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1. Introduction

Let X be a set of alternatives whose subsets are to be interpreted as opportunity
sets (menus, or sets of offers) for a consequent (future) decision maker’s choice.
For a wide review of the different approaches to ordering opportunity sets see, for
example, a survey paper [3]. We are interested in the so-called flexibility-based
orderings of opportunity sets, i.e. a menu B is less preferred than a menu A (or
A provide more flexibility of choices than B) whenever A has more options for a
subsequent choice than B.
The simplest case is as follows. Suppose a decision maker compares alternatives

of X according to a bounded utility function u : X → R. Then the ‘indirect utility’
of a subset A ⊆ X is set by the rule u(A) = supa∈A u(a) (u(∅) = −∞), and the
decision maker compares menus according to their indirect utility. However, this is
not the most interesting case.
Kreps ([9]) enriched this framework by assuming that the decision maker’s pref-

erence on the set of alternatives depends on the ‘states of nature’, i.e., to each state
of nature s ∈ S is associated some utility function us : X → R. Then, for a menu
A, we get the associated vector of utilities (us(A))s∈S ∈ RS , and an ordering on
2X is defined as a coordinate-wise ordering of utility’s vectors in RS , that is B is
preferred by A (B � A), if for any state of nature s ∈ S, there holds us(A) ≥ us(B).
Kreps in [9] axiomatically characterize such a multi-utility ordering on 2X .
Observe that the ordering of menus in the simplest situation and the multi-utility

ordering share the same properties —(i) monotonicity with respect to set-inclusion
(a set is preferred to any part of it), (ii) transitivity and (iii) union (the union of
worse sets remains a worse set). The only difference between the two cases is that in
the simplest case the corresponding ordering is complete. This phenomenon takes
place in a more general situation (see Examples 3 and 5 in the next section).
Namely, the multi-utility framework can be extended to a case with non-transitive

binary relations. In order to distinguish binary relations on X and on 2X , we say
a relation for a binary relation on X and a hyper-relation for a binary relation on
2X .
Let us start with an example. Suppose X = {a, b, c, d} be a collection of four

genres (say, science fiction (a), crime (b), drama (c) , and love story (d)). Typically,
a book is made up of different genres. Thus, we understand a subset A of X as
a book. A decision maker is a family (with more than two members). The family
compares genres due to the majority voting as follows a > d, a > c, b > c, b > a,
c > d, d > b (see Picture 1). This defines a non-transitive relation on X.
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Picture 1.

Then in order to have a hyper-relation on the set of books, the family could follow
the rule: a book A is preferred by a book B, A � B if, for every genre x which
occurs in A but not in B, x ∈ A \B, there exists an genre y in B such that x < y.
Such a hyper-relation is not transitive, but it satisfies the monotonicity, union
and two properties which weaken transitivity: stability with respect to contraction
and stability with respect to extension. These latter axioms reflect the following
relationships between a hyper-relation and the set-inclusion: if a set provides - let us
say- more freedom of choice than another, then this a fortiori holds for any subset
of the latter, and that if a set offers - let us say- more ‘suitable alternatives’than
another set, then the set containing the former as its subset will certainly provide
more ‘suitable alternatives’ than the latter. Let us illustrate the extension and
contraction axioms on this example: the menu {a, c} is preferred by b, b is a subset
of the menu {b, d}, and {a, c} is preferred by {b, d}; The menu {a, d} is preferred
by {b, c} and any subset of {a, d}, either a, or d or the empty set is preferred by
{b, c}. Such a hyper-relation is complete.
In this example we demonstrated an extension of the simplest situation to a case

with a non-transitive relation on X.
Thus, for arbitrary relations, we get an extension of the class of multi-utility

hyper-relations. A hyper-relation of this class we call decent and it satisfies monotonic-
ity, stability with respect to contraction, stability with respect to extension, and
the union property. We analyze the class of decent hyper-relations both associating
them to an appropriate class of choice functions and considering decomposition of
a decent relations via ’elementary’ones.
Namely, we consider a mapping from the set HR(X) of hyper-relations on X

to the set CF(X) of choice functions on X, and a mapping from the set of choice
functions to the set of hyper-relations, which provide a bijection between the decent
hyper-relations and heritage choice functions. An idea to relate hyper-relations
and choice functions was proposed by Puppe in [15]. Let us notice that he studied
another mapping from the set of choice functions to the set of hyper-relations.
Ryan in [18] studies one more different mapping from the class of Plott functions
to hyper-relations.
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Let us consider a mapping φ : HR→ CF which sends a hyper-relation � on 2X
to a choice function f := φ(�) by the rule:

f(A) = {a ∈ A such that does not hold a � A− a}.
In other words if an element a ∈ A is preferred by the complement A−a, then such
an element a will be not chosen from A. For a motivation, suppose to be in the
simplest case considered above, then a is not chosen from A if u(a) ≤ u(A− a).
In the example above, the corresponding choice function is specified as follows:

f(a) = a, f(b) = b, f(c) = c, f(d) = d, f(a, b) = b, f(a, c) = a, f(a, d) = a, f(b, c) =
b, f(b, d) = d, f(c, d) = c, f(a, b, c) = b, f(a, c, d) = a, f(a, b, d) = f(b, c, d) =
f(a, b, c, d) = ∅. This choice functions is a heritage choice function, that is f
satisfies heredity property H or, equivalently, the Chernoff axiom, or, equivalently,
the Sen α-axiom. In Section 4 we will show that this is not a happenstance, but a
general rule.
The reverse mapping κ : CF→ HR is defined by the rule: let �f := κ(f), then

A �f B if for every a ∈ A \B, there holds a 6∈ f(a ∪B).
A motivation for such a definition goes as follows. Suppose a decision maker’s
choice function is rationalizable by a binary relation < on X, x < y means that y
is strictly better than x. Then, we define a hyper-relation on 2X by the rule A � B
if for any alternative a which is in A but not in B either there is b ∈ B such that
a < b, or a is a dummy, that is a < a.
We show that the mapping κ is an injection, and its image coincides with the

subclass SDHR of semi-decent hyper-relations, SDHR ⊂ HR (we give precise
definitions of all these notions in the next Section).
We consider images of three subclasses of semi-decent hyper-relations: the decent

hyper-relations, the transitive decent hyper-relations (transitive hyper-relations
were studied in different set-ups, see, for example, [9, 5, 7]), and transitive decent
hyper-relations which satisfy the condition LE of lattice equivalence (in [5] these
hyper-relations are called framed dependency relation) and we get the following
results

• the image of the set of decent hyper-relations coincides with of the set of
heritage choice functions;

• the image of the set of transitive decent hyper-relations coincides with the
set of closed choice functions;

• the image of the set of transitive decent hyper-relations which satisfy the
condition of lattice equivalence coincides with the set of Plott functions.

Remark. In the literature on stable matchings [17], the Heritage axiom is in-
terpreted in terms of substitutability. Thus we may argue that the class of decent
hyper-relations corresponds to ordering of opportunities for substitutable alterna-
tives. For a case of complementary alternatives, the union axiom can be violated,
and this case needs another analysis.

We consider, for each of the above subclasses of hyper-relations, the problem
of the decomposition of a given hyper-relation into ‘elementary’ones, namely the
representation of a given hyper-relation as the intersection of ‘elementary’ones.1

So doing, we get that in the corresponding subclasses of choice functions, ’elemen-
tary’choice functions are specified by adding the concordance axiom. These choice

1Notice that the hyper-relation in the example of the family ordering books is elementary.
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functions are rationalizable by binary relations for the class of heritage choice func-
tions, by para-transitive binary relations for closed choice functions, and by linear
orders for Plott choice functions. Then, a given hyper-relation takes the form of
intersection of the corresponding binary hyper-relations.2

2. Hyper-relations

We denote by X a universal set of alternatives, which is allowed to be infinite in
Section 2—5 and finite in Section 6. The set of all subsets of X is 2X , its elements
denoted by A,B,C, . . ., and are referred to as opportunity sets or menus, the empty
set ∅ is also a menu. Recall that a binary relation onX we call a relation and denote
usually by <. We assume that properties (ir)reflexivity, acyclicity and transitivity
of relations are known to a reader. A binary relation on 2X we call a hyper-relation
and denote by �. We denote by HR the set of all hyper-relations on X.
The set of all subsets of X is a partially ordered set (poset) with respect to

the set inclusion. This poset is a Boolean lattice with respect to the union and
the intersection. We are interested in hyper-relations which take into account this
partial ordered structure.
First, the fact that every opportunity set is at least as good as every subset of

it is without any doubt one of the less controversial requirement in the theoretical
literature on ranking sets of opportunities in terms of the freedom. This obvious
requirement is discussed in the works of several scholars (see, for example, [3]),
Kreps attributes this axiom to Koopmans (axiom (1.3) in [9]).

• Monotonicity with respect to set inclusion (Mon). For all A,B ∈
2X , A ⊆ B implies A � B.

We introduce now two axioms that we call stability with respect to contraction
and extension. They reflect the following relationships between a hyper-relation
and the set-inclusion: if a set provides - let us say- more freedom of choice than
another, then this a fortiori holds for any subset of the latter, and that if a set offers
- let us say- more ‘suitable alternatives’than another set, then the set containing
the former as its subset will certainly provide more ‘suitable alternatives’than the
latter.

• Stability with respect to contraction (Cont). For any A, A′, B ∈ 2X ,
A′ ⊆ A � B implies A′ � B.

• Stability with respect to extension (Ext). For any A, B, B′X , A �
B ⊆ B′ implies A � B′.

These axioms might be consider as weakening of transitivity. Namely, if a tran-
sitive hyper-relation � satisfies (Mon) then � is stable with respect to contraction
(Cont) and to extension (Ext). This was already noticed in Lemma 1 in [9].

We say that a hyper-relation satisfies the union property if it satisfies the follow-
ing axiom.

• Union (U). For any family of subsets Ai, i ∈ I, and any subset B ⊆ X,
if, for every i ∈ I, Ai � B, then ∪i∈IAi � B.

For finite families, the Union axiom coincides with the Robustness axiom in [3].

2We notice here that for transitive decent hyper-relations such a decomposition has been ob-
tained in [9], and the ’elementary’binary hyper-relations were associated to the states of nature.
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Definition. A hyper-relation � is decent (semi-decent) if it satisfies axioms
(Mon), (Cont), (Ext), and (U) ((Mon), (Cont), and (U), respectively).

Remark 1. For a semi-decent hyper-relation �, and two subsets A and B,
A � B if and only if holds a � B for every a ∈ A.
Let us discuss some variants of the union axiom.
Kreps ([9], axiom (2.1)) and Ryan ([18], axiom K) consider the following axiom
• K for any A, B, A � B implies B � A ∪B � B.

For a transitive hyper-relation which satisfies monotonicity Mon, the axioms
K and U are equivalent. In fact, due to K, A � C and B � C are nothing but
C ≈ A∪C and C ≈ B ∪C. By transitivity, we get A∪C ≈ B ∪C. The latter due
to K reads as A∪C ≈ (A∪C)∪ (A∪B) = A∪B ∪C, and due to transitivity, we
get A∪B ∪C ≈ C. Then due to monotonicity A∪B � A∪B ∪C, that is (due to
transitivity)A ∪B � C.
A more general form of the union axiom is the following axiom of additivity :

• A If, for some collections of menus Ai, Bi, i ∈ I, for each i there holds
Ai � Bi, then ∪i∈IAi � ∪i∈IBi.

From the following lemma follows that any decent hyper-relation satisfies the
additivity A.

Lemma 1. Let � be a decent hyper-relation. Then � satisfies A.
Proof. For each i ∈ I, we have Ai � Bi ⊂ ∪i∈IBi. Then, from (Ext), we get

Ai � B, and, due to (U), there holds ∪i∈IAi � ∪i∈IBi. �
Remark 2. The class of decent (semi-decent) hyper-relations is stable under the

intersection. That means that for any decent hyper-relations �1 and �2, a hyper-
relation defined by A � B if A �1 B and A �2 B, is decent. The stability under
intersection allows us to construct new dependency relations from the existing ones.
In the next section we present a more powerful construction of decent (semi-decent)
hyper-relation based on the use of choice functions.

We end this section with some examples.
Examples.
(1) The set-theoretical inclusion, i.e. A � B ⇔ A ⊆ B, is a transitive decent

relation.
(2) Consider a weak order ≤ on X. Let us say that a subset B is better than a

subset A, A � B, if for any a ∈ A there exists b ∈ B such that there holds
a ≤ b. Obviously such a defined hyper-relation � is decent, moreover, �
is transitive and complete. For a finite X, the reverse statement is also
true: any complete and transitive decent hyper-relation is obtained by the
above rule for some weak order on X. In fact, for x, y ∈ X, define x ≤ y
if {x} � {y}. Because of the Remark 1, we have to check that if, for some
a ∈ X, B ⊆ X, a � B, then there exists b ∈ B such that a ≤ b holds true.
Since B is a finite set, we consider a maximal element b ∈ B with respect
to ≤. Then, because of the union axiom U, there holds B � b. Hence
a � B � b, and because of transitivity we get a ≤ b. (Kreps in [9] gave
another characterization of hyper-relations of such a form.)

(3) Let < be a relation on X. Then, for subsets A and B, we set A � B if,
for every a ∈ A \ B, there exists an element b in a ∪ B such that a < b.
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(We consider here the set a∪B instead of B in order to do not exclude the
possibility a < a.) Such a hyper-relation is said to be binary hyper-relation.
A binary hyper-relation is a decent hyper-relation, and is a transitive decent
hyper-relation if the relation < is transitive.
Let us remark, that if we consider a relation < which is the strict part

of some weak order ≤ on X, then the hyper-relation defined above differs
from a hyper-relation of Example 2.

(4) A transitive decent hyper-relation is nothing but a dependency relation in
[5] or a complete implication system (see, for example, [7].

(5) A generalization of binary hyper-relations in the framework with uncer-
tainty is as follows. Suppose there is a set S of states of nature. A decision
maker has a list of relations <s on X which depend on s ∈ S. Then, for
subsets A and B, we set A � B if, for every a ∈ A \ B, and every s ∈ S
there exists an element b in a ∪ B such that a <s b. Such a hyper-relation
is decent. Later on we show that any decent hyper-relation takes such a
form.

(6) For a finite set X, Pattanaik and Xu defined the cardinality-base ordering
�c, A �c B if |A| ≤ |B|. This hyper-relation is transitive, satisfies Mon,
but fails to satisfy the union axiom U and therefore is not semi-decent.

3. Fundamental mappings

We present here constructions of a mapping from hyper-relations to choice func-
tions and a mapping from choice functions to hyper-relations.
Let us recall that a choice function on X is a mapping f : 2X → 2X , such that

f(A) ⊆ A for any subset A ⊆ X. One can consider the set f(A) as a set of ’chosen’
alternatives from A. We allow empty choice for some sets, that means that it might
occur f(A) = ∅ for some A’s. If, for any non-empty menu A ⊆ X, f(A) 6= ∅, then
f is called non-empty-valued. An alternative is said to be dummy if f(x) = ∅. If
there are no dummies, we say that a choice function is no-dummy. The set of all
choice functions on X is denoted by CF.
We associate to any relation < on X a choice function f< on X by the rule

(3.1) f<(A) = {a ∈ A | 6 ∃ a′ ∈ A such that a < a′}.

In other words the choice of a menu A is constituted from the undominated (within
A) alternatives. Such a choice function is called rationalizable by the relation <.
An alternative x is dummy if and only if x < x.

Let us construct a mapping κ from CF toHR. For a choice function f , we define
a hyper-relation �f= κ(f) by the rule

(3.2) A �f B if for every a ∈ A \B, there holds a 6∈ f(a ∪B).

Examples 7. For the choice function 1 (1(A) = A for every menu A), the
corresponding hyper-relation �1 is nothing but the set-theoretical inclusion ⊆.
8. Let < be a relation, and let f be the choice function rationalizable by <.

Then �f is exactly the hyper-relation from Example 3.
9. Let an element a ∈ X be a dummy for a choice function f , that is f(a) = ∅.

Then a �f ∅ that is a dummy for the corresponding hyper-relation �f .
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One can easily check that, for a choice function f , the hyper-relation �f defined
in (3.2) is semi-decent. Moreover, any semi-decent hyper-relation takes the form
�f for some (uniquely determined) choice function. Namely, we have the following

Proposition 1. The mapping κ : CF→ HR, f 7→�f , defines an antimonotone
bijection between the set of choice functions CF and the subset SDHR ⊂ HR of
semi-decent hyper-relations.

To prove this proposition, we construct a ’reverse’mapping ϕ : HR → CF,
which sends a hyper-relation � to a choice function f := φ(�) by the rule:

(3.3) f(A) = {a ∈ A such that does not hold a � A− a}.

Proposition 1 follows from two claims.

Claim 1. For every choice function f there holds f = ϕ(κ(f)).

In fact, for a set A and an element a ∈ A we get that a is not chosen from A
due to the choice function ϕ(�f )⇔ a �f A− a⇔ a /∈ f(a ∪ (A− a)) = f(A).
In particular, this establishes injectivity of the mapping κ.

Claim 2. For a semi-decent hyper-relation � there holds �= κ(ϕ(�)).

Let f be a choice function defined by (3.3), f = ϕ(�). We have to show that
A � B holds true if and only if A �f B holds true. Since hyper-relations � and �f
satisfy the axioms Cont and U, one can assume that A is a singleton a. If a ∈ B,
then a � B and a �f B hold true. Suppose now that a /∈ B. Then we have the
following sequence of equivalences

a �f B ⇔ a /∈ f(a ∪B) = ϕ(�)(a ∪B)⇔ a � (a ∪B − a) = B.

This proves the claim 2 and the proposition. �
Remarks. 1. In [15] the notion of essential elements was introduced, namely, for

a hyper-relation �, an alternative a ∈ A such that A � A−a is said to be essential
in A. Puppe in [15] considers a mapping E : HR → CF, E(�)(A) = {essential
elements in A}. (We allow E(�)(A) to be the empty set, but in [15] it was postulated
non-emptyness of such sets.) We claim that the mappings E and ϕ coincide on the
set of semi-decent hyper-relations SDHR.
In fact, a 6∈ f�(A) if a � A− a. By the union axiom U and monotonicity Mon

(A − a � A − a), a � A − a implies A � A − a, that means that a 6∈ E(�)(A).
This shows the inclusion E(�)(A) ⊆ f�(A). For showing the reverse inclusion, let
us consider an element a 6∈ E(�)(A), that is A � A− a. We have a ⊂ A � A− a,
and hence due to Cont, there holds a � A− a. This establish the reverse inclusion
and the claim is proven.

2. There are at least three more possible mappings from the set of choice func-
tions to the set of hyper-relations.
The first mapping is defined by associating to a choice function f a hyper-relation

�′f defined by
A �′f B ⇐⇒ a /∈ f(a ∪B) ∀ a ∈ f(A)−B.

That means that there holds a /∈ f(a∪B) only for elements a ∈ f(A)−B. Obviously,
A �f B implies A �′f B. However, such a defined hyper-relation satisfies only the
Monotonicity axiom Mon.
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The second mapping was considered in [15]: for a choice function f , a hyper-
relation is defined by the rule

A �′′f B ⇐⇒ f(A ∪B) ⊆ B.
This hyper-relation also satisfies only the Monotonicity axiomMon. Let us notice,
that if f is a heritage choice function (see next section for a formal definition of
what is a heritage choice function) then the following inclusion holds true �f⊆�′′f ,
that is A �f B ⇒ A �′′f B. (For a reader being familiar with the heritage choice
functions we give a proof of the latter claim. Suppose A 6�′′f B, that is there exists
a ∈ f(A ∪ B) such that a 6∈ B. Then since f is heritage choice function and
a ∈ A−B, we get a ∈ f(a∪B) (a∪B ⊂ A∪B and a ∈ f(A∪B)). Hence A 6�f B,
since A �f B implies a /∈ f(a ∪B)).
One more mapping was considered in [16, 18]

A �∗f B ⇐⇒ f(A ∪B) ∩B 6= ∅.
Such a defined hyper-relation satisfies only Mon. Thus, these three mapping do
not have so many properties as the mapping defined in (3.2).

The set CF of all choice function is stable with respect to the union, and any
choice function can be decomposed into the union of concordant choice functions.
Recall that a choice function is concordant if it satisfies the following axiom

• C Let Ai, i ∈ I be a non-empty collection of menus, and let a be such that
a ∈ f(Ai) for all i ∈ I. Then a ∈ f(∪Ai).

A semi-decent hyper-relation is said to be concordant if the mirror of the above
condition is satisfied:

• If x � ∪i∈IAi, then x � Ai for some i ∈ I.
For example, for a concordant hyper-relation �, there holds if x � A for non-

empty A, then x � a for some a ∈ A.
Thus, we get that any semi-decent hyper-relation can be represented as the

intersection of concordant hyper-relations.

4. Decent hyper-relations and Heritage choice functions

In this section we prove that the mapping (3.3) establishes a bijection between
the class HCF of the heritage choice functions and the class DHR of the decent
hyper-relations.
Recall, that a choice function f is heritage function if it satisfies the heredity

property
• H For any A, B, if A ⊆ B then there holds f(B) ∩A ⊂ f(A).

In other words, if an alternative a ∈ A is not chosen in a smaller set A, then it
is still the case in a bigger set B. For other equivalent formulation of this axiom3

see, for example, [11, 12]

Proposition 2. Let f be a heritage choice function. Then the hyper-relation �,
defined by (3.2), satisfies Ext, and hence (see Proposition 1) the hyper-relation �f
is decent.

3In the literature on stable matchings [17], the Heritage axiom is interpreted in terms of
substitutability : if a worker a is hired by a firm from the list A, she will be also hired in any
shorter list A \ a′, a′ 6= a.
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Proof. Consider three menus A, B, B′ such that there holds A � B′ ⊆ B. Then,
we have to show that A � B holds true. Let a ∈ A − B. Hence a ∈ A − B′ and,
due to A � B′, we have a /∈ f(a ∪ B′). Because of the heritage axiom H, a is also
not chosen from a larger sets a ∪B. This implies A � B. �
Proposition 3. Let a hyper-relation � satisfy the axiom Ext. Then the choice

function c = c�, defined by (3.3), is a heritage choice function.

Proof. Let A ⊆ B, and let a ∈ A ∩ B be such that a /∈ c(A). Then, due to the
rule (3.3), the latter means that a � A − a. Since A − a ⊆ B − a and a � A − a,
due to Ext, we get a � B − a, that is a /∈ c(B). �
Propositions 1—3 together establish the following

Theorem 1. The mapping ϕ being restricted to the set DHR of the decent
hyper-relation is a bijection with the set HCF of the heritage choice functions.

For decent hyper-relations (and heritage choice functions), the decomposition
procedure is more interesting than for semi-decent ones. Namely, any heritage
choice function can be represented as the union of choice functions, which satisfy
axioms H and C. Any concordant heritage choice functions is rationalizable by a
relation on X (see (3.1)). Because of this, we get the following

Proposition 4. Any decent hyper-relation takes the form of a hyper-relation
from Example 5.

Let a heritage choice function f ∈ HCF be decomposed as the union of a
collection {fi}i∈I of choice functions rationalizable by relations {<i}i∈I . Assume
X is finite. If among the relations {<i}i∈I there is at least one that is acyclic,
then the corresponding choice function fi is non-empty-valued. Hence f is also
non-empty-valued. The reverse is also true. Namely, if a heritage choice function
f is non-empty-valued, then there exists a decomposition f = ∪f<i , such that at
least one of the relations <i is linear (hence such <i is acyclic).

Proposition 5. Let f ∈ HCF be a heritage choice function on a finite set X,
and let �=�f be the corresponding decent hyper-relation. Then the following are
equivalent:

(1) f is non-empty-valued;
(2) There exists a linear order < on X, such that the rationalizable choice

function f< is inferior than f (that is, for any A ∈ 2X , f<(A) ⊆ f(A));
(3) � is majorated by a binary hyper-relation associated to some linear order

on X;
(4) The Plottization of f (a maximal Plott function dominated by f) is non-

empty-valued.

Proof. It is obvious that items 2 and 3 are equivalent. 2)⇒ 4) since Plottization
of f contains the choice function f<. It is also obvious that 4)⇒ 1). So, it remains
to check the implication 1)⇒ 2).
Let x1 belong to a non-empty set f(X). Set X2 = X − x1. If X2 is non-empty,

then pick an element x2 ∈ f(X2). Set X3 = X2 − x2, and pick x3 ∈ f(X3), and
so on until we exhaust the whole X. Take a linear order x1 > x2 > x3 > . . .. We
assert that the choice function f< rationalizable by < is inferior than f , that is, for
any menu A, the inclusion f<(A) ⊆ f(A) holds true. Let a be maximal element
in A with respect to the linear order < being restricted to A. Then f<(A) = {a}.
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It suffi ces to show that a ∈ f(A). Let a = xk. This means that A ⊆ Xk. By the
construction of the linear order <, we have a = xk ∈ f(Xk). Since a ∈ A, from the
heritage axiom H follows a ∈ f(A). �
Remark. Let � be a decent hyper-relation, such that the corresponding choice

function f = ϕ(�) is non-empty valued. Then consider the following chain of sets
X0 := X, X1 := X0 \ f(X0), X2 := X1 \ f(X1), . . ..
For a set A define the rank of A, rk(A), as a number k such that A ⊆ Xk and

A 6⊆ Xk+1. Then we define a complete ordering by the rule

A� B if rk(A) ≥ rk(B).
This is a complete transitive decent hyper-relation. We claim that A � B implies
A� B.
From the contrary. Suppose A � B, but rk(A) < rk(B). Let rk(A) = k and

rk(B) > k. Then there exists a ∈ A such that a ∈ f(Xk). Since B ⊆ Xk+1 =
Xk − f(Xk), a /∈ B. Moreover, a ∪B ⊆ Xk. Due to H, we get that such a belongs
to f(a ∪B), that is a 6� B, that contradicts to A � B. �
Let us remark, that this rank function generalizes the peeling rank from Statis-

tics. Namely, for a finite set of points X in an Euclidean space, let us consider the
following chain of sets X0 := X, X1 := X0 \ ex(X0), where ex(Y ) denotes the set
of points of Y which belong to the boundary of its convex hull, X2 := X1 \ ex(X1),
. . .. Then, for a subset A ⊂ X its rank is defined as above for this chain. This
peeling rank is used in non-parametric rank tests [8].

5. Transitive decent hyper-relations

Kreps in [9] studies the transitive decent hyper-relations. More precisely, in a
setting with no dummy alternatives, a decomposition-type result was obtained in
[9] based on a relationship between the transitive decent hyper-relations and the
closure operators4. Since Kreps was not aware of the relation between the closure
operators and the closed choice functions (see [6]), he did not establish any relations
between the transitive decent hyper-relations and the closed choice functions. In
this section, we fill this gap and also obtain a decomposition of a closed choice
function as the union of choice functions rationalizable by para-transitive relations.
For a decent hyper-relation �, denote by D := {d ∈ X | d � ∅} the set of of all

dummy elements of X. Because of the following lemma, we can consider no-dummy
transitive decent hyper-relations. (It is worth noticing here that for a no-dummy
transitive decent hyper-relation the corresponding choice function can attain empty
values for the sets whose cardinality is more than one.)

Lemma 2. Let � be a transitive decent hyper-relation. Then the following are
equivalent:

(1) A � B;
(2) A−D � B −D.
Proof. We claim that, for any menu B, there holds B � B − D. In fact, if an

element b from B is not dummy, it lies in B − D and b � B − D. If the element

4Notice that the transitive decent hyper-relations have been studied in the literature on im-
plication systems with the name of complete implication system, and the key Lemma 2 in [9] was
proven by Anderson in 1974 see, for example, [7].
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b is dummy then we have b � ∅ ⊆ B − D, and by Ext there holds b � B − D.
Therefore B � B −D.
Let now A � B. Then, since A − D ⊆ A � B, we get A − D � B. Because

B � B −D, transitivity of � implies A−D � B −D.
Vice versa. Let A − D � B − D. Then, since A � A − D, we get, due to

transitivity, A � B −D. Since B −D ⊆ B, by the axiom Ext, we get A � B. �

Thus, without loss of generality, we consider no-dummy transitive hyper-relations.

Example 10. Let ≤ be a pre-order on X, that is a reflexive and transitive
binary relation on X. Define a hyper-relation �:=�≤ by the rule (compare with
Example 2):

A � B, if for any a ∈ A, there exists b ∈ B such that a ≤ b.

Such a defined hyper-relation is a no-dummy transitive decent hyper-relation. We
call such a hyper-relation as a hyper-relation associated with a pre-order. In this
section we show that any no-dummy transitive decent hyper-relation takes the form
of the intersection of a collection of hyper-relations associated with pre-orders.
Let us consider the following two prominent preorders: (1) ≤ is a weak order

(see Example 2 above), (2) ≤ is a dichotomous weak order (namely, there exist at
most two sets of equivalence). Then there holds

Proposition 6. The following are equivalent:

(1) a hyper-relation � is no-dummy, transitive, and decent;
(2) � is the intersection of hyper-relations associated with pre-orders hyper-

relations;
(3) � is the intersection of hyper-relations associated with weak orders;
(4) � is the intersection of hyper-relations associated with dichotomous weak

orders.

Proof. The implications 4) ⇒ 3) ⇒ 2) ⇒ 1) are obvious. Thus, we prove the
implication 1)⇒ 4).
Let � be a no-dummy transitive decent hyper-relation. A set F is called closed,

if x � F implies x ∈ F . For example X is a closed menu. Since � is no-dummy,
the empty set ∅ is closed. For a set A, we consider the set σ(A) := {x ∈ X |x � A}.
There holds A ⊆ σ(A) � A.

Claim A. The set σ(A) is the minimal closed set which contains A.

Firstly, σ(A) is closed. In fact, let x � σ(A). Then, since σ(A) � A, due to
transitivity, we get x � A, and hence x ∈ σ(A). Secondly, let F closed and let
A ⊆ F . Since, for any x ∈ σ(A), we get x � A, due to the axiom Ext, there holds
x � F , and, since F is closed, x ∈ F holds true. Thus σ(A) ⊆ F and the claim
holds true. �

As a consequence of this claim, we get that F is closed iff F = σ(F ).

Claim B. A � B if and only if A ⊆ σ(B).

The implication A � B ⇒ A ⊆ σ(B) is obvious. The reverse implication follows
from A ⊆ σ(B) � B and the axiom Cont . �
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To prove the implication 1)⇒ 4), let us define for each closed menu F a dichoto-
mous weak order ≤F on X by the rule:

x ≤F y, if either x ∈ F, or y /∈ F.

The hyper-relation �F associated with ≤F is as follows:

A �F B if either A ⊆ F, or B 6⊆ F.

Claim C. The hyper-relation � is equal to the intersection of hyper-relations
�F , while F runs over the set of closed menus.

Suppose A � B, that is equivalent to A ⊆ σ(B) (Claim B). We have to check
that, for any closed menu F , A �F B holds true. If A ⊆ F , then we are done.
Assume A 6⊆ F , then we show that there holds B 6⊆ F (that implies A �F B).
From the contrary, suppose B ⊆ F ,then due to Claim A, we have σ(B) ⊆ F . But
due to the Claim B, we have A ⊆ σ(B), that implies A ⊆ F , a contradiction. �
Remark. The equivalence 1) ⇔ 3) has been established in [9] (later this

equivalence was established by Malishevski in [10]. The meet-presentation of no-
dummy transitive decent hyper-relations due to Kreps [9] also follows from this.
Let �= ∩s∈S ≤s be the decomposition from the item 3 of Proposition 6, and let
us be a utility function representing ≤s, for any state of the nature s ∈ S. Then,
for a menu A ⊆ X define the vector u(A) ∈ RS as u(A) = (maxa∈A us(a), s ∈ S).
Hence, A � B if and only if u(A) ≤ u(B) coordinate-wise.

Now we present a characterization of transitive decent hyper-relations in terms
of choice functions. For that we need to recall the notion of a closed choice function.

Definition. A choice function f is said to be closed if f is heritage and satisfies
the following axiom

• W Let x /∈ A. If x ∈ f(x ∪A) and y /∈ f(y ∪A) for every y from some set
Y , then x ∈ f(x ∪ Y ∪A).

Remark. In [6] a particular form of this axiom with singleton Y was considered.
For a finite X, this axiom is equivalent to its particular form with singleton Y .

Theorem 2. For a decent hyper-relation � the following are equivalent
(1) The hyper-relation � is transitive;
(2) The corresponding choice function f = ϕ(�) is closed.

Proof. Without loss of generality, we assume that � and f are no-dummy.
The implication 1) ⇒ 2). Let x, y and A be as in the formulation of W, and

suppose that x ∈ f(x∪A), y /∈ f(y∪A) for every y ∈ Y , but x /∈ f(x∪Y ∪A). Due
to definition of the mapping ϕ, y /∈ f(y ∪ A) means that y � A for every y ∈ Y .
Hence Y � A and (due to U) Y ∪ A � A. The relation x /∈ f(x ∪ Y ∪ A) means
x � A ∪ Y . Now, due to transitivity of �, we get x � A, that is x /∈ f(x ∪ A). A
contradiction.
The reverse implication 2) ⇒ 1). We have to check that, for a closed choice

function f , the hyper-relation �:=�f is transitive. That is A � B and B � C
imply A � C. Because of the union axiom U, we can assume that A is a singleton.
Thus A = {a}; obviously we can assume that a /∈ C ∪B.
Let us set Y = B − C. Since for every y ∈ Y there holds y � C and y /∈ C, we

have y /∈ f(y ∪ C) for every y ∈ Y . Suppose that a 6� C. Then a ∈ f(a ∪ C), and
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from the axiom W we have a ∈ f(a ∪ Y ∪ C) = f(a ∪ B). The latter means that
a 6� B that contradicts the assumption that a � B. �
Now, we use Proposition 6 in order to get a representation of a closed choice

function as the union of binary choice functions.
Let ≤ be a pre-order, let � be a hyper-relation associated to ≤, and let f = ϕ(�).

Then a ∈ f(A)⇔ does not true a � A−a⇔ does not true that there exists x ∈ A−a
such that a ≤ x ⇔ for any x ∈ A − a does not true a ≤ x ⇔ if a ≤ x for some
x ∈ A, then x = a.
This means that a maximal element of ≤ within A belongs to f(A) if and only

if A does not contain elements being equivalent to this maximal element.
For a pre-order ≤, let us define a relation < on X by the rule:

x < y if and only if x 6= y and x ≤ y,
Then the implication ’if a ≤ x for some x ∈ A, then x = a ’reads as follow: for
any x ∈ A, the relation a < x is not the case.
Such a defined relation < has an internal characterization. Namely, let us say

that a relation < on X is para-transitive, if < is irreflexive, and from x < y < z and
x 6= z it follow that x < z. It is obvious, that if < is defined as above by a pre-order
≤, then < is para-transitive. Vice versa, let < be a para-transitive hyper-relation.
Then define a relation ≤ by the rule

x ≤ y, if x < y or x = y.

Such a defined relation ≤ is reflexive (obviously) and transitive. In fact, let x ≤
y ≤ z. Then if x = y or y = z, then x ≤ z. If x 6= y and y 6= z, then x < y < z,
and, due to para-transitivity, we have x < z and hence x ≤ z. Thus, summing up,
we get

Corollary. Any closed (and no-dummy) choice function can be represented as
the union of choice functions rationalizable by para-transitive relations.

6. Meet-linear hyper-relations and Plott choice functions

In this section we assume that X is a finite set. For a linear order < on X, the
a hyper-relation associated to < (see Example 8) is said to be quasi-linear hyper-
relation. We consider here the case with no-dummies, while the case with dummies
requires only a rather simple modification.
In this section we consider a subclass of the transitive decent hyper-relations

which can be represented as the intersections of the quasi-linear hyper-relation.
This subclass was considered in several papers (see the survey [3]). Nerhing and
Puppe in [13] establish a relation between such a subclass and the Plott choice
functions. In [5] this class is studied under the name framed dependency relations.
Let us recall that a Plott choice function is a choice function that satisfies the
so-called path-independence property, i.e.: for any A and B

• PI f(A ∪B) = f(f(A) ∪B)
is a Plott function. It is easy to check that any no-dummy Plott function is

non-empty valued.

Let us say that a hyper-relation satisfies Lattice equivalence if, for any equivalent
sets A and B, that is A � B and B � A, the following axiom holds

• LE A ∪B � A ∩B.
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Note, that, for a transitive hyper-relation which satisfies Mon, the axiom LE
implies equivalence A ∩B and A ∪B.
Theorem 3. Let � be a transitive decent no-dummy hyper-relation and let

f := ϕ(�) be the corresponding choice function. Then the following are equivalent
(1) � has a representation as the intersection of quasi-linear hyper-relation;
(2) � satisfies the axiom LE;
(3) f is a Plott function.
Proof. Because the axiom LE is stable under intersection, that is the intersection

of hyper-relations satisfying LE also satisfies LE, we get the implication 1)⇒ 2).
For the implication 2) ⇒ 3), recall that, for a ∈ A, a 6∈ f(A) if and only if

a � A− a. Because of the union axiom U this implies A � A− a, or equivalently,
A is equivalent to A− a. Thus, f(A) is equal to the intersection of all A− a which
are equivalent to A. This and LE imply A � f(A).
Thus, we have to show that f satisfies H and the outcast axiom O (for equiv-

alence between PI and these two axioms see, for example, [4, 12]). H is satisfied
because � is decent. Recall the outcast axiom5

• O For A and B, if f(A) ⊆ B ⊆ A then f(A) = f(B).
The inclusion f(A) ⊆ f(B) follows from the heritage axiomH. Thus, to establish

2) ⇒ 3) it remains to verify the inclusion f(B) ⊆ f(A). Suppose on the contrary
that there exists and element b ∈ f(B) such that b 6∈ f(A). Then f(A) ⊆ B − b.
Since B is equivalent A and the latter set is equivalent to f(A), due to Cont it
follows b � f(A). Then, due to Ext, we get b � B − b, that is equivalent to
b 6∈ f(B). A contradiction. Thus f is a Plott function.
The implication 3) ⇒ 1). It is known (see [1, 4, 13]) that a Plott function

f is equal to the union of a collection linear Plott functions (a choice function
rationalizable by a linear order is a linear Plott function). Therefore, the hyper-
relation � is equal to the intersection of the corresponding quasi-linear hyper-
relations. �
It is worth noticing that the equality in the axiom PI might be relaxed. Namely,

we have the following:

Proposition 7. A choice function f is a Plott function if and only if, for any
A and B ∈ 2X , there holds
(6.1) f(f(A) ∪B) ⊆ f(A ∪B) ⊆ f(A) ∪B.
Proof. Obviously, PI implies (6.1). Let us check the reverse implication. Let us

first check validity of axioms H: Let A ⊆ B. Then denote by C = B−A and apply
the second inclusion in (6.1) to sets A and C. We get

f(B) = f(A ∪ C) ⊆ f(A) ∪ C.
Hence f(B)∩A ⊆ (f(A)∪C)∩A = f(A), the latter equality holds because A∩C = ∅.
Therefore, the heritage axiom H holds true.
Because of this, since f(A) ∪B ⊂ A ∪B, we get

f(A ∪B) ∩ (f(A) ∪B) ⊆ f(f(A) ∪B).
This inclusion together with (6.1) give f(A ∪B) = f(f(A) ∪B), that is PI. �

5)In the language of essential elements, this axiom takes the form: if A � A−x and A � A−y,
then A � A− x− y
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In Remark 2 after Proposition 1 (Section 3), we defined two other mappings
from choice functions to hyper-relations f 7→�′f and f 7→�′′f . It turns out that for
the subclass of Plott functions, these mappings coincide with the main mapping
f 7→�f and with mapping from [5]. Namely, we have the following

Proposition 8. Let f be a Plott function. Then, for any sets A and B, the
following are equivalent

(1) A �f B;
(2) A �′f B;
(3) A �′′f B (that is f(A ∪B) ⊆ B);
(4) f(A ∪B) = f(B).

Proof. The implication 1) =⇒ 2) always true.
Let us check 2) =⇒ 3). Because of PI, we have f(A ∪ B) = f(f(A) ∪ B). Let

us consider the set f(A) ∪ B as the union of sets a ∪ B, while a runs over the set
f(A). Then, due to PI, we have

f(f(A) ∪B) = f(∪a∈f(A)f(a ∪B)).

Because of 2), for any a ∈ f(A), we have f(a ∪ B) ⊆ B. Hence due to the union
axiom U, there holds ∪a∈f(A)f(a ∪B) ⊆ B, from that follows f(A ∪B) ⊆ B.
The implication 3) =⇒ 4): f(A∪B) = f((A∪B)∪B) = f(f(A∪B)∪B) = f(B)

(the latter equality holds due to f(A ∪B) ⊆ B.
Finally, the implication 4) =⇒ 1). Let us verify, that, for any a ∈ A, there holds

f(a ∪B) ⊆ B. In fact,

f(a ∪B) = f(a ∪ f(B)) = f(a ∪ f(A ∪B)) = f(a ∪A ∪B) = f(A ∪B) ⊆ B.

�
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