 0.5 for every x ∈ [0, 1]n. If α < 0, then

−0.5 ≤ Ãα(x ) ≤ 0 for every x ∈ [0, 1]n.

The following result presents the limits of the exponential means and the associated dual, self-

dual-core and anti-self-dual remainder. The proof is by straightforward application of l’Hospital’s

rule (see Garćıa-Lapresta and Marques Pereira [9]).

Proposition 4.8 The following statements hold:

1. lim
α→∞Aα(x) = x∗.

2. lim
α→−∞Aα(x) = x∗.

3. lim
α→0

Aα(x) =
x1 + · · ·+ xn

n
.

4. lim
α→∞A∗α(x) = x∗.

5. lim
α→−∞A∗α(x) = x∗.

6. lim
α→0

A∗α(x) =
x1 + · · ·+ xn

n
.

7. lim
α→∞ Âα(x) = lim

α→−∞ Âα(x) =
x∗ + x∗

2
.

8. lim
α→0

Âα(x) =
x1 + · · ·+ xn

n
.

9. lim
α→∞ Ãα(x) =

x∗ − x∗
2

.

10. lim
α→−∞ Ãα(x) = −x∗ − x∗

2
.

11. lim
α→0

Ãα(x) = 0.
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5 Poverty measures

We consider a population consisting of n individuals, with n ≥ 2. An income distribution is

represented by a vector x = (x1, . . . , xn) ∈ [0,∞)n, where xi is the income of individual i.

Since Sen [14], any poverty measure should consist of a method to identify the poor and

an aggregative measure. Thus, the first step to define a poverty measure is the identification

of the poor people in society. This step requires the specification of a poverty line z ∈ (0,∞),

which represents the necessary income to maintain a minimum level of living. For an income

distribution x , person i is considered as poor if xi < z. Otherwise he is non-poor or rich.

We denote the set of poor people by

Q(x , z) = {i ∈ {1, . . . , n} | xi < z},

and by q(x , z) the number of the poor, i.e., q(x , z) = #Q(x , z).

Once the poor people are identified, the second stage to determine the extent of the poverty

is the aggregation step. In what follows, a poverty measure is a non-constant function P (x , z)

of the income distribution x and the poverty line z.

5.1 Axioms

A number of axioms are usually assumed for a poverty measure.

• Poverty Focus (PF): For all x ,y ∈ [0,∞)n, z ∈ (0,∞) and i ∈ {1, . . . , n}, if Q(x , z) =

Q(y , z) = Q, i ∈ Q and xi = yi, then P (x , z) = P (y , z).

• Poverty Monotonicity (PM): For all x ,y ∈ [0,∞)n, z ∈ (0,∞) and i ∈ {1, . . . , n}, if

Q(x , z) = Q(y , z) = Q, i ∈ Q, xi > yi and xj 6= yj for every j ∈ {1, . . . , n} \ {i}, then

P (x , z) < P (y , z).

Since poverty measurement is concerned with the deprivations of the poor people, these

two properties, postulated by Sen [14], are considered as basic axioms for a poverty measure.

Thus, PF requires that a poverty index should not depend on the non-poor people incomes:

the poverty level does not vary if the non-poor incomes change as long as the poor set remains

unchanged. PM demands that poverty should increase if the income of a poor person decreases.

The following axiom is concerned with inequality among the poor. In the inequality field,

the Pigou-Dalton transfer principle establishes that a transfer from a richer person to a poorer

one decreases inequality. Sen [14] introduces the counterpart of this principle in the poverty

field. We begin with a definition.
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Given x ,y ∈ [0,∞)n, we say that y is obtained from x by a progressive transfer among

the poor if for two poor individuals i, j ∈ Q(x , z) there exists h > 0 such that xi < xj ,

yi = xi + h ≤ xj − h = yj and yk = xk for every k ∈ {1, . . . , n} \ {i, j}. In other words,

a poor person gives an amount of income to a poorer one. According to the Pigou-Dalton

principle, inequality among the poor should decrease under a progressive transfer. Then the

Tranfer Sensitivity axiom below requires poverty also to decrease.

• Transfer Sensitivity (TS): For all x ,y ∈ [0,∞)n and z ∈ (0,∞), if y is obtained from

x by a progressive transfer among the poor, then P (y , z) < P (x , z).

A progressive transfer among the poor entails an increment of income for one poor individual,

and a decrement for other poor person, the richer of the two. This TS axiom goes beyond PM

and demands that greater weight should be placed on the poorer person and poverty should

decrease if inequality among the poor decreases.

A normalization condition is also usually assumed. This property requires that if all the

individuals are non-poor, then the society deprivation level is equal to 0.

• Normalization (N): For all x ,y ∈ [0,∞)n and z ∈ (0,∞), P (x , z) = 0 if and only if

Q(x , z) = ∅, i.e., xi ≥ z for every i ∈ {1, . . . , n}.

The two following invariance axioms are also standard requirements for a poverty measure:

• Poverty Symmetry (PS): For all x ∈ [0,∞)n, z ∈ (0,∞) and permutation σ on {1, . . . , n},
it holds P (xσ, z) = P (x , z).

• Replication Invariance (RI): For all x ,y ∈ [0,∞)n and z ∈ (0,∞), if y is obtained from

x by a replication, i.e., y = (
m︷ ︸︸ ︷

x , . . . ,x ) for some m ∈ N, then P (y , z) = P (x , z).

PS establishes that no other characteristic apart from the income deprivation matters in

defining a poverty index. In turn, RI allows us to compare populations of different sizes.

The first poverty measure introduced in the literature is the headcount ratio,

H : [0,∞)n × (0,∞) −→ [0, 1]

defined by

H(x , z) =
q(x , z)

n
,

that measures the percentage of poor people in the society.
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This is a crude index, which is able to capture the incidence of poverty. However, it is able

to capture neither the intensity nor the inequality among the poor. In fact it violates both

PM and TS, since it does not change if the income of a poor decreases, and under progressive

transfers among the poor.

In most cases, measuring poverty involves gauging the extent of the deprivation felt by each

individual, once the income poverty line has been determined. One of the most used procedures

to measure individual i’s shortfall is to consider the normalized gap of individual i, defined as

gi = max
{

z − xi

z
, 0

}
.

Notice that gi ∈ [0, 1], gi = 0 ⇔ xi ≥ z, and gi = 1 ⇔ xi = 0.

Moreover, the normalized gaps are invariant under proportional income changes. In other

words, the function G : [0,∞)n × (0,∞) −→ [0, 1]n defined by G(x , z) = (g1, . . . , gn) is homo-

geneous of degree 0: G(λxi, . . . , λxn, λz) = G(xi, . . . , xn, z) for every λ > 0.

On the other hand, a progressive transfer among the poor leads to an increment in the

richer individual gap whereas the poorer person gap decreases. Since the richer gap is smaller

than the poor one, then the progressive transfers among the poor incomes are equivalent to the

progressive transfers among the poor gaps. Then, the TS axiom is to be fulfilled whenever the

function is S-convex either in incomes or in gaps3.

5.2 The results

We now introduce the following single parameter class of poverty measures, using the headcount

ratio and the exponential means of the normalized gaps of the poor.

Definition 5.1 Given α > 0, the poverty measure associated with Aα is the function

Pα : [0,∞)n × (0,∞) −→ [0, 1]n

defined by

Pα(x, z) =





H(x, z) ·Aα(g′1, . . . , g
′
q) =

q

n
· 1
α

ln
eαg′1 + · · ·+ eαg′q

q
, if q 6= 0,

0, if q = 0,

where q = q(x, z) and g′1, . . . , g
′
q are the non-null elements of g1, . . . , gn.

Proposition 5.2 For every α > 0, Pα satisfies PF, PM, TS, N, PS, and RI.
3A classical result (Marshall and Olkin [12, Chapter 4, Proposition A.1]) establishes that x < y if and only if

y can be derived from x by means of a finite sequence of permutations and/or progressive transfers.
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Proof. By construction, Pα satisfies PF and N.

PM: By hypothesis, H(x , z) = H(y , z). From xi > yi we have z−xi
z < z−yi

z . Then, by the

strict monotonicity of Aα, we obtain P (x , z) < P (y , z).

TS: Given i, j ∈ Q(x , z) such that xi < xj , yi = xi + h ≤ xj − h = yj for some h > 0, and

yk = xk for every k ∈ {1, . . . , n} \ {i, j}, we have yj < xj < z and Q(x , z) = Q(y , z), hence

H(x , z) = H(y , z). By Proposition 4.3, Aα is S-convex and, consequently, satisfies TS. Then,

we have P (y , z) < P (x , z).

PS: Given a permutation σ on {1, . . . , n}, we have Q(xσ, z) = Q(x , z), hence H(xσ, z) =

H(x , z). Taking into account that Aα is symmetric, we obtain PS.

RI: It is easy to see that if y is obtained from x by a replication, then H(y , z) = H(x , z).

Taking into account that Aα satisfies invariance for replications, we obtain P (x , z) = P (y , z).

Proposition 5.2 above establishes that for every α > 0, Pα satisfies the basic poverty prop-

erties. Moreover, since Pα is defined directly on normalized income gaps, it is homogeneous of

degree 0. This is an interesting property that ensures that the poverty level does not change

when the units in which income is measured change. All the poverty indices referred to as

“relative” satisfy this property. In addition, it is easy to show that if the same amount of extra

income, say k, is given to each poor person as long as the poor set does not change, the poverty

level is reduced by q
n

k
z . This property is also quite interesting, since it provides a starting point

to analyze poverty policies.

Among the poverty measures proposed in the literature, only the Gini-type indices such as

the Sen index, the Sen modified index, the Thon index and so on (see for instance Chakravarty

[4]) fulfill these two properties. However, none of the Gini-type poverty measures are more

sensitive to progressive transfers at the lower end than at the upper end of the income profile.

This property, often invoked in the inequality and poverty framework, ensures that the measure

is focused on the poorest of the poor and may be formalized as follows.

• Diminishing Transfer Sensitivity (DTS): For all x ,y ∈ [0,∞)n and z ∈ (0,∞),

if Q(x , z) = Q(y , z) and y is obtained from x by a progressive transfer from the poor

person with income xi + c to the poor person with income xi, for some c > 0, then the

magnitude of decrease in poverty P (x , z)− P (y , z) is higher the lower xi.

This principle demands that more weight should be assigned to transfers to a poor person the

poorer the person happens to be.
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Proposition 5.3 For every α > 0, Pα satisfies DTS and it reduces under a progressive transfer

by a larger amount the higher is the value of α.

Proof. It is straightforward taking into account the exponential function is increasing and

convex.

This proposition enables us to interpret the α parameter as the degree of sensitivity to the

poorest. It may be worth noting that

lim
α→∞Pα(x , z) =

q

n
g∗ =

q

n

z − x∗
z

.

Remark 5.4 When α > 0, the core Âα is idempotent, symmetric, strictly monotonic, and

stable for translations (see Proposition 10). The strictly monotonicity axiom implies that Âα is

increasing in the gap of a poor person. The stability for translations means that equal absolute

changes in all poor gaps lead to the same absolute change in Âα. These properties can be

regarded as basic properties of a poverty intensity index. Nevertheless, is not S-convex, and

then it goes against the Pigou-Dalton transfer principle. For this, it suffices to consider two

gaps distributions (g − c, g, . . . , g, g + c) and (g, g, . . . , g, g). Obviously the second distribution

is obtained from the former by a progressive transfer among the poor. Hence the Pigou-Dalton

transfer principle would require Âα to decrease, however does not change:

Âα(g − c, g, . . . , g, g + c) = Âα(g, g, . . . , g, g) = g.

In turn, the remainder Ãα is symmetric, fulfils that Ãα(g1, . . . , gq) = 0 if and only if

g1 = · · · = gq, and Propositions 3.8 and 4.3 ensure that it is S-convex, and consequently the

Pigou-Dalton transfer principle is satisfied. Hence, we can obtain a direct interpretation of

Ãα as a measure of inequality among the poor individuals. In addition Ãα is invariant for

translations (Proposition 4.6), thus it measures inequality from an absolute point of view and

remains invariant if the gaps of all the poor are increased by the same amount. However, Ãα

does not fulfil PM.

The next proposition, which involves the self-dual core and the anti self-dual remainder of

Aα, provides a decomposition of the poverty measure Pα in three components: H, Âα and Ãα.

Proposition 5.5 For every α > 0, the poverty measure Pα associated with Aα satisfies the

following decomposition:

Pα(x, z) =

{
H(x, z) ·

(
Âα(g′1, . . . , g

′
q) + Ãα(g′1, . . . , g

′
q)

)
, if q 6= 0,

0, if q = 0,

where q = q(x, z) and g′1, . . . , g
′
q are the non-null elements of g1, . . . , gn.
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When all the poor individuals have the same gap and, thus, there is not inequality among

the poor, the extent of the poverty is given by the product of the headcount ratio and Âα.

If there are progressive transfers of income among the poor, both Pα and Ãα are bound to

decrease, whereas Âα can vary in any way. Therefore, societies with the same proportion of

poor individuals, H, and the same location measure, Âα, may be ordered by considering the

dispersion of the gap distribution, Ãα.

On the other hand, the effect of an increment of the gap in a poor individual implies an

increase in Pα and in Âα, since both of them satisfy PM. In contrast, the change in Ãα

depends on the effect of this change for the distribution dispersion. Consequently, societies with

the same proportion of poor individuals, H, and the same dispersion of the gap distributions

Ãα may be ordered by considering the location measure, Âα.

Hence, the three components in the proposition above can be interpreted as follows:

1. H is a measure of the incidence of poverty.

2. The intensity of poverty as the depths of poor individuals in the society is summarized by

the location measure Âα.

3. The inequality of the poor’s gap distribution is captured by the dispersion measure, Ãα,

which provides the sensitivity to the inequality among the poor.

According to Sen [14], these three indicators can give an adequate image of poverty.

Similarly to Definition 5.1, it is possible to introduce a family of poverty measures for α < 0

with the same results (recall that A∗α = A−α).

Definition 5.6 Given α < 0, the poverty measure associated with Aα is the function

Pα : [0,∞)n × (0,∞) −→ [0, 1]n

defined by

Pα(x, z) =





H(x, z) ·A∗α(g′1, . . . , g
′
q) =

q

n
· −1

α
ln

e−αg′1 + · · ·+ e−αg′q

q
, if q 6= 0,

0, if q = 0,

where q = q(x, z) and g′1, . . . , g
′
q are the non-null elements of g1, . . . , gn.

Proposition 5.7 For every α < 0, Pα satisfies PF, PM, TS, N, PS, and RI.

17



Proposition 5.8 For every α < 0, the poverty measure Pα associated with Aα satisfies the

following decomposition:

Pα(x, z) =

{
H(x, z) ·

(
Âα(g′1, . . . , g

′
q)− Ãα(g′1, . . . , g

′
q)

)
, if q 6= 0,

0, if q = 0,

where q = q(x, z) and g′1, . . . , g
′
q are the non-null elements of g1, . . . , gn.

Remark 5.9 An alternative class of poverty measures can be proposed using the exponentials

means of the normalized gap distribution: Aα(g1, . . . , gn), whenever α > 0, or A∗α(g1, . . . , gn),

whenever α < 0. The indices in this families satisfy PF, PM, TS, N, PS, and RI. They are

sensitive to the headcount ratio, the intensity, and the inequality among the poor. However,

contrary to our proposal, they do not admit a straightforward decomposition in the three basic

components H, Âα and Ãα, but only in the two last ones.

5.3 An illustrative example

We now illustrate the possibilities of the decomposition of the family proposed in this paper.

First, consider eight income distributions displayed in the first column of Table 1. The second

column includes their corresponding normalized gaps when the poverty line is equal to 1000.

Notice that distributions x 2, x 3, x 5, x 6, x 7 and x 8 share the same average income of the

poor and the averages of the others two are close to this amount. However their poverty levels

are quite different and the decomposition of the poverty index Pα in its three contribution

components, H, Âα and Ãα, displayed in the last four columns of the Table 1 for α = 1, allows

us to determine where the differences stem from. For instance, notice that x 1 and x 2 have the

same inequality and the same intensity, and the difference in their poverty levels arise from the

different percentages of poor people. Distributions x 2 and x 3 have the same headcount ratio

and the poverty intensity level, nevertheless income among the poor are more equally distributed

in x 2 than in x 3. By contrast, x 3 and x 4 share the headcount ratio and the inequality levels,

being different their poverty intensities.

In general, we may compare any pair of distributions and analyze its poverty components

to better understand their differences. For example, if we concentrate on distributions x 6, x 7

and x 8, we may conclude that x 6 exhibits the lowest headcount ratio, while x 7 and x 8 have the

lowest values of inequality and intensity respectively.

As already mentioned, all the measures in the poverty family Pα fulfils DTS. Distributions

x 2, x 3 and x 5 help us to better understand the meaning of this principle. Notice that both

x 2 and x 5 may be obtained from x 3 by a progressive transfer. The richest of the poor is the
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donor in the two transfers. The receivers are the poorest person and the second poorest person

respectively. The main point is that whereas in the first case the receiver is the poorest person,

in the last case is the second poorest. DTS guarantees that the decrease in poverty is greater

under the first transfer.

Table 1: Indices values for α = 1.

Incomes z = 1000 Pα H Âα Ãα

x 1 = (170, 500, 729, 605) g1 = (0.830, 0.500, 0.271, 0.395) 0.521 1.000 0.500 0.021
x 2 = (250, 500, 750, 1300) g2 = (0.750, 0.500, 0.250, 0.000) 0.391 0.750 0.500 0.021
x 3 = (150, 500, 850, 1300) g3 = (0.850, 0.500, 0.150, 0.000) 0.405 0.750 0.500 0.040
x 4 = (330, 350, 940, 2800) g4 = (0.670, 0.650, 0.060, 0.000) 0.373 0.750 0.457 0.040
x 5 = (150, 600, 750, 1300) g5 = (0.850, 0.400, 0.250, 0.000) 0.400 0.750 0.501 0.032
x 6 = (217, 783, 1100, 3000) g6 = (0.783, 0.217, 0.000, 0.000) 0.270 0.500 0.500 0.040
x 7 = (290, 500, 600, 610) g7 = (0.710, 0.500, 0.400, 0.390) 0.509 1.000 0.500 0.008
x 8 = (250, 300, 950, 1400) g8 = (0.750, 0.700, 0.050, 0.000) 0.410 0.750 0.496 0.050

Table 2 highlights the role of α. In the comparison of x 3 and x 8, it can be noted that

whereas for α = 1 distribution x 3 displays less poverty, when α = 4 the situation is just the

opposite, since more weight is assigned to the poorest of the population. In other words, the

greater the value of α the more sensitive to the poorest incomes. In addition, with respect to

DTS, when α = 4 in the same cases mentioned above, the decrease in poverty is even greater.

Table 2: Indices values for α = 4.

Incomes z = 1000 Pα H Âα Ãα

x 1 = (170, 500, 729, 605) g1 = (0.830, 0.500, 0.271, 0.395) 0.593 1.000 0.512 0.081
x 2 = (250, 500, 750, 1300) g2 = (0.750, 0.500, 0.250, 0.000) 0.433 0.750 0.500 0.077
x 3 = (150, 500, 850, 1300) g3 = (0.850, 0.500, 0.150, 0.000) 0.482 0.750 0.500 0.142
x 4 = (330, 350, 940, 2800) g4 = (0.670, 0.650, 0.060, 0.000) 0.427 0.750 0.431 0.138
x 5 = (150, 600, 750, 1300) g5 = (0.850, 0.400, 0.250, 0.000) 0.474 0.750 0.517 0.116
x 6 = (217, 783, 1100, 3000) g6 = (0.783, 0.217, 0.000, 0.000) 0.317 0.500 0.500 0.134
x 7 = (290, 500, 600, 610) g7 = (0.710, 0.500, 0.400, 0.390) 0.537 1.000 0.504 0.032
x 8 = (250, 300, 950, 1400) g8 = (0.750, 0.700, 0.050, 0.000) 0.475 0.750 0.463 0.170
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6 Concluding remarks

In literature on economics there exists a well established tradition of aggregating different eco-

nomic indicators for the purpose of comparing societies or countries. In this issue, we have

considered poverty measures associated with exponential means, the only family of quasiarith-

metic means satisfying stability for translations.

The transformation from non negative income values x to unit interval valued income gaps

g is central in the paper. As usual, it is obtained by means of a threshold z (which defines

the subset or coalition of the poor individuals) plus a normalization factor. In the future, we

intend to consider the possibility of extending the concept of coalition of the poor, by assigning

to each coalition of individuals a Choquet capacity measuring the ratio of poor individuals it

contains, on the basis of some unit valued individual degree of poverty (in the present model an

individual is either poor, with poverty degree 1, or non-poor, with poverty degree 0; but this

depends strongly on the exact poverty threshold). The Choquet capacity value of each coalition

would then constitute a generalized (and possibly non additive) measure of the headcount ratio

H.
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