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Abstract

In several economic fields, such as those related to health, education or poverty, the
individuals’ characteristics are measured by bounded variables. Accordingly, these charac-
teristics may be indistinctly represented by achievements or shortfalls. A difficulty arises
when inequality needs to be assessed. One may focus either on achievements or on shortfalls
but the respective inequality rankings may lead to contradictory results. Specifically, this
paper concentrates on the poverty measure proposed by Sen. According to this measure the
inequality among the poor is captured by the Gini index. However, the rankings obtained by
the Gini index applied to either the achievements or the shortfalls do not coincide in general.
To overcome this drawback, we show that an OWA operator is underlying in the definition
of the Sen measure. The dual decomposition of the OWA operators into a self-dual core
and anti-self-dual remainder allows us to propose an inequality component which measures
consistently the achievement and shortfall inequality among the poor.

Keywords: Aggregation functions, dual decomposition, OWA operators, Gini index, consis-

tent measures of achievement/shortfall inequality, Sen index, poverty measures.

JEL Classification: C02, D63, I32.

1 Introduction

Poverty reduction is without doubt a goal of development policy in most countries. To evaluate

the evolution of poverty over time in some particular region, the differences of poverty across
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Trento, Italy; ricalb.marper@unitn.it.

1

wb368183
Text Box

wb368183
Text Box



different countries or the effect of different policies in the alleviation of poverty, one should

be first able to measure poverty. According to the 1998 Nobel Prize Laureate A.K. Sen [22],

any poverty index should be sensitive to the number of people below the poverty line, to the

extent of the income shortfall of the poor from the poverty line, and to the exact pattern of the

income distribution of the poor. In other words, every poverty measure should be expressed as a

function of these three poverty indicators, showing the incidence, the intensity and the inequality

of the poor, respectively. Poverty changes can be more meaningful and easily understandable

if poverty indices can be decomposed into these underlying contributing factors. A number of

poverty indices1 and their decompositions have been proposed to explicitly identify these three

components2.

The basic axiom of inequality measurement is the Pigou-Dalton principle which establishes

that a transfer of income from a poor individual to a richer one increases inequality. Sen [25]

points out that “a transfer of income from a person below the poverty line to anyone who is

richer must increase the poverty measure”. In other words, the poverty counterpart of the

Pigou-Dalton principle should be fulfilled by any poverty index.

Since a transfer of income from a poorer to a richer person entails a transfer of the shortfall

from the latter to the former, the poverty measure is bound to decrease if the inequality com-

ponent involved in the index is defined in terms of either incomes or shortfalls. In fact, in the

mentioned decompositions this third component refers to income inequality or to shortfall in-

equality indistinctly3. However, as will be shown below, the choice between income and shortfall

inequality is not innocuous and different choices may lead to contradictory results. This difficulty

arises not only in poverty measurement but also in different economic fields in which bounded

variables are involved. Recent papers (among them Clarke et al. [6], Erreygers [7] and Lambert

and Zheng [18]) deal with this issue in health measurement. The results derived by Lambert

and Zheng [18] may have a straightforward application to the measurement of the inequality

among the poor. They introduce a property of consistency which requires that achievement and

shortfall inequality rankings should not be reversed, and show that all relative and intermedi-

ate inequality indices fail their requirement. Accordingly, whenever a relative or intermediate

inequality index is involved in the decomposition of a poverty index, the inequality component

is not consistent. We think this is a serious drawback which may distort the conclusions in the

1For comprehensive surveys on poverty and inequality measures see Silber [25] and Chakravarty [4].
2Besides Clark et al. [5], Osberg and Xu [21], Xu and Osberg [29] and Aristondo et al. [1], some of them may

be found in Kakwani [17].
3For instance, whereas in the original proposals of Sen [22] and Shorrocks [24] the “Gini index of the poor

income” takes part in the decompositions, Osberg and Xu [21] and Xu and Osberg [29] derive alternative de-
compositions in which the “Gini index of the gaps” is included. Similarly, the “inequality among the poor” is
captured in term of gaps in the TIP curves introduced by Jenkins and Lambert [15] and in the decomposition for
the FGT indices (Foster et al. [9]) proposed by Aristondo et al. [1].
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analysis of the poverty trends and, consequently, the poverty decompositions are found wanting

in displaying changes in the inequality among the poor, one of their main points.

This paper concentrates on the Sen index [22].4 Two different decompositions of this index

have been proposed (Sen [22] and Xu and Osberg [29]). The inequality among the poor is

captured by the Gini index, applied either to the poor income or to the shortfall of the poor.

However, as Lambert and Zheng [18] show, no relative inequality index offers consistent results.

In this paper a different point of view is proposed. We show that the Sen poverty index

may be interpreted as an OWA operator (Yager [30]). Consequently, the dual decomposition

of aggregation functions into a self-dual core and anti-self-dual remainder proposed by Garćıa-

Lapresta and Marques Pereira [12] may be used. We show that these two terms can be interpreted

as measures of the intensity and the inequality among the poor respectively. The anti-self-duality

of the remainder component guarantees that inequality among the poor does not change if one

focus either on incomes or on shortfalls. These inequality components will allow policy makers

to determine in a consistent way if inequality among the poor has increased or decreased.

The paper is organized as follows. Basic notation and properties of aggregation functions are

introduced in Section 2. Section 3 explores the dual decomposition of an aggregation function

into a self-dual core and an associated anti-self-dual remainder, paying special attention to

the case of OWA operators. Section 4 analyzes poverty measures and includes our proposal

for decomposing poverty into incidence, intensity, and inequality. An illustrative example is

described. Finally, section 5 contains some concluding remarks.

2 Aggregation functions

In this section we present notation and basic definitions regarding aggregation functions on the

domain [0, 1]n, with n ≥ 2 throughout the text.

Notation. Points in [0, 1]n are denoted x = (x1, . . . , xn), with 1 = (1, . . . , 1), 0 = (0, . . . , 0) .

Accordingly, for every x ∈ [0, 1] , we have x · 1 = (x, . . . , x). Given x ,y ∈ [0, 1]n, by x ≥ y

we mean xi ≥ yi for every i ∈ {1, . . . , n}, and by x > y we mean x ≥ y and x ̸= y . Given

x ∈ [0, 1]n, the increasing and decreasing reorderings of the coordinates of x are indicated as

x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively. In particular, x(1) = min{x1, . . . , xn} = x[n]

and x(n) = max{x1, . . . , xn} = x[1] . In general, given a permutation σ on {1, . . . , n}, we denote
xσ = (xσ(1), . . . , xσ(n)). Finally, the arithmetic mean is denoted µ(x ) = (x1 + · · ·+ xn)/n.

4In fact our proposal works for a number of poverty indices in which the inequality is captured by the Gini
index [13], such as the Thon index [28], the index introduced by Kakwani [16], the Takayama proposal [27], and
the Sen index modified by Shorrocks [24].
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We begin by defining standard properties of real functions on [0, 1]n. For further details the

interested reader is referred to Fodor and Roubens [8], Calvo et al. [3], Beliakov et al. [2], and

Grabisch et al. [14].

Definition 1 Let A : [0, 1]n −→ R be a function.

1. A is symmetric if A(xσ) = A(x), for any permutation σ on {1, . . . , n} and all x ∈ [0, 1]n.

2. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x,y ∈ [0, 1]n. Moreover, A is strictly

monotonic if x > y ⇒ A(x) > A(y), for all x,y ∈ [0, 1]n.

3. A is invariant for translations if A(x+t·1) = A(x), for all t ∈ R and x ∈ [0, 1]n such that

x+ t ·1 ∈ [0, 1]n. On the other hand, A is stable for translations if A(x+ t ·1) = A(x)+ t,

for all t ∈ R and x ∈ [0, 1]n such that x+ t · 1 ∈ [0, 1]n.

4. A is invariant for dilations if A(λ · x) = A(x), for all λ > 0 and x ∈ [0, 1]n such that

λ · x ∈ [0, 1]n. On the other hand, A is stable for dilations if A(λ · x) = λA(x), for all

λ > 0 and x ∈ [0, 1]n such that λ · x ∈ [0, 1]n.

Definition 2 Let {A(k)}k∈N be a sequence of functions, with A(k) : [0, 1]k −→ R and A(1)(x) =

x for every x ∈ [0, 1]. We say that {A(k)}k∈N is invariant for replications if it holds that

A(mn)(

m︷ ︸︸ ︷
x, . . . ,x) = A(n)(x) ,

for all x ∈ [0, 1]n and any number of replications m ≥ 2 of x .

Definition 3 Consider the binary relation < on [0, 1]n defined as

x < y ⇔
n∑

i=1

xi =

n∑
i=1

yi and

k∑
i=1

x(i) ≤
k∑

i=1

y(i),

for every k ∈ {1, . . . , n − 1}. The binary relation < is a partial order on [0, 1]n . As usual,

we write x ≻ y if x < y and x ̸= y . With respect to the binary relation < , the notions of

Schur-convexity (S-convexity) and Schur-concavity (S-concavity) of a function A : [0, 1]n −→ R

are defined as follows,

1. A is S-convex if x < y ⇒ A(x) ≥ A(y) , for all x,y ∈ [0, 1]n.

2. A is S-concave if x < y ⇒ A(x) ≤ A(y) , for all x,y ∈ [0, 1]n.

Moreover, a function A is strictly S-convex if x ≻ y ⇒ A(x) > A(y) . Analogously, a function

A is strictly S-concave if x ≻ y ⇒ A(x) < A(y) .
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Definition 4 Given x,y ∈ [0, 1]n, we say that y is obtained from x by a progressive transfer

if there exist i, j ∈ {1, . . . , n} and h > 0 such that xi < xj, yi = xi + h ≤ xj − h = yj and

yk = xk for every k ∈ {1, . . . , n} \ {i, j}.

A classical result, see Marshall and Olkin [20, Ch. 4, Prop. A.1], establishes that x < y

if and only if y can be derived from x by means of a finite sequence of permutations and/or

progressive transfers.

The following are some other important properties of real functions on [0, 1]n. As before,

see Fodor and Roubens [8], Calvo et al. [3], Beliakov et al. [2], Grabisch et al. [14], plus also

Garćıa-Lapresta and Marques Pereira [12].

Definition 5 Let A : [0, 1]n −→ [0, 1] be a function.

1. A is idempotent if A(x · 1) = x, for all x ∈ [0, 1].

2. A is compensative if x(1) ≤ A(x) ≤ x(n), for all x ∈ [0, 1]n.

3. A is self-dual if I = [0, 1] and A(1− x) = 1−A(x), for all x ∈ [0, 1]n.

4. A is anti-self-dual if I = [0, 1] and A(1− x) = A(x), for all x ∈ [0, 1]n.

Definition 6 A function A : [0, 1]n −→ [0, 1] is called an n-ary aggregation function if it is

monotonic and A(0) = 0, A(1) = 1. An aggregation function is said to be strict if it is strictly

monotonic. For simplicity, the n-arity is omitted whenever it is clear from the context.

It is easy to see that every aggregation function is compensative. Self-duality and stability

for translations are important properties of aggregation functions. In turn, anti-self-duality and

invariance for translations are incompatible with idempotency, one of the defining properties

of aggregation functions. Nevertheless, anti-self-duality and invariance for translations play an

important role in this paper as far as they are properties of important functions associated with

aggregation functions, such as we shall discuss later.

3 Dual decomposition

In this section we briefly recall the so-called dual decomposition of an aggregation function into

its self-dual core and associated anti-self-dual remainder, due to Garćıa-Lapresta and Marques

Pereira [12]. First we introduce the concepts of self-dual core and anti-self-dual remainder of an

aggregation function, establishing which properties are inherited in each case from the original
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aggregation function. Particular emphasis is given to the properties of stability for translations

(self-dual core) and invariance for translations (anti-self-dual remainder).

Definition 7 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The aggregation function

A∗ : [0, 1]n −→ [0, 1] defined as

A∗(x) = 1−A(1− x)

is known as the dual of the aggregation function A.

Clearly, (A∗)∗ = A, which means that dualization is an involution. An aggregation function

A is self-dual if and only if A∗ = A.

3.1 The self-dual core

Aggregation functions are not in general self-dual. However, a self-dual aggregation function can

be associated to any aggregation function in a simple manner. The construction of the so-called

self-dual core of an aggregation function A is as follows.

Definition 8 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The function Â : [0, 1]n −→
[0, 1] defined as

Â(x) =
A(x) +A∗(x)

2
=

A(x)−A(1− x) + 1

2

is called the core of the aggregation function A.

Since Â is self-dual, we say that Â is the self-dual core of the aggregation function A. Notice

that Â is clearly an aggregation function. It is interesting to note that the self-dual core reduces

to the arithmetic mean in the simple case of n = 2, but not in higher dimensions.

The following results5 can be found in Garćıa-Lapresta and Marques Pereira [12].

Proposition 1 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if and only if Â(x) =

A(x) for every x ∈ [0, 1]n.

Proposition 2 The self-dual core Â inherits from the aggregation function A the properties of

continuity, idempotency (hence, compensativeness), symmetry, strict monotonicity, stability for

translations, and invariance for replications, whenever A has these properties.

5Excepting that invariance for replications is inherited by the core (the proof is immediate).
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3.2 The anti-self-dual remainder

We now introduce the anti-self-dual remainder Ã, which is simply the difference between the

original aggregation function A and its self-dual core Â.

Definition 9 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The function Ã : [0, 1]n −→ R

defined as Ã(x) = A(x)− Â(x) , that is

Ã(x) =
A(x)−A∗(x)

2
=

A(x) +A(1− x)− 1

2

is called the remainder of the aggregation function A.

Since Ã is anti-self-dual, we say that Ã is the anti-self-dual remainder of the aggregation

function A. Clearly, Ã is not an aggregation function. In particular, Ã(0) = Ã(1) = 0 , which

violates idempotency and implies that Ã is either non monotonic or everywhere null. Moreover,

−0.5 ≤ Ã(x ) ≤ 0.5 for every x ∈ [0, 1]n.

The following results6 can be found in Garćıa-Lapresta and Marques Pereira [12].

Proposition 3 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if and only if Ã(x) = 0

for every x ∈ [0, 1]n.

Proposition 4 The anti-self-dual remainder Ã inherits from the aggregation function A the

properties of continuity, symmetry, invariance for replications, plus also strict S-convexity and

S-concavity, whenever A has these properties.

Summarizing, every aggregation function A decomposes additively A = Â + Ã in two

components: the self-dual core Â and the anti-self-dual remainder Ã, where only Â is an

aggregation function. The so-called dual decomposition A = Â+ Ã clearly shows some analogy

with other algebraic decompositions, such as that of square matrices and bilinear tensors into

their symmetric and skew-symmetric components.

The following result concerns two more properties of the anti-self-dual remainder based

directly on the definition Ã = A− Â and the corresponding properties of the self-dual core (see

Garćıa-Lapresta and Marques Pereira [12]).

Proposition 5 Let A : [0, 1]n −→ [0, 1] be an aggregation function.

6Excepting that invariance for replications is inherited by the remainder (the proof is immediate) and that
strict S-convexity and S-concavity are also inherited by the remainder.
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1. Ã(x · 1) = 0 for every x ∈ [0, 1].

2. If A is stable for translations, then Ã is invariant for translations.

These properties of the anti-self-dual remainder are suggestive. The first statement estab-

lishes that anti-self-dual remainders are null on the main diagonal. The second statement applies

to the subclass of stable aggregation functions. In such case, self-dual cores are stable and there-

fore anti-self-dual remainders are invariant for translations. In other words, if the aggregation

function A is stable for translations, the value Ã(x ) does not depend on the average value of the

x coordinates, but only on their numerical deviations from that average value. These properties

of the anti-self-dual remainder Ã suggest that it may give some indication on the dispersion of

the x coordinates.

In Maes et al. [19], the authors propose a generalization of the dual decomposition framework

introduced in Garćıa-Lapresta and Marques Pereira [12], based on a family of binary aggregation

functions satisfying a form of twisted self-duality condition. Each binary aggregation function

in that family corresponds to a particular way of combining an aggregation function A with its

dual A∗ for the construction of the self-dual core Â. As particular cases of the general framework

proposed in Maes et al. [19], one obtains Garćıa-Lapresta and Marques Pereira’s construction,

based on the arithmetic mean, and Silvert’s construction, based on the symmetric sums formula

(see Silvert [26]). However, the dual decomposition framework introduced in Garćıa-Lapresta

and Marques Pereira [12] remains the only one which preserves stability under translations, a

crucial requirement in the present construction of poverty measures.

3.3 OWA operators

In 1988 Yager [30] introduced OWA operators as a tool for aggregating numerical values in

multi-criteria decision making. An OWA operator is similar to a weighted mean, but with the

values of the variables previously ordered in a decreasing way. Thus, contrary to the weighted

means, the weights are not associated with concrete variables and, therefore, they are symmetric.

Because of these properties, OWA operators have been widely used in the literature (see, for

instance, Yager and Kacprzyk [31] and Yager et al. [32]).

Definition 10 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n satisfying
∑n

i=1wi = 1,

the OWA operator associated with w is the aggregation function Aw : [0, 1]n −→ [0, 1] defined

as follows,

Aw(x) =
n∑

i=1

wi x[i] ,

where x[1] ≥ · · · ≥ x[n] as usual in the literature on OWA operators.
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Simple examples of OWA operators are

Aw(x ) =


max{x1, . . . , xn} , when w = (1, 0, . . . , 0) ,

min{x1, . . . , xn} , when w = (0, . . . , 0, 1 ) ,

µ(x ) , when w = ( 1n ,
1
n , . . . ,

1
n) .

In general, OWA operators are continuous, idempotent (hence, compensative), symmetric,

and stable for translations. Moreover, an OWA operator Aw is self-dual if and only if wn+1−i =

wi for every i ∈ {1, . . . , n} , see Garćıa-Lapresta and Llamazares [11, Proposition 5].

The following is a classical result, see for instance Chakravarty [4, p. 28].

Proposition 6 Consider the OWA operator Aw : [0, 1]n −→ [0, 1] associated with a weighting

vector w = (w1, . . . , wn) ∈ [0, 1]n . If the weights are non increasing, w1 ≥ · · · ≥ wn , then the

OWA operator Aw is S-convex. Instead, if the weights are non decreasing, w1 ≤ · · · ≤ wn , then

Aw is S-concave. Both results extend naturally to the strict case: decreasing weights w1 > · · · >
wn imply strict S-convexity, and increasing weights w1 < · · · < wn imply strict S-concavity.

Proof. Consider two points x ,y ∈ [0, 1]n with x < y , that is,
∑n

i=1(xi − yi) = 0 and∑k
i=1(x[i]−y[i]) ≥ 0 for every k ∈ {1, . . . , n−1} . Then, in the case w1 ≥ · · · ≥ wn , one obtains

Aw(x )−Aw(y) ≥ 0 in the following way,

w1(x[1] − y[1]) + w2(x[2] − y[2]) + w3(x[3] − y[3]) + · · ·+ wn(x[n] − y[n]) ≥

w2(x[1] − y[1]) + w2(x[2] − y[2]) + w3(x[3] − y[3]) + · · ·+ wn(x[n] − y[n]) =

w2(x[1] + x[2] − y[1] − y[2]) + w3(x[3] − y[3]) + · · ·+ wn(x[n] − y[n]) ≥

w3(x[1] + x[2] − y[1] − y[2]) + w3(x[3] − y[3]) + · · ·+ wn(x[n] − y[n]) =

w3(x[1] + x[2] + x[3] − y[1] − y[2] − y[3]) + · · ·+ wn(x[n] − y[n]) ≥ · · ·

wn(x[1] + x[2] + x[3] + · · ·+ x[n] − y[1] − y[2] − y[3] − · · · − y[n]) = 0 .

Analogously, in the case w1 ≤ · · · ≤ wn one obtains Aw(x )−Aw(y) ≤ 0 . In the strict case, we

consider two points x ,y ∈ [0, 1]n with x ≻ y , which means that at least one of the cumulative

differences
∑k

i=1(x[i] − y[i]) is positive. We then use the appropriate strict monotonicity of the

weights.

In general, the self-dual core Âw and the anti-self-dual remainder Ãw of an OWA operator

Aw can be written as

Âw(x ) =
n∑

i=1

wi + wn−i+1

2
x[i] and Ãw(x ) =

n∑
i=1

wi − wn−i+1

2
x[i] .
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As we know, the self-dual core Âw is an aggregation function. Moreover, since

n∑
i=1

wi + wn−i+1

2
= 1 ,

the self-dual core Âw is again an OWA operator, that is Âw = Aŵ with ŵi = (wi + wn−i+1)/2

for every i ∈ {1, . . . , n}. Notice that Âw reduces to the arithmetic mean in the simple case

n = 2, but not in higher dimensions.

On the other hand, the anti-self-dual remainder Ãw is not an aggregation function. Notice,

in particular, that Ãw(1) = 0, since

n∑
i=1

wi − wn−i+1

2
= 0 .

The self-dual core and the anti-self-dual remainder can be equivalently written as follows,

Âw(x ) =
n∑

i=1

wi

x[i] + x[n−i+1]

2
and Ãw(x ) =

n∑
i=1

wi

x[i] − x[n−i+1]

2
.

These expressions show clearly that the self-dual core is a weighted average of pairwise averages

of x coordinates (quasi-midranges), whereas the anti-self-dual remainder is a weighted average

of pairwise differences of x coordinates (quasi-ranges). The anti-self-dual remainder is therefore

independent of the overall average of the coordinates of x and constitutes a form of dispersion

measure.

Finally, one can show that w1 ≥ · · · ≥ wn implies Ãw(x ) ≥ 0 and w1 ≤ · · · ≤ wn implies

Ãw(x ) ≤ 0 . In fact, the anti-self-dual remainder can be written as follows,

Ãw(x ) =
1

2

n∑
i=1

(wi − wn−i+1) x[i] =
1

4

n∑
i=1

(wi − wn−i+1) (x[i] − x[n−i+1]) .

Then, in the first case, we have Ãw(x ) ≥ 0 because in each term of the summation both factors

are non negative for i ≤ n− i+1 and non positive for i ≥ n− i+1. Analogously, in the second

case, we have Ãw(x ) ≤ 0 because in each term of the summation for i ≤ n − i + 1 the first

factor is non positive while the second factor is non negative, and vice-versa for i ≥ n− i+ 1.

4 Poverty measures

We begin with a brief summary of the basic notions about poverty measures. Notation and

definitions follow Garćıa-Lapresta et al. [10].
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We consider a population consisting of n individuals, with n ≥ 2. An income distribution

is represented by a vector x = (x1, . . . , xn) ∈ [0,∞)n, where xi is the income of individual i.

Since Sen [22], any poverty measure consists of a method to identify the poor together with

an aggregative measure. Thus, the first step to define a poverty measure is the identification

of the poor people in society. This step requires the specification of a poverty line z ∈ (0,∞)

which represents the necessary income to maintain a minimum level of living. For an income

distribution x , person i is considered to be poor if xi < z. Otherwise the person is non-poor or

rich.

We denote the set of poor people by

Q(x , z) = {i ∈ {1, . . . , n} | xi < z},

and by q(x , z) the number of the poor, i.e., q(x , z) = #Q(x , z).

Once the poor people have been identified, the second step to determine the extent of poverty

involves the aggregation scheme. In what follows, a poverty measure is a non-constant function

P (x , z) of the income distribution x and the poverty line z.

4.1 Axioms

A number of axioms are usually assumed for a poverty measure.

• Poverty Focus (PF): For all x ,y ∈ [0,∞)n and z ∈ (0,∞), if Q(x , z) = Q(y , z) = Q

and xi = yi for every i ∈ Q, then P (x , z) = P (y , z).

• Poverty Monotonicity (PM): For all x ,y ∈ [0,∞)n and z ∈ (0,∞), if Q(x , z) =

Q(y , z) = Q and x = y except for xi > yi with i ∈ Q, then P (x , z) < P (y , z) .

Since poverty measurement is concerned with the deprivations of poor people, these two

properties, postulated by Sen [22], are considered as the basic axioms for a poverty measure.

Thus, axiom PF requires that a poverty index should not depend on the income of the non-poor

people, i.e., the poverty level should not vary if the rich incomes change, as long as the set of

poor people remains unchanged. On the other hand, axiom PM demands that poverty should

increase if the income of a poor person decreases.

The following axiom is concerned with inequality among the poor. In the inequality field, the

Pigou-Dalton transfer principle establishes that a progressive transfer, that is a transfer from

a richer person to a poorer one, should decrease inequality. Accordingly, a progressive transfer

among the poor should decrease inequality among the poor. Sen [22] introduces the counterpart

11



of this principle in the poverty field, requiring poverty also to decrease. This is captured by the

Transfer Sensitive axiom below.

• Transfer Sensitivity (TS): For all x ,y ∈ [0,∞)n and z ∈ (0,∞), if y is obtained from

x by a progressive transfer among the poor, then P (y , z) < P (x , z).

A progressive transfer among the poor entails an increment of income for one poor individual,

and a decrement for another poor person, the richer of the two. This TS axiom goes beyond

PM and demands that greater weight should be placed on the poorer person and that poverty

should decrease if inequality among the poor decreases.

A normalization condition is also usually assumed in the poverty measurement. This property

requires that if all the individuals are non-poor, then the society poverty level is equal to 0.

• Normalization (N): For all x ,y ∈ [0,∞)n and z ∈ (0,∞), P (x , z) = 0 if and only if

Q(x , z) = ∅, that is xi ≥ z for every i ∈ {1, . . . , n}.

The two following invariance axioms are also standard requirements for a poverty measure:

• Poverty Symmetry (PS): For all x ∈ [0,∞)n, z ∈ (0,∞) , and any permutation σ on

{1, . . . , n}, it holds that P (xσ, z) = P (x , z).

• Replication Invariance (RI): For all x ∈ [0,∞)n and z ∈ (0,∞), if y is obtained from

x by a replication, that is y = (

m︷ ︸︸ ︷
x , . . . ,x ) for some m ∈ N, then P (y , z) = P (x , z) .

The PS axiom establishes that no other characteristic apart from income deprivation matters

in defining a poverty index. In turn, RI allows us to compare populations of different sizes.

The first poverty measure introduced in the literature has been the headcount ratio

H : [0,∞)n × (0,∞) −→ [0, 1] defined as

H(x , z) =
q(x , z)

n
,

which measures the percentage of poor people in the society.

This is a crude index, which is able to capture the incidence of poverty. However, it is able

to capture neither the intensity nor the inequality among the poor. In fact it violates both

PM and TS, since it does not change if the income of a poor decreases, and under progressive

transfers among the poor.
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In most cases, measuring poverty involves gauging the extent of the deprivation felt by each

individual, once the income poverty line has been determined. One of the most used procedures

to measure individual i’s shortfall is to consider the normalized gap of individual i.

Definition 11 For all x ∈ [0,∞)n and z ∈ (0,∞), the normalized income gap of individual i

is defined as

gi = max

{
z − xi

z
, 0

}
.

Notice that gi ∈ [0, 1] for every i ∈ {1, . . . , n}, with gi = 0 iff xi ≥ z, and gi = 1 iff xi = 0.

Moreover, the normalized income gaps (gi, . . . , gn) are invariant under dilations, that is, uniform

scale changes on incomes (xi, . . . , xn) and poverty line z.

On the other hand, a progressive transfer among the poor people leads to an increment in the

richer individual gap whereas the poorer person gap decreases. Since the richer gap is smaller

than the poorer one, the progressive transfers among the poor incomes are equivalent to the

progressive transfers among the poor gaps. Then, according to Marshall and Olkin [20, Ch. 4,

Prop. A.1], the TS axiom is to be fulfilled whenever the function is strictly S-convex either in

incomes or in gaps.

Definition 12 The aggregate income gap ratio M : [0,∞)n × (0,∞) −→ [0, 1] is defined as

M(x, z) = µ(gp) =
1

q

q∑
i=1

g[i] ,

where g[1] ≥ · · · ≥ g[q] are the positive normalized poverty gaps generated by the income distri-

bution x , the remaining normalized poverty gaps g[q+1] = · · · = g[n] = 0 being null. Accordingly,

it holds that

1−M(x, z) = µ(xp/z) =
1

q

q∑
i=1

x(i)/z ,

where x(1) ≤ · · · ≤ x(q) < z are the poor incomes in the income distribution x, the remaining

incomes z ≤ x(q+1) ≤ · · · ≤ x(n) being non poor.

This index usually measures the intensity of poverty and gives the minimum cost of elimi-

nating poverty but does not reflect the inequality among the poor.

4.2 The Sen poverty index and an alternative decomposition proposal

We now introduce the Sen poverty index [22]. Although this is not Sen’s original proposal, the

modified expression indicated below is presently the standard reference, see also Sen [23].
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Definition 13 The Sen poverty index S : [0,∞)n × (0,∞) −→ [0, 1] is defined as follows,

S(x, z) =
1

qn

q∑
i=1

(2(q − i) + 1) g[i] , (1)

where g[1] ≥ · · · ≥ g[q] are the positive normalized income gaps generated by the distribution x .

The summation structure of the S poverty index essentially combines the normalized income

gaps of the poor with q positive coefficients which are larger for individuals with larger income

gaps: apart from the overall factor 1/qn, the largest gap has coefficient 2q − 1 and the smallest

gap has coefficient 1, with decreasing two unit differences from one coefficient to the next.

Actually, as we will see below, the S index is in fact a convex combination of the normalized

poverty gaps, multiplied by the headcount ratio q/n. Moreover, the S index satisfies PF, PM,

TS, PS, and RI [22].

In the literature, two alternative decompositions have been proposed of this index. On the

one hand, Sen [22] shows that the index satisfies

S(x , z) = H(x , z)(M(x , z) + (1−M(x , z))G(x p)) , (2)

where G(x p) ∈ [0, 1] is the Gini index of the poor sector of the population,

G(x p) = 1− 1

µ(x p)

q∑
i=1

2(q − i) + 1

q2
x(i),

and x(1) ≤ · · · ≤ x(q) < z are the poor incomes in the distribution x .

On the other hand, Xu and Osberg [29] propose the following alternative decomposition

S(x , z) = H(x , z)(M(x , z) +M(x , z)G(gp)) , (3)

where G(gp) ∈ [0, 1] is the Gini index of the normalized income gaps of the poor,

G(gp) = 1− 1

µ(gp)

q∑
i=1

2i− 1

q2
g[i].

The difference in the summation coefficients appearing in the expressions of G(x p) and G(gp)

above is due only to the two different re-orderings of the index values i = 1, . . . , n involved.

However, as already mentioned, the choice between the Gini index of the poor incomes and

that of the normalized income gaps of the poor is not innocuous. To illustrate this, let us

consider two income distributions x 1 = (4, 5, 25, 35) and x 2 = (3, 4, 22, 32). Let us assume

that the poverty line is z = 36. Then, the corresponding poverty gap distributions are g1 =
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(
32
36 ,

31
36 ,

11
36 ,

1
36

)
and g2 =

(
33
36 ,

32
36 ,

14
36 ,

4
36

)
. The Gini index of the income distributions concludes

that the inequality among the poor is higher in the latter than in the former, G(x 1) = 0.409 <

0.430 = G(x 2). Nevertheless, this conclusion is reversed if the Gini index of the gap distributions

is computed since G(g1) = 0.377 > 0.316 = G(g2).

In what follows we propose an alternative decomposition of the Sen index that overcomes

this drawback. We begin by rewriting the S index as

S(x , z) = H(x , z)

q∑
i=1

2(q − i) + 1

q2
g[i] , (4)

where, as before, g[1] ≥ · · · ≥ g[q] are the positive normalized income gaps generated by the dis-

tribution x . The summation multiplying the headcount ratio corresponds to an OWA operator

AG : [0, 1]q −→ [0, 1] applied to the normalized poverty gaps,

AG(gp) =

q∑
i=1

wi g[i] , wi =
2(q − i) + 1

q2
, i = 1, . . . , q (5)

with decreasing positive weights w1 > · · · > wq, satisfying
∑q

i=1wi = 1. This OWA operator

AG satisfies a number of important properties.

Proposition 7 The OWA operator AG defined above satisfies continuity, idempotency (hence,

compensativeness), symmetry, strict monotonicity, stability for translations, invariance for repli-

cations, and strict S-convexity.

Proof. In general, OWA operators are continuous, idempotent (hence, compensative), sym-

metric and stable for translations. In the case of AG, positivity of the weights implies strict

monotonicity. Moreover, the fact that weights are decreasing implies strict S-convexity, as ex-

plained in Subsection 3.3. Finally, invariance for replications can be derived as follows. Let ggp

denote the duplicated vector of normalized income gaps, with j = 1, 2, . . . , 2q−1, 2q components

given by gg[2i−1] = gg[2i] = g[i] for i = 1, . . . , q. Then,

AG(ggp) =

2q∑
j=1

2(2q)− 2j + 1

(2q)2
gg[j] =

=

q∑
i=1

(
2(2q)− 2(2i− 1) + 1

(2q)2
+

2(2q)− (2i) + 1

(2q)2

)
g[i] =

=

q∑
i=1

(
8q − 8i+ 4

4q2

)
g[i] = AG(gp) .

The proof easily extends to higher order replications.
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A straightforward application of the previous section allows us to compute the self-dual core

and the anti-self-dual remainder of AG. By Propositions 2 and 7, the core ÂG is idempotent,

symmetric, strictly monotonic, and stable for translations. The strictly monotonicity axiom

implies that is increasing in the income gap of a poor person. The stability for translations means

that equal absolute changes in all poor gaps lead to the same absolute change in ÂG. These

properties can be regarded as basic properties of a poverty intensity index. In the particular

case of the Sen index, Proposition 8 below shows that the core ÂG coincides with the aggregate

income gap ratio, as already mentioned the archetypical measure of the poverty intensity.

Proposition 8 The self-dual core of the OWA operator AG is given by

ÂG(gp) = µ(gp) .

Proof. Since wi = (2(q − i) + 1)/q2 and wq−i+1 = (2i− 1)/q2, we obtain

ÂG(gp) =

q∑
i=1

wi + wq−i+1

2
g[i] =

q∑
i=1

1

q
g[i] = µ(gp) . (6)

On the other hand, the antiself-dual remainder ÃG is symmetric, fulfills that ÃG(gp) = 0 if

and only if g1 = · · · = gq, and Propositions 4 and 7 ensure that it is S-convex, and consequently

the Pigou-Dalton transfer principle is satisfied. Hence, obtains a direct interpretation of ÃG as

a measure of inequality among the poor individuals. What is more interesting in our discussion,

is that ÃG is anti-self-dual, that is, inequality among the poor does not change if we focus on

poverty gaps, or on achievements as measured by x p/z. This component is also invariant if the

units in which income is measured change.

Moreover, ÃG is invariant for translations (Proposition 5), thus it measures inequality from

an absolute point of view and remains invariant if the gaps of all the poor are increased by

the same amount. Propositions 9 and 10 below show that the anti-self-dual remainder of the

OWA operator AG associated with the Sen index corresponds to the absolute Gini index of the

normalized poverty gaps, GA(gp) = µ(gp)G(gp) . Or, equivalently, to the absolute Gini index

of the poor incomes normalized by the poverty line, GA(x p/z) = µ(x p/z)G(x p/z) .

Proposition 9 The anti-self-dual remainder of the OWA operator AG is given by

ÃG(gp) = GA(gp) .
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Proof. Again, since wi = (2(q − i) + 1)/q2 and wq−i+1 = (2i− 1)/q2, we obtain

ÃG(gp) =

q∑
i=1

wi − wq−i+1

2
g[i] =

q∑
i=1

q − 2i+ 1

q2
g[i] =

q∑
i=1

1

q
g[i] −

q∑
i=1

2i− 1

q2
g[i] = µ(gp)G(gp) = GA(gp) .

Therefore, the dual decomposition of the OWA operator AG involved in the Sen index S, as

in equation (5), leads to

AG(gp) = ÂG(gp) + ÃG(gp) = µ(gp) +GA(gp) . (7)

Now, changing focus from shortfalls to achievements, that is from normalized poverty gaps

to poor incomes normalized by the poverty line, we can prove the following result.

Proposition 10 The absolute Gini index GA(gp) of the normalized poverty gaps coincides with

the absolute Gini index GA(xp/z) of the poor incomes normalized by the poverty line,

GA(gp) = GA(xp/z) .

Proof. In the previous result we have shown that GA(gp) corresponds to the anti-self-dual

remainder of the OWA operator AG. Then, by anti-self-duality, we immediately obtain

GA(gp) = GA(1− gp) = GA(x p/z) .

This result is central to the consistent measurement of inequality on the bounded scale [0, 1],

irrespectively of whether one focus on achievements x p/z or shortfalls gp = 1 − x p/z of the

poor sector of the population. The crucial fact that the absolute Gini index GA contains the

appropriate weighting mechanism in order to provide a common synthesis of the two descriptions

is well illustrated in the following explicit derivation,

GA(gp) = µ(gp)G(gp) =

q∑
i=1

1

q
g[i] −

q∑
i=1

2i− 1

q2
g[i] =

q∑
i=1

q − 2i+ 1

q2
g[i] =

q∑
i=1

2(q − i) + 1

q2
g[i] −

q∑
i=1

1

q
g[i] =

q∑
i=1

2(q − i) + 1

q2

(
1−

x(i)

z

)
−

q∑
i=1

1

q

(
1−

x(i)

z

)
= (8)

q∑
i=1

1

q

x(i)

z
−

q∑
i=1

2(q − i) + 1

q2
x(i)

z
= µ(x p/z)G(x p/z) = GA(x p/z) .
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Finally, the next result provides a decomposition of the Sen index in three components: in-

cidence, intensity and inequality. The interest of this result is that the inequality component,

expressed in terms of the absolute Gini index, provides a consistent measure of either achieve-

ments (incomes normalized with respect to the poverty line) or shortfalls (normalized income

gaps) of the poor.

Proposition 11 The Sen index satisfies the following decomposition

S(x, z) = H(x, z)
(
M(x, z) +GA(gp)

)
= H(x, z) (M(x, z) +GA (xp/z)),

where intensity is expressed by the aggregate income gap ratio M(x, z) = µ(gp) = 1 − µ(xp/z)

and inequality is consistently measured by the absolute Gini index

GA(gp) = µ(gp)G(gp) = µ(xp/z)G(xp/z) = GA(xp/z) .

Proof. Straightforward from the two standard decompositions (2) and (3), plus equation (7)

and Proposition 10.

4.3 An illustrative example

We now illustrate the possibilities of the decomposition of the Sen poverty measure proposed in

this paper. First, consider seven income distributions and their corresponding normalized gaps

for the poverty line z = 1800 in the first and second columns of Table 1, respectively. Notice

that distributions x 1, x 2, x 3, x 5 and x 7 share the same average income gap of the poor and

the others two are close to this amount. However their poverty levels are quite different and the

decomposition of the S poverty index in its three contribution components allow us to determine

where the differences stem from. The poverty measure S and the three components, H, ÂG

and ÃG, can be seen in the four columns of Table 2. For instance, notice that x 1 and x 2

have the same inequality and the same intensity, and the difference in their poverty levels arises

from the different percentages of poor people. Distributions x 2, x 3 and x 7 have the same

headcount ratio and the poverty intensity level, nevertheless income among the poor are more

equally distributed in x 7 than in x 2 and x 3. By contrast, x 3 and x 4 share the headcount

ratio and the inequality levels, being different their poverty intensity.

In general, we may compare any pair of distributions and analyze its poverty components

to better understand their differences. For example, if we concentrate on distributions x 5, x 6

and x 7, we may conclude that x 5 exhibits the lowest headcount ratio, while x 6 and x 7 have

the lowest values of inequality and intensity respectively.
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Table 1: Incomes and gaps

Incomes Gaps for z = 1800

x 1 = (122, 778, 1100, 1200) g1 = (0.932, 0.568, 0.389, 0.333)

x 2 = (300, 800, 1300, 2400) g2 = (0.833, 0.556, 0.278, 0.000)

x 3 = (100, 800, 1500, 2400) g3 = (0.944, 0.556, 0.167, 0.000)

x 4 = (300, 1000, 1700, 3800) g4 = (0.833, 0.444, 0.278, 0.000)

x 5 = (178, 1422, 1900, 2500) g5 = (0.901, 0.210, 0.000, 0.000)

x 6 = (40, 520, 1520, 1620) g6 = (0.978, 0.711, 0.156, 0.100)

x 7 = (460, 940, 1000, 2600) g7 = (0.744, 0.478, 0.444, 0.000)

Table 2: Decomposition of the Sen poverty measure

i S(x i, z) H(x i, z) ÂG(g
i) ÃG(g

i)

1 0.679 1 0.556 0.123

2 0.509 0.75 0.556 0.123

3 0.546 0.75 0.556 0.173

4 0.463 0.75 0.444 0.173

5 0.364 0.5 0.556 0.173

6 0.685 1 0.486 0.199

7 0.467 0.75 0.556 0.067

5 Concluding remarks

We have investigated the structure of the Sen poverty index within the framework of the dual

decomposition of aggregation functions. The Sen index can be written as a product of the

standard headcount ratio and an OWA operator applied to the poverty gaps. This OWA operator

decomposes into a self-dual core, corresponding to the the average poverty gap, and an anti-

self-dual remainder which corresponds to the classical Gini index of the normalized incomes of

the poor. In this new decomposition of the Sen poverty index, therefore, the self-dual core and

the anti-self-dual remainder measure (respectively) the intensity and the inequality of poverty

within the given income distribution. The central result is thus that the dual decomposition of

the Sen poverty index contains an inequality measure which is naturally achievement/shortfall

consistent.
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