
  

 
 

Working Paper Series 
 
 
 
 
 
 
 
 
 

Classical inequality indices, welfare functions, 
and the dual decomposition 
 
Oihana Aristondo 
José Luis García-Laprestay 
Casilda Lasso de la Vegaz 
Ricardo Alberto Marques Pereira 

 
 
 

ECINEQ WP 2012 – 253 



  

 
ECINEQ 2012 – 253 

April 2012 
 

www.ecineq.org  

Classical inequality indices, welfare functions, 
and the dual decomposition 

 
Oihana Aristondo 

BRIDGE Research Group, Universidad del País Vasco 
 

José Luis García-Lapresta 
PRESAD Research Group, IMUVA, Universidad Valladolid 

 
Casilda Lasso de la Vega 

BRIDGE Research Group, Universidad del País Vasco 
 

Ricardo Alberto Marques Pereira *  
Dipartimento di Informatica e Studi Aziendali, Universitµa degli Studi di Trento 

 
Abstract  

We consider the classical inequality measures due to Gini, Bonferroni, and De Vergottini and 
we present a brief review of the three inequality indices and the associated welfare functions, 
in the correspondence scheme introduced by Blackorby and Donaldson, and Weymark. The 
three classical inequality indices incorporate different value judgments in the measurement of 
inequality, leading to different behavior under income transfers between individuals in the 
population. The welfare functions associated with the Gini, Bonferroni, and (normalized) De 
Vergottini indices are Schur-concave OWA functions, with larger weights for lower incomes. 
We examine the dual decomposition and the orness degree of the three welfare functions in 
the standard framework of aggregation functions on the [0; 1]n domain, and show that it 
offers interesting insight on the distinct and complementary nature of the classical inequality 
indices. 
 
Keywords: income inequality and social welfare, classical Gini, Bonferroni, and De Vergottini 
inequality indices, welfare functions, aggregation functions, WA and OWA functions, dual de- 
composition, orness 
JEL Classification: D63, I32. 

                                                 
* Contact details: lapresta@eco.uva.es, casilda.lassodelavega@ehu.es, ricalb.marper@unitn.it  



Classical inequality indices, welfare functions,

and the dual decomposition
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Abstract

We consider the classical inequality measures due to Gini, Bonferroni, and De Vergot-
tini and we present a brief review of the three inequality indices and the associated welfare
functions, in the correspondence scheme introduced by Blackorby and Donaldson, and Wey-
mark. The three classical inequality indices incorporate different value judgments in the
measurement of inequality, leading to different behavior under income transfers between in-
dividuals in the population. The welfare functions associated with the Gini, Bonferroni, and
(normalized) De Vergottini indices are Schur-concave OWA functions, with larger weights
for lower incomes. We examine the dual decomposition and the orness degree of the three
welfare functions in the standard framework of aggregation functions on the [0, 1]n domain,
and show that it offers interesting insight on the distinct and complementary nature of the
classical inequality indices.
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1 Introduction

Income inequality plays a crucial role in Economics and Social Welfare. It has been proved that

income inequality has important impacts in terms of development, poverty, and public finance.
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Typical issues that arise in these contexts are the evolution of inequality over time in some

particular region, the differences of the inequality levels across different countries, and the effect

of different policies in the evolution of the inequality. In order to address these and related

questions the choice of inequality measure is a central issue.

Basically, an inequality measure is a summary statistic of the income dispersion. Several

inequality indices have been proposed in the literature, for comprehensive surveys on inequality

measures, see Silber [40] and Chakravarty [12]. One of the most widely used is the Gini index

(Gini [24]), based on the absolute values of all pairwise income differences. This index has a

very intuitive appeal for its geometrical interpretation in terms of the Lorenz curve and, unlike

other inequality measures, it easily accommodates negative incomes. One drawback of the Gini

index is that it is insensitive to the position of income transfers within the ordered income

profile. In order to overcome this difficulty, a single-parameter class of inequality measures that

generalizes the Gini index referred to as the S-Gini family, has been introduced and characterized

(Donaldson and Weymark [15, 16], Weymark [43] and Bossert [9]). In this family, different value

judgments can be considered by means of a weighting function of incomes.

The Bonferroni and De Vergottini indices are two other classical inequality indices that are

recently receiving growing attention, see for instance Nygard and Sandstrom [36], Giorgi [25, 26],

Tarsitano [42], Giorgi and Mondani [28], Giorgi and Crescenzi [27], Chakravarty and Muliere

[13], Piesch [37], Chakravarty [11] and Bárcena and Imedio [3]. Similarly to the Gini index, they

also permit negative incomes.

The Bonferroni index ([8]) measures inequality comparing the overall income mean with

the income means of the poorest individuals in the population. The De Vergottini index ([14])

complements the information provided by the Bonferroni index since inequality is captured by

comparing the overall income mean with the income means of the richest individuals in the

population. The three classical inequality indices –Gini, Bonferroni, and De Vergottini– are

formally similar but introduce distinct and complementary information in the study of income

inequality. Moreover, in contrast with the Gini index, the Bonferroni and De Vergottini indices

are sensitive to the specific position of income transfers within the ordered income profile.

An inequality index is relative if it is invariant when an additional amount of income is

proportionally distributed among the whole population. This corresponds to the rightist view-

point, according to Kolm’s designation [32]. In turn, the leftist view requires that inequality

remains unchanged when each individual in the population receives the same amount of the

extra income. This invariance condition is fulfilled by the absolute inequality indices, which are

obtained by multiplying the corresponding relative indices by the mean income.

Choosing a particular index to measure inequality involves a value judgment, because differ-
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ent choices can lead to different results. One criterion is to select ethical indices, that is indices

that have a normative interpretation. This means that there is an explicit relationship between

the inequality measure and a social welfare ordering defined on incomes. In other words, for

these indices it is possible to construct a social welfare function whose contours specify the

tradeoffs between inequality and efficiency, as measured by the total income.

An interesting feature of the inequality indices considered in this paper is that the associated

welfare functions are of the OWA type. Accordingly, they can be studied in the framework of the

dual decomposition of aggregation functions proposed by Garćıa-Lapresta and Marques Pereira

[22], where each aggregation operator is additively decomposed into a self-dual core and an

associated anti-self-dual remainder1.

The dual decomposition offers interesting insight on the distinct and complementary nature of

the three classical inequality indices. In the Gini index case, the dual decomposition reproduces

in a natural way the construction of the associated welfare function. As for the Bonferroni and

the De Vergottini indices, the corresponding self-dual cores and anti-self-dual remainders express

the underlying relationship between the two indices.

The paper is organized as follows. In Section 2, we introduce the basic notation and prop-

erties of aggregation functions and we describe the general framework of the dual decomposi-

tion of an aggregation function into a self-dual core and an associated anti-self-dual remainder.

Moreover, we briefly review the dual decomposition of OWA functions. Section 3 is devoted to

inequality indices and the associated welfare functions, focusing on the classical Gini, Bonferroni,

and De Vergottini indices. In Section 4 we examine the dual decomposition of the welfare func-

tions associated to the Gini, Bonferroni, and De Vergottini indices. Finally, Section 5 contains

some concluding remarks.

2 Aggregation functions

In this section we present notation and basic definitions regarding aggregation functions on

[0, 1]n and functions on [0,∞)n, with n ∈ N and n ≥ 2 throughout the text.

Notation. Points in [0, 1]n are denoted as x = (x1, . . . , xn), 0 = (0, . . . , 0) , 1 = (1, . . . , 1).

Accordingly, for every x ∈ [0, 1] , we have x · 1 = (x, . . . , x). Given x, y ∈ [0, 1]n, by x ≥ y

we mean xi ≥ yi for every i ∈ {1, . . . , n}, and by x > y we mean x ≥ y and x 6= y. Given

x ∈ [0, 1]n, the increasing and decreasing reorderings of the coordinates of x are indicated as

x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively. In particular, x(1) = min{x1, . . . , xn} = x[n]

1Other applications of the dual decomposition to the field of Welfare Economics can be found in Garćıa-
Lapresta et al. [20] and Aristondo et al. [1].
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and x(n) = max{x1, . . . , xn} = x[1]. In general, given a permutation σ on {1, . . . , n}, we denote

xσ = (xσ(1), . . . , xσ(n)). Finally, the arithmetic mean is denoted µ(x) = (x1 + · · ·+ xn)/n.

We begin by defining standard properties of real functions on Rn. For further details the

interested reader is referred to Fodor and Roubens [19], Calvo et al. [10], Beliakov et al. [4],

Garćıa-Lapresta and Marques Pereira [22] and Grabisch et al. [29].

Definition 1 Let A : Dn −→ R be a function with D = [0, 1] or D = [0,∞).

1. A is idempotent if for every x ∈ D:

A(x · 1) = x.

2. A is symmetric if for every permutation σ on {1, . . . , n} and every x ∈ Dn:

A(xσ) = A(x).

3. A is monotonic if for all x, y ∈ Dn:

x ≥ y ⇒ A(x) ≥ A(y).

4. A is strictly monotonic if for all x, y ∈ Dn:

x > y ⇒ A(x) > A(y).

5. A is compensative if for every x ∈ Dn:

x(1) ≤ A(x) ≤ x(n).

6. A is self-dual if D = [0, 1] and for every x ∈ [0, 1]n:

A(1− x) = 1−A(x).

7. A is anti-self-dual if D = [0, 1] and for every x ∈ [0, 1]n:

A(1− x) = A(x).

8. A is invariant for translations if for all t ∈ R and x ∈ Dn:

A(x + t · 1) = A(x)

whenever x + t · 1 ∈ Dn.
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9. A is stable for translations if for all t ∈ R and x ∈ Dn:

A(x + t · 1) = A(x) + t

whenever x + t · 1 ∈ Dn.

10. A is scale invariant (or homothetic) if for all λ > 0 and x ∈ Dn:

A(λ · x) = λ ·A(x)

whenever λ · x ∈ Dn.

Definition 2 Let {A(k)}k∈N be a sequence of functions, with A(k) : Dk −→ R and A(1)(x) = x

for every x ∈ D, where D = [0, 1] or D = [0,∞). {A(k)}k∈N is invariant for replications if for

all x ∈ Dn and any number of replications m ∈ N of x:

A(mn)(
m︷ ︸︸ ︷

x, . . . ,x) = A(n)(x).

Definition 3 Consider the binary relation < on Dn, with D = [0, 1] or D = [0,∞), defined

as

x < y ⇔
n∑

i=1

xi =
n∑

i=1

yi and
k∑

i=1

x(i) ≤
k∑

i=1

y(i),

for every k ∈ {1, . . . , n− 1}. With respect to the binary relation < , the notions of S-convexity

and S-concavity of a function A are defined as follows.

1. A : Dn −→ D is S-convex if for all x,y ∈ Dn:

x < y ⇒ A(x) ≥ A(y).

2. A : Dn −→ D is S-concave if for all x, y ∈ Dn:

x < y ⇒ A(x) ≤ A(y).

Moreover, in each case, the S-convexity (resp. S-concavity) of a function A is said to be strict

if A(x) > A(y) (resp. A(x) < A(y)) whenever x 6= y.

Definition 4 Given x, y ∈ Dn, with D = [0, 1] or D = [0,∞), we say that y is obtained from

x by a progressive transfer if there exist two individuals i, j ∈ {1, . . . , n} and h > 0 such that

xi < xj, yi = xi + h ≤ xj − h = yj and yk = xk for every k ∈ {1, . . . , n} \ {i, j}.
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A classical result (see Marshall and Olkin [34, Ch. 4, Prop. A.1]) establishes that x < y

if and only if y can be derived from x by means of a finite sequence of permutations and/or

progressive transfers.

Definition 5 A function A : [0, 1]n −→ [0, 1] is called an n-ary aggregation function if it is

monotonic and satisfies A(1) = 1 and A(0) = 0. An aggregation function is said to be strict if

it is strictly monotonic.

For the sake of simplicity, the n-arity is omitted whenever it is clear from the context.

It is easy to see that every idempotent aggregation function is compensative, and viceversa.

Self-duality and stability for translations are important properties of aggregation functions.

In turn, anti-self-duality and invariance for translations are incompatible with idempotency.

Nevertheless, anti-self-duality and invariance for translations play an important role in this

paper as far as they are properties of important functions associated with aggregation functions,

such as we shall discuss later.

2.1 Dual decomposition of aggregation functions

In this section we briefly recall the so-called dual decomposition of an aggregation function into

its self-dual core and associated anti-self-dual remainder, due to Garćıa-Lapresta and Marques

Pereira [22]. First we introduce the concepts of self-dual core and anti-self-dual remainder of an

aggregation function, establishing which properties are inherited in each case from the original

aggregation function. Particular emphasis is given to the properties of stability for translations

(self-dual core) and invariance for translations (anti-self-dual remainder).

Definition 6 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The aggregation function

A∗ : [0, 1]n −→ [0, 1] defined as

A∗(x) = 1−A(1− x)

is known as the dual of the aggregation function A.

Clearly, (A∗)∗ = A, which means that dualization is an involution. An aggregation function

A is self-dual if and only if A∗ = A.

2.1.1 The self-dual core of an aggregation function

Aggregation functions are not in general self-dual. However, a self-dual aggregation function can

be associated to any aggregation function in a simple manner. The construction of the so-called

self-dual core of an aggregation function A is as follows.

6



Definition 7 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The function Â : [0, 1]n −→
[0, 1] defined as

Â(x) =
A(x) + A∗(x)

2
=

A(x)−A(1− x) + 1
2

is called the core of the aggregation function A.

Since Â is self-dual, we say that Â is the self-dual core of the aggregation function A. Notice

that Â is clearly an aggregation function.

It is interesting to note that the self-dual core reduces to the arithmetic mean in the simple

case of n = 2, but not in higher dimensions.

The following results2 can be found in Garćıa-Lapresta and Marques Pereira [22].

Proposition 1 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if and only if Â(x) =

A(x) for every x ∈ [0, 1]n.

Proposition 2 The self-dual core Â inherits from the aggregation function A the properties of

continuity, idempotency (hence, compensativeness), symmetry, strict monotonicity, stability for

translations, and invariance for replications, whenever A has these properties.

2.1.2 The anti-self-dual remainder of an aggregation function

We now introduce the anti-self-dual remainder Ã, which is simply the difference between the

original aggregation function A and its self-dual core Â.

Definition 8 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The function Ã : [0, 1]n −→ R

defined as Ã(x) = A(x)− Â(x) , that is

Ã(x) =
A(x)−A∗(x)

2
=

A(x) + A(1− x)− 1
2

,

is called the remainder of the aggregation function A.

Since Ã is anti-self-dual, we say that Ã is the anti-self-dual remainder of the aggregation

function A. Clearly, Ã is not an aggregation function. In particular, Ã(0) = Ã(1) = 0

violates idempotency and implies that Ã is either non monotonic or everywhere null. Moreover,

−0.5 ≤ Ã(x) ≤ 0.5 for every x ∈ [0, 1]n.

The following results3 can be found in Garćıa-Lapresta and Marques Pereira [22].
2Excepting that invariance for replications is inherited by the core (the proof is immediate).
3Excepting that invariance for replications is inherited by the remainder (the proof is immediate) and that

strict S-convexity and S-concavity are also inherited by the remainder.
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Proposition 3 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if and only if Ã(x) = 0

for every x ∈ [0, 1]n.

Proposition 4 The anti-self-dual remainder Ã inherits from the aggregation function A the

properties of continuity, symmetry, invariance for replications, plus also strict S-convexity and

S-concavity, whenever A has these properties.

Summarizing, every aggregation function A decomposes additively A = Â + Ã in two

components: the self-dual core Â and the anti-self-dual remainder Ã, where only Â is an

aggregation function. The so-called dual decomposition A = Â + Ã clearly shows some analogy

with other algebraic decompositions, such as that of square matrices and bilinear tensors into

their symmetric and skew-symmetric components.

The following result concerns two more properties of the anti-self-dual remainder based

directly on the definition Ã = A− Â and the corresponding properties of the self-dual core (see

Garćıa-Lapresta and Marques Pereira [22]).

Proposition 5 Let A : [0, 1]n −→ [0, 1] be an aggregation function.

1. Ã(x · 1) = 0 for every x ∈ [0, 1].

2. If A is stable for translations, then Ã is invariant for translations.

These properties of the anti-self-dual remainder are suggestive. The first statement establish

that anti-self-dual remainders are null on the main diagonal. The second statement applies to

the subclass of stable aggregation functions. In such case, self-dual cores are stable and there-

fore anti-self-dual remainders are invariant for translations. In other words, if the aggregation

function A is stable for translations, the value Ã(x) does not depend on the average value of the

x coordinates, but only on their numerical deviations from that average value. These properties

of the anti-self-dual remainder Ã suggest that it may give some indication on the dispersion of

the x coordinates.

In Maes et al. [33], the authors propose a generalization of the dual decomposition framework

introduced in Garćıa-Lapresta and Marques Pereira [22], based on a family of binary aggregation

functions satisfying a form of twisted self-duality condition. Each binary aggregation function

in that family corresponds to a particular way of combining an aggregation function A with its

dual A∗ for the construction of the self-dual core Â. As particular cases of the general framework

proposed in Maes et al. [33], one obtains Garćıa-Lapresta and Marques Pereira’s construction,

based on the arithmetic mean, and Silvert’s construction, based on the symmetric sums formula
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(see Silvert [41]). However, the dual decomposition framework introduced in Garćıa-Lapresta

and Marques Pereira [22] remains the only one which preserves stability under translations, a

crucial requirement in the present construction of poverty measures.

2.2 OWA operators

In 1988 Yager [46] introduced OWA operators as a tool for aggregating numerical values in

multi-criteria decision making. An OWA operator is similar to a weighted mean, but with the

values of the variables previously ordered in a decreasing way. Thus, contrary to the weighted

means, the weights are not associated with concrete variables and, therefore, they are symmetric.

Because of these properties, OWA operators have been widely used in the literature (see, for

instance, Yager and Kacprzyk [47] and Yager et al. [48]).

Definition 9 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n satisfying
∑n

i=1 wi = 1, the

OWA operator associated with w is the aggregation function Aw : [0, 1]n −→ [0, 1] defined as

Aw(x) =
n∑

i=1

wi x[i].

Simple examples of OWA operators are

Aw(x) =





max{x1, . . . , xn} , when w = (1, 0, . . . , 0) ,

min{x1, . . . , xn} , when w = (0, . . . , 0, 1 ) ,

x1 + · · ·+ xn

n
, when w = ( 1

n , 1
n , . . . , 1

n) .

OWA operators are continuous, idempotent (hence, compensative), symmetric, and stable

for translations. Moreover, an OWA operator Aw is self-dual if and only if wn+1−i = wi for

every i ∈ {1, . . . , n} (see Garćıa-Lapresta and Llamazares [21, Proposition 5]).

In general, the self-dual core Âw and the anti-self-dual remainder Ãw of an OWA operator

Aw can be written as

Âw(x) =
n∑

i=1

wi + wn−i+1

2
x[i] and Ãw(x) =

n∑

i=1

wi − wn−i+1

2
x[i] .

As we know, the self-dual core Âw is an aggregation function. Moreover, since

n∑

i=1

wi + wn−i+1

2
= 1,
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the self-dual core Âw is again an OWA operator, that is Âw = Aŵ with

ŵi =
wi + wn−i+1

2

for every i ∈ {1, . . . , n}. Notice that Âw reduces to the arithmetic mean in the simple case

n = 2, but not in higher dimensions.

The self-dual core and the anti-self-dual remainder can be equivalently written as follows

Âw(x) =
n∑

i=1

wi

x[i] + x[n−i+1]

2
and Ãw(x) =

n∑

i=1

wi

x[i] − x[n−i+1]

2
.

These expressions show clearly that the self-dual core is a weighted average of pairwise averages

of x coordinates (quasi-midranges), whereas the anti-self-dual remainder is a weighted average

of pairwise differences of x coordinates (quasi-ranges). The anti-self-dual remainder is therefore

independent of the overall average of the coordinates of x and constitutes a form of dispersion

measure. Moreover, it is straightforward to prove that w1 ≥ · · · ≥ wn implies Ãw(x) ≥ 0 and

w1 ≤ · · · ≤ wn implies Ãw(x) ≤ 0.

3 Inequality indices and welfare functions

In this paper we assume the following definitions of inequality index and welfare function.

Definition 10 An inequality index is a function I : [0,∞)n −→ [0,∞) that is continuous and

strictly S-convex. The inequality index is relative if I is scale invariant and absolute whenever

I is invariant for translations.

Certain properties which can be considered to be inherent to the concept of inequality have

come to be accepted as basic properties for an inequality measure. The crucial axiom in this field

is the Pigou-Dalton transfer principle. This axiom establishes that a progressive transfer, that

is, a transfer from a richer person to a poorer one that does not change the relative positions

of the donor and the recipient, should decrease inequality. There are alternative ways that

guarantee that this property is fulfilled. Marshall and Olkin [34] show that strict S-convexity

implies symmetry and inequality reduction under progressive transfers. Conversely, symmetry

and inequality reduction under progressive transfer implies strict S-convexity.

Definition 11 A welfare function is a function W : [0,∞)n −→ [0,∞) that is continuous,

strictly S-concave and monotonic.
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Similarly to the inequality field, strictly S-concavity is equivalent to symmetry and the

increment of the welfare level under progressive transfers. Any welfare function allows the

definition of the “equally distributed equivalent income”, as the income level that if equally

distributed among the population would generate the same value of the W function.

An inequality index is called ethical if it implies, and is implied, by a welfare function. If the

welfare function W is homothetic, there is a one-to-one relationship between W and a relative

inequality index (see Blackorby and Donaldson [6]). Following the Kolm [31], Atkinson [2] and

Sen [39] approaches, every relative inequality index, I, may be associated to a homothetic welfare

function, W : [0,∞)n −→ [0,∞), according to the following expression

W (x) = µ(x) (1− I(x)) . (1)

Conversely, given a homothetic welfare function we can recover the relative index associated

using the above relation. The index I(x) gives the fraction of total income that could be saved

if society distributed the remaining amount equally without any welfare loss. In other words, it

can be interpreted as the proportion of welfare loss due of inequality.

In turn, Kolm [32] and Blackorby and Donaldson [7] approaches allow the derivation of

a translatable welfare function from an absolute inequality index according to the following

expression

W (x) = µ(x)− IA(x). (2)

This absolute index, IA, represents the per capita income that could be saved if society dis-

tributed incomes equally without any loss of welfare.

Remark 1 If W is a homothetic welfare function (particularly, if W is the welfare function

associated with a relative inequality index), it is possible to work in [0, 1]n instead of [0,∞)n.

Given an income distribution x = (x1, . . . , xn) ∈ [0,∞)n such that x 6= 0, since
1

x[1]
·x ∈ [0, 1]n

and W is homothetic, we have

W (x) = W

(
x[1] ·

1
x[1]

· x
)

= x[1] ·W
(

1
x[1]

· x
)

.

Obviously, W (0) = 0.

A class of welfare functions that will play an important role in this paper is what is referred

to as Generalize Gini welfare functions (see Mehran [35], Donaldson and Weymark [15, 16],

Weymark [43], Yaari [44, 45], Ebert [18], Quiggin [38] and Ben-Porath and Gilboa [5]).
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Definition 12 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1], with 0 < w1 < · · · < wn

and
∑n

i=1 wi = 1, the generalized Gini welfare function (or rank dependent general welfare

function) associated with w is the function Ww : [0,∞)n −→ [0,∞) defined as

Ww(x) =
n∑

i=1

wix[i].

Positivity of wi guarantees that Ww satisfies the Pareto Principle, that is, it is increasing in

xi. Increasingness of the sequence of coefficients is necessary and sufficient for S-concavity of

Ww. On the other hand, all the functions Ww are both, stable for translations and homothetic.

Thus, by Remark 1, the generalized Gini welfare functions can be considered as OWA operators,

when they are restricted to [0, 1]n.

3.1 The Gini index

Corrado Gini introduced in 1912 the now called Gini index ([24]), the most popular measure of

inequality. It is based on the average of the absolute differences between all possible pairs of

observations. The Gini index is defined as half of the ratio of that average to the mean of the

distribution (hence proposing a relative measure of variability). Specifically, for any unordered

income distribution the formula given by Gini [24] was

G(x) =
1

2n2µ(x)

n∑

i=1

n∑

j=1

|xi − xj |. (3)

This index varies between 0, which reflects complete equality, and 1. It is relative and

invariant under replications of the population, which allows inequality comparisons between

societies with different incomes and different populations. Moreover, inequality as measured by

this index depends on the significance of the income gaps in society.

Graphically, the Gini index can be computed as twice the area between the line of equality

and the Lorenz curve (Gastwirth [23], Kendall and Stuart [30], Dorfman [17]). This curve

plots the cumulative income share, ranked in increasing order, on the vertical axis against the

distribution of the population on the horizontal axis.

Mehran [35] highlights the linear structure of the index and the implicit weighting scheme

involved in (3), that assigns a particular weight to an individual according to his ranking in the

income distribution (Sen [39]). In particular, it can be shown than an alternative formula for

G(x) is

G(x) = 1− 1
n2µ(x)

n∑

i=1

(2i− 1)x[i].

12



See Yitzhaki [49] for alternative formulations of the Gini index.

The decrease of G(x) under a progressive transfer does not depend where the transfer takes

place as long as it occurs between two persons with a fixed rank difference. In other words, this

index is insensitive to the incomes of the individuals involved in the transfers.

When the Gini coefficient is multiplied by the mean income an absolute index is obtained.

Definition 13 The absolute Gini inequality index is defined as

GA(x) = µ(x)− 1
n

n∑

i=1

2i− 1
n

x[i].

Remark 2 From (1) and (2), the Gini welfare function is simultaneously obtained as

WG(x) = µ(x)(1−G(x)) = µ(x)−GA(x) =
1
n

n∑

i=1

2i− 1
n

x[i].

3.2 The Bonferroni index

The Bonferroni index is another example of relative index that has a natural upper bound 1. It

is based on the comparison of the partial means and the general mean of an income distribution.

Let us denote by mi(x) the mean income of the n− i + 1 persons with lowest income, that

is

mi(x) =
1

n− i + 1

n∑

j=i

x[j].

The Bonferroni index is computed according to the following

B(x) =
1

nµ(x)

n∑

i=1

(µ(x)−mi(x)).

Then, B(x) represents the amount by which the mean of ratios mi(x)/µ(x) falls short of

unity.

B is not invariant for replications. However it fulfils a stronger redistributive criterion than

the Pigou-Dalton condition. The decrement in the B index due to a progressive transfer is larger

the poorer are the two participants. This property is referred to as the principle of positional

transfer sensitivity (Mehran [35] and Zoli [50]).

When multiplied by the mean income it becomes an absolute index.

13



Definition 14 The absolute Bonferroni inequality index is defined as

BA(x) =
1
n

n∑

i=1

(µ(x)−mi(x)) = µ(x)− 1
n

n∑

i=1

mi(x).

Remark 3 From (1) and (2), the Bonferroni welfare function is simultaneously obtained as

WB(x) = µ(x)(1−B(x)) = µ(x)−BA(x) =
1
n

n∑

i=1

mi(x).

Proposition 6 The Bonferroni welfare function is expressed by

WB(x) =
n∑

i=1

ui x[i],

where ui =
n∑

j=n−i+1

1
jn

, for i = 1, . . . , n.

Proof: The derivation is as follows
n∑

i=1

mi(x) =
x[n]

1
+

x[n−1] + x[n]

2
+ · · ·+ x[1] + · · ·+ x[n]

n
=

=
(

1
1

+
1
2

+ · · ·+ 1
n

)
x[n] +

(
1
2

+ · · ·+ 1
n

)
x[n−1] + · · ·+ 1

n
x[1] =

= n
n∑

i=1

ui x[i].

Remark 4 The weights introduced in the previous proposition satisfy the following conditions

1. 0 < u1 < u2 < · · · < un−1 < un < 1.

2. u1 =
1
n2

and ui+1 = ui +
1

(n− i) n
, for i = 1, . . . , n− 1.

3.
n∑

i=1

ui = 1, since

n∑

i=1




n∑

j=n−i+1

1
j


 =

1
n

+
(

1
n− 1

+
1
n

)
+

(
1

n− 2
+

1
n− 1

+
1
n

)
+

+ · · ·+
(

1
2

+ · · ·+ 1
n− 1

+
1
n

)
+

(
1
1

+
1
2

+ · · ·+ 1
n− 1

+
1
n

)
=

= 1
1
1

+ 2
1
2

+ · · ·+ (n− 2)
1

n− 2
+ (n− 1)

1
n− 1

+ n
1
n

= n .
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3.3 The De Vergottini index

The De Vergottini index ([14]) captures another aspect of the inequality. It compares the total

mean income with the mean of the i-richest person group. If Mi(x) denotes the mean income

of the i-persons with highest incomes, that is

Mi(x) =
1
i

i∑

j=1

x[j],

then the De Vergottini index is

V (x) =
1

nµ(x)

n∑

i=1

(Mi(x)− µ(x)).

With respect to other redistributive criteria, the reduction in the V index due to a progressive

transfer is larger the richer are the two participants.

V is also a compromise index in the sense that if multiplied by the mean, then the counterpart

absolute index is obtained.

Definition 15 The absolute De Vergottini inequality index is defined as

VA(x) =
1
n

n∑

i=1

(Mi(x)− µ(x)) =
1
n

n∑

i=1

Mi(x)− µ(x).

In contrast with the relative Bonferroni index, whose maximum value is

Bmax =
n− 1

n

in correspondence with the income profile in which only one individual accumulates all the

income, the De Vergottini index does not have a unit upper bound. The maximum inequality

value corresponds to the same income profile as for the Bonferroni index, x[1] = nµ(x), x[2] =

· · · = x[n] = 0, but the value is now

Vmax =
n∑

j=2

1
j
.

This value only depends on the population size and may be used to normalize the index.

Our proposal is to use the normalization factor

c =
n

n− 1
Vmax,

because it ensures that the maximum value of the normalized De Vergottini index, V (x) =

V (x)/c, is the same as that of B(x), i.e. (n−1)/n. Similarly, we denote the absolute normalized

De Vergottini index by V A = VA/c.
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Remark 5 From (1) and (2), the normalized De Vergottini welfare function is simultaneously

obtained as

WV (x) = µ(x)
(
1− V (x)

)
= µ(x)− V A(x) =

c + 1
c

µ(x)− 1
c n

n∑

i=1

Mi(x).

Remark 6 For n = 2, the Gini, Bonferroni and normalized De Vergottini welfare functions

coincide:

WG(x1, x2) = WB(x1, x2) = WV (x1, x2) =
x[1] + 3 x[2]

4
.

However, this fact is not true in higher dimensions. For instance, for n = 3 we have

WG(x1, x2, x3) =
10x[1] + 30x[2] + 50x[3]

90

WB(x1, x2, x3) =
10x[1] + 25x[2] + 55x[3]

90

WV (x1, x2, x3) =
10x[1] + 34x[2] + 46 x[3]

90
.

Proposition 7 The weighting scheme implicit in the normalized De Vergottini welfare function

WV is expressed by
1
n

n∑

i=1

Mi(x) =
n∑

i=1

vi x[i],

where vi =
n∑

j=i

1
j n

, for i = 1, . . . , n.

Proof: The derivation is as follows
n∑

i=1

Mi(x) =
x[1]

1
+

x[1] + x[2]

2
+ · · ·+ x[1] + · · ·+ x[n]

n
=

=
(

1
1

+
1
2

+ · · ·+ 1
n

)
x[1] +

(
1
2

+ · · ·+ 1
n

)
x[2] + · · ·+ 1

n
x[n] =

= n
n∑

i=1

vi x[i].

Remark 7 The weights introduced in the previous proposition satisfy the following conditions

1. 0 < vn < vn−1 < · · · < v2 < v1 < 1.

2. vn =
1
n2

and vi−1 = vi +
1

(i− 1)n
, for i = 2, . . . , n.
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3.
n∑

i=1

vi = 1, since

n∑

i=1




n∑

j=i

1
j


 =

n∑

i=1




n∑

j=n−i+1

1
j


 = n .

Remark 8 The normalized De Vergottini welfare function can be written as

WV (x) =
n∑

i=1

wV
i x[i] wV

i =
c + 1− n vi

c n
i = 1, . . . , n

where
∑n

i=1 wB
i =

∑n
i=1 wV

i = 1 and the lowest Bonferroni and De Vergottini weights are

wB
1 = wV

1 = 1/n2 , since wB
1 = u1 = 1/n2 and

wV
1 =

c + 1− n v1

c n
=

n(nv1 − 1)) + (1− n v1)(n− 1)
n(nv1 − 1)n

=
1
n2

where we have used that c =
n(nv1 − 1)

n− 1
.

3.4 Orness of the Gini, Bonferroni and normalized De Vergottini welfare
funcions

The notion of orness (or attitudinal character) of OWA operators was introduced by Yager [46]

for reflecting the andlike or orlike aggregation behavior of OWA operators.

Definition 16 Let Aw the OWA operator associated with the weighting vector w = (w1, . . . , wn) ∈
[0, 1]n. The orness of Aw is defined by

Ao
w =

1
n− 1

n∑

i=1

(n− i)wi.

Remark 9 The orness of Aw coincides with the value Aw(xo), where xo
i =

n− i

n− 1
, i.e.,

Ao
w = w1 + w2

n− 2
n− 1

+ · · ·+ wn−1
1

n− 1
.

The orness of the extreme OWA operators maximum, arithmetic mean and minimum are 1,

0.5 and 0, respectively:

1. Aw(x) = max{x1, . . . , xn}, where w = (1, 0, . . . , 0): Ao
w = 1.

2. Aw(x) =
x1 + · · ·+ xn

n
, where w =

(
1
n

,
1
n

, . . . ,
1
n

)
: Ao

w =
1
2
.
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3. Aw(x) = min{x1, . . . , xn}, where w = (0, . . . , 0, 1): Ao
w = 0.

Proposition 8 The orness of the Gini welfare function is W o
G =

1
3
− 1

6n
.

Proof: From the definition

WG(x) =
1
n

n∑

i=1

2i− 1
n

x[i]

and since W o
G = WG(xo) with xo

[i] =
n− i

n− 1
, we obtain

W o
G = WG(xo) =

n∑

i=1

wG
i xo

[i] =
1
n

n∑

i=1

2i− 1
n

n− i

n− 1
=

=
1

(n− 1)n2

(
−n2 + (2n + 1)

n∑

i=1

i − 2
n∑

i=1

i2

)
=

=
1

(n− 1)n2

(
−n2 + (2n + 1)

n(n + 1)
2

− 2
n(n + 1)(2n + 1)

6

)
=

=
2n− 1

6n
=

1
3
− 1

6n
,

where we have used
n∑

i=1

i =
n(n + 1)

2
and

n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Proposition 9 The orness of the Bonferroni welfare function is W o
B =

1
4
.

Proof: From the definition

WB(x) =
1
n

n∑

i=1

mi(x) =
1
n

n∑

i=1

1
n− i + 1

n∑

j=i

x[j]
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and since W o
B = WB(xo) with xo

[i] =
n− i

n− 1
, we obtain

W o
B = WB(xo) =

1
n

n∑

i=1

1
n− i + 1

n∑

j=i

n− j

n− 1
=

=
1

n(n− 1)

n∑

i=1

1
n− i + 1


n(n− i + 1)−

n∑

j=i

j


 =

=
1

n(n− 1)

n∑

i=1

1
n− i + 1

(
n(n− i + 1)− (n− i + 1)(n + i)

2

)
=

=
1

n(n− 1)

n∑

i=1

(
n

2
− i

2

)
=

1
n(n− 1)

(
n2

2
− n(n + 1)

4

)
=

=
1

n(n− 1)
n(n− 1)

4
=

1
4
,

where we have used that
n∑

i=1

i =
n(n + 1)

2
.

Proposition 10 The orness of the normalized De Vergottini welfare function is W o
V

=
1
2
− 1

4 c
.

Proof: From the definition

WV (x) =
c + 1

c
µ(x)− 1

c n

n∑

i=1

Mi(x) =
c + 1

c
µ(x)− 1

c n

n∑

i=1


1

i

i∑

j=1

x[j]



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and since W o
V

= WV (xo) with xo
[i] =

n− i

n− 1
, we obtain

W o
V

= WV (xo) =
c + 1

c
µ(xo)− 1

c n

n∑

i=1


1

i

i∑

j=1

n− j

n− 1


 =

=
c + 1

c

1
2
− 1

c n(n− 1)

n∑

i=1


n− 1

i

i∑

j=1

j


 =

=
c + 1
2 c

− 1
c n(n− 1)

n∑

i=1

(
n− i + 1

2

)
=

=
c + 1
2 c

− 1
c n(n− 1)

n∑

i=1

(
2n− 1

2
− i

2

)
=

=
c + 1
2 c

− 1
c n(n− 1)

(
n(2n− 1)

2
− n(n + 1)

4

)
=

=
c + 1
2 c

− 1
c n(n− 1)

3n(n− 1)
4

=
c + 1
2 c

− 3
4 c

=
2c− 1

4 c
=

=
1
2
− 1

4 c
,

where we have used that
n∑

i=1

i =
n(n + 1)

2
and µ(xo) =

1
2
.

4 Dual decomposition of Gini, Bonferroni and normalized De
Vergottini welfare functions

This section identifies the self-dual core and the anti-self-dual remainder of the Gini, Bonferroni

and normalized De Vergottini welfare functions and highlights the relationships among them.

4.1 The Gini welfare function

Proposition 11 The absolute Gini inequality index is anti-self-dual, i.e., it satisfies GA(1 −
x) = GA(x), for every x ∈ [0, 1]n.
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Proof: The derivation is as follows:

GA(1− x) = µ(1− x)− 1
n

n∑

i=1

2i− 1
n

(1− x)[i] =

= 1− µ(x)− 1
n

n∑

i=1

2(n− i + 1)− 1
n

(
1− x[i]

)
=

= 1− µ(x)− 1
n

n∑

i=1

(
2− 2i− 1

n

)(
1− x[i]

)
=

= 1− µ(x)− 1
n

n∑

i=1

2
(
1− x[i]

)
+

1
n

n∑

i=1

2i− 1
n

(
1− x[i]

)
=

= 1− µ(x)− 2 + 2µ(x) + 1− 1
n

n∑

i=1

2i− 1
n

x[i] =

= µ(x)− 1
n

n∑

i=1

2i− 1
n

x[i] = GA(x),

where we have used that
n∑

i=1

2i− 1
n

= n.

Remark 10 Since WG(1 − x) = µ(1 − x) − GA(1 − x) = 1 − µ(x) − GA(x), the dual Gini

welfare function can be written as W ∗
G(x) = 1−WG(1− x) = µ(x) + GA(x).

Proposition 12 The self-dual core of the Gini welfare function is the arithmetic mean.

Proof: Taking into account Remark 10, we have

ŴG(x) =
WG(x) + W ∗

G(x)
2

=
µ(x)−GA(x) + µ(x) + GA(x)

2
= µ(x).

Proposition 13 The anti-self-dual remainder of the Gini welfare function is minus the absolute

Gini index.

Proof: Taking into account Remark 10, we have

W̃G(x) =
WG(x)−W ∗

G(x)
2

=
µ(x)−GA(x)− µ(x)−GA(x)

2
= −GA(x).
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4.2 The Bonferroni and De Vergottini welfare functions

Proposition 14 The duality relation between the absolute Bonferroni and the absolute De Ver-

gottini inequality indices is expressed by

BA(1− x) = VA(x) and VA(1− x) = BA(x),

for every x ∈ [0, 1]n

Proof: The derivation is as follows:

BA(1− x) = µ(1− x)− 1
n

n∑

i=1

mi(1− x) = (1− µ(x))− 1
n

n∑

i=1

(1−Mi(x)) =

= 1− µ(x)− 1 +
1
n

n∑

i=1

Mi(x) = VA(x).

On the other hand, VA(1− x) = BA(1− (1− x)) = BA(x).

Remark 11 Since WB(1−x) = µ(1−x)−BA(1−x) = 1−µ(x)−VA(x), the dual Bonferroni

welfare function can be written as W ∗
B(x) = 1−WB(1− x) = µ(x) + VA(x).

Proposition 15 The self-dual core and the anti-self-dual remainder of the Bonferroni welfare

function are given by

ŴB(x) = µ(x)− BA(x)− VA(x)
2

and W̃B(x) = −BA(x) + VA(x)
2

.

Proof: Taking into account Remark 11, the derivations are as follows:

ŴB(x) =
WB(x) + W ∗

B(x)
2

=
µ(x)−BA(x) + µ(x) + VA(x)

2
=

= µ(x)− BA(x)− VA(x)
2

.

W̃B(x) =
WB(x)−W ∗

B(x)
2

=
µ(x)−BA(x)− µ(x)− VA(x)

2
=

= −BA(x) + VA(x)
2

.

Remark 12 Since

WV (1− x) = µ(1− x)− VA(1− x)
c

= 1− µ(x)− BA(x)
c

,
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the dual normalized De Vergottini welfare function can be written as

W ∗
V

(x) = 1−WV (1− x) = µ(x) +
BA(x)

c
.

Proposition 16 The self-dual core and the anti-self-dual remainder of the normalized De Ver-

gottini welfare function are given by

ŴV (x) = µ(x) +
BA(x)− VA(x)

2 c
and W̃V (x) = −BA(x) + VA(x)

2 c
.

Proof: Taking into account Remark 12, the derivations are as follows:

ŴV (x) =
WV (x) + W ∗

V
(x)

2
=

µ(x)− 1
cVA(x) + µ(x) + 1

cBA(x)
2

=

= µ(x) +
BA(x)− VA(x)

2 c
.

W̃V (x) =
WV (x)−W ∗

V
(x)

2
=

µ(x)− 1
cVA(x)− µ(x)− 1

cBA(x)
2

=

= −BA(x) + VA(x)
2 c

.

It may be worth noting the dual behavior of the decomposition components for the Bonfer-

roni and the normalized De Vergottini welfare functions. On the one hand, the anti-self-dual

remainders are equal but for the normalization constant. The role played by the absolute Gini

index in the anti-self-dual remainder of the Gini welfare function, is replaced now by an average

of the respective absolute indices. As regards the self-dual cores, the components are completely

symmetric but, once again, the normalization constant.

5 Concluding remarks

We have examined the dual decomposition of the OWA welfare functions associated with the

Gini, Bonferroni, and De Vergottini indices in the standard framework of aggregation functions

on the [0, 1]n domain. The dual decomposition highlights the distinct and complementary nature

of the three classical inequality indices. In the Gini index case, the central result is GA(1−x) =

GA(x) and the dual decomposition reproduces in a natural way the canonical construction of

the associated welfare function. In the Bonferroni and De Vergottini cases, the central result is

BA(1− x) = VA(x) (and vice-versa) and the natural dual relationship between the two indices

emerges very clearly in the way the self-dual cores and anti-self-dual remainders of the two
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welfare functions combine the two inequality indices. An appropriate normalization of the De

Vergottini index is considered. Finally, the orness of the welfare functions associated with three

classical inequality indices has been computed, obtaining values in the (0, 1/2) interval due to

the common emphasis on poorer incomes. In the large population asymptotic limit, the orness

values of the Gini (1/3), Bonferroni (1/4), and De Vergottini (1/2) welfare functions recall the

character of the associated classical inequality indices and constitute further evidence of the

duality pattern illustrated by the dual decomposition.
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[3] E. Bárcena, L. Imedio, The Bonferroni, Gini and De Vergottini indices. Inequality, welfare

and deprivation in the European Union in 2000. Research on Economic Inequality 16 (2008)

231–257.

[4] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners,

Springer, Heidelberg, 2007.

[5] E. Ben Porath, I. Gilboa, Linear measures, the Gini index and the income-equality tradeoff,

Journal of Economic Theory 64 (1994) 443–467.

[6] C. Blackorby, D. Donaldson, Measures of relative equality and their meaning in terms of

social welfare, Journal of Economic Theory 18 (1978) 59–80.

[7] C. Blackorby, D. Donaldson, A theoretical treatment of indices of absolute inequality, In-

ternational Economic Review 21 (1980) 107–136.

24



[8] C. Bonferroni, Elementi di Statistica Generale, Libreria Seber, Firenze, 1930.

[9] W. Bossert, An axiomatization of the single-series Ginis, Journal of Economic Theory 50

(1990) 82–92.
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