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Abstract  
We consider populations partitioned into groups, whose members are distributed across a 
finite number of classes such as, for instance, types of occupation, residential locations, 
social status of fathers, levels of education, health or income. Our aim is to assess the 
dissimilarity between the patterns of distributions of the different groups. These 
evaluations are relevant for the analysis of multi-group segregation, socioeconomic 
mobility, equalization of opportunity and discrimination. We conceptualize the notion of 
dissimilarity making use of reasonable transformations of the groups' distributions, based 
on sequences of transfers and exchanges of population masses across classes and/or 
groups. Our analysis clarifies the substantial differences underlying the concept of 
dissimilarity when applied to ordered or to permutable classes. In both settings, we 
illustrate the logical connections of dissimilarity evaluations with matrix majorization pre-
orders, and provide equivalent implementable criteria to test unambiguous reductions in 
dissimilarity. Furthermore, we show that inequality evaluations can be interpreted as 
special cases of dissimilarity assessments and discuss relations with concepts of segregation 
and discrimination. 
Keywords: dissimilarity, matrix majorization, Zonotopes, multi-group segregation, 
discrimination. 
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1 Introduction

Since the seminal work by Kolm (1977) and Atkinson and Bourguignon (1982), the com-

parison of multidimensional distributions has received substantial attention in the eco-

nomic literature on inequality and social welfare. In such a framework, the main objective

consists in capturing inequalities in the multivariate distribution of relevant economic

measures such as income, wealth, assets, goods, among the units of analysis that usually

coincide with individuals or their aggregations. Assessments over alternative distributions

are often made by resorting to multivariate stochastic orders and to related empirically

implementable dominance tests (Koshevoy 1995, Koshevoy and Mosler 1996, Shaked and

Shanthikumar 2006, Marshall, Olkin and Arnold 2011).

Alternative forms of multidimensional assessments have received much less attention

in the literature. Here, we focus on “inequalities” that stem from the distribution of

a population divided into two or more groups across non-overlapping classes. In this

setting, groups are predetermined by a given partition of the population, while classes

correspond to the realizations of a generic discrete outcome variable that can be either

ordered (e.g., health, education achievements or income classes) or, alternatively, non-

ordered (e.g., residential location or type of occupation).

Concepts such as inequality, polarization and diversity are related to the pattern of

distributional heterogeneity of each group’s population across classes (Rao 1982). How-

ever, these notions are not suitable, alone, to analyze and to model more complex and

relevant social phenomena like school/occupational/residential segregation, intergenera-

tional mobility, equality of opportunity or discrimination. The evaluations of each of these

phenomena should be based on comparisons, across groups, of each group’s distributional

heterogeneity.

This paper is concerned with the conceptualization, characterization and implementa-

tion of multi-group dissimilarity comparisons of groups’ distributions across classes.

Dissimilarity comparisons have a long history in the statistical literature, which dates

back to the earliest work of Gini (1914, 1965). Gini (1914, p. 189) defines two distributions

(α and β, addressed to as “groups”, evaluated at modality, or “class” x of variate X) as

similar when “the overall populations of the two groups take the same values with the

same [relative] frequency. If n is the size of group α, m is the size of group β, nx the size

of group α which is assigned to class x and mx the size of group β assigned to the same

class, then it should hold [under similarity] that, for any value of x, nx
mx

= n
m .”1 Moreover

Bertino et al. (1987), referring to the work of Gini, extend this notion by defining two or

more distributions of the same variate to be similar if “for any modality [. . .] the absolute

frequencies [of the distributions] are proportional”. An obvious consequence is that “if two
1The text is translated from the original in Italian.
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distributions are similar they can have different sizes but their syntheses which are based

on relative frequencies are equal.”

A configuration under evaluation is given by a set of groups distributions that can

be formalized through distribution matrices where rows and columns denote respectively

groups and classes and each cell’s entry corresponds to the frequency of the population of

a given group in a given class. The distribution matrix that embodies perfect similarity

satisfies the definition in Gini (1914, 1965) only if its rows are proportional one to the oth-

ers. Every configuration that does not admit this similarity representation displays some

degree of dissimilarity. Various indicators have been proposed in the literature to qual-

ify the degree of dissimilarity. There is however discordance on the properties that these

indicators should satisfy to produce a ranking of configurations coherent with decreasing

dissimilarity.

A century after the seminal work by Gini we propose a systematic framework to

answer the following question: Does configuration B display at most as much dissimilarity

as does configuration A? This question is particularly relevant, for instance, in evaluating

policy intervention that aims at alleviating the incidence of segregation, intergenerational

immobility or discrimination across groups. In this paper, we single out well defined

transformations of distribution matrices based on split, merge or exchange transformations

of population masses both across groups and/or classes. When applied to the data, these

transformation allow to move from a configuration A to a less dissimilar configuration B,

towards perfect similarity. Some of the operations that we consider are related to different

streams of literature (Grant, Kajii and Polak 1998, Frankel and Volij 2011, Reardon 2009),

here we analyze their combined effect and we clarify substantial differences in the concepts

when applied to ordered or permutable classes.

Making use of combinations of these operations we characterize dissimilarity partial

orders. Only configurations obtained from sequences of the dissimilarity preserving or

reducing transformations can be unambiguously ranked. We show that, when this is the

case, the dissimilarity partial orders can be formalized in terms of matrix majorization

operations, and that ordered or non-ordered dissimilarity comparisons can be empirically

implemented and tested using intuitive criteria.

To illustrate these criteria we consider the case of groups with equal size. Take a set

of individuals that corresponds to a proportion p of the overall population. Among them

those of group i correspond to a proportion pi in their group. Dissimilarity assessments

are based on the evaluation of the dispersion of the values of pi across all groups.

When classes are ordered, the evaluation is made taking into consideration groups

proportions related to the first classes that cover the proportion p of the overall popula-

tion, while the dispersion assessment is based on the Lorenz dominance criterion applied
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to the vector of pi’s, that on average should sum to p. Configuration B is considered

unambiguously less dissimilar than configuration A if the Lorenz dominance of the groups

population shares is verified for any p.

For non-ordered classes the evaluation is made taking any combination of classes, or

proportional splits of them (with associated proportional shares of the groups populations),

that cover the proportion p of the overall population. For a given p, these combinations

lead to a (convex) set of the vectors of pi’s. Given p, groups shares are less disperse under

configuration B if the associated set of vectors of pi’s is included in the analogous set

derived for configuration A. An unambiguous reduction in dissimilarity is obtained if the

inclusion test holds for any p.

The role of the transformations underlying the dissimilarity concept can be illustrated

with simple examples that draw from the segregation or the discrimination literature.

Segregation occurs when groups are unevenly distributed across the organizational

units in which a social or economic space is partitioned into (Massey and Denton 1988).

Sociologists and economists have highlight the importance of desegregation policies to

achieve social inclusion goals2 and have developed, for the two groups case, the appropri-

ate apparatus for measuring segregation consistently with a simple notion of Pigou-Dalton

transfer of population masses across sections.3 Segregation involves the notion of dissim-

ilarity across non-ordered classes in a multi-group setting. Consider for instance many

ethnic groups of students and three schools. Half of the students or each group are con-

centrated in one school, while the others are unevenly distributed across the two remaining

schools. There is segregation, and it is preserved if, for instance, one considers also schools

with no students, or if the labeling of schools is modified, or even if one school is split into

two new smaller institutes, while preserving the initial social composition. If the policy-

maker merges the two latter schools to form a unique institute, then groups proportions

are equalized. Frankel and Volij (2011) motivate that segregation should always reduce

when data are transformed by merge operations. We take a similar stance to construct a

dissimilarity order for permutable classes: by merging two classes, the differences across

groups distributions are partially smoothed and dissimilarity is reduced.

Also the study of labor market discrimination patterns involves the analysis of the

distribution of population masses across earnings intervals associated with ordered classes.

A configuration where the proportions of groups in a given class are equalized across

groups, and therefore the associated cumulative distribution functions coincide, displays
2See Echenique, Fryer and Kaufman (2006) and Borjas (1992, 1995), for instance.
3See Hutchens (1991, 2001), Reardon and Firebaugh (2002), Reardon (2009), Flückiger and Silber

(1999), Chakravarty and Silber (2007), Alonso-Villar and del Rio (2010), Frankel and Volij (2011) and
Silber (2012), for a survey on the methodology.
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no discrimination. This is in fact a situation of perfect similarity. On the contrary, discrim-

ination is maximized whenever each group is concentrated on a series of adjacent earnings

intervals, and only that group occupies the intervals. All the remaining cases display a

certain degree of discrimination. We suggest that these cases can be ordered making use

of sequences of dissimilarity preserving operations and exchanges of populations from the

most represented group in one given class to the less represented group in the same class.

This operation, which is equivalent to perform Pigou-Dalton transfers of realizations of

the cumulative distribution functions, fills the gap between groups’ cumulative distribu-

tion functions, thus reducing the impact of discrimination. This conclusion relies, in fact,

on a dissimilarity comparison and the exchange transformation is an appealing criterion

for assessing reductions in dissimilarity.

The notion of dissimilarity can be seen as logically separated from the notion of in-

equality. In the discrete setting, the overall population inequality can be decomposed into

within group and between groups components. The within group component is deter-

mined by the degree of heterogeneity of groups’ distributions across classes, the between

groups component captures dissimilarity concerns. Following this perspective then in-

equality and dissimilarity can move in different directions. Every equal allocation, where

all groups population masses are concentrated on the same class, display no dissimilarity

across groups. But if the classes where population masses are concentrated differ across

groups then dissimilarity can be maximal. On the other hand, there are configurations

characterized by sizable but similar groups heterogeneity that cannot be judged as equal

but fulfill the perfect similarity representation.

However, taking a different perspective, we show that inequality comparisons can be

interpreted as dissimilarity comparisons but not the reverse. Take the traditional univari-

ate inequality measurement grounded on the Lorenz curves comparisons, in this case we

can interpret the classes as the n sampled income units (e.g. individuals or households)

and consider two “groups” distributions: the income share owned by each of these in-

come units, and the weighting scheme assigning weight 1/n to each of them. There is

no inequality in the sense of Lorenz whenever each class/unit income share is equal to its

demographic/social weight. This is a similarity requirement, that can be straightforwardly

extended to the multidimensional inequality analysis. In the next section we show that the

well known Pigou-Dalton (rich to poor) transfer principle is consistent with more general

dissimilarity decreasing operations that we use in this paper.

The rest of the paper is organized as follows. Section 2 presents the notation, as well

as an overview of the majorization and geometric ordering exploited through the paper.

In section 3 we discuss the axiomatic structure and the data transformations underlying

the dissimilarity comparisons. In sections 4 and 5 we illustrate our first contribution: the
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dissimilarity pre-order relies on well known majorization orderings (Marshall et al. 2011)

both in the permutable (Blackwell 1953, Torgersen 1992, Dahl 1999) and the ordered set-

ting (Hardy, Littlewood and Polya 1934, Marshall and Olkin 1979, Le Breton, Michelangeli

and Peluso 2012). Section 6 proves necessary and sufficient conditions for testing the dis-

similarity pre-order according to the ranking produced by Zonotopes inclusion for the non

ordered classes case4 and by Path Polytopes inclusion in the case of ordered classes.5 This

innovative results permits the policymaker to answer questions such as: Is society B less

segregated/more mobile/less discriminant than society A? The final section formalizes in

which sense inequality comparisons are always nested within dissimilarity comparisons,

and proposes possible extensions toward complete orders of dissimilarity, coherently with

the axiomatic model that we have introduced.

1.1 An illustrative example

This example illustrates an application of the dissimilarity concept to the assessment of

segregation. We motivate the importance of a multi-groups setting (and transformations)

by showing that two-groups comparisons may lead to wrong evaluations. Consider a pop-

ulation partitioned into three groups {1, 2, 3}. The population in each group is divided

across two classes, which can be interpreted as two types of occupations, {Class 1,Class 2}.
The value ai1 denotes the proportion of group i in class/occupation 1, for i ∈ {1, 2, 3} un-

der configuration A, with analogous interpretation for ai2. Thus ai1 + ai2 = 1 for all

i ∈ {1, 2, 3}.
We compare two alternative configurations A and B in terms of segregation/dissimilarity

between the distribution of the three groups across the two classes/occupations.

The two configurations are formalized as follows:

A :

Class 1 Class 2

Group 1 0.9 0.1

Group 2 0.1 0.9

Group 3 0.8 0.2

; B :

Class 1 Class 2

Group 1 0.4 0.6

Group 2 0.6 0.4

Group 3 0.45 0.55

.

In order to assess the occupational segregation ranking of the two configurations, we can
4We contribute by generalizing to the multi-group setting the equivalence between matrix majorization

and Zonotopes inclusion for the bi-dimensional setting in Dahl (1999). Zonotopes are in fact extensions of
the segregation curve (Hutchens 1991), a plot of the overall dispersion across groups’ conditional distribu-
tions in a given configurations. Our result links Zonotopes inclusion with the existence of a sequence of
dissimilarity preserving/reducing operations, as the Lorenz curve is related to the existence of a sequence
of Pigou-Dalton transfers.

5This innovative result extends the literature on two-groups discrimination depicted by the comparisons
of discrimination curves (Butler and McDonald 1987, Jenkins 1994, Le Breton et al. 2012) to the multi-
group setting. It is the first attempt to recover the equivalence between sequences of preserving/decreasing
dissimilarity transformations, sequential uniform majorization (Marshall and Olkin 1979) and dominance
orders for multi-groups discrimination curves.
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make use of segregation curves (Hutchens 1991). Consider a partition of the two configu-

rations that takes into account only groups 1 and 2, denoted respectively as A(1, 2) and

B(1, 2). The segregation curve of A(1, 2) is obtained by (i) evaluating the ratios a21/a11

and a22/a12, (ii) ordering the regions in increasing order with respect to these ratios, i.e.,

the order of Class 2 precedes Class 1 only if a22/a12 ≥ a21/a11; (iii) plotting for the first

class in the order indexed, say, by j ∈ {1, 2}, the point (a1j , a2j) and connecting it with

the origin (0,0) and the upper extreme (1,1).

If a22/a12 = a21/a11 = 1 we get for A(1, 2) a segregation curve coinciding with the

45 degrees line, thus identifying perfect similarity. As the curve moves below this line the

degree of dissimilarity between the two groups distributions increases. Thus, if the curve

of B(1, 2) lies above the one of A(1, 2), we can make a “robust” statement concerning the

fact that A(1, 2) exhibits larger dissimilarity than B(1, 2).

It is possible to use the segregation curve to compare all subsets of the two distributions

that consider pairs of groups. Repeated application of these comparisons lead to the

following statement: for any i, j ∈ {1, 2, 3} s.t. i 6= j distribution B(i, j) dominates A(i, j)

in terms of the segregation curve, that is B(i, j) is less dissimilar/segregated than A(i, j).

If groups 1 and 2 are merged so that they are considered as a unique group and then

compared to Group 3, will the new configuration made of only two groups exhibit the same

pattern of dissimilarity when comparing A and B?

Suppose that the relative population weights of the two groups are respectively 0.875

and 0.125 and that we denote the new group with index 4. The two new configurations

A′ and B′ obtained respectively from A and B by merging group 1 and group 2 are:

A′ :

Class 1 Class 2

Group 3 0.8 0.2

Group 4 0.8 0.2

; B′ :

Class 1 Class 2

Group 3 0.45 0.55

Group 4 0.425 0.575

.

Clearly distribution A′ exhibits less dissimilarity than B′, in fact the degree of dissim-

ilarity in A′ is zero being the shares of the two groups identical across the two regions.

This result conflicts with the fact that any pairwise comparison of groups in A and B

shows that A is more dissimilar.

Analogous mathematical examples with different underlying explanations can be con-

structed to highlight the theoretical difficulties to move from the established setting of

two groups dissimilarity comparisons to the multi-group case. The general dominance

conditions we will derive will be robust to these considerations.

For instance, consider the problem of assessing the degree of gender segregation that

is induced by the social group of origin across classes represented in matrices A and B.

This can be done by mixing the three groups according to a fixed row stochastic weighting
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matrix that depicts a groups mixing scheme constant across jobs positions of the three

groups, and returns the male-female composition. Thus, we obtain matrices A′′ and B′′.

If B displays less dissimilarity than A, robustness requires that B′′ should display less

dissimilarity than A′′ for all weighting schemes. Consider the following vector of female

shares of working force in each group:
(

47
80 ,

41
80 ,

32
80

)
and suppose that the three groups have

the same populations. The resulting distributions of males and females across jobs are

given by:

A′′ :

Class 1 Class 2

Female 0.6 0.4

Male 0.6 0.4

; B′′ :

Class 1 Class 2

Female 0.481 0.519

Male 0.485 0.515

.

Again, the inversion in the dissimilarity ranking position of A′′ and B′′ suggests that

two groups comparisons cannot be consistently used to make assessments on multi-group

dissimilarity phenomena.

2 Setting

2.1 Notation

This paper deals with comparisons of d × n distribution matrices, depicting the absolute

frequencies distribution6 of d groups (indexed by rows) across n disjoint classes (indexed

by columns), where d, n ∈ N are natural numbers, such that n ≥ 2 and d ≥ 2. The set of

distribution matrices with d rows is:

Md := {A := (a1, . . . ,aj , . . . ,an) : aj ∈ Rd
+, n ∈ N}.

Each element of Md represents a set of d distributions across n classes. Thus, aij
is the population of group i observed in class j. We will compare matrices A, B ∈ Md

representing sets of distributions with fixed d groups and with possibly variable number of

classes, denoted respectively nA and nB. The set of all distribution matrices with possibly

different d is denoted M. The perfect similarity matrix matrix S ∈ Md represents the

case in which groups’ frequencies distributions are proportional one to the other, that is:

S :=




λ1a1 · · · λ1an
...

. . .
...

λda1 · · · λdan


 .

6For convenience we use matrices whose entries are real numbers.
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For A ∈ Md, the cumulative distribution matrix
−→
A ∈ Md is constructed by sequen-

tially cumulating the classes of A. The column k of
−→
A, for all k = 1, . . . , nA, is therefore

−→a k :=
∑k

j=1 aj for j ≤ k.

Let en := (1, . . . , 1)t and 0n := (0, . . . , 0)t be n-dimensional column vectors of ones

and zeroes. With Πn we define an element in the set Pn of all n×n permutation matrices.

The standard simplex in Rn
+ is denoted by ∆n := {x ∈ Rn

+ : etn · x = 1}, while Rn,m
denotes the set of all row stochastic n ×m matrices such that each of the n rows lies in

∆m. The set Rn,m describes a polytope in Rn,m
+ . Each matrix X ∈ Rn,m can be written

as the convex combination of its vertices, given by all the mn (0,1)-matrices of dimension

n × m with exactly one nonzero element (of value one) in each row, hereafter denoted

as X(1), . . . ,X(h), . . . ,X(mn). The elements of Rn,m can be interpreted as migration

matrices where the entry xij gives the probability for the mass of individuals in class i in

the distribution of origin to migrate to the class j in the distribution of destination.

The set Cn,m denotes all column stochastic matrices such that each of the m columns

lies in the ∆n simplex. The set of row (column) stochastic matrices such that m = n is

denoted by Rn (Cn). The set Dn = Rn ∩ Cn contains the doubly stochastic matrices.

In the next subsections we review partial orders based on majorization and on com-

parisons of geometric bodies. The readers who are already familiar with the matrix ma-

jorization orders presented in Marshall et al. (2011) and with Zonotopes and Monotone

Paths definitions can move to section 3.

2.2 Orders based upon majorization

Multivariate majorization theory suggests elementary algebraic transformations of data

that involve row, column or bistochastic matrices. These transformations have a relevant

economic interpretation, which has been exploited to construct multivariate inequality

orders.

Definition 1 (Multivariate Majorization) Given two matrices A, B ∈Md:

1. B is uniformly majorized by A (B 4U A) provided that nA = nB = n and there

exists a doubly stochastic matrix X ∈ Dn such that B = A ·X.

2. B is directionally majorized by A (B 4D A) provided that nA = nB = n and

`t ·B 4U `t ·A, for every ` ∈ Rd.

3. B is column majorized by A (B 4C A) provided there exists a column stochastic

matrix X ∈ CnA,nB such that B = A ·X.

4. B is (matrix) majorized by A (B 4R A) provided there exists a row stochastic matrix

X ∈ RnA,nB such that B = A ·X.
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Uniform majorization has been extensively discussed in Marshall and Olkin (1979)

(see also Marshall et al. 2011). Welfare implications of directional majorization have been

studied by Koshevoy (1995) and by Kolm (1977), who restricts attention to dominance

for vectors ` ∈ Rd
+ that can be interpreted as prices. Column majorization is the weak

majorization in Mart́ınez Peŕıa, Massey and Silvestre (2005), while matrix majorization

has been originally proposed by Dahl (1999) as an alternative to uniform majorization for

ranking matrices with different number of columns.

In the analysis of univariate distributions, uniform majorization has an interpretation

in terms of Pigou Dalton transfers and corresponds to dominance according to the Lorenz

order. This interpretation can be extended to the multivariate case, although this type of

operations do not account for multivariate structure of correlation across dimensions.

The multivariate majorization order can be weakened in two interesting directions.

Directional dominance reduces the number of dimensions of the problem to a univariate

comparison of “budget” distributions obtained by a system of weights, positive and/or

negative.

Matrix majorization is weaker than uniform majorization. It is obtained via mul-

tiplication of row stochastic matrices, therefore it preserve the total dimension of each

group and it appears to be an appropriate candidate to represent the dissimilarity or-

der. In fact, matrix majorization has been already investigated (under different names)

in other fields such as linear algebra and majorization orders (Dahl 1999, Hasani and

Radjabalipour 2007), in inequality analysis (see Chapter 14 in Marshall et al. 2011), in

the comparison of statistical experiments (Blackwell 1953, Torgersen 1992) or in a-spatial

two groups (Hutchens 1991, Chakravarty and Silber 2007) and multi-group segregation

(Frankel and Volij 2011).

2.3 Orders based upon polytopes inclusion

This section reviews the orderings of distribution matrices induced by the inclusion of

geometric bodies derived by matrices in Md. We focus on two inclusion orderings.

2.3.1 The Zonotope inclusion order

For matrix A ∈ Md, the associated Zonotope Z(A) ⊆ Rd
+ can be written as the convex

set of point-vectors obtained by mixing the columns of A with a system of weights lying

in the unitary interval:

Z(A) =



z := (z1, . . . , zd)t : z =

nA∑

j=1

θjaj , θj ∈ [0, 1] ∀j = 1, . . . , nA



 .
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This representation is particularly convenient to prove our results (for an extensive treat-

ment, see McMullen 1971).7

The Dissimilarity Zonotope ZD(A) associated to matrix A is a d-dimensional parallel-

ogram whose edges have size A ·enA . When d = 3, ZD(A) is a parallelepiped. Throughout

the paper, we restrict attention to comparisons of Zonotopes that lie inside the same ZD,

hence generated by matrices A, B ∈ Md such that A · enA = B · enB = µ. If, moreover,

µ = ed, then ZD coincides with the unit hypercube.

The Similarity Zonotope ZS(A) associated to matrix A corresponds to the diagonal

of ZD, connecting the origin 0d and the point with coordinates A · enA . The ZS coincides

with the d-dimensional Zonotope associated to the distribution matrix S ∈Md displaying

perfect similarity.

The operations that can be used to reshape ZD toward ZS , while preserving its con-

vexity and central symmetry, are equivalently characterizing the operations that reduce

dissimilarity. For matrices A,B ∈Md with A ·enA = B ·enB , the inclusion Z(B) ⊆ Z(A)

indicates that the set of distributions in B is closer to similarity than is the set of distribu-

tions in A. Our main results for dissimilarity comparisons with permutable classes involve

thus dominance relations.

2.3.2 The Path Polytope inclusion order

The Monotone Path MP ∗(A) ⊆ Rd
+ is an arrangement of nA line segments connecting

the origin and the points with coordinates given by the columns of
−→
A. It defines a path

inside the Zonotope, which connects the origin with the point corresponding to A · enA .

The vertices of MP ∗(A) are ordered monotonically with respect to the columns of matrix

A, such that vj ∈MP ∗(A) if and only if vj = −→a j for all j, v0 = 0d and vnA = A · enA .8

Similarly to the Zonotope, any point on MP ∗(A) can be defined as the weighted sum

of the columns of matrix A, up to a nonlinear restriction on weights. Let 1j<k and 1j=k
be the indicator functions, taking value one when their respective arguments are verified,

and zero otherwise. Then:

MP ∗(A) :=



p = (p1, . . . , pd)t : p =

nA∑

j=1

θjaj , θj = 1j<k + θ 1j=k, θ ∈ [0, 1] ∀k = 1, . . . , nA



 .

Building on MP ∗(A) it is possible to derive the Path Polytope Z∗(A) ⊆ Rd
+:

Z∗(A) :=
{
z∗ := (z∗1 , . . . , z

∗
d)t : z∗ = conv {Πd · p| Πd ∈ Pd} , p ∈MP ∗(A)

}
.

7The Zonotope Z(A) ⊆ Rd+ is a centrally symmetric convex body defined by the Minkowski sum of a
finite number of closed line segments connecting the points generated by the columns of A with the origin.

8See Shephard (1974) and Ziegler (1995) for a definition of the f-monotone path and its applications to
the study of Zonotopes.
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The Path Polytope consists in a d-dimensional expansion of the unidimensional ordered

set MP ∗ in the d-variate space. Hence, contrary to the Monotone Path, the Path Polytope

has a volume with a nonzero measure. The origin and the ending vertices of the Path

Polytope coincide with the ones of the Monotone Path.

We consider the Path Polytopes associated to matrices A,B ∈Md with A · enA = B ·
enB = ed. In this case, all points z∗ belonging to the convex hull created from p ∈MP ∗(A)

also lie on the same hyperplane supporting the standard simplex ∆d, properly scaled by a

factor λ ∈ [0, d].9

The Dissimilarity Path Polytope and the Similarity Path Polytope associated to Z∗(A)

coincide with ZD(A) and ZS(A), respectively. The inclusion Z∗(B) ⊆ Z∗(A) indicates

an alternative perspective for assessing that the set of distributions depicted in B is more

close to similarity than is the set in A. In this paper we characterize this relation and

highlight the differences with the Zonotopes inclusion order.

2.3.3 An example

Matrix A ∈M2 collects the data on the distribution of male (first row) and female (second

row) across four classes:

A =

(
0.4 0.1 0 0.5

0.1 0.4 0.3 0.2

)
.

The Zonotope of matrix A is delimited by the grey area in figure 1(a). Each column

of A is a vector in the two dimensional space (we draw a small symbol associated to each

vector). Consider the case where classes are interpreted as occupations (and therefore

are non-ordered). Matrix A may well represent a segregated distributions of sexes across

occupations. The Z(A) is therefore the area between the segregation curve, corresponding

to its lower bound, and the dual of the segregation curve.

The Path Polytope of matrix A (figure 1(b)) corresponds to the grey area between

the Monotone Path (solid line) and its symmetric projection (dashed line) with respect to

the diagonal. If classes are interpreted as ordered non-overlapping income intervals, then

matrix A may well represent a gender based discrimination pattern and the Path Polytope

corresponds to the area between the discrimination curve (the lower boundary of the Path

Polytope) and its dual discrimination curve.
9The hyperplane supporting the simplex has slope ed. Since we make use of distribution matrices

satisfying A · en = ed, then the value associated to the hyperplane crossing the Path Polytope in the point
A · en is equal to etd · ed = d. We derive a procedure to test the Path Polytopes inclusion which exploits
this feature.
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Figure 1: The Zonotope and Path Polytope (with the monotone path in solid line)

3 An axiomatic approach to dissimilarity

We formalize the normative content of dissimilarity by resorting to an axiomatic structure.

The axioms characterize the dissimilarity order by depicting the transformations between

classes or between groups that, when applied to matrices in M, either preserve or reduce

the degree of dissimilarity embodied in the distribution matrices. Along with the axioms,

we define the implied transformations on data matrices.

When we write that the relation “B is at most as dissimilar as A” satisfies a set

of dissimilarity preserving/reducing axioms we mean that there exists a finite sequence

of transformations underlying these axioms that allows to move from A to B. Thus,

we assume that the dissimilarity pre-order is fully characterized by these operations and

therefore they are not only sufficient to guarantee that A and B can be compared according

to the pre-order but they are also necessary.

For convenience, and without loss of generality, we specify the axioms in the form of

transfers of population masses across classes, thus defining the direct axiomatic approach to

dissimilarity. These operations change name, size and number of the classes, while keeping

the groups as fixed. These axioms will be at the core of our analysis. Alternatively, we

propose a similar structure of transfers of population masses across groups, thus defining

the dual setting. These operations change the name, the size and the number of the

groups, while keeping the classes as fixed. In practice, the transformations underlying the

dual and direct axioms coincide, provided that the former are applied to the transpose

of the distribution matrices. We replace the “C ” (which stands for classes) with a “G”

(which stands for groups) to distinguish the dual from the direct axioms. We keep the two
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frameworks separated, and we highlight possible incoherences when the two are combined.

3.1 Dissimilarity preserving axioms

Let 4 be a binary relation in the set M with symmetric part ∼.10 The relation defines

the dissimilarity order. We write B 4 A to say that the distribution of groups in B are

at most as dissimilar as the ones in A. We assume from the outset that the dissimilarity

order induces a pre-order on the set of distribution matrices.11

The first axiom defines an anonymity property of the dissimilarity order, by requir-

ing that the name of the classes does not have to be taken into account in dissimilarity

comparisons. The underlying operations defines the independence from transformations

involving the permutation of columns of a distribution matrix.

Axiom IPC (Independence from Permutations of Classes) For any A, B ∈ Md

with nA = nB = n, if B = A ·Πn for a permutation matrix Πn ∈ Pn then B ∼ A.

One direct implication of IPC is that by cumulating frequencies across classes, one

cannot derive any additional information that can be exploited in the dissimilarity com-

parison. Hence, admitting IPC means restricting attention to a specific class of problems,

for this reason we treat the case of permutable versus non-permutable classes separately.

The following two dissimilarity preserving axioms characterize the independence of

the dissimilarity order from operations that do not add (or eliminate) information on the

distribution of groups across classes.

Distributional information is preserved when a new empty class is created. We call

the underlying transformations insertion/elimination of empty classes.

Axiom IEC (Independence from Empty Classes) For any A, B, C, D ∈Md and

A = (A1,A2), if B = (A1,0d,A2) , C = (0d,A) , D = (A,0d) then B ∼ C ∼ D ∼ A.

Similarly, the splitting of a class into two new classes preserves dissimilarity, when

groups frequencies are proportionally split into the two new classes. As a result, one

ends up with two proportional classes, each with an smaller population weight. This

transformation is a split of classes, and it corresponds to a sequence of linear bifurcations

for a probability distribution, introduced by Grant et al. (1998). If the same bifurcation

is applied to all conditional distributions (expressed by the rows of a distribution matrix),

the ranking of distribution matrices is preserved.

Axiom SC (Independence from Split of Classes) For any A,B ∈ Md with nB =
10B ∼ A if and only if B 4 A and A 4 B.
11That is, for any A, B, C ∈ M the relation 4 is reflexive (A 4 A) and transitive (if C 4 B and

B 4 A then C 4 A). The assumptions are maintained throughout the paper.
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nA + 1, if ∃ j such that bj = βaj and bj+1 = (1 − β)aj with β ∈ (0, 1), while bk = ak
∀k < j and bk+1 = ak ∀k > j, then B ∼ A.

Alternatively, using similar arguments it is possible to show that the degree of dis-

similarity is preserved by the transformations that permute groups or that add/eliminate

empty groups to the comparisons, or by applying proportional linear bifurcations of dis-

tributions across classes, as well as merging classes where the distribution of population

across groups are proportional. The corresponding dissimilarity preserving axioms define

independence from permutations of groups (IPG), from empty groups (IEG) and from

split of groups (SG).

The dual axioms can be better understood in the light of the dual concept of dissim-

ilarity, which points at reducing the difformity in the groups composition across classes.

Moreover, direct and dual axioms can be combined. In particular, the axiom IPG states

that the dissimilarity entails a symmetric comparison of groups distributions, and for this

reason we retain the groups permutation along with operations involving classes. We

formalize IPG because we will use it explicitly for some of our characterizations.

Axiom IPG (Independence from Permutations of Groups) For any A, B ∈Md,

if B = Πd ·A for a permutation matrix Πd ∈ Pd then B ∼ A.

3.2 Dissimilarity decreasing axioms

3.2.1 The Merge axiom

The Merge axiom states that the dissimilarity between two or more distributions is reduced

whenever any two contiguous classes are mixed together. If the dissimilarity order satisfies

IPC, the merge can be extended to any pair of classes.

The rationale of the merge axioms is that by mixing together two classes one looses

information, in the sense that it becomes more difficult to distinguish the distributions

of frequencies associated to different groups. As a result, distributions are more similar.

The transformation behind the axiom involve summations of pairs of adjacent columns of

a distribution matrix.

Axiom MC (Dissimilarity Decreasing Merge of Classes) For any A, B ∈Md with

nA = nB, if bi = 0d, bi+1 = ai + ai+1 while bj = aj , ∀j 6= i, i+ 1, then B 4 A.

Along with MC, one can define a dual merge axiom, MG. In this case dissimilarity is

reduced as a consequence of the loss of information related to the groups mixture.

The transformations underlying the axioms IEC, IPC, SC and MC can be combined

into sequences, defining more complex forms of transfers of population masses across
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classes. When combined together, these operations allow to transform one distribution

matrix A into the distribution matrix B while reducing dissimilarity. The sequence of op-

erations involves classes, and therefore groups are split or merged with equal proportions.

Thus, the operations involve a symmetric treatment of groups.

Nevertheless, MC entails some operations that preserve the overall row sum of the

matrices, while changing completely the size of the sections. Conversely, the dual axioms

require the size of the classes (and not the one of the groups) to be fixed across comparison

matrices. It follows that, if the dissimilarity order satisfies both types of axioms, then the

transformations cannot be independently used.12

3.2.2 The Exchange axiom

We formulate an alternative dissimilarity reducing axiom based upon the notion of ex-

change discussed in Reardon (2009) and Fusco and Silber (2011). An exchange transfor-

mation entails a movement of individuals across groups but within the same class. It can

be applied only if some conditions are verified. Firstly, the exchange can be performed

conditionally on a precise order of the columns of a distribution matrix. Secondly, it has to

take place only between groups of the same size. Hence, the exchange is meaningful if and

only if we consider distribution matrices A,B ∈ Md, with nA = nB = n and satisfying:

A · en = B · en = λed, with λ ∈ R++.

We say that (the distribution of) group h dominates (the distribution of) group ` in

class k if −→a hk < −→a `k and −→a h,k+1 ≤ −→a `,k+1. According to the exchange principle, if h

dominates ` in k, and if a small enough amount ε > 0 of the population in the ordered class

k is moved from group ` to group h, while an equally small amount ε of the population

in the ordered class k+ 1 is moved from group h to group `, then dissimilarity is reduced.

By small enough we mean that, after the population transfer, there is no re-ranking across

groups: if group h dominates ` before the exchange, than group h should dominate (in

a weak sense) ` even after the exchange, for all ` and for all h. The Exchange axiom

formulates this principle in a more compact way:

Axiom E (Exchange) For any A, B ∈ Md with nA = nB = n and A · en = B · en =

λed, with λ ∈ R++, let h dominates ` in k in matrix A. For ε small enough, if B is

obtained from A by an exchange such that (i) bhk = ahk + ε, (ii) b`k = a`k − ε, (iii)

bik = aik ∀i 6= h, ` and (iv)
−→
b j = −→a j ∀j 6= k then B 4 A.

The exchange axiom points out that the dissimilarity comparisons are meaningful
12To make more explicit the link between the dissimilarity order based on direct/dual axioms and the

general notion of dissimilarity, it suffices to see that the transformations induced by direct and dual axioms
are the unique transformations that, when applied to a similarity matrix like S return another similarity
matrix, with the same characteristics that the columns/rows of the matrix are one proportional to the
other.
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only when groups sizes are fixed, not only among the matrices under comparison, but also

across groups within the same distribution matrix. Hence, it is also possible to interpret

the exchange of ε units as an exchange of an absolute population measure either across

groups or across classes. This assumption is implicit in Fusco and Silber (2011).

By construction, the MG and the E axioms are natural candidates for defining the

dissimilarity order when the classes are non permutable.

4 Characterization of dissimilarity orders: permutable classes

The assessment of segregation or socioeconomic mobility are related to non-ordered dis-

similarity comparisons of distribution matrices where classes are not ordered.

In the non-ordered setting, one can construct any possible cumulative absolute fre-

quency distribution by permuting the order of the classes of the distribution matrix. Hence,

the analysis should focus on comparisons of frequencies distributions rather than on their

cumulations. Consider the two groups case (d = 2). The set of direct axioms induces

sequences of operations on the data that reduce the total variational distance of the two

distributions: a requirement already stated in Gini (1914, 1965). The most common dis-

similarity index satisfies indeed these axioms.

Remark 1 For A ∈ M2 and A · en = ed, the Dissimilarity Index (Duncan and Duncan

1955, Gini 1965) D(A) := 1
2

∑n
j=1 |a1,j − a2,j | induces a complete order that satisfies the

axioms IEC, IPC, SC and MC.

Axioms IEC, IPC and SC define a set of equivalent conditions for the dissimilarity

order. By applying any sequence of the transformations underlying these axioms we obtain

a set of matrices that are equally “dissimilar”. We characterize such a class and then we

show in a more general theorem that, by adding MC it is possible to state the equivalence

between row stochastic majorization and the partial order induced by the elementary

operations of merging and splitting. The IEC axiom plays a central role in the proof:

it allows to modify the number of classes while preserving the order, thus generating

empty slots where proportional splits can be reallocated without effects. In fact, the split

transformation entails a merge between a proportional split and an empty class. Moreover,

under IEC, the operations involved by axioms SC and MC admit a representation through

a row stochastic matrix. Finally, the permutation axiom IPC is crucial for analyzing the

case where classes are non-ordered.
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4.1 The equivalence with Matrix Majorization

We first prove that any sequence of operations underlying the axioms IEC, IPC, SC is

equivalent to adopt a specific class of row stochastic matrices R̂nA,nB , generating indiffer-

ence sets.

Definition 2 The set R̂nA,nB ⊂ RnA,nB with nA ≤ nB contains all the row stochastic

matrices with at most a non-zero entry in each column.

In order to investigate the dissimilarity equivalence relation we consider matrices that

can index the indifference sets.

Definition 3 The set MI
d ⊂Md contains all matrices that neither exhibit empty classes

nor pairs of adjacent classes that are proportional.

Next lemma provides the characterization of dissimilarity equivalence sets when only

IEC, IPC and SC are assumed to hold.

Lemma 1 Let A, B ∈Md with A ∈MI
d and nA ≤ nB, the dissimilarity order 4 satisfies

IEC, IPC, SC if and only if

B ∼ A ⇔ B = A · X̂ for some matrix X̂ ∈ R̂nA,nB .

Proof. See appendix A.1.

The result can be generalized to hold for comparisons of matrices A, B ∈ Md, not

necessarily belonging to MI
d.

Corollary 1 Let A, B ∈ Md, the dissimilarity order 4 satisfies IEC, IPC, SC if and

only if B ∼ A, which is equivalent to having that there exists A′ ∈ MI
d where nA′ ≤ nB,

and nA′ ≤ nA such that B = A′ ·X̂ and A = A′ ·X̂′ where X̂ ∈ R̂nA′ ,nB and X̂′ ∈ R̂nA′ ,nA .

This derivation is obtained by exploiting the transitivity of the indifference relation

in Lemma 1 and the fact that by construction a matrix cannot belong to the equivalence

class indexed by two different matrices A′′,A′ ∈MI
d.

Making use of Axiom MC we introduce a new type of operation that allows to char-

acterize the dissimilarity pre-order in terms of matrix majorization. This result allows to

decompose the operations via row stochastic matrices in a series of splits and merges of

population masses involving only two classes at a time.

Theorem 1 For any A, B ∈Md with A·enA = B·enB , the dissimilarity order 4 satisfies

IEC, IPC, SC and MC if and only if

B 4 A ⇔ B = A ·X for some matrix X ∈ RnA,nB .
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Thus:

B 4 A ⇔ B 4R A.

Proof. See appendix A.2.

The theorem states that the operations underlying the axioms MC and SC, performed

without requiring any particular order of their sequence, allow to transform A into B

while reducing dissimilarity, and that these operations admit an equivalent representations

trough Dahl’s (1999) matrix majorization order. Hence, requiring group independent

proportional transfers across classes amounts to require that the dissimilarity order respects

the informativeness criterion in Blackwell (1953), which is taken as the motivating notion

behind the concept of decreasing dissimilarity.13

The dissimilarity order characterized by matrix majorization has very useful properties.

The indifference class contains all matrices that can always be obtained one from the other

through multiplication by a row stochastic matrix.

Remark 2 By exploiting Theorem 1, B ∼ A if and only if ∃X ∈ RnA,nB , X′ ∈ RnB ,nA
such that B = A · X and A = B · X′. This is the case only if A and B satisfy the

conclusions in Corollary 1.

The perfect similarity is achieved without posing any restriction on the distributional

heterogeneity of each single group, but rather by equalizing distributional heterogeneity

across groups. We can in fact obtain the matrix S from A by a sequence of splits, insertion

of empty classes, permutations and merges operations involving classes. Matrix C is

obtained from A by merging all classes and splitting them according to a sequence of λs.

Remark 3 Let A ∈ Md and consider C := (λ1A · enA , . . . , λnAA · enA), with λj ≥ 0 ∀j
and

∑
j λj = 1, then, C 4 A.

Univariate comparisons in the dissimilarity order are meaningless. Moreover, any two

different matrices that display perfect similarity among rows are ranked as indifferent by

the dissimilarity order.

Remark 4 If A, B ∈M1, then B 4 A if and only if A 4 B. This is because there always

exists a matrix X ∈ RnA,nB with X = 1
B·enB

(enAb1,1, . . . , enAb1,nB ) such that B = A ·X
and there always exists a matrix Y ∈ RnB ,nA with Y = 1

A·enA
(enBa1,1, . . . , enBA1,nA)

such that A = B ·Y.
13This equivalence provides strong support for interpreting segregation as a form of dissimilarity when

classes are non ordered. The multi-group segregation ordering in Frankel and Volij (2011) is indeed the
result of splitting and merging operations between permutable classes without making the transfer operation
sensitive to the name of the groups. This is of practical use to the policymaker that cannot target (or give
priority) to some particular groups over the others. Moreover, Theorem 1 is related to results on the
analysis of intrinsic attitudes toward information and risk (Grant et al. 1998) and provides insights on
the construction of bivariate dependence orderings for unordered categorical variables, as discussed in
Giovagnoli, Marzialetti and Wynn (2009).
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4.2 Extensions

The result in Theorem 1 applies to any pair of matrices with fixed number of rows. In gen-

eral, matrices in Md may well represent absolute frequencies distributions across classes.

Nevertheless, in many economic applications we are interested in matrices representing

conditional (relative) distributions of frequencies. It seems natural to argue that the dis-

similarity should be invariant to proportional replications of the overall population under

analysis, or even more, dissimilarity should be independent from the relative size of each

group. That is, one can always freely scale the population of one group while leaving the

others unchanged, such that the overall dissimilarity is not affected, provided that the

relative distribution across classes remains unchanged.14

In the dual setting the perspective is shifted on operations defined over groups rather

than classes. Dissimilarity should remain constant if the population of each class is pro-

portionally replicated by the same factor, or even more, it should be independent to the

relative size of each class. That is, the overall dissimilarity does not change if one scales the

population in each class, provided that the relative distribution of groups within classes

remains unchanged.15 The two different standardization concepts are resumed in the fol-

lowing Normalization axiom for groups (NG) and classes (NC ) axioms.

For c ∈ Rd
++, the operator diag(c) generates a d × d identity matrix whose elements

along the diagonal are replaced by the corresponding elements of c.

Axiom NG/NC (Normalization of Data) Let A ∈Md, c ∈ Rd
++ and d ∈ Rn

++. Let

C := diag(c), D := diag(d) then:

(NG) [diag(c)]−1 ·A ∼ A and (NC) A · [diag(d)]−1 ∼ A.

The axiom NG implies that the assessments of dissimilarity are neutral with respect to

the differences in the groups overall population size. The axiom NC implies an analogous

conclusion concerning the size of classes. By assuming normalization, it is possible to

compare sets of distributions with different demographic size. This enforces the idea that

dissimilarity is a relative concept boosting indifference with respect to structural changes

in the demographic composition of groups or classes that leave unchanged the overall

distribution of population across groups or across classes. The following corollary states

that when the dissimilarity comparison rests upon the direct axioms, the matrices that

differ in size can be made comparable through the axiom NG.

14This is the equivalent of the Composition Invariance axiom in Frankel and Volij (2011).
15This is the equivalent of the Group Division Property in Frankel and Volij (2011).
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Corollary 2 For any A, B ∈Md with µA = A · enA, µB = B · enB and µA,µB ∈ Rd
++,

the dissimilarity order 4 satisfies IEC, IPC, SC, MC, and NG if and only if

B 4 A ⇔ [diag(µB)]−1 ·B 4R [diag(µA)]−1 ·A.

Proof. See appendix A.3.

The dissimilarity comparisons can also be made independent on the groups labels,

while only the groups conditional distributions should matter. The IPG axiom points in

this direction by enlarging the indifferent class induced by Theorem 1 to all the groups

permutations of the distribution matrices under analysis.

Corollary 3 For any A, B ∈Md and a permutation matrix Πd ∈ Pd (different form the

identity matrix) such that B · enB = Πd ·A · enA, the dissimilarity order 4 satisfies IEC,

IPC, SC, MC, and IPG if and only if

B 4 A ⇔ ∃Πd : B 4R Πd ·A.

Proof. See appendix A.4.

By reversing the role of rows and columns in the distribution matrices, it is possible

to use the previous results to characterize the dissimilarity order based solely on dual

axioms, while maintaining the permutability of classes given by IPC. Not surprisingly, the

dual axioms altogether induce Dahl’s (1999) matrix majorization order for the transpose

of the distribution matrices. In this case, the operations of mixing of groups can be

interpreted as proportional movements of populations masses between groups occurring

within the same class. The information dispersion is reduced by making classes look more

similar with respect to their relative group composition.

Corollary 4 For any A, B ∈Md with nA = nB = n, let νA = At · en and νB = Bt · en,

the dissimilarity order 4 satisfies IEG, IPG, SG, MG, NC and IPC if and only if

B 4 A ⇔ ∃Πn ∈ Pn : [diag(νB)]−1 ·Bt 4R Πn · [diag(νA)]−1 ·At.

Proof. By applying Theorem 1 and Corollary 2 and 3 to matrices with nA = nB.

4.3 Robustness to lower dimensional comparisons

Hasani and Radjabalipour (2007) described the linear operator preserving matrix majoriza-

tion. We make use of their main result to show that the dissimilarity order is preserved

when some of the d groups in matrices A, B ∈Md are mixed together with fixed weights
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thus generating d′ < d groups. The result also suggests that the dominance among d′

groups does not guarantee the dominance for the larger set of d groups from whom they

are obtained.

Remark 5 If the dissimilarity order 4 satisfies IPC, IEC, SC, MC, NG, then any mixing

of groups (rows) preserves 4. Let X̂ ∈ R̂d′,d with d′ < d, if B 4 A, then X̂ ·B 4 X̂ ·A.

This remark can be verified immediately, by exploiting the example reported in the

introduction. The traditional analysis based on two groups comparisons (extensively ex-

ploited in empirical literature on segregation measurement, see for instance Flückiger and

Silber 1999) may well indicate B as less dissimilar than A for any pair of groups, al-

though this is not sufficient to guarantee that B is obtained by A through a sequence

of dissimilarity reducing operations. This result reinforces the idea that dissimilarity is a

global construct and partial comparisons may at most serve to determine the direction of

dissimilarity within the distributions involved in the comparisons.

The remark may alternatively be exploited to assess the causes of dissimilarity. Sup-

pose that one is interested in assessing the degree of dissimilarity between the distribution

of male and female workers (groups) across n occupations (that is, occupational segrega-

tion). Consider the case where the population can be split into d = 3 ethnic groups. If

a policymaker implements a reduction of dissimilarity in ethnic segregation on the labor

marker, while leaving unaffected the male/female participation rate by ethnic group (al-

though rates may differ between groups), which is also constant between occupations, one

can additionally forecast the effect of the policy in terms of reduction of the gender based

dissimilarity in occupational access.

5 Characterization of dissimilarity orders: non-permutable

classes

In this section we study how dissimilarity comparisons can be constructed in the ordinal

setting, that is when classes are meaningfully ordered and thus are not permutable. This

is the case for instance when classes identify educational or health achievements or even

contiguous income intervals.

Our results will allow to deal with comparisons between distribution matrices that

differ in the number of classes and also in their interpretation. For instance, one will be able

to compare the dissimilarity in the distribution of groups across health statuses between

two countries, even if the health scales differ across the two countries. Alternatively,

the policymaker guided by dissimilarity concerns may assess the priority of intervention

between competing policies for health or schooling by assessing whether the distributions of
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health across social groups are more or less dissimilar than the distributions of educational

achievements.

Within the ordered setting we will maintain the assumptions that the split and the

insertion/elimination of empty classes preserve dissimilarity, as stated in the SC and IEC

axioms, while obviously we will disregard the independence from permutation (IPC ) prop-

erty. The retained assumptions are associated to transformations of the distribution ma-

trices that preserve the ordinal information, given that a proportional rescaling of some

classes would not induce additional distributive information.

In this setting, one can construct cumulative distribution matrices and exploit the

underlying information. Moreover, the splitting of classes allows to represent each row i

of any cumulative distribution matrix in Md by a continuous piecewise linear cumulative

distribution function Fi. To see this, note that infinitely splitting a class is equivalent to

assume that each group i is uniformly distributed within that class.

More generally, any monotonic continuous function can be derived as the limit of a

sequence of step functions (see ch. 1 in Asplund and Bungart 1966). In our case the limit

construction involves simultaneously all distribution functions of the groups. Considering

the partition in n classes, by letting (xk−1;xk] denote the interval related to class k, and

Fi(xk) := −→a i,k/−→a i,n denote the value of the cdf of group i in xk, we can construct the set

of all cfds associated with matrix A by setting Fi(x) = Fi(xk) for all x ∈ [xk;xk+1) with

Fi(x) = 0 for x ≤ x0 and Fi(x) = 1 for x ≥ xn.
The sequence of splitting operations that leads to the desired result requires that for

each splitting involving class k in matrix A such that each group is split into two adjacent

classes k′ and k with proportions λ and (1−λ) respectively, it is identified a value xk′ that

partitions the associated interval into (xk−1;xk′ ] and (xk′ ;xk]. The value of xk′ should be

set such that xk′−xk−1

xk−xk−1
= λ =

−→a i,k′−−→a i,k−1
−→a i,k−−→a i,k−1

= Fi(xk′ )−Fi(xk−1)
Fi(xk)−Fi(xk−1) where the equivalences on the

right hand side hold by construction. In order to construct the sequence leading to the

uniform cdf s within each class it suffices to apply a λ = 0.5 split in each class, then relabel

all obtained 2n classes and reiterate the procedure.

In the next section we exploit this representation to introduce the dissimilarity test

that we characterize later on.

5.1 The rationale behind the dissimilarity comparison

Consider the case where A,B ∈ M3. Each distribution matrix generates a set of three

cdf s, denoted by F1, F2, F3 for A and F ′1, F
′
2, F

′
3 for B. The number of classes may vary

between A and B. These cdf s are represented in figure 2 with solid lines, respectively in

the left and right panel of the figure. The dashed lines represent the graph of the cdf s
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Figure 2: Cdf s F1, F2 and F3 and an illustration of the dissimilarity test for when classes
are non-permutable.

of the overall populations, denoted respectively F and F
′ and obtained by the arithmetic

mean of the rows of distribution matrices A or B. Thus for instance F = 1
3(F1 +F2 +F3).

The dissimilarity order with non-permutable classes entails the evaluation, based on

the Lorenz dominance criterion, of the dispersion of the cdf s F1, F2, F3 and F ′1, F
′
2, F

′
3

around their respective averages F and F
′, at any fixed share p ∈ (0, 1) of the overall

population.

To understand the mechanics of the dissimilarity comparison, lets consider two pop-

ulation percentiles, denoted by p1 and p2 in figure 2. At p1, we consider the values of

F1, F2, F3 at the quantile corresponding to F = p1 and of F ′1, F
′
2, F

′
3 at the quantile

corresponding to F
′ = p1. These values are identified with a marked dot in the figure.

The dispersion between the dots corresponding to p1 in configuration A is larger than the

dispersion of the dots associated to configuration B, evaluated for the respective values

corresponding to p1. Recalling that the average of the values of the cdf s in the dots is by

construction the same in both graphs, this conclusion can be reached by checking that the

dots in configuration B Lorenz dominate those of configuration A at p1.

A similar conclusion applies for analogous comparisons made at p2, where the reduction

in dispersion from the first to the second configuration is even more evident.

Extending the comparison to any p ∈ (0, 1), it is possible to check that the dispersion

between cdf s F ′1, F
′
2, and F ′3 evaluated at p is lower than the dispersion of F1, F2, and F3

at the same p.

Because the cumulative distribution functions are continuous and piecewise linear, the

dissimilarity test can be performed by looking only at a finite number of points, notably

those corresponding to cases where either there is a movement from a class to the adjacent

in one or both the distribution matrices A and B (as for p1), or where two or more cdf s
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cross for (at least) one of the matrices (as for B in p2). We show that the direct dissimilarity

preserving axioms together with the exchange property provide a full characterization of

the dissimilarity order.

5.2 The controversial role of the merge axiom in the ordinal setting

The Axiom MC may lead to problematic and counterintuitive results if it is maintained

in the ordinal setting. To see this, consider the following distribution matrix for groups

1 and 2 across classes, representing for instance four ordered categories of health status

(from bad to good).

A =

(
0.4 0.1 0.4 0.1

0.1 0.4 0.1 0.4

)
.

Group 1 is always disadvantaged compared to group 2, because the share of population

with health status equal or lower than j, with j = 1, . . . , 4, is always higher in groups 1 than

it is in groups 2, that is the distribution of group 2 first order stochastically dominates the

distribution of group 1. However, in class two these differences are somehow compensated.

In fact, in this class the proportion of individuals with lower or equal health status is equal

to 0.5 = 0.4 + 0.1 for both groups.

Suppose now that the central classes two and three are merged together and then

splitted proportionally to obtain again four classes, giving matrix A′. According to the

axioms MC and SC this operation leads to an unambiguous reduction in dissimilarity.

However, the operation has a main drawback: while it leaves unaffected the stochastic

dominance relation between groups, it eliminates any form of compensation taking place

in the classes two and three. This aspect becomes evident if we compare the matrices

obtained by cumulating the elements of A and A′, that is:

−→
A =

(
0.4 0.5 0.9 1

0.1 0.5 0.6 1

)
and

−→
A′ =

(
0.4 0.65 0.9 1

0.1 0.35 0.6 1

)
.

It then appears, by comparing the column associated to the second class, that the dis-

tance between the cumulated populations has increased in A′ with respect to A. Therefore,

it can hardly be argued that A′ shows less dissimilarity than A as implied by the MC and

SC axioms.

We propose alternatives to overcome the implications of the MC axiom by developing

our arguments as follows. We firstly limit the analysis to a subset of distribution matrices

with fixed number of classes, fixed average population distribution across these classes and

given ranking of the groups distributions. We define these matrices as ordinal comparable.

This class can be extended to all distribution matrices in Md by resorting on a set of
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transformations that only preserve ordinal information of the data, but which allow to

construct a more formal definition of the dissimilarity order presented in the previous

section. Secondly, we show a full characterization of the dissimilarity order that relies on

the transformations underlying the Exchange, rather than the Merge axiom.

5.3 Dissimilarity preserving “ordinal” information: definition

We say that the rank of groups is preserved across the classes of A,B ∈Md if −→a `,k ≥ −→a h,k
implies −→a `,k+1 ≥ −→a h,k+1 as well as

−→
b `,k ≥

−→
b h,k, which in turn implies

−→
b `,k+1 ≥

−→
b h,k+1

for any pair of groups h, ` and for any class k.16 This notion is incorporated in the following

definition of ordinal comparability of distribution matrices:

Definition 4 (Ordinal comparability) The matrices A, B ∈ Md are ordinal compa-

rable if and only if (i) nA = nB = n, (ii) etd ·A = etd ·B, (iii) A · en = B · en = λ · ed with

λ ∈ R++ and (iv) the rank of groups is preserved across classes.

Ordinal comparability narrows the set of comparison matrices, as well as the number

of admissible transformations. By using the operations of split and insertion/elimination

of empty classes underlying the axioms SC and IEC, for any pair of matrices A,B ∈
Md that may not be ordinal comparable, it is possible to construct pairs of distribution

matrices A∗,B∗ ∈ Md with n∗A = n∗B = n∗ that are ordinal comparable. The process

involves separate transformations for A and B that, eventually, lead to two minimal ordinal

comparable matrices A∗,B∗ with equal number and size of classes such that A·en∗ = B·en∗
and such that the rank of groups is preserved. This is the case if and only if the pair A∗, B∗

satisfies the four conditions in the definition below.

Definition 5 (Minimal ordinal comparability) The matrices A∗, B∗ ∈M, with n∗A =

n∗B = n∗ and classes indexed by k = 1, . . . , n∗, is derived from the pair A, B ∈ M, where

classes are indexed by j = 1, . . . , n if the following conditions are satisfied for any pair of

groups h, `:

(i) ∀j :
∑nj

k=nj−1
a∗k = aj and

∑n′j
k=n′j−1

b∗k = bj, where n0 = 1 and possibly n′j 6= nj;

(ii) if
(−→
a∗h,k−1 −

−→
a∗`,k−1

)
·
(−→
a∗h,k+1 −

−→
a∗`,k+1

)
< 0 then

−→
a∗h,k −

−→
a∗`,k = 0;

(iii) if
(−→
b∗h,k−1 −

−→
b∗ `,k−1

)
·
(−→
b∗h,k+1 −

−→
b∗ `,k+1

)
< 0 then

−→
b∗h,k −

−→
b∗ `,k = 0;

(iv) etd ·
−→
b∗k = etd ·

−→
a∗k, ∀k = 1, . . . , n∗.

16Two groups ` and h in configuration A may swap positions in the rank defined by groups cumulative
masses when moving from class k − 1 to k + 1, but this occurs if and only if −→a `,k = −→a h,k. A similar
arguments holds for configuration B.
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A mechanical but intuitive algorithm to transform the pair A,B into the pair of

associated minimal ordinal comparable matrices consists in defining the sequence of split

and insertion of empty classes that, for a given pair of groups, allows to satisfy conditions

(i) to (iii) above for that pair of groups, and then by reiterating the procedure for any

pairs of groups. Having done this, one can eventually split (and increase the number of)

classes of the resulting matrices consistently with what required in point (iv). An example

with three groups clarifies the type of transformations underlying Definition 5. Consider

the matrices A, B ∈M3 denoted by:

A =




0.1 0.9

0.4 0.6

0.5 0.5


 and B =




0.2 0.3 0.5

0.3 0 0.7

0 0.2 0.8


 .

Using split and insertion of empty classes operations one can obtain the following minimal

ordinal comparable matrices, where n∗ = 4:17

A∗ =




1
20.1 1

3
1
20.1 2

3
1
20.1 0.9

1
20.4 1

3
1
20.4 2

3
1
20.4 0.6

1
20.5 1

3
1
20.5 2

3
1
20.5 0.5


 and B∗ =




0.2 1
30.3 2

30.3 0.5

0.3 0 0 0.7

0 1
30.2 2

30.2 0.8


 .

As required, et3 ·A∗ = et3 ·B∗ = (0.5, 0.17, 0.33, 2).

The minimal ordinal comparable matrices A∗,B∗ have an equal number of classes n∗.

The sizes of each class k, measured as the sum of groups frequencies, coincide in A and

B. Hence, it is possible to compare every class’ entries in the two distribution matrices by

resorting on Lorenz dominance, thus implementing the dissimilarity comparison described

in section 5.1. Given A,B ∈Md, the sequential uniform majorization 4∗ (SUM hereafter)

defines a partial order on the set of comparison matricesMd: B 4∗ A if and only if there

exists A∗,B∗ with equal distribution of the overall population across classes such that the

vector
−→
b∗k Lorenz dominates the vector

−→
a∗k for all k = 1, . . . , n∗.

Definition 6 (The SUM order 4∗) For any A, B ∈Md such that A ·enA = B ·enB =

λed with λ ∈ R++ and there exists A∗,B∗ ∈ Md that are minimal ordinal comparable,

then:

B 4∗ A ⇔ −→
b∗tk 4U −→a∗tk, ∀k = 1, . . . , n∗.

17In the example, nB < nA. By splitting the first class of A in two new classes with equal overall size,
one obtains two matrices with three classes that accommodate requirement (iv) in Definition 5. However,
by moving from class two to three of B there is re-ranking of groups two and one. In order to avoid this,

we split class two in B according to the weight 1/3, such that
−→
b∗1,2 =

−→
b∗2,2 as required in point (iii). An

identical operation is performed to obtain A∗, thus accommodating requirement (iv). We leave to the
reader to verify that the conditions in Definition 5 applies to any of the remaining pairs of groups.
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The SUM order implements the dissimilarity criterion described in Section 5.1 by ex-

ploiting the sequential uniform majorization for cumulative distribution matrices.18 Con-

sider for instance figure 2, the SUM pre-order allows to meaningfully compare distributions

F1, F2 and F3 with distributions F ′1, F
′
2 and F ′2 because it only require to perform a se-

quence of Lorenz dominance comparisons at equal population percentiles for F and F
′

respectively. In our case these percentiles are denoted by pk = 1
de

t · −→b∗k = 1
de

t · −→a∗k.

5.4 Dissimilarity preserving “ordinal” information: characterization

The dissimilarity order with non-permutable classes rests on the SC and IEC axioms.

Accepting these two axioms leads to relevant consequences. In fact, if there exist sequences

of splits and insertions of empty classes that starting from A,B allow to obtain A∗,B∗,

then A∗ ∼ A and B∗ ∼ B. These sequences can always be found, so that if B 4 A

then equivalently B∗ 4 A∗. We propose a formal proof of this in the next theorems. One

direct implication of this is that the dissimilarity order allows to make comparisons where

only the ordinal information is retained. Any cardinality assessment related to classes is

lost by introducing the possibility of reshaping the number and size of the classes. If this

aspect is accepted, then what remains is to illustrate an ordinal property that allows to

rank distributions according to the SUM order.

The dual axioms, that define transformations of split and merge across groups, char-

acterize an ordering that coincides with a particular case of SUM. These operations char-

acterize the dissimilarity relation B 4 A in terms of matrix majorization. In fact, this is

the result in Corollary 4, considering that Πn can only be the identity matrix.

The associated matrix majorization test preserves the size of the classes, while changing

their composition. In this case dissimilarity is grounded upon operations that do not, in

general, preserve the size and the number of groups. However, by restricting the domain

of comparison matrices to A,B ∈ Md that are also ordinal comparable, then Corollary 4

boils down to obtaining that there exists a sequence of operations underlying the axioms

IPG, IEG, SG and MG that allows to obtain B from A if, and only if, Bt 4U At. This

is a particular case of matrix majorization, that implies SUM, but that it is not implied

by the latter.19

The next result provides a more convincing ground for dissimilarity comparisons for

18Given that
−→
b∗k and

−→
a∗k are obtained from minimal ordinal comparable matrices then the sum of their

elements for each k is the same for both vectors. Therefore uniform majorization for each k is equivalent
to Lorenz dominance.

19In fact, the SUM weakens the uniform majorization criterion in Corollary 4. According to SUM

B 4∗ A if and only if ∀k ∃Yk ∈ Dd such that
−→
b∗tk =

−→
a∗tk ·Yk. A special case is when Yk = Y, ∀k. This

gives in short notation
−→
B∗t =

−→
A∗t ·Y. Recall that

−→
A∗t = D · (A∗)t where D denotes a lower triangular

matrix. It follows that the dominance condition can be rewritten as D · (B∗)t = D · (A∗)t · Y, that is
(B∗)t = D−1·D · (A∗)t ·Y = (A∗)t ·Y leading to (B∗)t 4U (A∗)t. Thus, uniform majorization implies
SUM, the reverse implication is, in general, not true.
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ordered classes that can rank larger sets of dissimilarity matrices.

With the following theorem, we establish that B 4∗ A if and only if there exists at

least one sequence of exchanges between pairs of groups within A∗ that allows to obtain

B∗. The operations underlying the Exchange axiom are independent, and can be applied

in any class of distribution matrices. However, the exchanges can only be performed on

(minimal) ordinal comparable matrices. We show that for matrices A,B ∈ Md that

are at least rank comparable, transformations involving insertion/elimination of empty

classes, split of adjacent classes and groups permutation allows to construct the respective

minimal ordinal comparable matrices A∗,B∗, such that for any group `, h it holds that
−→
a∗`,k ≥ (≤)

−→
a∗h,k if and only if

−→
b∗ `,k ≥ (≤)

−→
b∗h,k, for any class k. One special case of rank

comparability occurs when groups can be ordered according to stochastic dominance.20

Theorem 2 For any A, B ∈Md that are rank comparable with A · enA= B · enB = λed,

λ ∈ R++, the dissimilarity order 4 satisfies IEC, SC, IPG, and E if and only if

B 4 A ⇔ B 4∗ A.

Proof. See appendix A.5.

Without additional structure, Theorem 2 does not allow to compare pairs of matri-

ces where groups are not ordered in the same way for each class. We propose a novel

axiom, at least to our knowledge, called Interchange of groups. It states that the in-

terchange/permutation of two groups distributions for all classes k > j preserves overall

dissimilarity, provided that in class j the cumulative frequencies of the two groups are

identical.

Axiom I (Interchange of Groups) For any A, B ∈Md with nA = nB = n, if ∃Πh,` ∈
Pd permuting only group h and `, such that B = (a1, ...,aj ,Πh,` · aj+1, ...,Πh,` · anA) when-

ever −→a h,j = −→a `,j, then B ∼ A.

The axiom enlarges the class of comparable matrices by eliminating all the concerns

related to stochastic dominance relations between groups distributions. This is an appeal-

ing requirement, since stochastic dominance at order higher than the first entails a cardinal

comparison, here excluded. Axiom I implicitly assumes that dissimilarity evaluations are

separable across sets of adjacent classes where one group dominates another.

The result of Theorem 2 is then generalized as follows.

20For A ∈ Md, group h stochastically dominates group `, ∀h 6= `, if and only if
−→
a∗h k ≤

−→
a∗` k, for

all k = 1, ..., nA. In this special case, the minimal ordinal comparable matrices are monotonic, up to a
permutation of the groups.
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Theorem 3 For any A, B ∈ Md such that A · enA= B · enB = λed, λ ∈ R++, the

dissimilarity order 4 satisfies IEC, SC, IPG, I and E if and only if

B 4 A ⇔ B 4∗ A.

Proof. See appendix A.6.

Finally, the result in Theorem 3 can be extended to all distribution matrices by exploit-

ing the normalization axiom. The dissimilarity order is therefore defined as a comparison

of relative distributions of groups across ordered classes.

Corollary 5 For any A, B ∈ Md such that µA = A · en, µB = B · en, the dissimilarity

order 4 satisfies IEC, SC, NG, IPG, I and E if and only if

B 4 A ⇔ [diag(µB)]−1 ·B 4∗ [diag(µA)]−1 ·A.

Proof. See appendix A.7.

6 Equivalent tests for the dissimilarity orders

The characterization of the dissimilarity order strongly relies on the matrix majorization

order or, alternatively, on the sequential uniform majorization order when classes are

ordered. However, given two distribution matrices, no algorithm is available to check the

majorization relations (Marshall et al. 2011). In this section we determine equivalent tests

for the matrix majorization pre-orders underlying the dissimilarity comparisons in the

setting where classes are ordered or, alternatively, non ordered. We use test to indicate

a pre-order based on the inclusion of Zonotopes or Monotone Paths, provided that this

inclusion can be verified empirically. For instance, dominance in the sense of Lorenz curves

is a test for uniform majorization, the partial ordering underlying inequality comparisons.

Nevertheless, our analytical setting is more general than the Lorenz ordering.

6.1 Testing the dissimilarity order with permutable classes

We make use of the matrix majorization order by Dahl (1999) to characterize the Zonotopes

inclusion order. We exploit this result to construct a test for the dissimilarity criterion

when classes are permutable.

6.1.1 A general test for matrix majorization

The following theorem states that the order based on inclusion of the Zonotopes of the

distribution matrices under comparison is equivalent to matrix majorization for those
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matrices with fixed size of the populations. Our result extends to the multi-group case the

result in Dahl (1999), only valid for d = 2.

Theorem 4 Let A, B ∈Md such that A · enA = B · enB :

B 4R A ⇔ Z(B) ⊆ Z(A).

Proof. See appendix A.8.

Remark 6 Note that the condition A · enA = B · enB is implied by B 4R A. The

condition posits that ZD(A) = ZD(B), which is necessary to prove that Z(B) ⊆ Z(A)

implies B 4R A.

The identification of Zonotopes inclusion with matrix majorization allows to depict

properties of the majorization ordering directly from the analysis of the Zonotopes. The

projection of the Zonotope on a lower dimensional space allows to reduce a d-variate prob-

lem (where d ≥ 3) to a bivariate comparison that can be analyzed by mean of common

instruments such as the Lorenz curve or the segregation curve. Zonotopes inclusion in the

d-variate space is sufficient for inclusion of the Zonotope projections (which are indeed

Zonotopes, see McMullen 1971) in a lower dimensional space, and therefore to matrix

majorization of the projected data matrices. Interesting two groups comparisons include

one-against-one or one-against-other groups projections. Nevertheless, the Zonotopes in-

clusion is not necessary for the inclusions of the Zonotopes’ projections. The following

example with A,B ∈M3 confirms this point.

A Zonotope projection is obtained by premultiplying the initial distribution matrix by

a row stochastic matrix P ∈ R2,3 such that P·B 4R P·A if and only if P·B = P·A·X with

X ∈ RnA,nB . Excluding the cases where a group is projected against himself, any relevant

matrix in the projection class of 2 × 3 matrices can be written as a convex combination

of six zero-one row stochastic matrices, called P1, . . . ,P6. Suppose that it is possible to

verify Pi · B 4R Pi · A for all is trough the inclusion of all bivariate Zonotopes. As a

result, there exist a set Xi ∈ RnA,nB of majorization matrices, for i = 1, . . . , 6, such that

Pi · B = Pi ·A ·Xi. By taking a convex combination of both sides of the relation with

αi ∈ [0, 1] ∀i, we can check wether any projection of the Zonotope fulfills the inclusion by

writing: ∑

i

αiPi ·B =
∑

i

αiPi ·A ·Xi.

Unless matrix A has some very particular properties (for instance, it is an identity

matrix augmented by some empty columns) or there exist an Xi = X ∀i that gives matrix

majorization, it is not possible to infer Zonotopes inclusion in the d-variate space by
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looking at bivariate comparisons for a finite set of mixing weights. Multivariate Zonotopes

inclusion is therefore a majorization test extremely robust to two groups comparisons

when, for instance, aggregation weights differs across comparison matrices or are unknown

to the researcher.21

6.1.2 The dissimilarity test

Based on Theorem 4, it is possible to construct a test for the dissimilarity partial orders

presented in Theorem 1 and in Corollary 4. In both cases, we maintain the IPC axiom,

given that comparisons are made in a setting where classes are not ordered. The following

corollary resumes the equivalences in two distinct propositions, whose proofs directly follow

as an application of Theorem 4.

Corollary 6 Let A, B ∈Md, the dissimilarity order 4 is such that:

(i) 4 satisfies IPC, IEC, SC, MC, NG, IPG if and only if:

B 4 A ⇔ ∃Πd ∈ Pd : Z
(
[diag(µB)]−1 ·B

)
⊆ Z

(
Πd · [diag(µA)]−1 ·A

)
.

(ii) For nA = nB = n, 4 satisfies IPC, IPG, IEG, SG, MG, NC if and only if:

B 4 A ⇔ ∃Πn ∈ Pn : Z
(
[diag(νB)]−1 ·Bt

)
⊆ Z

(
Πn · [diag(νA)]−1 ·At

)
.

Proof. The equivalence between direct (respectively, dual) axioms and matrix majoriza-

tion is given by Corollary 3 (respectively, Corollary 4), while the result is a direct applica-

tion of Theorem 4.

If we do not consider axiom IPG in Corollary 6 (i) the result holds for Πd coinciding

with the identity matrix.22 Given A,B ∈Md with groups of equal size such that Z(B) ⊆
Z(A), then B can be obtained from A by a sequence of splits, merges, insertions of empty

classes and permutations of classes. If the distribution matrices A′,B′ ∈ Md exhibit

groups of different size, taking for granted NG is equivalent to consider the associated

normalized matrices A,B whose rows sum up to one. We develop the next argument

within this setting.

To construct a parallel with the arguments developed in section 5, note that the

condition Z(B) ⊆ Z(A) is equivalent to the inclusion of every section of the Zonotope of

B into the respective section of the Zonotope of A. This result holds, for instance, when

sections are obtained from the hyperplane perpendicular to the perfect similarity Zonotope.
21Zonotopes inclusion is also a robust test with respect to the comparison of distributions obtained under

a different grouping criterion. This is a direct implication of Remark 5 and Theorem 4.
22A similar argument holds for the result in Corollary 6 (ii) if we drop IPC.
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This hyperplane’s slopes coincide with a set of weights equal to 1/d and identifies sections

of the Zonotopes where the overall population proportion is held constant and equal to

p ∈ [0, 1].

The test Z(B) ⊆ Z(A) is therefore equivalent to check that for every proportion

p of the overall population, the corresponding groups’ populations proportions are less

dispersed in configuration B than they are in A. In the permutable setting, dispersion is

measured by the inclusion of the convex hull obtained by all possible splits and merges

of the classes, corresponding to all the configurations of groups’ shares that sum up to

the same proportion p of the overall population. This convex hull is the section of the

Zonotope delimited by the hyperplane at level p.

6.2 Testing the dissimilarity order with non-permutable classes

6.2.1 The dual Zonotopes inclusion test

The dissimilarity pre-order for non-permutable classes can be tested by Zonotopes inclu-

sion, if it is characterized by the dual axioms. In fact, if B 4 A satisfies only the dual

axioms, along with the requirement that the size of the groups is fixed among compar-

ison matrices, then equivalently should hold that Bt 4U At. This dominance relation

can also be expressed in terms of the following row stochastic majorization condition

(B, ed)t 4R (A, ed)t. This is the case only if the class of row stochastic matrices in-

volved in the operation is restricted to those that are also doubly stochastic and belong

to Dd, as required by the uniform majorization condition. By Corollary 6 part (ii), it

is possible to determine whether such doubly stochastic matrix exists by checking that

Z
(
(B, ed)t

)
⊆ Z

(
(A, ed)t

)
.

However, in many circumstances d < n, and the test is very likely to be rejected.

This happens because one has to check the inclusion of Zonotopes, that in this case are

d-dimensional bodies, in the n-dimensional space.

6.2.2 The test for dissimilarity based on SUM partial order

Classical results in majorization theory (Hardy et al. 1934, Marshall et al. 2011) allow to

test the dissimilarity order characterized in Theorem 3 making use of sequential Lorenz

dominance of the cumulative groups shares across the classes of the minimal ordinal com-

parable matrices.

For A∗, B∗ ∈ Md, let µ(k) = etd ·
−→
a∗k = etd ·

−→
b∗k denote the class k sum of cumu-

lated groups’ populations, for all columns k = 1, . . . , n∗. The SUM entails a sequence of

univariate dissimilarity comparisons of the actual distribution of the cumulative groups

frequencies (normalized by µ(k)) and the uniform distribution (with all elements equal to

1/d) of groups weights, reflecting the case in which groups are similarly distributed and
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their cumulative shares coincide. To avoid cumbersome notation, we assume that groups

size is fixed and equal to one for all groups and across distribution matrices.23

Lemma 2 For any A, B ∈Md such that A · enA = B · enB = ed,

B 4∗ A ⇔
Z

(( −→
b∗k
µ(k) ,

ed
d

)t)
⊆ Z

(( −→
a∗k
µ(k) ,

ed
d

)t)
,

∀k = 1, . . . , n∗.

Proof. See appendix A.9.

As shown in the proof, for n∗ sufficiently large, the Lemma 2 may require to perform

a long sequence of Lorenz dominance tests. Alternatively, we show that the dissimilarity

order can be tested by checking the Path Polytopes inclusion order, which does not rely

on the computation of the partitions underlying A∗ (and B∗).

This can be seen in an example involving only two groups. The distribution functions

of these two groups in configuration (F1, F2) are represented by the continuous lines in

figure 3, panel (a). These two distributions can be compared with the pair of distributions

(F ′1, F
′
2) represented with dashed lines in the same figure. To verify that configuration

(F ′1, F
′
2) is less dissimilar than (F1, F2), one has to derive the associated minimal ordinal

comparable distributions and test the SUM order. These comparisons, however, can be

directly assessed by looking at the inclusion of the Monotone Path of configuration (F ′1, F
′
2)

into the Path Polytope associated to (F1, F2). In panel (b) of figure 3 the Monotone Path

is represented by the dashed line, while the Path Polytope coincides with the area between

the two continuous lines. The verification of this inclusion is necessary and sufficient for

the SUM criterion to hold. In fact, the (red) dotted parallel lines in the figure represent the

population shares where SUM has to be tested. In this example, Lorenz dominance (and

equivalently also uniform majorization) consists in verifying that the point on the dotted

Monotone Path corresponding to a given population share is closer to the diagonal than it

is the associated point on the continuous Path Polytope. Inclusion is therefore equivalent

to test Lorenz dominance for all overall populations shares, and therefore also for those

required for the SUM test. As shown in the proof of next theorem, when dominance is

verified for the n∗ population shares underlying the SUM test this also implies dominance

for all populations shares. It follows also that the Path Polytope associated to (F ′1, F
′
2) is

included in the one of (F1, F2) as it is the case in the figure.

Theorem 5 For any A, B ∈M such that A · enA = B · enB = ed,

B 4∗ A ⇔ Z∗ (B) ⊆ Z∗ (A) .
23This restriction can be easily relaxed by introducing the NC Axiom, thus reflecting the result of

Corollary 5.
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Figure 3: Cdf s, Monotone Paths and the class division for fixed population masses.

Proof. See appendix A.10.

Theorem 5 can be used to derive an alternative, but equivalent, representation of the

comparison underlying figure 2. The information embedded in the cdf s F1, F2, F3 and

F ′1, F
′
2, F

′
3 is equivalently represented by their respective Monotone Paths in the three

dimensional unitary hypercube. The hypothesis that the groups are uniformly distributed

within classes plays no role in determining the shape of the Monotone Path, which is indeed

generated under the assumption that any split of the classes and addition/elimination of

empty classes preserve the degree of dissimilarity between cdf s.

The average population distributions F and F
′ are now measured by the value of

the hyperplane orthogonal to the hypercube diagonal. Each hyperplane corresponds to

a population percentile, held constant on the hyperplane surface. For one given popula-

tion percentile there is a unique hyperplane that intersects the (monotonically increasing)

Monotone Paths associated to the cdf s F1, F2, F3 and the cdf s F ′1, F
′
2, F

′
3 only once,

thus identifying a pair of points on the same hyperplane.

The dissimilarity order is verified if and only if, for any population percentile p, the

point associated to the Monotone Path of cdf s F ′1, F
′
2, F

′
3 on the hyperplane of measure

p, lies in the Kolm triangle constructed from the point associated to the Monotone Path

of cdf s F1, F2, F3 on the same hyperplane. This is an equivalent characterization of the

Lorenz order in the case of three units.24

By construction, the boundaries of the Kolm triangle associated to any population

percentile p defines the contour of the Path Polytope, when intersected with the hyperplane
24In fact, for the case d = 3, the Lorenz dominance in class k can be equivalently checked by a test of

inclusion of the vector
−→
b∗k into the hexagon generated by all the permutation of

−→
a∗k, which lies in the

simplex with vertices (µ(k), 0, 0), (0, µ(k), 0) and (0, 0, µ(k)), as proposed by Kolm (1969). By considering
all k = 1, ..., n∗, one obtains a sequence of hexagons (one for each value µ(k)), which corresponds to the
”contour curves” of the Path Polytope of A, Z∗(A), and calculated with respect to the class cumulative
population, thus moving along the diagonal.
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associated to the same percentile.25 Therefore, the sequential inequality comparison at any

population percentile can be equivalently represented by the inclusion Z∗ (B) ⊆ Z∗ (A).

7 Related orders

7.1 Less dissimilar vs less spread out

Consider two n-variate vectors of data a,b ∈ M1 with a · en = b · en = c > 0. These

vectors may well represent any type of distribution across n classes (for instance income

distributed across n individuals). The univariate inequality order ranks vector b better

that a if and only if the elements of b are “less spread out” than the elements of a.

The notion of progressive (Pigou-Dalton) transfers among vectors classes is a well-

known equity criterion invoked in univariate comparisons. It posits that, for aj > ak,

inequality is reduced by operations involving a reduction of aj by a quantity ε > 0 and an

equal increase of ak by the same quantity, therefore preserving the overall amount c.

In the univariate settings, Marshall and Olkin (1979) showed that any Pigou-Dalton

transfer occurring between two classes can be formalized through a matrix (i.e. linear)

operation involving a T-transform T(λ, k, j). The vector b has been obtained by a

through a Pigou-Dalton transfer between class j and k if and only if b = a · T(λ, k, j)

and T(λ, k, j) := λIn + (1 − λ)Πj,k, where λ ∈ [0, 1] and Πj,k ∈ Pn is a permutation

matrix of columns j and k. If this is the case, the degree of inequality in b is lower than

the degree of inequality in a.

In the univariate case, it is possible to represent any sequence of T-transforms trans-

forming a into b by the order b 4U a (see ch.2, Lemma B.1 in Marshall et al. 2011).

Unfortunately, a similar argument does not hold in the d-variate case (Kolm 1977).

We document the relation between dissimilarity and inequality at the multi-group

level by showing that the elementary operations involved by Pigou-Dalton transfers, that

characterize the inequality order, can be decomposed in a very particular sequence of split

and merge operations.

In the dissimilarity framework presented here, a T-transform involves a proportional

movement of population masses from two classes, which amounts to repeating twice a

sequence of splits and merges. We equivalently represent a sequence of split and merge

by the matrix S(λ, i, j) ∈ RnA,nB . Given a matrix A ∈ Md with n columns, S(λ, k, j) is

a row stochastic matrix that splits column k of A and merges a share (1 − λ) of k with
25For instance, in figure 3(b) the hyperplane in two dimension is represented by dotted lines perpendicular

to the diagonal. These lines identifies only two points on the boundary of the Path Polytope: one associated
to the Monotone Path and the other with its permutation. The Kolm triangle in this case coincides with
the segment of the dotted line that lies within the Path Polytope. All points in this segments are clearly
closer to the diagonal (represented similarity) than the two extremes.
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column j.26

Let assume without loss of generality that λ ∈ [0, 0.5], it follows that any T-transform

can be equivalently obtained by an ordered sequence of split and merge transformations

concerning the same pair of classes:

T(λ, k, j) := S(λ′, k, j) · S(λ′′, j, k),

where the splitting parameters must satisfy λ′′ = 1− λ and λ′ = 1−2λ
1−λ .

The next corollary shows how some interesting assumptions on (d + 1)-variate distri-

butions allow to restrict the set of admissible transformations via row stochastic matrices

and to characterize the relation with doubly stochastic matrices more in depth.

Corollary 7 Let A, B ∈Md and let 4 satisfy axioms IEC, IPC, SC and MC. Consider:

A′ =

(
1
nA

enA
A

)
4 B′ =

(
1
nB

enB
B

)
.

Then B = A ·X with X ∈ RnA,nB and etnA ·X =nA
nB

etnB . Moreover, if nA = nB = n then

X ∈ Dn.

Proof. Note that each entry in the first row of A′ is a constant equal to 1/nA. It can be

transformed into the corresponding element in B′, 1/nB, only by multiplying each single

entry by nA/nB. The result is a consequence of Theorem 1.

For d = 1 and nA = nB = n, the doubly stochastic matrix X ∈ Dn can be equivalently

decomposed in a finite sequence of T-transforms, and therefore in a sequence of merge and

split operations of classes. Hence, one can use A′, B′ to study inequality comparisons.

Univariate equality is therefore a sufficient, but not necessary, condition to increase

similarity. In fact similarity implies equalization of elements within each column of a distri-

bution matrix and is achieved only by equalizing entries also between columns. Therefore,

the dissimilarity order is constructed on more complex set of independent operations than

the ones characterizing the dissimilarity comparison entailed by the univariate inequal-

ity order. What turns out from the Corollary 7 is that inequality comparisons can be

interpreted as spacial cases of dissimilarity comparisons.

26Exploiting Theorem 1, the matrix can be written as:

S(λ, k, j) := [λ (In,0n) + (1− λ) (In,0n) Πn+1,k] ·
(

In
ij,·

)
,

where λ ∈ [0, 1] and Πn+1,k ∈ Pn is a permutation matrix of columns n+ 1 and k while ij,· corresponds to
row j of the identity matrix.
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Remark 7 Let A′ and B′ in Corollary 7 be such that A, B ∈ M1 with nA = nB = n.

This case correspond to vector majorization extensively studied in economic inequality,

where for instance M1 may represent the set of allocation of shares of average income

across a population of n individuals, each weighted 1
n . As already shown by Koshevoy

(1995), the Zonotope Z(A′) ∈ [0, 1] × [0, 1] corresponds to the area between the Lorenz

Curve L(p) and its dual L(p) = 1−L(1−p), where p is a given percentile of the population.

Making use of Theorem 4, it can be shown that the well known result in Lemma 2.B.1 by

Hardy et al. (1934) is nested in our framework, that is: B′ 4 A′ if and only if B = A ·X
with X ∈ Dn.

On the contrary, when d ≥ 2 any sequence of T-transforms induces the multivariate

order in Corollary 7, while the converse is not true. To see this, note that B′ is matrix

majorized by A′ if and only if it is obtained by any possible sequence of merge and split

operations.

Nevertheless, it turns out that the dissimilarity comparisons for matrices A′ and B′ in

Corollary 7 based on uniform majorization is equivalent to the multivariate majorization

order based on Lorenz Zonotopes LZ(.) ∈ Rd+1
+ (the d-variate generalization of the single

attribute Lorenz Curves) studied by Koshevoy (1995, 1997) and Koshevoy and Mosler

(1996).

Remark 8 The first row of A′ in Corollary 7 defines a distribution over classes, then

LZ(A) ≡ Z(A′). It follows from Theorem 4 that the ordering of matrices in Md with

fixed n based upon LZ is equivalent to order such matrices according to the uniform

majorization criterion. In fact, the within and between rows type of equalization implied

by the Lorenz Zonoids is a particular case of our dissimilarity order. Hence, the Lorenz

Zonotope inclusion order implies the dissimilarity order for permutable classes.

7.2 Dissimilarity, segregation and discrimination

This paper organizes into a common analytical framework a set of sparse results that have

been proposed in the segregation and discrimination literature. We are able to define and

characterize a generalization of the segregation curve and the discrimination curve.

The Zonotopes corresponds to the multidimensional generalization of the segregation

curve in Hutchens (1991). For distribution matrices A,B ∈ M2, the lower boundary of

Z(A) and Z(B) are the Segregation Curve of group one versus group two, as constructed

in the introductory example. Hence, the upper boundary of the Zonotope is the dual

representation the segregation curve. The curve has an appealing interpretation: it plots

vectors according to increasing degree of concentration of one group with respect to the

other across classes. It follows that the literature on two groups segregation orderings
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and measures, which is based upon segregation curves comparisons, entails a sequence of

transformation that prove to be dissimilarity-reducing.

For A,B ∈ M2, let Z∗(B) ⊆ Z∗(A). Consider the situation in which the monotone

path MP ∗(B) always lie under the Similarity Path Polytope, and that nA = nB such that

row two of A coincide with row two of B (at2 = bt2). In this case, the order based on Path

Polytopes inclusion coincide with the dominance relation induced by the discrimination

curves, studied in Butler and McDonald (1987), Jenkins (1994) and recently in Le Breton

et al. (2012). In fact, the lower boundary of Z∗(.) coincides with the discrimination

curve, while the upper boundary coincides with the dual discrimination curve, obtained

by permuting the name of the distributions under analysis.

We have shown that the discrimination curve entails a comparison according to the

degree of overlapping between distribution functions. We also show that the ordinal infor-

mation behind the discrimination rests on the sequence of transformations implied by the

exchange and interchange axiom.

7.3 Dissimilarity and distance measures in the ordinal setting

We conclude this section by investigating a two groups dissimilarity measure inspired by

the criterion illustrated in section 5 for the ordinal setting.

Note that, in general, any distribution matrix in Md can be equivalently represented

by d cumulative distribution functions defined on a outcomes domain X and associated

to the d groups. This can be done, as argued in section 5, by assuming that population

masses are uniformly distributed within classes.

Given two sets of distribution functions F1, F2, . . . and F ′1, F
′
2, . . . with average distri-

butions F and F ′ (determined respectively by F (x) = 1
2F1(x) + 1

2F2(x) in the case of only

two distributions), the dissimilarity criterion presented in section 5 entails a robust compar-

ison of the degree of inequality (making use of Lorenz dominance) between the two sets of

groups population shares at any fixed overall population share p, but evaluated at quantiles

F
−1(p) and F ′−1(p) respectively. When only two distributions are compared, the degree of

inequality at p is measured by the distance function ∆1,2(p) =
∣∣∣F1(F−1(p))− F2(F−1(p))

∣∣∣.
An index of dissimilarity consistent with the dissimilarity criterion can be constructed

by taking the average of ∆1,2(p) across all population shares p ∈ [0, 1]. The index

D∗(F1, F2) can be formalized as follows:

D∗(F1, F2) =
∫ 1

0

∣∣∣F1(F−1(p))− F2(F−1(p))
∣∣∣ dp.
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By changing the variable of integration, we can derive an alternative formalization:

D∗(F1, F2) =
∫

X
|F1(x)− F2(x)| dF (x).

The functional form of this new index of ordinal dissimilarity is closely related to the

Manhattan distance index D(F1, F2) between two distribution functions (e.g. Bertino et al.

1987) and is often used as a measure of discrimination in the two groups case:

D(F1, F2) :=
∫

X
|F1(x)− F2(x)| dx.

There are, however, sharp differences between the two measuresD∗(F1, F2) andD(F1, F2)

in the notion of dissimilarity/discrimination they rely on.

Remark 9 The index D∗(F1, F2) is invariant to monotone transformations of the variable

defined on the domain X .

This makes the index suitable for working in the general ordinal setting, whileD(F1, F2)

embodies both ordinal and cardinal concerns.

Remark 10 The index D∗(F1, F2) is proportional to the area of the Path Polytope.

To see this, let p ∈ [0, 1] denote population fractions and F−1
i (p) the associated quan-

tile, for group i = 1, 2. Using a similar notation as in Le Breton et al. (2012) (although we

accept that F2 may not first order stochastically dominates F1 as assumed there), the two

Monotone Paths defining the Path Polytope boundaries can be represented by the func-

tional forms φ(p) := F2(F−1
1 (p)) and ψ(p) := F1(F−1

2 (p)). The area Aφ and Aψ between

the diagonal representing perfect similarity and the two Monotone Paths represented by

φ(.) and ψ(.) are:

Aφ =
∫ 1

0
|p− φ(p)| dp and Aψ =

∫ 1

0
|p− ψ(p)| dp.

By construction the two Monotone Paths are symmetric w.r.t. the diagonal of perfect

similarity, and therefore φ ◦ ψ(p) = p = ψ ◦ φ(p) at any p. It follows that Aφ = Aψ.27

There are two possibilities to perform a change in variables transformation: either by
27To see this, denote by ψ−1(t) := inf{p : ψ(p) ≥ t} the left continuous inverse of ψ(p). The function

ψ−1(t) has the same properties of a left continuous quantile function. By changing the variable of integration
from p to t, it follows that the area Aψ coincides with the Lebesgue integral of the function ψ−1(t) on a
bounded support [0, 1]. Thus:

Aψ =

∫ 1

0

|ψ−1(t)− t|dt =

∫ 1

0

|φ(t)− t|dt = Aφ

where the second equality comes from the symmetry of ψ and φ, giving φ(t) = ψ−1(t).
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setting p = F1(x) or by choosing p = F2(x). This gives the next two alternative definitions

of the areas:

Aφ =
∫

X
|F1(x)− F2(x)| dF1(x) and Aψ =

∫

X
|F2(x)− F1(x)| dF2(x).

The distance measure is equal to half of the Path Polytope area (equal to Aφ + Aψ). In

fact:
1
2

(Aφ + Aψ) =
∫

X
|F1(x)− F2(x)| d1

2
(F1(x) + F2(x)) = D∗(F1, F2).

It follows that given A,B ∈ M2, the condition Z∗(B) ⊆ Z∗(A) is sufficient (but not

necessary) for having D∗1(FB1 , F
B
2 ) ≤ D∗1(FA1 , F

A
2 ).

The index D∗(F1, F2) embodies concerns on the degree of distance and overlapping

between the distributions F1 and F2.

Remark 11 The index D∗(F1, F2) is maximal when there is no overlapping and, in this

case, independent on the distance between distributions.

To see this, note that when two distribution functions F1 and F2 do not overlap the

associated Path Polytope reaches its maximal extension and coincides with the unitary

square. Given that D∗(F1, F2) measures this area, it follows that the index is maximal

when there is no overlapping between the two distributions. The index is, however, not

affected by the distance between the two non-overlapping distributions.

We leave the characterization of the index D∗(F1, F2), as well as its multi-group ex-

tensions, for future research.28

8 Conclusions

We study multivariate pre-orders based upon the concept of dissimilarity. Dissimilarity is

conceptualized as a form of exclusion: the distributions of groups along ordered or non

ordered classes are dissimilar whenever some groups are prevented (i.e. excluded) from

enjoying some realizations (represented by the classes of the distribution matrix), while

other groups are not.

This interpretation opens the dissimilarity comparisons to a variety of applications

which concern the measurement and comparison of changes in the patterns of exclusion
28We propose only a possible generalization of the index, called D∗G,ω(F1, F2). Let G,ω : [0, 1] → [0, 1]

be two strictly increasing and surjective (onto) functions, the general version of the dissimilarity index is:

D∗G,ω(F1, F2) = G−1

[∫

X
G (|F1(x)− F2(x)|) dω

(
F (x)

)]
,

where G is a transformation of the distance and ω can be interpreted as a distortion functions on overall
population weights.
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of social groups along a meaningful partition of a domain of realizations. These real-

izations may either represent outcomes or, alternatively, a partition of a space in which

socioeconomic interactions take palace. The two frameworks motivates the whole paper,

that deals with the characterization of the dissimilarity both in the ordered and in the

permutable classes context, and provides an equivalent representation of the dissimilarity

ranking though geometric bodies inclusion. The advantage of these representations lies in

their empirical testability.

Future extensions of our findings go in three directions. Firstly, we have left uncovered

the potential relation between the concept of dissimilarity and the corresponding welfare

order. Dahl (1999) proposes a class of evaluation functions whose order is coherent with the

dissimilarity in the case of permutable classes, which can be interpreted as loss measures in

the information settings. One can build on this framework to derive economic implications

of the dissimilarity order.

Secondly, a promising direction of our research points to the definition of a family of

complete orders that are implied by the dissimilarity order. A first example is given by the

family of Gini type indices, based on the Zonotope or Path Polytope volume comparison.

This objective points at extending the results in Frankel and Volij (2011) in particular to

what concerns the cases related to ordered classes.
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A Proofs

A.1 Proof of Lemma 1

The proof of the lemma consists in showing that a row stochastic matrix in R̂nA,nB can
be constructed through a product series of row stochastic matrices identifying the opera-
tions involved by the axioms. We first define two sub classes of row stochastic matrices
corresponding to the operations invoked by IEC and SC, namely RIECnA,nB

and RSCn respec-
tively. Then, we show that a sequence of such operations always generates a matrix in a
larger set RIEC,SCnA,nB ⊃ (RIECnA,nB

∪RSCn ). Matrices in RIEC,SCnA,nB are defined by blocks Dh for
h = 1, 2, ...,H of matrices of dimensions (nA × nh) such that each matrix Dh is made of
all zeros except for row h whose elements dhi are such that dhi ≥ 0 and

∑nh
i=1 dhi = 1, and∑H

h=1 nh = nB.
Therefore X ∈ RIEC,SCnA,nB if and only if X = (D1, . . . ,Dh).
The proof of the lemma can be established by using permutability on the columns of

the matrices in the class RIEC,SCnA,nB to generate the class R̂nA,nB .
An operation satisfying IEC applied to matrix A ∈ Md generates a matrix B ∈ Md

with nB > nA that is obtained by augmenting A by nB−nA columns with zero entries. It
can be formalized in terms of matrix multiplication operations involving identity matrices.
Let ij be a column vector of zeroes where element j is replaced by a one, such that
In = (i1, . . . , in). We have the following definition:

Definition 7 The set RIECnA,nB
⊂ RnA,nB with nA ≤ nB is such that:

RIECnA,nB
:= {Y ∈ RnA,nB : if yi = ij then yi+1 = ij+1 or yi+1 = 0nA , otherwise yi = 0nA} .

LetM0
d ⊂Md define the set of matrices exhibiting at least one column of zeroes. For

A ∈ M0
d, let J 0

A denote the index set of all zero columns in A and JA denote the index
set of all non-zero columns of A. Let j ∈ JA such that j + 1 ∈ J 0

A. The matrix Z[j] (thus
depending on the columns distribution in A) is a n × n identity matrix whose element 1
in position (j, j) is replaced by zj,j = λ and the element 0 in position (j, j + 1) is replaced
by zj,j+1 = (1− λ). The matrix is thus row stochastic.

An operation satisfying SC applied to matrix A ∈M0
d,nA

leads to matrix B ∈M0
d,nB

with bj = λaj and bj+1 = aj+1 + (1 − λ)aj = (1 − λ)aj with j ∈ JA and j + 1 ∈ J 0
A.

Formally: B = A · Z[j].

Definition 8 Let A ∈M0
d,nA

. The set RSCA ⊂ Rn is the set of all matrices Z[j] such that
for j, k ∈ JA, j + 1 ∈ J 0

A, for all k 6= k′ 6= j and for λ ∈ R++:

RSCA :=
{
Z[j](A, λ) ∈ Rn : zj,j := λ , zj,j+1 := (1− λ), zk,k := 1, zk,k′ := 0

}
.

Finally, consider a sequence of n random numbers {xi}ni=1 with support in [0, 1] satis-
fying

∑
i xi = 1. For any ordered sub-sequence of {xi}ni=1 given by numbers x1, . . . , xi−1

with i ≤ n, the i-th element can be written as:

x1 = λ1 ∈ [0, 1]
xi = λi

(
1−∑i−1

k=1 xk

)
with λi ∈ [0, 1] ∀i = 2, . . . , n.

(1)
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The set of elements λi obtained from (1) describes the full sequence of elements {xi}ni=1.
Although each element is independent from the others, the sequence has to be constructed
by incorporating the constraint on the unitary sum in the definition of each element. It
turns out that in order to satisfy the sum constraint there should exist only an index i
such that λi = 1. If λi = 1, then the series is completed and λj = 0 = xj for any j > i.
Note that xi = 0 also if λi = 0, thus the sequence of xi’s may also include elements equal
to 0 even if it is not yet completed.

Solving the sequence with backward substitution of elements, and after some algebra,
it can be shown that the element xi can be written as:

x1 = λ1 ∈ [0, 1],
xi = λi ·

∏i−1
k=1 (1− λk) with λk ∈ [0, 1] ∀k and λi ∈ [0, 1] ∀i = 2, . . . , n,

(2)

where there exists only one element k such that λk = 1.
Following the same line of reasoning, a row stochastic matrix X̂ ∈ R̂nA,nB with nA <

nB has generic elements xj,i that are either 0 or correspond to a positive number that can
be written as in (2) for any fixed j. Given the definition of R̂nA,nB , if xj,i > 0 for some i
then, by construction, it should be that that xj′,i = 0 for all j′ 6= j. These considerations
are summarized in the following remark:

Remark 12 The entry element xj,i in position (j, i) of any row stochastic matrix X ∈
RnA,nB can be written as:

xj,1 = λj,1 ∈ [0, 1]

xj,i = λj,i ·
i−1∏

k=1

(1− λj,k) ∀j with λj,k ∈ [0, 1] ∀k and λj,i ∈ [0, 1],

where there exists only one element k such that λj,k = 1.

We can now identify the class of row stochastic matrices involved in the transformations
underlying axioms IEC and SC, without assuming permutability of classes.

Lemma 3 Let A, B ∈ Md, with A ∈ MI
d and nA ≤ nB, the dissimilarity order 4

satisfies IEC and SC if and only if

B ∼ A⇔ B = A · X̂ for some matrix X̂ ∈ RIEC,SCnA,nB
.

Proof. We show that a sequence of matrix transformations derived through the application
of operations underlying axioms IEC and SC generates indeed a row stochastic matrix in
RIEC,SCnA,nB (⇒ part), and that the whole class of matrices in RIEC,SCnA,nB can be identified by
means of sequences of such operations (⇐ part), making use of Remark 12.

(⇒ part). Consider matrix A ∈MI
d. For each column j ≤ nA we augment the matrix

by a set of nj empty columns 0d. We obtain a new matrix

A′ := (a1,0d, . . . ,0d︸ ︷︷ ︸
n1 times

, . . . ,anA ,0d, . . . ,0d︸ ︷︷ ︸
nnA times

),

with nB columns such that nB = nA +
∑

j nj . A sequence of matrix operations involving
row stochastic matrices allow us to write: A′ = A · Y where Y ∈ RIECnA,nB

. By IEC it
follows that A′ ∼ A.
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Consider a split transformation that splits a class k with non-zero elements of matrix
A′ in two adjacent classes, k and k+ 1. Given that, by construction, there exists a j such
that a′k = aj , then k + 1 is the first of nj classes following k that are empty. Hence, we
use k to refer to a specific class j in A. A share λj,k of each group in class k is left in
k while the remaining share 1 − λj,k is displaced from column k to column k + 1. The
matrix operation incorporating this splitting is given by Z[k] ∈ RSCA′ such that the new
distribution matrix obtained is A′[k] := A′ · Z[k]. By SC and IEC we get A′[k] ∼ A.

Following the previous step, consider a split transformation involving the entry in
column k + 1, that corresponds to (1 − λj,k)aj . We leave a share λj,k+1 of the entry in
column k + 1 and move a fraction 1 − λj,k+1 from column k + 1 to column k + 2. The
matrix incorporating this splitting is A′[k+1] := A′[k] · Z[k+1] with Z[k+1] ∈ RSCA′[k]

. By SC
and IEC it follows that A′[k+1] ∼ A.

For any column k in A′, corresponding to a column j in A, the procedure can be
iterated sequentially through all classes k + 1 to k + nj of matrix A′ to obtain the matrix
A′[k+nj ]. A given class k < h < k+ nj of A′[k+nj ] can be written as a function of aj alone
and a weighting coefficient that depends upon the iteration procedure, that is:

a′h := λj,h · (1− λj,h−1) · . . . · (1− λj,k) · aj .

The result has been obtained through a sequence of splitting operations. For a given
column j of the original distribution matrix we can rewrite such a sequence by using row
stochastic matrices. We have that:

B = A[k+nj ] := A ·Y · Z[k] · . . . · Z[k+nj−1].

The matrix multiplying A is a product of row stochastic matrices and therefore it is row
stochastic. This matrix has at most only one non-zero element by column by construction,
moreover by combining the sequence of transformations with addition of empty classes
through Y ∈ RIECnA,nB

operations we obtain the matrices in RIEC,SCnA,nB , thus explaining the
sufficiency part of the lemma.

(⇐ part). Note that each of the elements of the series rewrites as an element of the
series in (2). In fact, repeating the same procedure for all j ∈ JA, it is possible to obtain a
product of matrices giving the row stochastic matrix X. Let use kj to underly the relation
between the class j in A and class k in A′. It follows that:

X = Y ·
nA∏

j=1

kj+nj−1∏

h=kj

Z[h]. (3)

The elements of a matrix X ∈ RIEC,SCnA,nB can be written by exploiting Remark 12. We
now show the necessary condition by proving that B = A ·X for X ∈ RIEC,SCnA,nB implies
(3). In general it holds that X = (X1, . . . ,XnA) for all the matrices in RIEC,SCnA,nB , where
each matrix Xj has a size nA × (nj + 1) and is everywhere zero apart from the entries in
row j that have to sum up to one. Hence:

A ·X = (A ·X1, . . . ,A ·XnA) .

The product of matrices A ·Xj defines operations that only involve the column j of
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the matrix A, and can be represented by using the following notation:

A ·Xj = (xj,kjaj , . . . , xj,kj+nj−1aj , xj,kj+njaj)

=


λj,kjaj , . . . , λj,kj+nj−1

∏

kj≤h<kj+nj−1

(1− λj,h)aj ,
∏

kj≤h≤kj+nj−1

(1− λj,h)aj




=


λj,kjaj , . . . ,

∏

kj≤h<kj+nj−1

(1− λj,h)aj ,0d


 · Z[kj+nj−1]

= (ai,0d, . . . ,0d) ·
∏

kj≤h≤kj+nj−1

Z[h],

where the second line uses the definition of the entries of a row stochastic matrix as in the
Remark 12, the third line follows by the definition of a split operation involving columns
kj + nj − 1 and kj + nj , here captured by the (nj + 1) × (nj + 1) matrix Z[kj+nj−1], and
finally the last line develops iteratively the result in the third line. Each (nj +1)× (nj +1)
matrix Z[h] has been defined above. Hence, the previous list of equalities rewrites (using
a matrix Y to add empty columns as before):

A ·X = A ·Y · diag


 ∏

k1≤h≤k1+n1−1

Z[h], . . . ,
∏

knA≤h≤knA+nnA−1

Z[h]


 ·Y′

= A ·Y ·
nA∏

j=1

kj+nj−1∏

h=kj

Z̃[h] ·Y′.

where Z̃[h] := diag
(
I, Z[h], I′

)
and I and I′ are two identity matrices of size (j − 1) +∑j−1

k=1 nk and nB − (kj + nj) respectively.
The first line follows by combining the expression derived for each A · Xj to define

the product A · X, while the second equality comes from a property of the block diag-
onal matrix. The block diagonal matrix can be equivalently represented as the product
of the matrices associated to each block, obtained substituting the remaining blocks with
identity matrices. The matrix Z̃[h] is obtained in the same way, and its size is nB × nB.
By standard properties of matrix algebra the block diagonal of a product of matrices as
diag

(∏
k1≤h≤k1+n1−1 Z[h], . . . ,

∏
knA≤h≤knA+nnA−1 Z[h]

)
is the product of the block diago-

nals, given by
∏nA
j=1

∏kj+nj
h=kj

Z̃[h]. The matrix Z̃[h] is comparable in size to the matrices used
to construct the sufficient conditions. Altogether, these elements give the second equation,
showing that, starting from the definition of the elements of the class RIEC,SCnA,nB , we obtain
(3). Note that RIEC,SCnA,nB is closed with respect to matrix multiplication. Moreover, we
have enough degree of freedom in the proof to show that any matrix in RIEC,SCnA,nB could be
decomposed according to the sequence in (3), which establishes the Lemma.

The previous result is used for the proof of Lemma 1.
Proof. For any pair A,B ∈ Md, with A ∈ MI

d, B ∼ A with 4 satisfying IEC and SC
whenever B = A ·X for X ∈ RIEC,SCnA,nB by Lemma 3. If moreover 4 satisfies also IPC, then
B = A ·X ·Π = A · X̂ where Π is a permutation matrix implies B ∼ A. By using any
nB × nB permutation matrix, one gets the whole set of nA × nB matrices with at most
one nonzero element by row, that is X̂ ∈ R̂nA,nB .
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A.2 Proof of Theorem 1

Before moving to the proof, it is worth noting that a merge transformation in combination
with permutation of classes is equivalently represented by a matrix product involving
a row stochastic matrix. An operation satisfying MC is defined up to a permutation
of columns of the distribution matrix A′′ = (A, 0d, . . . ,0d), where the vectors 0d are
repeated n− nA times. As described in Axiom MC, when combined with permutation of
classes, the operation is such that from a matrix A it is possible to obtain a new matrix B
where bj = aj + aj′ and bj′ = 0d for j, j′ ≤ nA. The operation can be written in matrix
product form as: B = A′′ ·X[j,j′] such that X[j,j′] is a n × n identity matrix whose j′-th
row is replaced by row j.

Definition 9 The set RMC
n ⊂ Rn is such that for all j, j′, k, k′:

RMC
n :=

{
X[j,j′] ∈ Rn : xj′,j = xj,j = 1, xk,k = 1 ∀k 6= j′, xk,k′ = 0 ∀k 6= k′

}
.

According to Definition 9, a sequence of merge transformations migrating masses from
classes h corresponding to the subset Hj of columns to class j admits an equivalent rep-
resentation through a sequence of matrix products with elements in RMC

n :
∏
h∈Hj X[j,h].

By performing the necessary number of matrix products such that all elements of Hj are
merged with class j, we obtain a row stochastic matrix Mj . It corresponds to a transfor-
mation of an n × n identity matrix whose rows h ∈ Hj have all been replaced by row j.
By performing the same procedure for all j we obtain the matrix M =

∏nA
j Mj such that⋃

j Hj ∪ JA = {1, . . . , n}.
Proof. (⇒ part). If the dissimilarity pre-order satisfies axioms IEC, SC, PC and MC then
there exist a sequence of insertion of empty classes, splits and permutations that allows to
transform A into B such that B = A ·X for some X ∈ RnA,nB .

It has been extensively argued in the proof of Lemma 1 that each of the transformations
underlying axioms IEC, SC and PC involves a row stochastic matrix operation. The Axiom
MC induces a merge operation between two or more classes that can be represented by a
matrix that is row stochastic. Hence, B 4 A implies that there exist a sequence of row
stochastic matrices transforming A into B. A product of row stochastic matrices gives a
row stochastic matrix, and therefore B = A ·X with X ∈ RnA,nB , which establishes the
desired implication.

(⇐ part). We show now that if matrix B = A ·X for X ∈ RnA,nB , then it also holds
that B 4 A, where the dissimilarity pre-order is characterized by IEC, SC, IPC and MC
axioms.

Exploiting Lemma 1, one can verify that for any row stochastic matrix X ∈ RnA,nB
such that B = A ·X there exists a permutation matrix Π and a X̂ ∈ R̂nA,nA·nB such that
X̂ ·Π ∈ RIEC,SCnA,nA·nB , hence:

X = X̂ ·Π · M̃ = Y ·Π′ ·
nA∏

j=1

kj+nj∏

h=kj

Z[h] · M̃,

where Y ∈ RIECnA,nA·nB , with Y · Π′ such that A ·Y · Π′ = A′ := (a1,0d, . . . ,anA ,0d),
Z[h] ∈ RSC . The first equality is an algebraic result that holds for any matrix X: for a
matrix X̂ in R̂nA,nA·nB , one can find a permutation matrix that arranges the terms in X̂
in a way that the first nB entries of the first row of the matrix coincide with the first
row of X, and then the remaining entries are zero; the entries in the second row between
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classes nB + 1 and 2nB coincide with the second row of X and so forth. The matrix
M̃ = (InB , . . . , InB )t is row stochastic, it is related to the square matrix M that represents
sequences of merge transformations. The matrix M is of dimension (nA · nB)× (nA · nB)
and is constructed such that M = (M̃,0nB ,nA·nB ). Thus, M̃ represents sequences of
merge transformations and eliminations of empty classes. The second equality is a direct
consequence of Lemma 3. Hence, any row stochastic matrix X can be decomposed into
a sequence of insertions/eliminations of empty classes, splits, merges and permutations
(formalized by the operations X̂ ·Π · M̃). This verification concludes the proof.

A.3 Proof of Corollary 2

Proof. (⇒ part). If B 4 A satisfies NG, then B ∼ [diag(µB)]−1 · B := B′ and A ∼
[diag(µA)]−1 ·A := A′ and, by transitivity of the pre-order 4 one gets [diag(µB)]−1 ·B 4
[diag(µA)]−1 ·A. Given that 4 satisfies the other axioms underlying the result in Theorem
1 and that A′ and B′ satisfy the constraints of Theorem 1 A′ · enA = B′ · enB , then the
dissimilarity pre-order can be equivalently represented by the matrix majorization.

(⇐ part). Suppose that B′ 4R A′, then by Theorem 1 it holds that B′ 4 A′. Moreover,
it is possible to move from A′ to A and from B′ to B making use of NG transformations.
It then follows that B′ ∼ B and A′ ∼ A. Thus by Theorem 1 and the transitivity of 4,
we obtain that B 4 A for 4 satisfying NG.

A.4 Proof of Corollary 3

Proof. (⇒ part). If B 4 A satisfies IPG, then A ∼ Πd ·A and, by transitivity of the
pre-order 4, one gets B 4 Πd · A. Given that 4 satisfies the other axioms underlying
the result in Theorem 1, the dissimilarity pre-order can be equivalently represented by the
matrix majorization.

(⇐ part). Suppose that B 4R Πd ·A′, then by Theorem 1 it holds that B 4 Πd ·A′.
Moreover, it is possible to move from A to Πd ·A making use of IPG transformations. It
then follows that A ∼ Πd ·A. Thus by Theorem 1 and the transitivity of 4, we obtain
that B 4 A for 4 satisfying IPG.

A.5 Proof of Theorem 2

To prove the theorem, we make use of two lemmas. The first lemma shows that the oper-
ation needed to obtain the minimal ordinal comparable matrices are the same underlying
the IEC and SC axioms. We restrict the domain of admissible matrices to all pairs of
matrices satisfying A · enA = B · enB .

Lemma 4 For any A,B ∈ Md there exists A∗,B∗ ∈ Md with n∗A = n∗B = n∗ that are
minimal ordinal comparable such that 4 satisfies IEC and SC if and only if B 4 A ⇔
B∗ 4 A∗.

Proof. (⇒ part). We show that if 4 satisfies IEC and SC, then B 4 A ⇒ B∗ 4 A∗.
If 4 satisfies IEC and SC, then empty classes can be added, or existing classes can be

proportionally split to generate contiguous, new classes. These operations are sufficient to
construct the minimal ordinal comparable matrices A∗ and B∗. Therefore it follows that
A ∼ A∗ and B ∼ B∗. By transitivity of 4, it follows that B 4 A implies B∗ 4 A∗.
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(⇐ part). We show that whenever B∗,A∗ are minimal ordinal comparable to B and A
respectively, then they can be derived from B and A through a finite sequence of operations
underlying IEC and SC axioms, and therefore B∗ 4 A∗ implies B 4 A.

We show the result for A,B ∈ MI
d. Note that following the definition of minimal

ordinal comparability, it is always possible to write A∗ = A · X and B∗ = B · Y with
X and Y appropriate row stochastic matrices. In fact by construction X and Y belong
to a subset of RIEC,SCnA,n∗

and RIEC,SCnB ,n∗
respectively (see the definition in proof of Lemma

1), given that the matrices A∗,B∗ can by construction be obtained from A,B only using
additions of empty classes and splits of classes. This implies, by Lemma 3, that A ∼ A∗

and B ∼ B∗ for 4 that satisfies IEC and SC. Thus, by transitivity of 4 we get that
B∗ 4 A∗ implies B 4 A. Note also that this condition extends to A′,B′ not necessarily in
MI

d. In fact, take for instance A′, there exists a matrix X ∈ RIEC,SCnA,nA′ and A ∈ MI
d such

that A′ = A · X, and thus A′ ∼ A for 4 that satisfies IEC and SC. Similar reasoning
holds for B′.

The second lemma shows that any exchange transformation of a minimal ordinal pre-
serving matrix is equivalently mapped into a rank preserving progressive transfer of pop-
ulation masses on the correspondent cumulative distribution matrices (the definition of
progressive transfer will be given in the proof).

Lemma 5 For A,B ∈ Md that are ordinal and rank comparable, B is obtained from A
form a finite sequence of exchange operations if and only if for all k = 1, . . . , n,

−→
b k is

obtained from −→a k by a finite sequence of progressive transfers that preserve the ranking of
the elements i = 1, . . . , d of the vectors.

Proof. Consider A,B that are ordinal comparable, with k = 1, . . . , n classes. For a given
k, bk is obtained from ak by an exchange between group h and ` if and only if group h
dominates group ` in k.

Given that both distribution matrices are rank comparable, not only it should hold
that −→a hk ≤ −→a `k ⇒

−→
b hk ≤

−→
b `k, but the same implication should also hold for any

pair of groups. Moreover, the exchange operation implies that there exists δ such that−→
b hk = −→a hk + δ and

−→
b `k = −→a `k − δ with

−→
b ik = −→a ik for all groups i 6= h, ` and

−→
b j = −→a j

for all classes j 6= k. This is by definition a rank preserving progressive transfer (for a
formal definition, see Fields and Fei 1978), which is independently implemented among
entries of one class of the distribution matrix.

Conversely, every rank preserving transfer of cumulative population masses can be
mapped into an exchange operation, provided that the matrices A,B are both ordinal
comparable.

The proof of Theorem 2 is as follows:
Proof. To prove the sufficiency part (⇒), consider B 4 A with A,B ∈Md that are rank
comparable up to a permutation of the groups. It follows that there exists A∗,Πd·B∗ ∈Md

that, by construction, are also rank comparable. If 4 satisfies IEC, SC and IPG, then
B∗ 4 A∗ by Lemma 4. If moreover, 4 satisfies E, then B∗ could be obtained from A∗

through a sequence of exchange operations or, equivalently, (by Lemma 5) it should hold
that ∀k −→b∗k is obtained from

−→
a∗k by a sequence of rank preserving “progressive transfers”

of population masses. Classical theorems on univariate majorization (see for instance ch.2,
Lemma B.1 in Marshall et al. 2011) show that the latter is equivalent to

−→
b∗k 4U −→a∗k.

The proof of the necessity part (⇐), requires to show that if B 4∗ A then there exist
a sequence of transformations underlying axioms IEC, SC, IPG and E, that can lead from
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A to B and therefore B 4 A.
The proof makes use of the Theorem 2.1 in Fields and Fei (1978) and the Lemma

2.B.1 by Hardy et al. (1934) to get that
−→
b∗k 4U −→a∗k for all k = 1, . . . , n∗ implies that there

exists a finite sequence of rank preserving “progressive transfers” of population masses,
defined up to a permutation of the groups (the entries of the vectors) that leads from−→
a∗k to

−→
b∗k. By Lemma 5, the “progressive transfers” can be equivalently formalized as

a finite sequence of exchange operations. Consequently these transformations underlying
axiom E allow to move from A∗ to B∗. Therefore B∗ 4∗ A∗ implies B∗ 4 A∗ where the
dissimilarity pre-order 4 satisfies axioms E and IPG. Next, consider Lemma 4, the fact
that A∗ and B∗ are minimal ordinal comparable matrices and transitivity of 4 gives that
B 4 A for 4 satisfying also IEC and SC, which establishes the result.

A.6 Proof of Theorem 3

Proof. The theorem holds for matrices A,B ∈ Md. (⇒ part). Suppose B 4 A, if A
and B are not ordinal comparable but 4 satisfies Axiom I, then there exists A′ and B′

obtained by a sequence of interchange operation such that A′ ∼ A and B′ ∼ B and A′ and
B′ are ordinal and rank comparable. Therefore B′ 4 A′ and Theorem 2 applies leading
to B′ 4∗ A′ and therefore also to B 4∗ A given that interchange operations do not affect
the ranking produced by 4∗ and as a consequence B ∼∗ B′ and A ∼∗ A′. Thus it follows
that the transitivity of 4∗ leads to B 4∗ A.

The proof of the necessity part (⇐), requires to show that if B 4∗ A then there exist
a sequence of transformations underlying axioms IEC, SC, IPG, E and I, that can lead
from A to B and therefore gives B 4 A.

If B 4∗ A for matrices that are rank comparable then we are back to the proof of the
implication (⇐) in Theorem 2.

Suppose that B 4∗ A for matrices B and A that are not necessarily rank comparable.
Then, consider the minimal ordinal comparable matrices B∗ and A∗ that are also by
construction not rank comparable, given that B and A are not.

It is then possible to transform B∗ and A∗ into matrices B′ and A′ that are rank
comparable through a finite sequence of interchanges and permutation of groups. The
algorithm requires to first permute the groups of one of the two matrices such that they
are both rank comparable for the first class. Then, consider in sequence next classes and
apply the interchange operation for each pair of groups that happens to violate the rank
comparability assumption between the matrices. By construction of the matrices B∗ and
A∗ the interchange operation can be applied because whenever for one minimal ordinal
comparable distribution matrix (say A∗) the rank of two groups i, j is modified between
two classes l, h, that is (

−→
a∗il−

−→
a∗jl) ·(

−→
a∗ih−

−→
a∗jh) < 0 then there exists an intermediate class

k where
−→
a∗ik =

−→
a∗jk (see property (ii) in the definition of minimal ordinal comparability).

Thus, starting from class k the distribution for all higher classes can be interchanged
between groups i and j.

A finite sequence of such operations will lead to matrices B′ and A′ that are rank
comparable. Recall by the proof of Theorem 2 that according to Lemma 4, the fact that
A∗ and B∗ are minimal ordinal comparable matrices and transitivity of 4 gives that B 4 A
is equivalent to B∗ 4 A∗ for 4 satisfying IEC and SC.

Thus by applying the interchange transformations, given that 4 satisfies I we obtain
B∗∼ B′ and A∗∼ A′. Thus, (i) B 4 A ⇔ B∗ 4 A∗⇔ B′ 4 A′.
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Because B 4∗ A is not affected by permutations of elements in each matrix within
the same column it follows that B 4∗ A⇔ B′ 4∗ A′. Moreover, as shown in the proof
of Theorem 2 if B′ 4∗ A′, by Lemma 5, the transformations underlying Axiom E allow
to move from A′ to B′, therefore B′ 4∗ A′ implies B′ 4 A′. Thus, (ii) B 4∗ A⇔ B′ 4∗

A′ ⇒ B′ 4 A′.
To summarize, making use of sequences of transformations underlying the IEC, SC,

IPG, E and I we obtain from (ii) that B 4∗ A ⇒ B′ 4 A′ and from (i) that B′ 4
A′⇔ B 4 A, it then follows the desired result that B 4∗ A⇒ B 4 A.

A.7 Proof of Corollary 5

Proof. The corollary holds for matrices A,B ∈ Md with possibly A · enA = µA 6=
µB = B · enB . (⇒ part). Suppose B 4 A, if 4 satisfies Axiom NG, then there exists
A′ = [diag(µA)]−1 ·A and B′ = [diag(µB)]−1 ·B such that A′ ∼ A and B′ ∼ B. Therefore
B′ 4 A′ and µA′ = µB′ = ed, thus Theorem 2 applies. Then it follows that B′ 4∗ A′, as
required in the corollary.

(⇐ part). Suppose that B′ 4∗ A′, then by construction Theorem 2 holds and therefore
B′ 4 A′. Moreover, it is possible to move from A′ to A and from B′ to B making use of
NG transformations. It then follows that B′ ∼ B and A′ ∼ A. Thus by Theorem 2 and
the transitivity of 4, we obtain that B 4 A for 4 satisfying NG.

A.8 Proof of Theorem 4

Proof. We prove the sufficiency part (⇒) by construction. Recall that B 4R A implies
that matrices A,B ∈ Md are such that B = A · X for X ∈ RnA,nB . Given the set
of composition matrices X(h) indexed by h ∈ {1, . . . H}, where H := nnAB ,29 we have
B =

∑
h λhA ·X(h) with λ = (λ1, . . . , λH)t ∈ ∆H , such that λh ≥ 0 ∀h and

∑
h λh = 1.

Any column vector bk of B can be written as bk =
∑

h λhA · xk(h). Therefore, the
Zonotope of B can be written as:

Z(B) =

{
z := (z1, . . . , zd)t : z =

nB∑

k=1

θkbk, θk ∈ [0, 1] ∀k = 1, . . . , nB

}

=



z =

nB∑

k=1

θk


∑

h

λh
∑

j

aj · xjk(h)


, θk ∈ [0, 1], λ ∈ ∆H , xjk(h) ∈ {0, 1},∀k, i, j





=





z =
nA∑

j=1

aj




∑

h

λh
∑

k

θkxjk(h)

︸ ︷︷ ︸
θ̃j∈I



, θk ∈ [0, 1], λ ∈ ∆H , xjk(h) ∈ {0, 1},∀k, i, j





=



z =

nA∑

j=1

θ̃jaj , θ̃j ∈ I ⊂ [0, 1] ∀j



 .

29H is the total number of permutations of nA ones in a matrix with nA × nB entries that are either
zeroes or ones.
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The last line comes from the fact that if xjk(h) = 1 then xjk′(h) = 0 for all k′ 6= k.
Therefore,

∑
k θkxjk(h) takes values on the [0, 1] real interval, for each h. The convex

combination with weights λ necessary lies, at most, in the same interval. We fix such
interval to be I and its elements are the new weights θ̃j , as long as λ is considered to be
fixed. As a result, matrix majorization implies that any point in Z(B) can be written as a
point in Z(A) or equivalently Z(B) ⊆ Z(A). When I = [0, 1], Z(B) coincide with Z(A)
and B is an equivalent representation of A.

For the necessity part (⇐), we prove that Z(B) ⊆ Z(A) implies B 4R A. We assume
A·enA = B·enB to show that if the columns of matrix B (indexed by k) lie in the Zonotope
of A: bk ∈ Z(A) ∀k, this is equivalent to matrix majorization, and a necessary condition
for Zonotopes inclusion. Consider a set of nB vectors bk with k ≤ nB, which lie in Z(A)
and satisfy the condition

∑
k bk = A · enA . They can be written as follows (where vector

k′ is written in a way that satisfies the stochasticity constraint):

bk :=
∑

j

θj(k)aj , for all k ∈ {1, . . . , nB}\k′

bk′ :=
∑

j

θj(k′)aj = A · enA −
∑

k 6=k′

∑

j

θj(k)aj =
∑

j


1−

∑

k 6=k′
θj(k)


aj .

Given that θj(k) ∈ [0, 1] and θj(k′) :=
(

1−∑k 6=k′ θj(k)
)
∈ [0, 1], this implies that∑

k θj(k) = 1 with θj(k) ≥ 0 for all k including k′. We define the vector θj = (θj(1), . . . , θj(nB)) ∈
∆nB . The matrix Θ = (θt1, . . . ,θ

t
nA

)t is a row stochastic matrix. It follows that matrix B
can be written as B = A ·Θ with Θ ∈ RnA,nB , which is B 4R A.

A.9 Proof of Lemma 2

Proof. To prove this result, it is worth noting that for any pair of vectors x = (x1, . . . , xi, . . . , xd)t

and y ∈ Rd
++ whose elements are ranked in increasing order and are such that etd · x =

etd · y = µ > 0, the area between the Lorenz curve Lx(i) =
∑i

j=1
xj
µ and its dual

Lx(i) = 1−Lx(n−i) (obtained by ordering the elements of x from the largest to the small-

est) coincides with the area of the zonotope Z
((

x
µ ,

ed
d

)t)
(see Koshevoy and Mosler 1996).

Therefore:

Lx(i) ≥ Ly(i), ∀i = 1, . . . , d ⇔ Z

((
x
µ
,
ed
d

)t)
⊆ Z

((
y
µ
,
ed
d

)t)
. (4)

For A,B ∈Md, let A∗,B∗ ∈Md be the pair of associated minimal ordinal comparable
matrices. In this case, for all k = 1, . . . , n∗, the size of vectors

−→
a∗k and

−→
b∗k is fixed to d

and etd ·
−→
a∗k = etd ·

−→
b∗k.

The conditions of the well known Lemma 2.B.1 by Hardy et al. (1934) are satisfied
and therefore B 4∗ A if and only if for each k = 1, . . . , n∗, L−→

b∗k
(i) ≥ L−→

a∗k
(i), for all

i = 1, . . . , d. Using identity (4), the result is established.
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A.10 Proof of Theorem 5

Proof. We first prove that MP ∗(A∗) = MP ∗(A) for A,A∗ ∈Md, where A∗ is obtained
from A and satisfies conditions (i) to (iv) in Definition 5. By construction, it follows that
for any k∗ = 1, . . . , n∗ there exists a k = 1, . . . , nA and θ ∈ [0, 1] such that:

−→
a∗k∗ :=

k∑

j=1

nj∑

j∗=1j

a∗j∗ +
k∗∑

j∗=n∗1+...+n∗k

a∗j∗ = −→a k + θ ak+1, (5)

and similarly for B. For any k∗,
−→
a∗k∗ ∈ MP ∗(A∗), and by (5), z∗ := −→a k + θ ak+1 ∈

MP ∗(A∗). Given that, by definition, z∗ ∈ MP ∗(A) and (5) holds for any k∗, it must
follow that MP ∗(A∗) = MP ∗(A). A similar argument holds for B. Hence, the inclusion
of the Path Polytopes of A,B can be equivalently studied as a problem of inclusion of the
Path Polytopes of A∗,B∗.

By Lemma 2, if B 4∗ A then
−→
b∗k ∈ conv{Πd ·

−→
a∗k, ∀Πd} for every k = 1, . . . , n∗.

Given that
−→
a∗k ∈MP ∗(A∗), then

−→
b∗k ∈ Z∗(A∗) by definition.

To conclude the proof, it is necessary to extend the inclusion argument over the entire
domain of the Path Polytope. We exploit the rank preserving property of the partition
k = 1, . . . , n∗.

To show the sufficiency part (⇒), note that for any pair k and k + 1 of contiguous
classes, by construction the ranking of the groups within each class (defined by increasing
magnitude of cumulative groups population masses within the class) is preserved in both
classes and for both configuration A∗ and B∗.

The comparisons have to be made at “fixed mean”, so that one can exploit the test
proposed in Lemma 2 to check whether the Lorenz curve of θ

−→
b∗k + (1− θ)−→b∗k+1 lies above

the Lorenz curve of θ
−→
a∗k + (1 − θ)−→a∗k+1, for any θ ∈ [0, 1]. This comparison preserves

the means, since etd ·
(
θ
−→
b∗k + (1− θ)−→b∗k+1

)
= etd ·

(
θ
−→
a∗k + (1− θ)−→a∗k+1

)
. Given any two

ordered Lorenz curves, a sufficient condition for having that a third Lorenz curve lies in
the area between the two initial curves is that the two distributions underlying the two
curves are obtained one from the other by a finite sequence of Pigou-Dalton transfers that
preserve the rank of the (population of d) individuals in both distributions. This particular
structure applies to comparisons involving contiguous sections k and k+1 with fixed means
(because A∗ and B∗ are rank comparable).

Following Lemma 2, if the Lorenz curve of
−→
b∗k lies above the one of

−→
a∗k, and the

Lorenz curve of
−→
b∗k+1 lies above the one of

−→
a∗k+1, then the Lorenz curve associated to

the convex combination of the initially less disperse configurations
−→
b∗k and

−→
b∗k+1, lies

above the Lorenz curve associated to the convex combination of the initially more disperse
configurations

−→
a∗k and

−→
a∗k+1. The Lorenz test can be alternatively written by θ

−→
b∗k + (1−

θ)
−→
b∗k+1 ∈ conv

{
Πd ·

(
θ
−→
a∗j∗ + (1− θ)−→a∗j∗+1

)
|Πd ∈ Pd

}
. As a consequence, the SUM

order is equivalently represented by this sequence of inclusions, holding for all k ∈ 1, . . . , n∗

and for all θ ∈ [0, 1], which implies MP ∗(B∗) ⊆ Z∗(A∗).
The necessity part (⇐) is easier to prove, because MP ∗(B∗) ⊆ Z∗(A∗) implies that

any given p ∈ MP ∗(B∗) can be written as a convex combination of the permutations
of z∗ ∈ Z∗(A∗), such that ed · p = ed · z∗. By taking p =

−→
b∗k and z∗ =

−→
a∗k, for all

k = 1, . . . , n∗, one gets the desired result.
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