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1.  Introduction 
 Distributional considerations play a crucial role in public policymaking. Indeed 
policy implementation entails a redistribution of socioeconomic burdens and advantages, 
and policymakers are particularly interested in knowing whether or not an intervention 
had (or is likely to have) the intended effects on policy-relevant socioeconomic groups, 
and why. Policy impact analysis is therefore an exercise in social impact evaluation 
understood as an assessment of variation in individual and social outcomes attributable to 
a socioeconomic shock or the implementation of public policy. Sen (1995) explains that 
any evaluative approach is characterized by its informational basis which clearly 
identifies the information required in passing judgments within the chosen approach. Two 
key elements underpin the informational basis. The focal space defines individual 
advantage (desirable outcome at the individual level), while the focal combination is used 
to assess social progress (desirable social outcome). The focal combination is essentially 
a rule for combining individual outcomes into an aggregative indicator of the prevailing 
social state. In other words, the focal combination is a social evaluation function (e.g. a 
social welfare function or a poverty measure) used to rank social states represented by 
distributions of individual outcomes. 

 The above considerations suggest that social evaluation functions used in policy 
impact analysis are nothing but distributional statistics, which can be viewed as real-
valued and continuous functionals of the relevant outcome distributions. In the context of 
robust statistics, a distributional statistic that is continuous is said to be qualitatively 
robust (Wilcox, 2005). If this statistic is also differentiable, then it is said to be 
infinitesimally robust. Its first-order directional derivative is known as its influence 
function (Hampel, 1974). In other words, the influence function of a distributional 
statistic (and hence of a social evaluation function) measures the relative effect of a small 
perturbation in the underlying outcome distribution on the statistic of interest. One can 
therefore build an infinitesimal approach to policy impact analysis on the notion of 
influence function. Within that approach and under the assumption that the distributional 
change in question is due to policy implementation, the influence function of a social 
evaluation criterion may be viewed as a local measure of the distributional impact of 
policy. This is analogous to what Rothe (2010) calls a distributional policy effect.1

 For policymaking purposes, it is not enough to measure the impact of policy on 
the outcome distribution; policymakers are also interested in identifying the forces that 
drive the observed outcomes. Individual outcomes from participation in a policy 
intervention ultimately depend on individual endowments, behavior and the 
circumstances that determine the returns to those endowments in any socioeconomic 
transaction. This perspective creates a need for linking social evaluation functions to 
individual (or household) characteristics depending on the unit of analysis. Recent work 
of Firpo et al. (2009), has developed a regression technique using the recentered 
influence function (RIF), as a straightforward way to establish such a link. These authors 
define the RIF as the first two leading terms of the von Mises (1947) linear 

 

                                                 
1 The influence function has also been used to quantify the impact of data contamination upon various 
distributional statistics, see for example Cowell (1999) and Cowell and Victoria-Feser  (1996, 2002). 
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approximation of the corresponding social evaluation function. Assuming that the 
outcome variable is observed along with relevant covariates representing individual 
characteristics, they use the fact that the expected value of the influence function is equal 
to zero and the law of iterated expectations to express the social evaluation function of 
interest as the conditional expectation of the RIF given the covariates. This conditional 
expectation is what they call RIF regression. 

 Within the RIF regression framework, Firpo et al. (2009) define two very useful 
parameters in policy analysis, the marginal effect of a ceteris paribus change in the 
distribution of covariates, and the unconditional partial effect. If the conditional outcome 
distribution given the covariates does not change following a small perturbation of the 
distribution of those covariates, then the marginal effect of this distributional change on 
the social outcome can be computed on the basis of the RIF regression. Furthermore, the 
same regression model can be used to compute the partial effect of a small location shift 
in the distribution of a continuous covariate on the social outcome. Under the assumption 
that the RIF regression is linear, these effects can be computed using standard OLS. 
Rothe (2011) proposes a parameter analogous to the unconditional partial effect which he 
calls the partial distributional policy effect. This parameter is a measure of the effect of a 
ceteris paribus change in the unconditional distribution of a single covariate on some 
functional of the unconditional distribution of the outcome variable. In contrast to Firpo 
et al. (2009), this author presents a fully nonparametric framework for the identification 
and estimation of this parameter for general changes in the covariate distribution 
including location shifts. 

 Declaring a policy outcome socially desirable on the basis of some social 
evaluation function is a result of aggregate judgment that may hide more than it reveals 
about the heterogeneity of impacts underlying the aggregate outcome. The possibility to 
link social evaluation criteria to individual characteristics via RIF regression offers an 
opportunity to understand this heterogeneity and to design targeted interventions that 
might enhance the effectiveness of public policy. Furthermore, attribution of outcomes to 
policy is the hallmark of policy impact evaluation. Variations in individual and social 
outcomes associated with policy implementation could be driven at least in part by 
changes in confounding factors in the socioeconomic environment. Looking at the 
individual outcome as a function of policy and type (base on characteristics), one can 
resort to counterfactual decomposition of observed distributional change à la Oaxaca-
Blinder to sort out the part that is due to policy and the part due to confounding factors. 
RIF regression makes it possible to extend this type of decomposition to variation in 
social outcomes. However, a key limitation of this approach stems from the fact that RIF 
regression coefficients provide only a local approximation for the effect of changes in the 
relevant covariates on the distributional statistic of interest. Nonetheless, the approach 
based on linearization, which is of course widespread throughout economics, is very 
attractive in an operational environment.2

                                                 
2 This limitation of the RIF regression approach is well-recognized. Chernozhukov et al. (2009) directly 
estimate an exact effect without approximation error. See also Rothe (2010, 2011) in which no shape 
restriction is imposed on the conditional distribution of the outcome given explanatory variables. 
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In this paper, we carefully define and catalog the influence functions and 
recentered influence functions for a wide range of distributional statistics, including 
measures of central tendency, inequality and poverty and also measures of the degree of 
pro-poorness of the shock- or policy-induced change in income levels. We include the 
mean, pth quantile point, variance, Gini coefficient, Atkinson (1970) inequality index, 
Lorenz curve ordinate, generalized Lorenz curve ordinate (Shorrocks, 1983), Foster et al. 
(1984) poverty index (henceforth the FGT index), Watts (1969) poverty index, growth 
incidence curve ordinate (Ravallion and Chen, 2003), TIP curve ordinate (Jenkins and 
Lambert, 1997), poverty elasticity of the headcount ratio, and pro-poorness measures for 
the FGT, Watts and headcount indices (Essama-Nssah and Lambert, 2009). Such a 
catalog has not been available in the literature heretofore. 

 The organization of the remainder of the paper is as follows. In Section 2, 
directional derivatives are defined, and are determined for each of the distributional 
statistics just listed. In Section 3, influence functions and recentered influence functions 
are determined for each of these distributional statistics. Appendix A contains proofs of 
all claimed results. For the reader’s convenience, Appendix B contains a table in which 
the definitions of the distributional statistics we have covered, and their recentered 
influence functions, are specified.  

 

2.  Directional derivatives of distributional statistics 
 Suppose that, at the individual or household level, the outcome y we are interested 
in is income. Let F(y) be an outcome distribution, and let T(·) be a distributional statistic 
(e.g. a social evaluation function or indicator of a social outcome) that is qualitatively and 
infinitesimally robust. The influence function is the directional derivative of T(F) at F 
and it measures the effect of a small perturbation in F on T(F), as follows. Let H  be 
some distribution other than F. When the data does not follow F  exactly, but a slightly 
different distribution, one that is "going towards" H , the effect is revealed by the 
directional derivative of T at F in the direction of H: 

(1)  


∇TF→H =
d
dt

T tH + (1− t)F( )
t=0

=
lim

t ] 0

T tH + (1− t)F( )− T F( )
t

 

(see Wilcox, 2005). 

 The following proposition both defines the notation used in the rest of the paper, 
and determines the directional derivatives for the distributional statistics we have listed. 
The density functions associated with F(x) and H(x) are f(x) and h(x), and z is an 
exogenous poverty line. Some explanatory comments follow the statement of the 
proposition. 

 

Proposition 1 

For each of the following distributional statistics T(·), the directional derivative ∇TF→H  is 
as shown: 
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(a) The mean, µF = Tµ (F) = xf (x)dx∫ :  ∇Tµ ,  F→H = µH − µF  

(b) The pth quantile point, vp = Tvp (F) = F−1 p( ):  ∇Tvp,  F→H =  
p − H (vp ) 

f (vp )
 

(c) The variance, σ F
2 = Tσ 2 (F) = (x − µ)∫

2
f (x)dx : ∇Tσ 2 ,F→H = σ H

2 − σ F
2 + µH − µF( )2  

(d) The Gini coefficient, GF = TG (F) = 1
µF

F(x) 1− F(x)[ ]dx∫ :  

 ∇TG ,  F→H =
µF − µH

µF

GF +
1

µF

H (x) − F(x)[ ] 1 − 2F(x)[ ]dx∫  

(e) The Atkinson inequality index IF (e) = TATK (F) = 1−
ξ
µF

,  e > 0 , where 



U(x) =
x1−e

1 − e 0 < e ≠ 1

l n(x)                 e = 1






  and  U(ξ) = U(x) f (x)dx∫ : 

   



∇TATK ,F→H F( )=

e
1− e

+
µH

µF









1− IF[ ]−
1− IF[ ]e x1−eh(x)dx∫

(1− e)µF
1−e 0 < e ≠ 1

(1− IF ) l n µF 1− IF( ){ }− l n(x)h(x)dx + µH

µF

−1




∫












     e = 1













 

(f) The generalized Lorenz ordinate at p ∈[0,1] ,  GLF ( p) = TGLp (F) =  xf (x)
0

vp
∫ dx  : 

 ∇TGLp , F→H = xh(x)dx
0

vp

∫ + vp p − H (vp )  − TGLp (F)  

(g) The Lorenz ordinate at p ∈[0,1] ,  LF (p) = TLp (F) =  
xf (x)dx

0

vp
∫

µF
: 

 ∇TLp , F→H =
xh(x)dx

0

vp∫ + vp p − H (vp )[ ]
µ

F

− TLp (F).
µH

µF

 

(h) The FGT index for poverty line z,  TFGTα (F) = 1−
x
z






α

0

z

∫ f (x)dx :  

 ∇TFGTα ,F→H = 1−
x
z






α

0

z

∫ h(x)dx − TFGTα (F)  

(i) The Watts index for poverty line z, 


TW (F) = l n z
x







0

z

∫ f (x)dx :  

 


∇TW ,F→H = l n z
x







0

z

∫ h(x)dx − TW (F)  
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(j) The TIP curve ordinate for poverty line z at p ∈[0,1] , 

 TIPF (p) = TTIPp (F) =
(z − x) f (x)dx vp ≤ z

0

vp

∫
(z − x) f (x)dx vp ≥ z

0

z

∫









 : 

∇TTIPp,F→H (F) =
(z − x)h(x)dx + (z − vp ) p − H (vp )]  − TTIPp (F) vp ≤ z

0

vp

∫
(z − x)h(x)dx − TTIPp (F) vp ≥ z

0

z

∫









 

(k)  The growth incidence curve ordinate at p, GICF (p) = TGICp (F) = γ q(vp )  where γ is 

the aggregate growth rate:  ∆TGICp,F→H =
µH

µF

TGICp (F) + γ q '(vp ).
p − H (vp )

f (vp )













 

(l) Pro-poorness for the FGT index, 
  
T

ppFGTα
(F ) =

α

z
x 1−

x

z







α −1

[q(x) − 1] f (x)dx
0

z

∫ : 

 
  
∇T

ppFGTα , F→ H
=

α

z
x 1−

x

z







α −1

γ q(x) q(x) + xq '(x)[ ]− 1{ }h(x)dx  
0

z

∫ − 1 +
µ

H

µ
F









T

ppFGTα
(F )  

(m) Pro-poorness for the Watts index, 
  
TppW (F ) = [q(x) −1] f (x)dx

0

z

∫ : 

 
  
∇T

ppW , F→H
(F ) = γ q(x) q(x) + xq '(x)  −1{ }h(x)dx − 1+

µ
H

µ
F









T

ppW0

z

∫ (F )  

(n)  Pro-poorness for the headcount ratio: TppHC (F) = z q(z) −1( ) f (z)  : 

 ∇TppHC ,F→H = −zh(z) 1+ γ q(z) q(z) + zq '(z)( ){ }− 1+
µH

µF









TppHC (F) − zf (z)

µH

µF

 

(o) The poverty elasticity of the headcount ratio, 
  
TEHC (F ) = − zq(z) f (z)

F (z)( ): 
 

  
∇TEHC ,F→H = −T

EHC
(F )

H ( z )

F ( z )
+

µ
H

µ
F

+
γ h(z )

f (z )
q(z) + zq '(z)[ ]







  

 All of these results follow using calculus and/or limiting arguments. Each is 
proven in Appendix A, part I. Note that the median income value is case (b) with p = 1

2 . 

For the growth incidence curve and pro-poorness measures, q(x) is the income growth 
pattern, an elasticity function telling by what percentage income x grows when the overall 
income growth is 1%, as in Essama-Nssah and Lambert (2009), where pro-poorness for a 

poverty index P = ψ  (x | z) f (x)dx
0

z

∫ , in which the poverty contribution function   ψ  (x | z)  is 

convex, decreasing and equals zero for x ≥ z , is defined as 
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T

ppP
(F ) = {−xψ  '(x | z)}[q(x) − 1] f (x)dx

0

z

∫  (and pro-poorness for the headcount ratio F(z) is 

separately defined as in (n)).  
 

3.  Influence functions and recentered influence functions  

 For y in the domain of F, let H = ∆ y  be the cumulative distribution function for a 

probability measure which gives mass 1 to y. That is, H (x) = ∆ y (x) =
0 x < y
1 x > y




. The 

density function h(x) is zero everywhere except for an infinite spike at x = y. In 

particular, ∆ y (x) f (y)dy
0

∞

∫ = f (y)dy = F(x).
0

∞

∫   

 The influence function for an estimator T(·) is defined as  

(2)  IF(y;T ;F) = ∇TF→∆y  

It describes the effect of an infinitesimal ‘contamination’ at the point y on the estimator: 
in the mixed distribution tH + (1− t)F , it is as if an observation is randomly sampled 
from distribution F with probability (1-t) and from ∆y with probability t. The influence 

function is also known as the Gâteaux derivative, following Gâteaux (1913). It has 
become a key tool in robust statistics.  
 
 An important property of the influence function is that, in all cases in which the 
frequencies and range of the y-values are bounded,  

(3)  IF(y;T ;F) f (y)
0

∞

∫ dy = 0  

See part II of Appendix A for the proof of this result, whose significance will become 
apparent.  

 The re-centered influence function is defined by adding the influence function to 
the functional itself: 
(4)  RIF y;T ;F( )= T (F) + IF y;T ;F( ) 
Because of (3) we have  

(5)  RIF(y;T ;F) f (y)
0

∞

∫ dy = T (F) . 

The following proposition determines the influence functions and recentered influence 
functions for the distributional statistics whose directional derivatives are given in 
Proposition 1. Again, some comments follow the statement of this Proposition. 

 

Proposition 2 

For the following distributional statistics T(·), the influence functions IF(y;T ;F)  and 
recentered influence functions RIF(y;T ;F)  are as shown: 

(a)  The mean:   IF(y;Tµ;F) = y − µF   and  RIF(y;Tµ;F) = y  
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(b)  The pth quantile point: 

  IF(y;Tvp;F) =   

p

f (vp )
  y > vp

−(1 − p)

f (vp )
         y < vp











    and 

 RIF(y;Tvp;F) =   
vp +

p
f (vp )

y > vp

vp −
1 − p( )

f (vp )
y < vp









  

(c)  The variance: IF(y;Tσ 2 ;F) = −σ F
2 + y − µF( )2  and RIF(y;Tσ 2 ;F) = y − µF( )2  

(d)  The Gini coefficient:    IF(y;TG;F) = −
µF + y

µF

GF +1−
y

µF

+
2

µF

F(x)dx
0

y

∫   and 

 RIF(y;TG;F) = −
y

µF

GF +1−
y

µF

+
2

µF

F(x)dx
0

y

∫  

(e)  The Atkinson index:  

 



IF(y;TATK ;F) =

e
1− e

+
y
µF









1− IF[ ]− 1− IF[ ]e y1−e

(1− e)µF
1−e 0 < e ≠ 1

(1− IF ) l n µF 1− IF( ){ }− l n(y) +
y
µF

−1

















     e = 1













    and 

 



RIF(y;TATK ;F) = IF +

e
1− e

+
y
µF









1− IF[ ]− 1− IF[ ]e y1−e

(1− e)µF
1−e 0 < e ≠ 1

(1− IF ) l n µF 1− IF( ){ }− l n(y) +
y
µF

−1

















     e = 1













 

(f) The generalized Lorenz ordinate: 

 IF(y;TGLp;F) =
y − (1− p)vp − TGLp (F)    y < vp

pvp − TGLp (F)    y ≥ vp





   and  

 RIF(y;TGLp;F) =
y − (1− p)vp     y < vp

pvp     y ≥ vp





    

(g)  The Lorenz ordinate: IF(y;TLp;F) =

y − (1 − p)vp

µF

− T
Lp

(F).
y

µF

    y < vp

pvp

µF

− T
Lp

(F).
y

µF

    y ≥ vp











     and  
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 RIF(y;TLp;F) =

y − (1 − p)vp

µF

+ T
Lp

(F). 1 −
y

µF







    y < vp

pvp

µF

+ T
Lp

(F). 1 −
y

µF







              y ≥ vp











    

 (h) The FGT index:  IF(y;TFGTα ;F) =
1−

y
z






α

− TFGTα (F) y < z

−TFGTα (F) y > z









   and  

 RIF(y;TFGTα ;F) =
1−

y
z






α

y < z

0 y > z









  

(i) The Watts index:  



IF(y;TW ;F) =
l n z

y





− TW (F) y < z

−TW (F) y > z









   and 

 



RIF(y;TW ;F) =
l n z

y






y < z

0 y > z









 

 (j) The TIP curve ordinate at p ∈[0,1] :  

 IF(y;TTIPp;F) = −TTIPp (F) +

z − y y < z
0 y > z

z < vp




pz + (1− p)vp − y y < vp

p(z − vp ) y > vp
z > vp



















     and 

 RIF(y;TTIPp;F) =

z − y y < z
0 y > z

z < vp




pz + (1− p)vp − y y < vp

p(z − vp ) y > vp
z > vp



















 

(k)  The growth incidence curve ordinate at p: 

 IF(y;TGICp; F) =  
y

µF

TGICp (F) +  

γ pq '(vp )

f (vp )
   y > vp

−γ (1 − p)q '(vp )

f (vp )
y < vp











  and  
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 RIF(y;TGICp ; F) =   

γ
y

µF

+ 1






q(vp ) +

pq '(vp )

f (vp )









   y > vp

γ
y

µF

+ 1






q(vp ) −

(1 − p)q '(vp )

f (vp )









y < vp











 

 
 (l)  Pro-poorness for the FGT index: 

 IF(y;TppFGTα , F) =

α y

z
1 −

y

z( )
α −1

γ q(y) q(y) + yq '(y)[ ] − 1{ } − 1 +
y

µ
F







T
ppFGTα

(F) y < z

− 1 +
y

µ
F







T
ppFGTα

(F) y > z










 and  

 RIF(y;TppFGTα ,F) =

α y

z
1 −

y

z






α −1

γ q(y) q(y) + yq '(y)[ ]− 1{ }− y

µ
F







TppFGTα (F) y < z

−
y

µ
F







TppFGTα (F) y > z











 

  
(m) Pro-poorness for the Watts index:  

 

  

IF( y;TppW , F ) =

γ q( y) q( y) + yq '( y)[ ]− 1{ }− 1+
y

µ
F









T

ppW
(F ) y < z

− 1+
y

µ
F









T

ppW
(F ) y > z













    and 

 

  

RIF( y;TppW , F ) =

γ q( y) q( y) + yq '( y)[ ]− 1{ }− y

µ
F









T

ppW
(F ) y < z

−
y

µ
F









T

ppW
(F ) y > z













 

 

(n) Pro-poorness for the headcount ratio: 

  IF(y;TppHC ; F) = − 1+
y
µF









TppHC (F) − zf (z)

y
µF

,   (y ≠ z)   and  

 RIF y;TppHC ;F( )= −
y
µF









TppHC (F) − zf (z)

y
µF

,   (y ≠ z)  

(o) Poverty elasticity of the headcount ratio: 

  IF(y;TPEHC ; F) =

−TEHC (F)
1

F(z)
+

y

µF







       y < z

−TEHC (F)
y

µF







     y > z










     and 
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 RIF(y;TPEHC ; F) =

−TEHC (F)
1 − F(z)

F(z)
+

y

µF







       y < z

TEHC (F) 1−
y

µF







     y > z










 

 

 The proofs of these result are immediate from those in Proposition 1, simply 

substituting the general distribution H(x) by ∆ y (x) =
0 x < y
1 x ≥ y




 throughout. Other 

notations are sometimes used for some of these expressions. For example, Firpo et al. 
(2009) write the influence function for the pth quantile point vp = Tvp (F) = F−1 p( ) as 

IF(y;Tvp;F) =
I(y > ν p ) − (1− p)

f (vp )
 where I is an indicator function. Their expression for 

the Gini influence function (given in an unpublished companion paper) is 

IF(y;TG;F) = A2 (F) + B2 (F)y + C2 (y,F)  where A
2
(F) =

2

µ
R(F) , B

2
(F) =

2

µ 2
R(F),   

C
2
(y, F) = −

2

µ
y 1 − p(y)[ ]+ GL( p(y), F){ }  in which, in our terms, 

GL( p(y), F) = xdF(x)
−∞

y

∫ = − F(x)
−∞

y

∫ dx + yF(y)  and R(F) = 1
2 µF (1 − GF ) : in fact this expression is 

equivalent to ours. The reader will notice that for the poverty-related measures, we do not 
define influence functions at the poverty line value y = z. This is because these influence 
functions are infinite at y = z . Properties (3) and (5) can be verified in all cases, although 
we must interpret IF(z;T ; F) f (z)dz  and RIF(z;T ; F) f (z)dz  as each equal to T(F) in the 
poverty-related cases. Note that in case (a), (3) confirms that the average deviation of 
IF(y;µ;F) = y − µ  from the mean is zero. This influence function does not depend on F, 
and furthermore is unbounded in y; therefore it does not have infinitesimal robustness. 

 Recentered influence function regression offers a simple way of establishing a 
direct link between a social evaluation function and individual (or household) 
characteristics x, because of (5), which says that the expected value of the recentered 
influence function is equal to the corresponding distributional statistic, 

 T (F) =EF RIF(y;T ,F)[ ]. By the law of iterated expectations, the distributional statistic 

can thus be written as the conditional expectation of RIF(y;T ,F) , given observable 
covariates x, and is determined in a recentered influence function regression, as shown in 
Firpo et al. (2009).  

4.  Conclusion 
 In this paper, we have laid out a catalog of influence functions and associated 
recentered influence functions for a range of social evaluation functions widely used in 
assessing the distributional and poverty impact of public policy. These evaluation 
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functions are distributional statistics that can be viewed as real-valued and continuous 
functionals of the underlying outcome distribution functions. Given this and the fact that 
an outcome distribution is fully characterized by its mean and the degree of inequality, 
several authors have proposed counterfactual decomposition methods to identify the 
contribution of changes in the mean and relative inequality to variations in social 
outcomes as measure by a suitable evaluation function. In particular, Datt and Ravallion 
(1992) decompose change in poverty into a distribution-neutral growth effect, a 
redistribution effect and a residual interpreted as an interaction term. The Shapley method 
proposed by Chantreuil and Trannoy (1999) and Shorrocks (1999) is analogous to that of 
Datt and Ravallion, but does not involve a residual. A limitation of the usefulness of this 
approach for policy analysis is that it explains variations in social outcomes in terms of 
changes in summary statistics which may be hard to target with policy instruments. 

 Ultimately, individual outcomes depend on policy and individual characteristics. 
These are the fundamental factors driving the observed change in social outcomes. The 
influence function (i.e. the first-order directional derivative of a distributional statistic) is 
the cornerstone of the infinitesimal approach to robustness which allows us to link social 
outcomes to individual characteristics, and hence to assess the heterogeneity of impacts 
underlying these social outcomes. This link is established in a straightforward manner 
through the recentered or rescaled influence function (RIF), which is defined as the first 
two leading terms of the von Mises (1947) linear approximation ( analogous to a one-step 
Taylor expansion that replaces the distributional statistic by a locally linear function 
(Hampel et al. 1986)). Since the expected value of the influence function is zero, the law 
of iterated expectations can be used to link a social evaluation function to individual 
characteristics. This leads to the conditional expectation of the RIF given the covariates, 
known as RIF regression. 

 Taking the RIF regression model to be linear means that one can apply standard 
OLS to the estimation of both aggregate and partial distributional policy effects. 
Furthermore, this fact makes the extension of the standard Oaxaca-Blinder decomposition 
of changes in the mean of outcome distribution to variations in generic social evaluation 
functions both simple and meaningful. Thus, in the case of variation in poverty outcomes, 
the analyst can now move beyond Datt-Ravallion and Shapley to decompose such 
variation to reflect changes in the distribution of individual or household characteristics 
and returns to these characteristics. A major stumbling block on the way may be the 
computation of the relevant influence function. It is our hope that this paper will make 
that difficulty irrelevant. While the limitations of this approach must be firmly kept in 
mind, nonetheless we remain confident about its usefulness in an operational 
environment as a first-order approximation of policy impact, much the same as the use of 
the envelope (theorem) approach in fiscal incidence analysis. 

Appendix A 

Part I: proof of results stated in Proposition 1.  
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(a) ∇Tµ ,  F→H =
d
dt

x th(x) + (1− t) f (x)( )dx∫ 


t=0

=
d
dt

tµH + (1− t)µF[ ]
t=0

= µH − µF  

 (b) Let w(t)  be the pth  quantile point of tH + (1− t)F , so that 

tH (w(t)) + (1− t)F(w(t)) = p  and w(0) = vp . Then 
∂p
dt

= 0 = H (w(t)) − F(w(t))  + 

w '(t) th(w(t)) + (1− t) f (w(t))[ ] , i.e. w '(t) = F(w(t)) − H (w(t))
th(w(t) + (1− t) f (w(t))

. Now ∇Tν p,  F→H =  

w '(0) =
F(w(0)) − H (w(0))

f (w(0))
=

F(vp ) − H (vp )

f (vp )
=

p − H (vp )

f (vp )
 as claimed. 

(c)  ∇T
σ 2

,  F→H =
d

dt
x − tµH − (1 − t )µF( )2 th(x) + (1 − t ) f (x)( )∫

t = 0

= x − µF( )2 dH − dF( )∫  

 + 2 x − µF( ) µF − µH( )dF∫ = −σ F

2 + x − µF( )2 dH∫ = σ H

2 − σ F

2 + µH − µF( )2  as claimed. 

(d) µFGF = F(x) 1− F(x)[ ]dx∫ ⇒ µtH + (1− t )FGtH + (1− t )F = tH (x) + (1− t )F(x)[ ] 1− tH (x) − (1− t )F(x)[ ]dx∫  

⇒
d
dt

µtH + (1− t )FGtH + (1− t )F  t=0
= H (x) − F(x)[ ] 1− 2F(x)[ ]dx∫ . Since 

d
dt

µtH +(1− t )F  =  

µH − µF , H (x) − F(x)[ ] 1 − 2F(x)[ ]dx∫ = µH − µF( )GF + µF∇TG ,  F→H  implying the result. 

(e) Let ξ0  be the equally distributed equivalent (EDE) income for F, and let  ξ(t)  be the 

EDE income for tH + (1− t)F . Then IF = 1−
ξ0

µF

 and ItH +(1− t )F = 1−
ξ(t)

µtH +(1− t )F

, where 

U(ξ0 ) = U(x) f (x)dx∫  and   U(ξ(t)) = t U(x)h(x)dx + (1− t)U(ξ0 )∫ .  Differentiating and 

setting t = 0,  U '(ξ0 )ξ '(0) = U(x)h(x)dx −U(ξ0 )∫  & ∇TATK ,F→H F( )= d
dt

ItH +(1− t )F t=0
 

 =
−ξ '(0)µF + ξ0 µH − µF( )

µF
2

=
U(ξ0 ) − U(x)h(x)dx∫

µFU '(ξ0 )












+
ξ0 µH − µF( )

µF
2

. Setting 

U(x) = x1−e  for the case 0 < e ≠ 1 and then U(x) = l n(x)  for the case e = 1 , and 

substituting, the cited values for ∇TATK ,F→H F( )follow after some manipulation.  

 (f) Let p = tH (w(t)) + (1− t)F(w(t))  as in (b), so that GLtH +(1− t )F (p) =  

x th(x) + (1− t) f (x)[ ]
0

w(t )

∫ dx,  w(0) = vp  and ∇TGLp , F→H =
d
dt

x th(x) + (1− t) f (x)[ ]
0

w(t )

∫ dx










t=0

 

= x h(x) − f (x)[ ]
0

vp

∫ dx + w '(0)vp f (vp )  and   w '(0) =
p − H (vp )

f (vp )
. So ∇TGLp , F→H = xh(x)dx

0

vp

∫  

 +vp p − H (vp )  − TGLp (F)  as claimed. 
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 (g) d
dt

µtH +(1− t )F LtH +(1− t )F (p)  t=0
= ∇GLp,F→H  and 

d
dt

µtH +(1− t )F  t=0
= µH − µF , whence 

µH − µF( )LF (p) + µF∇Lp,F→H = ∇GLp,F→H ⇒∇Lp,F→H =
1

µF

∇GLp,F→H + 1 −
µH

µF







LF ( p) , which 

is as claimed.   

(h), (i) Immediate when the operator 
d
dt t=0

 is applied to the expressions 

TFGTα (tH + (1− t)F) = 1−
x
z






α

0

z

∫ th(x) + (1− t) f (x)[ ]dx  and  TW (tH + (1− t)F) =  



n z
x







0

z

∫ th(x) + (1− t) f (x)[ ]dx . 

 (j) As for (b) and (f), let p = tH (w(t) + (1− t)F(w(t))  so that w '(0) =
p − H (vp )

f (vp )
. Now 

TIPtH +(1− t )F (p) =

(z − x) th(x) + (1− t) f (x)[ ]dx w(t) < z
0

w(t )

∫

(z − x) th(x) + (1− t) f (x)[ ]dx w(t) > z
0

z

∫













  

and ∇TTIPp,F→H (F) =
d
dt

TIPtH +(1− t )F (p)
t=0

. Differentiating, we have  

d
dt

TIPtH +(1− t )F (p) =

(z − x) h(x) − f (x)[ ]dx+w '(t)(z − w(t)) th(w(t)) + (1− t) f (w(t))[ ] w(t) < z
0

w(t )

∫

(z − x) h(x) − f (x)[ ]dx w(t) > z
0

z

∫













and setting t = 0,   

∇TTIPp,F→H (F) = −TTIPp (F) +
(z − x) h(x) − f (x)[ ]dx + p − H (vp )  (z − vp ) vp < z

0

vp

∫

(z − x) h(x) − f (x)[ ]dx vp > z
0

z

∫











 

which is as claimed since TTIPp (F) =
(z − x) f (x)dx v ≤ z

0

v

∫
(z − x) f (x)dx v ≥ z

0

z

∫






 

(k)-(o)  For these results, we need to allow for changing income growth patterns in 
computing the directional derivatives. Let the income distributions at times 0 and 1 be F 
and F  respectively, where 


µ %F = (1+ γ )µF . An income x at time 0 increases to 

x 1+ γ q(x)[ ] at time 1. For t ∈[0,1] , consider distributions tH + (1− t)F  at time 0 and  
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tH + (1− t) %F  at time 1, i.e. H stays unchanged as F experiences growth. The mean is 
tµH + (1− t)µF  at time 0 and tµH + (1− t)(1+ γ )µF  at time 1, i.e. the aggregate growth 

rate is γ (t) = (1− t)γµF

tµH + (1− t)µF

, whence 

(A1)  γ (0) = γ ,  γ '(0) = γ
µH

µF

  

Let qt (x)  be the growth elasticity of x in the distribution tH + (1− t)F  (so that 

q0(x) ≡ q(x) ). An income of x in period 0 grows to x 1+ γ (t)qt (x)[ ] in period 1. If there 

are no rank changes from one period to the next, as we shall assume, then 
(A2)   tH (x) + (1− t)F(x) =tH x 1+ γ (t )qt (x)[ ]( )+ (1− t ) %F x 1+ γ (t )qt (x)[ ]( ) ∀x .  

For t = 0, this says that  

(A3) 

F(x) = %F x 1+ γ q(x)[ ]( ) ∀x   

i.e. that income growth in F involves no rank changes; also, differentiating, that  

(A4) 

f (x) = %f x 1+ γ q(x)[ ]( ). 1+ γ q(x) + xγ q '(x)[ ]  ∀x  

Differentiating with respect to t in (A2) and setting t = 0 , we have 


H (x) − F(x) = H x 1 + γ q(x)[ ]( ) − %F x 1 + γ q(x)[ ]( ) + x%f x 1 + γ q(x)[ ]( ). d

dt
γ (t )qt (x)

t = 0{ }





. Using 

(A1), (A3) and (A4), this reduces to  

(A5) 
d
dt

qt (x)
t =0

= −
q(x)h(x) 1+ γ q(x) + xγ q '(x)[ ]

f (x)
− q(x)

µH

µF









 

which will be important for what follows. Finally, among these general results for income 
growth scenarios, note that if that qt (x)  is continuously differentiable, then 
qt '(x)→ q '(x) ∀x  as t → 0 . 
 
(k)  We have TGICp (tH + (1− t )F) = γ (t )qt (w(t ))   in this case, where w(t)  is the pth  quantile  

point of tH + (1− t )F , where w(0) = vp  and  w '(0) =
p − H (vp )

f (vp )
 as in cases (b), (f) and (j). 

Now 
d

dt
γ (t )qt (w(t ))[ ]= γ '(t )qt (w(t )) + γ (t )qt '(w(t ))w '(t )  and so, at t = 0, we have   

∇TGICp ,F→H =  γ '(0)q(vp ) + γ (0)q '(vp )w '(0) = γ q(vp )
µ

H

µ
F

+ γ q '(vp )
p − H (v

p
)

f (v
p
)









  as claimed. 

 
(l)-(m)  In each of these cases, the distributional statistic is of the form 

T (F) = xu '(x) q(x) − 1[ ] f (x)dx
0

z

∫ , where z is the poverty line and u(x) is the poverty 

contribution function. For the FGT index, 
  
u(x) = 1−

x

z







α

 and for the Watts index, 
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  
u(x) = l n

z
x







. Generically,  T tH + (1 − t )F( ) = xu '(x) qt (x) − 1[ ] th(x) + (1− t ) f (x){ }dx
0

z

∫  and 

∇TF→H =
d

dt
T tH + (1 − t )F( )[ ] t =0 = xu '(x) q(x) − 1[ ] h(x) − f (x){ }+ d

dt
q

t
(x)

t = 0







f (x){ }dx∫ . Using 

(A5), we find that ∇TF→H = − 1+
µH

µF









T (F) − xu '(x) γ q(x) q(x) + xq '(x)[ ]−1{ }h(x)dx∫ . 

The cited results for the FGT and Watts poverty indices follow. 
 
(n) In this case, we have TppHC (tH + (1− t )F) = z qt (z) − 1( ) th(z) + (1− t ) f (z){ } and so 

∇TppHC ,F→H =
d

dt
T

ppHC
(tH + (1 − t )F) t = 0

= z q(z) − 1( ) h(z) − f (z){ }+ zf (z)
d

dt
qt (z)

t = 0
. Using (A5), 

this reduces to  ∇TppHC ,F→H = −zh(z) 1+ γ q(z) q(z) + zq '(z)( ){ }− 1+
µH

µF









TppHC (F) − zf (z)

µH

µF

. 

 (o) Here 
  
T

EHC
(tH + (1− t)F ) = − zqt (z)

th(z ) + (1 − t ) f (z )

tH (z ) + (1 − t )F (z )





  and therefore 

  
∇T

EHC , F→H
=   

  
=

d

dt
T

ppHC
(tH + (1 − t)F )

t=0
= − zq(z)

h(z)F (z) − f (z)H (z)

F (z)
2






−

zf (z)

F (z)

d

dt
qt (z )

t = 0
, that is,  

  
∇T

EHC , F→ H
= −T

EHC
(F )

H ( z )

F ( z )
+

µ
H

µ
F

+
γ h(z )

f (z )
q(z ) + zq '(z )[ ]







  using (A5). 

Part II: proof of property (3)  

From (1), T (1− t)F + tH( )≈ T F( )+ t∇TF→H + o(t 2 )  which can be extended: if t = ti
i=1

n

∑ ,  

then   T (1− t)F + ti
i=1

n

∑ Hi





≈ T F( )+ ti

i=1

n

∑ ∇TF→Hi
+ o(t 2 ) . Let the distribution F  

comprise values y1, y2 ,...yn  with frequencies f (y1), f (y2 ),... f (yn )  and let ti = tf (y
i
)  and 

Hi = ∆yi ,  1 ≤ i ≤ n . Then  ti
i=1

n

∑ ∇TF→Hi
= t IF(y;T ;F) f (y)

−∞

∞

∫ dy  and 

ti
i=1

n

∑ Hi = t ∆yf (y)∫ dy = tF . Thus T (1− t )F + tF( )≈ T F( )+ t IF(y;T ; F) f (y)
−∞

∞

∫ dy + o(t 2 )  

proving the result. 
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Appendix B : distributional statistics and their recentered influence functions in tabular form 

DISTRIBUTIONAL STATISTIC RECENTERED INFLUENCE FUNCTION 
 
____________________________________________________________________________________________________________ 
 
mean  

µF = xf (x)dx∫    RIF(y;Tµ;F) = y  
  
____________________________________________________________________________________________________________ 
 
pth quantile point 

vp = F−1 p( ) RIF(y;Tvp;F) =   
vp +

p
f (vp )

y > vp

vp −
1 − p( )

f (vp )
y < vp









  

____________________________________________________________________________________________________________ 
 

variance 

σ F
2 = (x − µ)∫

2
f (x)dx  RIF(y;Tσ 2 ;F) = y − µF( )2  

____________________________________________________________________________________________________________ 
 

Gini coefficient 

GF =
1
µF

F(x) 1− F(x)[ ]dx∫   RIF(y;TG;F) = −
y

µF

GF +1−
y

µF

+
2

µF

F(x)dx
0

y

∫  
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DISTRIBUTIONAL STATISTIC RECENTERED INFLUENCE FUNCTION,  continued 
 
____________________________________________________________________________________________________________ 
 

Atkinson inequality index IF (e) = 1−
ξ
µF

,  e > 0 ,  



RIF(y;TATK ;F) = IF +

e
1− e

+
y
µF









1− IF[ ]− 1− IF[ ]e y1−e

(1− e)µF
1−e 0 < e ≠ 1

(1− IF ) l n µF 1− IF( ){ }− l n(y) +
y
µF

−1

















     e = 1













 

(here, 



U (x) =
x1− e

1 − e
0 < e ≠ 1

l n(x)                 e = 1






   and   U (ξ) = U (x) f (x)dx∫ ) 

 
____________________________________________________________________________________________________________ 
 
generalized Lorenz ordinate at p  

GLF (p) = xf (x)
0

vp∫ dx   RIF(y;TGLp; F) =
y − (1− p)vp     y < vp

pvp     y ≥ vp





    

____________________________________________________________________________________________________________ 
 
Lorenz ordinate at p  

LF (p) =  
xf (x)dx

0

vp
∫

µF
 RIF(y;TLp; F) =

y − (1 − p)vp

µF

+ T
Lp

(F). 1 −
y

µF







    y < vp

pvp

µF

+ T
Lp

(F). 1 −
y

µF







              y ≥ vp











    

____________________________________________________________________________________________________________ 
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DISTRIBUTIONAL STATISTIC RECENTERED INFLUENCE FUNCTION,  continued 
 
____________________________________________________________________________________________________________ 

FGT index for poverty line z 

PFGT
α = 1−

x
z






α

0

z

∫ f (x)dx   RIF(y;TFGTα ; F) =
1−

y
z






α

y < z

0 y > z









  

____________________________________________________________________________________________________________ 
 
Watts index for poverty line z 



PW = l n z
x







0

z

∫ f (x)dx   



RIF(y;TW ; F) =
l n z

y






y < z

0 y > z









 

 
____________________________________________________________________________________________________________ 
 
TIP curve ordinate for poverty line z at p  

TIPF (p) = TTIPp (F) =
(z − x) f (x)dx vp ≤ z

0

vp

∫
(z − x) f (x)dx vp ≥ z

0

z

∫









  RIF(y;TTIPp; F) =

z − y y < z
0 y > z

z < vp




pz + (1− p)vp − y y < vp

p(z − vp ) y > vp
z > vp



















 

____________________________________________________________________________________________________________ 
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DISTRIBUTIONAL STATISTIC RECENTERED INFLUENCE FUNCTION,  continued 
 
____________________________________________________________________________________________________________ 
Growth incidence curve ordinate at p 

GICF (p) = γ q(vp )  RIF(y;TGICp ; F) =   

γ
y

µF

+ 1






q(vp ) +

pq '(vp )

f (vp )









   y > vp

γ
y

µF

+ 1






q(vp ) −

(1 − p)q '(vp )

f (vp )









y < vp











 

(here, γ is the aggregate growth rate and q(x)  is the growth pattern) 
____________________________________________________________________________________________________________ 
 
Additive pro-poorness for the FGT index  

  
PPα

FGT (F ) =
α

z
x 1−

x

z







α −1

[q(x) − 1] f (x)dx
0

z

∫  RIF(y;TppFGTα , F) =

α y

z
1 −

y

z






α −1

γ q(y) q(y) + yq '(y)[ ] − 1{ } −
y

µ
F







TppFGTα (F) y < z

−
y

µ
F







TppFGTα (F) y > z











 

____________________________________________________________________________________________________________ 
 
Additive pro-poorness for the Watts index  

  
PPW (F ) = [q(x) −1] f (x)dx

0

z

∫  

  

RIF ( y;T
ppW

, F ) =

γ q( y) q( y) + yq '( y)[ ]− 1{ }− y

µ
F









T

ppW
(F ) y < z

−
y

µ
F









T

ppW
(F ) y > z












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DISTRIBUTIONAL STATISTIC RECENTERED INFLUENCE FUNCTION,  continued 
 
____________________________________________________________________________________________________________ 
 
Additive pro-poorness for the headcount ratio  

PPHC (F) = z q(z) −1( ) f (z)   RIF y;TppHC ; F( )= −
y
µF









TppHC (F) − zf (z)

y
µF

,   (y ≠ z)  

____________________________________________________________________________________________________________ 
 
Poverty elasticity of the headcount ratio,  

  
EHC(F ) = − zq(z) f (z)

F (z)( ) RIF(y;TPEHC ; F) =

−TEHC (F)
1 − F(z)

F(z)
+

y

µF







       y < z

TEHC (F) 1−
y

µF







     y > z










 

____________________________________________________________________________________________________________ 
 

For all poverty-related measures, recentered influence functions are infinite at the poverty line value y = z.  
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