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Abstract  
 
This paper introduces and analyses, both normatively and statistically, a new class of 
inequality measures. This class generalizes and comprises different well-known families of 
inequality measures as particular cases. The elements of this new class are obtained by 
weighting local inequality evaluated through the Bonferroni curve. The weights are the 
density functions of the beta distributions over [0,1]. Therefore, the weights are not 
necessarily monotonic. This allows us to choose the inequality measures that are more or 
less sensitive to changes that could take place in any part of the distribution. As a 
consequence of the different weighting schemes attached to the indexes, the elements of 
the class introduce very dissimilar value judgements in the measurement of inequality and 
welfare. The possibility of choosing the index that focuses on a specific percentile, and not 
necessarily on the extremes of the distribution, is one of the advantages of our proposal. 
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1. Introduction 

If inequality is assessed using a single inequality measure, a number of important 

dimensions of the change in inequality due to a certain policy will not be picked up. Each 

inequality measure incorporates assumptions about the way in which income differences in 

different parts of the distribution are summarized. It is therefore desirable to calculate a wide 

range of inequality indexes incorporating different assumptions, but at the same time having a 

common theoretical foundation in order to thoroughly evaluate a redistribution policy. Although 

indexes with distinct theoretical foundations are occasionally employed together
1
, this 

procedure can make it difficult to evaluate their capacity as complementary measures of 

inequality. It is therefore convenient to have homogeneous families of indexes that provide 

sufficient information about the distribution and at the same time differ from and complement 

one another in terms of their normative aspects.  

This paper introduces a class of inequality measures whose elements can be expressed 

as a weighted average of the local inequality in each income percentile. The weights are the 

density functions of the beta distributions over [0,1], which depend on two positive real 

parameters. When both parameters change, a set of weights is obtained. These weights represent 

different attitudes in terms of how inequality is evaluated throughout the income distribution. 

Consequently, we obtain a family of indexes that have common properties and a clear formal 

analogy, but at the same time differ and complement each other in the ethical characteristics. 

The Gini (1914) and Bonferroni (1930) indexes belong to this class of inequality 

measures, as well as families of inequality measures previously described in the literature such 

as the generalized Gini measures of inequality (Kakwani, 1980; Yitzhaki, 1983) and the most 

recent proposals of Aaberge (2000, 2007) and Imedio et al. (2011). In the indexes of these 

families, the weights attached to local inequality behave monotonically throughout the income 

                                                           
1
 It is common practice to combine the Gini index (1914) with the Atkinson indexes and/or entropy 

indexes. Newbery (1970) highlights the differences between the theoretical foundations of the Gini index 

and the Atkinson indexes. The entropy indexes derive from information theory. 
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distribution. The greatest weight is assigned to one of the extremes. In the class of inequality 

measures that we propose, the weights are not necessarily monotonic. They can achieve the 

maximum or minimum value in any percentile. One of the advantages of our proposal is the 

possibility of choosing the index that focuses on a specific percentile, and not necessarily on the 

extremes of the distribution. This flexibility allows us to notice, through a proper selection of 

indexes, that the impact on inequality of a certain policy depends not only on the interval of 

incomes more affected by this policy, but also on the index used. The empirical illustration 

deals with this issue. 

Despite the variety of inequality measures in the literature, the previous reasons justify 

the interest of our proposal. From the theoretical point of view, an additional advantage is the 

broader and overall treatment of different families of indexes that have been proposed in the 

literature in a scattered way, showing their common foundations.  

Normative aspects are addressed following Yaari’s approach (1987, 1988) based on 

social preference distributions. This approach for relating inequality and welfare is more general 

than the classic AKS (Atkinson, 1970; Kolm, 1966; Sen, 1973), making it an easy task to 

compare the level of inequality aversion
2
, or preference for equality, that the indexes introduce. 

In some cases, it also allows indexes to be ordered in terms of this criterion. Families of 

inequality measures that show increasing inequality aversion approaching the maximum 

aversion, or Rawlsian leximin
3
 belong to this class of inequality measures, as well as those that 

show decreasing inequality aversion. Social preference distributions also make it easy to analyse 

the behaviour of the indexes with respect to principles that are more demanding than the Pigou-

Dalton Principle of Transfers (PT), namely the Principle of Positional Transfer Sensitivity 

(PPTS) and the Principle of Diminishing Transfers (PDT). Both the PPTS and the PDT analyse 

                                                           
2
 An index shows inequality aversion if it satisfies the Pigou-Dalton Principle of Transfers. This principle 

states that an income transfer from a richer to a poorer individual, whose ranks in the income distribution 

remain unchanged (progressive transfer), reduces income inequality. When the level of inequality 

aversion increases, the effect of this type of transfer on the inequality index is greater.  
3
 The Rawlsian leximin focuses on the poorest individual of the population. Between two distributions, 

the distribution with the greater minimum income is preferred or, in the event of equality, the distribution 

in which the minimum income is less frequent. This approach is derived from the theory of social justice 

defined by Rawls (1971). 
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the particular sensitivity of the indexes to progressive transfers that may occur in different parts 

of the distribution. 

 

2. Lorenz and Bonferroni curves. Associated indexes. 

Let us assume that the income distribution of a population is represented by the random 

variable X, whose domain is the semi-straight positive real, +
0R = [0, ∞), where F is its 

distribution function
4
, and <==µ ∫

∞

0

)x(xdF)X(E ∞ its mean income. 

The associated Lorenz curve, L(p), p=F(x), is defined by: 

[ ] [ ] 1,p0  , (t)dtF
µ

1
 sdF(s)

µ

1
L(p)  ,  1 0,1 0, :L

p

0

1

x

0

≤≤==→ ∫∫
−   

where t}F(s) :inf{s(t)F 1 ≥=− , 0≤t≤1, is the inverse to the left of F, F-1
(0)=0. For each p=F(x), 

L(p) is the proportion of total income volume accumulated by the set of units with an income 

lower than or equal to x. It is clear that for 0≤p≤1 it is L(p)≤p, and  L(p)=p in the case of perfect 

equality and L(p)=0 for 0≤p<1, L(1)=1 if the concentration is maximum. For any distribution, 

X, the Lorenz curve is increasing and convex and given the mean income, the density function 

of X is obtained from the curvature of L(p). These properties are the result of the following 

equalities 

1.p0  ,  0
(p))µf(F

1
(p)L   ,  0 

µ

(p)F
(p)L

1

´´
1

´ <<>=>= −

−

 

By means of the Lorenz curve, the Gini inequality index, G, is defined as  

∫ ∫−=−=
1

0

1

0

dp)p(L21dp))p(Lp(2G

  

The value of this index is equal to twice the area between the Lorenz distribution curve and the 

curve corresponding to perfect equality. It is a normalized index, G∈[0, 1]. 

                                                           
4
 Sometimes F is assumed to be continuous in order to obtain theoretical results in a simpler manner. In 

such a case, f(x)=F´(x) is the density function of the distribution. 
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A simple transformation of the Lorenz curve allows the information contained in the 

curve to be interpreted in an alternative manner. Bonferroni (1930) defines his index through the 

curve
5
 

[ ] [ ]  

0.p  ,  0

, 1p0 , 
p

)p(L

)p(B  ,  1 ,01 0, :B








=

≤<
=→  

It satisfies B(p)≤1, 0≤p≤1. For an egalitarian distribution the curve is B(p)=1, 0<p≤1, whereas if 

the concentration is maximum, the curve is B(p)=0, 0≤p<1 and B(1)=1. In the literature, B(p) is 

known as the Bonferroni curve or the scaled conditional mean curve, given that: 

0.B(0)  , 1F(x)p0  , 
))p(FX/X(E

)p(B
1

=≤=<
µ
≤=

−

 

That is, if p=F(x) is the proportion of units whose income is lower than or equal to x, B(p) is the 

ratio between the mean income of this group and the mean income of the population. 

Although from a formal standpoint the Bonferroni curve represents inequality in an 

equivalent manner to the Lorenz curve and both curves are determined mutually, the 

information they yield is different. The values of L(p) are fractions of the total income, while 

the values of B(p) refer to relative income levels. 

The shape of B(p) depends on the shape of the underlying distribution, F. It is verified: 

0
))t(F(f

tdt

p

1
)p('B

p

0
12

>
µ

= ∫ − ,  ∫ −

−

µ
−=

p

0
31

12

3 )))t(F(f(

dt))t(F('ft

p

1
)p(''B , 

provided that 0)))p(F(f/p(lim
12

0p

=−
+→

. Therefore, B(p) is increasing but the concavity/convexity 

of the Bonferroni curve depends on the concavity/convexity of the associated distribution. If F 

is convex (concave), in which case f is increasing (decreasing) and the majority of the 

population has high (low) incomes, B(p) is concave (convex). If f is bell shaped and 

asymmetrical to the right, F is convex/concave and B(p) is concave/convex. When the 

distribution function is concave/convex, the lowest and the highest incomes are the most 

                                                           
5
 In the following equality, if the minimum income is x0>0, then µ=== +

→ +
/x)0('L)p/)p(L(lim)0(B 0

0p
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frequent and there is a tendency for polarization, in which case B(p) is convex/concave. That is, 

unlike what occurs with the Lorenz curve, the shape of the Bonferroni curve yields information 

on the associated distribution. 

In the graphic analysis, the differences in inequality between two distributions can be 

more clearly observed with their corresponding Bonferroni curves than with the Lorenz curves. 

Figure 1 represents these curves for the distributions of annual disposable income for Spanish 

households before and after benefits in 2007 using EU-SILC data. 

Figure 1. Lorenz curve and Bonferroni curve 

There is practically no difference between the Lorenz curves, while the separation 

between the Bonferroni curves is greater, especially in the lower tail of the distribution.  

Although this type of interpretation is not statistically significant, it facilitates comparisons. 

From curve B(p), the Bonferroni index
6
, B, is defined as  

dp
p

)p(Lp
dp))p(B1(dp)p(B1B

1

0

1

0

1

0

∫∫∫
−=−=−= .  

Its value coincides with the area between the Bonferroni curve of the existing distribution and 

the curve corresponding to the case of perfect equality. It is evident that B∈[0, 1].  

When each of these curves is compared in a certain percentile x=F
-1
(p), 0≤p≤1 with its 

corresponding curve in case of equidistribution, we obtain the inequality accumulated up to this 

percentile. If we use the Lorenz curve, then: 

)p(Lp)p(DL −= , 0≤p=F(x)≤1  [1] 

is the difference between the share in the total amount of income of individuals whose income is 

lower than or equal to x in the case of equidistribution and the real share in total income in the 

distribution under consideration. 

If we consider the Bonferroni curve, the function 

                                                           
6
 Very little attention has been given to this index in the literature on economics up to relatively recent 

years. Nygard and Sandström (1981), Tarsitano (1990), Giorgi and Crescenzi (2001) and Giorgi and 

Nadarajah (2010) refer to the properties of this index. In Chakravarty (2007) and Bárcena and Imedio 

(2008), the B index is interpreted as a deprivation measure. 
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,
)xXX(E

)p(B1)p(DB µ
≤−µ

=−=  0≤p=F(x)≤1 [2] 

measures the relative difference between the mean income of the population and the mean 

income of individuals whose income is lower than or equal to x. 

Although both curves are determined mutually, we introduce value judgements when 

choosing one of them to measure local inequality because we attach greater or lesser importance 

to inequality located in certain parts of the distribution. Local inequality measured through 

DL(p) is greater in the middle of the distribution and p/)p(D)p(D LB = is greater on the left-

hand side of the distribution. Effectively, )p(DB  is strictly increasing in )1,0( , 1)0(DB =+ , 

0)1(DB = , while )p(DL  reaches it maximum value in )(Fp µ= , with .0)1(D)0(D LL ==  

In the next section we introduce a new class of inequality measures that is the main 

contribution of this paper. In this class, local inequality is measured by means of the function  

)p(DB and the density functions of the beta distribution in [0,1] are used as weights. 

 

3. The ββββ class of inequality measures 

Let us assume R]1 ,0[:D →  is a function such that for each ]1,0[p∈ , )p(D  measures 

inequality accumulated up to percentile p and R]1 ,0[: →ω  is a non-negative weight function 

such that 1)x(dF))x(F(dp)p(
0

1

0

=ω=ω ∫∫
∞

. It is clear that the real number  

∫ ω=ω

1

0

,D dp)p()p(DI  

measures inequality in the distribution F. Its value depends on the functions D and ω, which 

respectively introduce a way to evaluate cumulative local inequality and a criterion to weight 

this inequality along the income distribution. This procedure to generate inequality indexes 

underlies (sometimes in an implicit manner) the papers of Amato (1948), Giacardi (1950a, 

1950b), Mehran (1976), Benedetti (1980), Yitzhaki (1983) and Piccolo (1991), among others. 
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In the class of indexes that we propose, local inequality is measured by means of the 

function p/)p(D)p(D LB = defined in [2], and the density functions of the beta distribution in  

[0, 1] are used as weights. That is: 

0 t0,s ,)p1(p))t,s(b()p(  ,R]1 ,0[:
1t1s1

t)(s,0)t,s( >>−=ω→ω −−−+
, [3] 

where b(s,t) is the Euler beta function.  

The above is set out in the following definitions. 

Definition. For each ++ ×∈ RR)t,s( , the index I(s,t) is given by: 

∫∫
−−− −−=ω=

1

0

1t1s1
)t,s(

1

0

B dp)p1(p))p(B1())t,s(b(dp)p()p(D)t,s(I . [4] 

We denote the biparametric set ββββ= 0t,s)}t,s(I{ >  as the beta class of inequality measures. 

It is immediate that )t,s(I  (respectively )t,s(Iµ ) is a relative (respectively absolute) 

measure of inequality, with I(s,t)=0 in case of equidistribution and I(s,t)=1 in case of maximum 

concentration. That is, )t,s(I  is a normalized compromise index. 

The elements of ββββ are consistent with the ordering of the distribution induced by the 

Bonferroni curve, and for s ≥ 2 with those induced by the Lorenz7 curve. Therefore, the 

elements of ββββ satisfy the Pigou-Dalton Transfer Principle: progressive transfers decrease income 

inequality. 

The ββββ class adds a broad set of judgements relative to the weight that the social 

evaluator attaches to the local inequality accumulated in different parts of the distribution. These 

judgements are derived from the shape of the function ω(s,t)(⋅). So, we have: 

(i) If 0 < s < 1, 0 < t < 1, then ω(s,t)(p) is U shaped, is symmetric for s=t, and reaches its 

minimum value for )2ts/()1s(p −+−= .  

(ii) If 0 < s < 1, t ≥ 1, ω(s,t)(p) is decreasing and convex. 

(iii) If s ≥ 1, 0 < t < 1, ω(s,t)(p) is increasing and convex. 

                                                           
7
 If X and Y are two income distribution functions ( )p(B)p(B YX ≥ , 0 ≤ p ≤ 1)⇒ ( )t,s(I)t,s(I YX ≤ ). 

Analogously, the Lorenz consistency: ( )p(L)p(L YX ≥ ) ⇒ ( )t,s(I)t,s(I YX ≤ ). 
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(iv) If s = 1 (respectively t = 1), t ≥ 1 (respectively s ≥ 1), ω(s,t)(p) is decreasing 

(respectively increasing), and ω(1,1)(p) = 1. 

(v) If s >1, t >1, ω(s,t)(p) is bell shaped, if s = t it is symmetric and reaches its maximum 

for  )2ts/()1s(p −+−= . 

Therefore, in (i) (respectively (v)) less (more) weight is attached to local inequality in 

the middle incomes and more (less) weight to the tails. These weights are more focused in the 

middle incomes as s and t are greater and closer to each other. In the rest of the cases, except for 

s = t = 1, greater weight is attached to the local inequality in one of the tails of the distribution. 

Figure 2 shows the functions ω(s,t) for different values of its parameters. 

Figure 2. ω(s,t) functions. 

When local inequality is measured through the Lorenz differences, 

DL(p)=p−L(p)=pDB(p), an equivalent expression for the indexes is: 

∫
−−− −−=

1

0

1t2s1 dpp)(1L(p))p(pt))(b(s,t)I(s, . [5]  

Nevertheless, I(s,t) is not really a weighted mean of DL(p) because the weights used are the 

functions: 

0 t0,s ,p)(1pt))(b(s,
p

(p)ω
(p)  π,R1] [0,:π 1t2s1t)(s,

t)(s,t)(s, >>−==→ −−−+ , [6]  

and .1)1s/()1ts(dp)p(

1

0

)t,s( ≠−−+=π∫  

Expression [5] proves that the elements of ββββ are linear measures of Mehran (1976). 

They can also be expressed in terms of the income differences µ−− )p(F 1 , 0 ≤ p ≤ 1, as 

∫ Πµ−
µ

= −
1

0

)t,s(
1 dp)p())p(F(

1
)t,s(I , 

where 

)p()p( )t.s(
'

)t,s( π=Π , 0<p<1, ∫ =Π
1

0

)t,s( 0dp)p( . 
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The last condition for normalized indexes is equivalent to 1)1()t,s( =Π . 

The above results are summed up in the following proposition.  

Proposition 1. The ββββ class is a subset of the linear measures of Mehran. Their elements are 

compromise indexes and consistent with the ordering of the distribution induced by the 

Bonferroni curve, and for s ≥ 2 with those induced by the Lorenz curve. 

 

The ββββ class comprises not only known indexes, but also families of inequality measures 

frequently used in the literature. For )1,1()t,s( =  and )1,2()t,s( =  we obtain the Bonferroni, B, 

and Gini, G, coefficients, respectively: 

Bdp))p(B1()1,1(I
1

0

=−= ∫ , [7] 

Gdp))p(Lp(2)1,2(I
1

0

=−= ∫ . [8] 

For some particular values of the parameters of ββββ, we obtain families that generalize the G and 

B indexes. For s = 2 we obtain the family of the generalized Gini indexes, γγγγ = {I(2,t)}t>0, where  

=−−+=−−+= ∫∫
−−

1

0

1t
1

0

1t
dp)p1))(p(Lp()1t(tdp)p1(p))p(B1()1t(t)t,2(I  

∫
−−+−=

1

0

1t
dp)p(L)p1()1t(t1          , t > 0. [9] 

If t = 1 and ,...}2,1{Ns =∈  is a positive integer, we obtain the countable family 

αααα={I(s,1)}s∈N defined in Aaberge (2007).  

∫ ∫∫
−−− −=−=−=

1

0

1

0

2s2s
1

0

1s
dp)p(Lps1dpp))p(Lp(sdpp))p(B1(s)1,s(I , s>0. [10] 

B and G belong to this family. 

When s =1, another interesting family is obtained. The elements of this family are:  

0 t,dp)p(B)p1(t1dp)p1(p))p(Lp(tdp)p1))(p(B1(t)t,1(I

1

0

1t

1

0

1

0

1t11t >−−=−−=−−= ∫∫ ∫
−−−− . [11] 
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B also belongs to this family. Imedio et al. (2011) introduce and analyse the countable family, 

δδδδ={I(1,t)}t∈N, and compare it, in normative terms, with αααα and γγγγN={I(2,t)}t∈N the last one being γγγγ 

restricted to positive integer values of the parameter. 

In the indexes belonging to the families αααα and δδδδ, the differences )p(DB  and )p(DL  are 

weighted monotonically along the distribution. In γγγγ only the Lorenz differences are weighted 

monotonically. In these three families the focus is on one of the tails of the distribution. On the 

other hand, we can choose indexes in class ββββ that are more sensitive in certain parts of the 

distribution, or even in a specific percentile. If policymakers are interested in both tails of the 

distribution and attach less weight to the inequality accumulated by middle incomes, they must 

select an index )t,s(I  with )1 ,0()1 ,0()t ,s( ×∈ . In this case, when t increases (s), given s (t), the 

minimum value of the weight is reached for values of p that approach 1 (0). Particularly, if s = t, 

we obtain the minimum of the weight function for p = 0.5. On the contrary, if policymakers 

want to use an index that is more sensitive to changes taking place in the middle of the 

distribution, they must consider an index in which ) ,1() ,1()t ,s( ∞+×∞+∈ . Given s (t), the 

maximum weight is attached to incomes with values of p that approach 0 (1) as t (s) increases. 

In particular, if s=t, the weight function is bell-shaped and symmetric with respect to p=0.5, 

where it reaches its maximum. In short, the parameters t and s introduce different value 

judgements in measuring inequality. 

When the parameters s and t are both positive integers, NN)t,s( ×∈ , we obtain a set of 

indexes that we will call the subclass ββββN, ββββN ⊂ ββββ. The cardinal of ββββN is less than the cardinal of 

ββββ, but the set of value judgements introduced by the elements of ββββN in the evaluation of 

inequality is still wide. Among its elements we find classic indexes such as B and G, families 

that generalize these indexes and uncommon indexes that are interesting by themselves. ββββN is 

represented in the following triangular diagram. 
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The vertex of the triangle is the Bonferroni index, B=I(1,1). Family αααα={I(s,1)}s∈N is located on 

the right-hand side. On the left side of the triangle, whose vertex is the Gini index G=I(2,1), we 

find the indexes of the family γγγγN={I(2,t)}t∈N. The elements of δδδδ={I(1,t)}t∈N  are on the left side 

of the triangle. 

Other interesting families that belong to ββββN are those whose elements are the indexes in 

each row of the triangular diagram. The sum of the parameters of the indexes of each of these 

families (finite) is a constant. In row n − 1, n ≥ 2, we have n−1 indexes, such that nts)}t,s(I{ =+ :  

)1 ,1I(n  2), 2,I(n  ......, 2),n I(2,  ,)1n ,1(I −−−− . 

The weight these indexes attach to the accumulated local inequality, as assessed by )p(DB ,  

1sn1s
)sn,s( )p1(p

)!1sn()!1s(

)!1n(
)p( −−−

− −
−−−

−=ω , 

is strictly decreasing for s=1, bell-shaped, and takes it maximum for 2n/)1s(p −−= , 

2ns2 −≤≤ ; and is strictly increasing for s = n−1. Therefore, given s+t, when s increases, a 

lower weight is attached to inequality on the left-hand side of the distribution, while more 

weight is attached to inequality in middle and right-hand side incomes. Figure 3 shows the 

weights of the four indexes 5ts)}t,s(I{ =+ . 

Figure 3. Weights for 5ts)}t,s(I{ =+  

The meaning of the Bonferroni index within the family ββββN is reinforced by the 

following property.  

I(1,1)

I(1,2) I(2,1)

I(1,3) I(2,2) I(3,1)

I(1,4) I(2,3) I(3,2) I(4,1)

...... ........ ........ ......... .......

I(1,s+t-1) I(2,s+t-2) ..... ..... I(s+t-2,2) I(s+t-1,1)

....... ......

Interés rentas bajas Interés rentas altas
 

Focus on low incomes                 Focus on high incomes 
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Proposition 2. (a) For each Nn∈ , n≥2, B is the arithmetic mean of the indexes nts)}t,s(I{ =+ . 

That is, B is the arithmetic mean of each row of the triangular diagram: B)1n()sn,s(I
1n

1s

−=−∑
−

=
. 

(b) The Bonferroni index, B, is a weighted mean of all the generalized Gini indexes with a 

positive integer parameter: ∑
∞

=

+==
1i

)1i(i/)i,2(I)1,1(IB  ,  1)1i(i/1

ti

=+∑
∞

=

. 

Proof. (a) From the values of the beta function when its parameters are positive integer values 

and applying the Newton expansion of the binomial we get:  

=−








−
−

−=−−∑ ∑
−

=

−−−
−

=

−−−−
1n

1s

1sn1s
1n

1s

1sn1s1
)p1(p

1s 

2n
)1n()p1(p))sn,s(b(  

[ ] 1n)p1(p)1n()p1(p
s   

2n
)1n(

2n2sns
2n

0s

−=−+−=−






 −
−= −−−

−

=
∑ . 

From the previous equality, [4] and [7], we get: 

.B)1n(dp))p(B1()1n(dp)p1(p))p(B1())sn,s(b()sn,s(I

1

0

1n

1s

1n

1s

1

0

1sn1s1

∫∑ ∑ ∫ −=−−=−−−=−
−

=

−

=

−−−− �  

 (b) For 1p1 <−  and, in particular, if 0<p≤1, then ∑
∞

=

−−=
1i

1i)p1()p/1( , where convergence is 

uniform. From this, [7] and [9], we obtain: 

1)1i(i/1 ,)1i(i/)i,2(I)p1())p(Lp()1,1(IB

1i1i

1i

1i

1

0

∑∑∑∫
∞

=

∞

=

−
∞

=

=++=−−== . �  

The Gini index, G=I(2,1), satisfies a property that is similar to the previous one, 2(a), when the 

index corresponding to s=1 is eliminated in each row of the triangular diagram. 

Proposition 3. For each Nn∈ , n≥3, G is the weighted mean of the indexes nts,2s)}t,s(I{ =+≥ : 

I(2,n−2), I(3, n−3), ....., I(n−1,1). It is satisfied: 

∑
−

=
=−−

−−

1n

1s

G)sn,s(I)1s(
)2n)(1n(

2
,    ∑

−

=
=−

−−

1n

1s

1)1s(
)2n)(1n(

2
. 

Proof. It is analogous to the one in proposition 1 (a). In this case we have:  
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Taking into account expression [5], we obtain: 

,Gdp))p(Lp(2)sn,s(I)1s(
)2n)(1n(

2 1n

1s

1

0

∑ ∫
−

=
=−=−−

−−
 being  ∑

−

=
=−

−−

1n

1s

1)1s(
)2n)(1n(

2
.    �  

 

The previous propositions show the algebraic relationship among the elements of ββββN.  

In the following section we analyse some normative aspects of the elements of ββββ.  

 

4. Normative characterizations. 

In order to establish the relationship between inequality and social welfare we follow 

the Yaari approach (1987, 1988). If F is the income distribution and φ:[0, 1]→R is a distribution 

function
8
 that represents social preferences, the Yaari social welfare function (YSWF) is given 

by  

∫∫∫
−−

+
φ φ=φ=φ=

1

0

1'

1

0

1

R

dp)p(F)p()p(d)p(F))x(F(xd)F(W .  

Thus, Wφ is additive and linear in the incomes and weights them according to the 

rankings attached to the individuals in the distribution
9
.  The weight attached to the income of 

an individual with rank p, 0<p<1, is 0)p(' ≥φ . Yaari (1988) shows that )F(Wφ  presents an 

aversion to inequality if, and only if, )p('φ  is decreasing, which is equivalent to the concavity 

of φ.  

If µ is the mean of F and L(p) is its Lorenz curve, YSWF can be expressed as a social 

welfare function associated to a linear measure of inequality of the type defined in Mehran 

(1976). Then, 

                                                           
8
 We assume the distribution function to be a class C

2 
function, which is twice continuously derivable. 

When necessary, we will admit the existence of higher order derivatives in later results. 
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[ ])F(I1)F(W φφ −µ= ,  

Where 

∫
+

φ
µ

−=
µ

−= φ
φ

0R

' )x(dF))x(F(x
1

1
)F(W

1)F(I , [12] 

or 

)p()p(   , dp)p())p(Lp()F(I
''

1

0

φ−=ππ−= φφφ ∫ , [13] 

which yields an explicit relationship between the preference distribution and the weighting 

scheme of the Lorenz differences. 

According to the Blackorby and Donaldson approach (1978), the expression 

[ ])F(I1 φ−µ  is the equally distributed equivalent income
10
, in which case µIφ(F) measures the 

loss of social welfare due to inequality. 

If 0t,s)t,s( }{ >β φ=ℑ  is the family of preference distributions associated to the elements of 

ββββ, from  [6] and [13] we obtain: 

0 t0,s ,)p1(p))t,s(B()p()p(
1t2s1

)t,s(
''

)t,s( >>−−=π−=φ −−−
. [14] 

The functions of βℑ  are strictly concave. Therefore, in all the indexes of the ββββ class and in their 

corresponding YSWFs, there is an underlying preference (aversion) for equality (inequality). 

This common attitude, however, presents different degrees of intensity depending on the index. 

Although it is not always necessary to know the preference distributions in order to 

prove some normative properties of the indexes, it is convenient to know the preference 

distributions to study certain aspects. For example, the possible ranking of the elements of a 

family of inequality measures according to their inequality aversion is equivalent to rank their 

respective preference functions depending on their concavity. 

                                                                                                                                                                          
9
 Ben Porath and Gilboa (1994) axiomatize the YSWF for discrete distributions. Zoli (1999) shows that 

the YSWF dominance is equivalent to the inverse stochastic dominance of Muliere and Scarsini (1989).  
10
 This refers to a level of income such that if it is equally attached to all the individuals of the population, 

it will provide an identical level of social welfare, according to the specified SWF, to that of the existing 

distribution. This concept is the basis of the AKS approach (Atkinson, 1970; Kolm, 1966; Sen, 1973) for 

relating social welfare and inequality. 
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The expressions of the functions φ(s,t) when NN)t,s( ×∈ , correspondents to the indexes 

of ββββN, are obtained from [13] and [14] integrating twice. The constant of integration are 

determined when we impose the conditions φ(s,t)(0)=0 and , φ(s,t)(1)=1. We get this result: 
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Particularly, the preference distributions associated to the Bonferroni and Gini indexes are: 

),pln(pp)p()p( )1,1(B −=φ=φ  0<p≤1,  φ(1,1)(0)=0. 

,pp2)p()p(
2

)1,2(G −=φ=φ  0≤p≤1. 

Both functions are strictly increasing and strictly concave in the interval [0,1], but φB is more 

concave than φG (Figure 4). Thus, B shows more inequality aversion than G, which influences 

the normative properties of both indexes. For example, the different behaviour when 

considering principles of transfers that are more demanding than the Pigou-Dalton Principle. 

The relationship between B and G in terms of preference for equality can be extended to 

the families γγγγN, αααα and δδδδ. Imedio and Bárcena (2007) and in Imedio et alt. (2010) show that the 

functions of families Nt)t,2(N
}{ ∈γ φ=ℑ , Ns)1,s( }{ ∈α φ=ℑ  and Nt)t,1( }{ ∈δ φ=ℑ  are ranked 

according to their degree of concavity. As the corresponding parameter increases, the concavity 

of the functions of 
Nγℑ  and δℑ  increases, while the opposite occurs for the functions of the 

family αℑ . In fact, the functions of δℑ  and 
Nγℑ  converge to the function of maximum 

concavity in the interval [0,1], which is constant and equal to the unit, except for p=0. That is:  





≤<
=

=φ=φ
+∞→+∞→ . 1p0 , 1

, 0p , 0
)p(lim)p(lim )t,2(

t
)t,1(

t
 

However, the functions of αℑ  converge to the identity in the interval [ ]1 ,0 :  
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1p0  , p)p(lim )1,s(
s

≤≤=φ
+∞→

, 

with null concavity. 

Consequently, the elements of ββββ cover the total range of inequality aversion from 

maximum aversion (rawlsian leximin) to indifference. 

The following figures show the preference functions of the indexes I(1,2), I(1,1)=B, 

I(2,1)=G and I(3,1), and the preference functions of  I(2,3), I(2,2), I(2,1)=G and I(3,1). The 

extreme case functions, maximum concavity and linear function are included in both figures. 

Figure 4. Preference functions. 

In the triangular diagram that represents ββββN, the vertex is the Bonferroni index, I(1,1). 

When we move from I(1,1) over the right-hand side of the triangle, family αααα, the indexes show 

a decreasing aversion to inequality and attach less weight to low incomes. The opposite occurs 

when we move from the vertex (from I(2,1)) over the left-hand side of the triangle, family δδδδ 

(family γγγγN). In this case the indexes show an increasing aversion to inequality and pay more 

attention to the incomes in the right-hand side of the distribution. 

The sum of the parameters of the indexes in the same row of the triangle is a constant, s+t=n, 

n≥2. If n≥3, when we move over any row from left to right, we start with an element of δδδδ and 

finish with an element of αααα. The degree of aversion to inequality decreases in each row when 

we move from left to right. As an example, Figure 5 shows the four preference functions of the 

indexes of the fourth row of the triangle, 5ts)}t,s(I{ =+ . 

Figure 5. Preference distribution of the indexes 5ts)}t,s(I{ =+ . 

As shown in Figure 4, the preference distribution of I(1,4) has the greatest degree of concavity. 

The degree of concavity, together with the preference for equality, decrease successively as we 

go from I(2,3) to I(3,2) and to I(4,1). The same behaviour can be observed in the indexes of any 

row of the triangle, but as s+t increases, the number of indexes also increases. Hence the degree 

of inequality aversion (or concavity of their corresponding preference functions) covers a 

broader spectrum and there is a smoother change in the concavity between consecutive indexes. 
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5. Transfer Principles 

The indexes of ββββ satisfy the Pigou-Dalton Principle of Transfers (PDPT) given the 

concavity of their respective preference distributions. However, when studying this type of 

measures it is common to analyse if they satisfy more demanding redistributive criteria. An 

obvious step is to consider principles by which the effect of a transfer is greater when it takes 

place in the lower part of the distribution. Kolm (1966) and Mehran (1976) propose two 

alternative versions of a principle of this type. According to the Principle of Diminishing 

Transfers (PDT), a progressive transfer between two individuals with a given difference in 

income implies that the lower the income of these individuals, the greater the reduction 

(increase) in the index (social welfare). A different version of the PDT is given by the Principle 

of Positional Transfer Sensitivity (PPTS). According to the PPTS, when there is a given 

difference in ranks among the individuals for whom the transfer takes place, the effect of the 

transfer is greater when it occurs among individuals in the lower part of the distribution. 

Although both principles are analogous with regard to the transfers, the income difference 

between the donor and the recipient is relevant for the PDT, while the proportion of individuals 

located between both is relevant for the PPTS. The following result shows how both principles 

are satisfied. 

 

Proposition 4. Let F be an income distribution with mean µ and Iφ(F) an inequality index whose 

preference distribution, φ, is concave. Then 

(i) (Mehran, 1976; Zoli, 1999) Index Iφ(F) satisfies the  PPTS if, and only if, 0)p(''' >φ . 

(ii) (Aaberge, 2000) Index Iφ(F) satisfies the PDT if, and only if, )x(F))x(F( '''φ is strictly 

increasing for x>0. This is equivalent to the condition  

0  x,  
))x(F(

)x(F

))x(F(

))x(F(
2'

''

''

'''

>>
φ
φ− . [15] 
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Proof. (i) Let δ be a positive income transfer from a small portion, dp, of the population in the 

p-th percentile to the individuals in a lower percentile p−s, s>0. From [12] we obtain that for a 

sufficiently small ε>0 the reduction of the index is  

∫∫
ε+−

ε−−

ε+

ε−
φ δφ

µ
−δφ

µ
=δ∇

2/sp

2/sp

'

2/p

2/p

' dt)t(
1

dt)t(
1

)(I  . 

By applying the mean value theorem and taking the limit when ε→0, we obtain 

[ ]dp)sp()p()(dI '' −φ−φ
µ
δ=δφ . 

It is clear that Iφ satisfies the PDPT, dIφ(δ)<0, if, and only if, φ ' (p) is strictly decreasing, which 

is equivalent to condition φ ''
(p)<0, which characterizes the concavity of φ. Moreover, Iφ will 

satisfy the PPTS if, and only if  

[ ] [ ])sp()p()sq()q( '''' −φ−φ
µ
δ<−φ−φ

µ
δ

, 

for all q<p, which is equivalent to the strict increase of function φ ''
, that is, φ '''

(p)>0. 

(ii) Let δ be a positive income transfer from a small fraction, dF(x), of individuals with income 

level x to individuals with income x−d, 0<d<x. Then, for a sufficiently small ε>0 from [12] it 

follows that the reduction in the index is  












φδ−−δφ

µ
−=δ∇ ∫∫

ε+

ε−

ε+−

ε−−
φ

2/x

2/x

'

2/dx

2/dx

'
)x(dF))x(F()()x(dF))x(F(

1
)(I . 

By applying the mean value theorem and making ε→0, we obtain that the relative change in the 

index is  

[ ] )x(dF))dx(F())x(F()(dI '' −φ−φ
µ
δ=δφ . 

Hence, dIφ<0 if, and only if, 
'φ  is a strictly decreasing function, which is equivalent to the 

concavity of φ. In order for the reduction of the index to be greater the lower the income level x, 

for all y<x the following expression must be satisfied 
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[ ] [ ]))dx(F())x(F())dy(F())y(F( '''' −φ−φ
µ
δ<−φ−φ

µ
δ

, 

for all d>0. By making d→0, and given that  φ is concave, the above expression is equivalent to 

)x(F))x(F()y(F))y(F( '''''' φ<φ for y<x. That is, )x(F))x(F( '''φ  must be a strictly increasing 

function of x, hence 0))x(F))x(F(( '''' >φ , x>0, from which we obtain [15].    

The above proposition proves that an inequality measure satisfies, or does not satisfy, 

the PPTS depending on the properties of its preference distribution, φ, irrespective of the 

income distribution to which it is applied. It is, therefore, a characteristic of the index. However, 

the same does not occur with the PDT. That Iφ(F) satisfies the PDT does not only depend on the 

properties of its preference distribution, but also on the shape of the income distribution. 

Expression [15] gives the relationship that must be satisfied by both distributions. That is, given 

φ, index Iφ(F) verifies the PDT only for a given class of income distributions whose extension 

depends on the degree of inequality aversion of φ.  

By applying the above result to the preference distributions associated to the elements 

of β, we obtain the behaviour of these indexes with regard to both principles.  

 

Proposition 5.  

a) The elements of  ββββ= 0t,s)}t,s(I{ >  satisfy the PPTS if, and only if, the following is satisfied
11
: 

[ ] 02sp)3ts()p,t,s(A >+−−+= , 0<p<1. [16] 

b) Let F be the distribution function and I(s,t) the inequality index associated to F, the PDT is 

satisfied if, and only if: 

0  x,  
))x(F(

)x(F

))x(F1)(x(F

2s)x(F)3ts(
2'

''

>>
−

+−−+
. [17] 

According to the above, the Bonferroni index, B=I(1,1), satisfies the PPTS, because 

A(1,1,p)=1−p, 0<p<1. However, this is not true for the Gini index, G=I(2,1), because 

                                                           
11
 The sign of the third derivative of the preference distribution is the same as the sign of A(s,t,p). It is 

obvious that the sign can or cannot be constant in the interval [0,1] depending on the values of s and t. 
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A(2,1,p)=0, 0<p<1. In the case of a fixed difference in ranks, the Gini coefficient attaches an 

equal weight to a given transfer irrespective of where it takes place in the income distribution 

Other indexes show the opposite behaviour with respect to the PPTS. In the case of a fixed 

difference in ranks, they assign more weight to transfers at the upper than at the central and the 

lower parts of the distribution. This is the case of I(3,1) because A(3,1,p)=p-1<0, 0<p<1. There 

are other indexes which behave in a non-uniform manner with respect to the PPTS. For 

example, for I(3,3) 1p3)p,3,3(A −= , therefore, it satisfies the PPTS if p>1/3, but does not if 

0<p<1/3.    

In the triangular diagram that represents ββββN, the elements in any of the rows, 

1ns1)}sn,s(I{ −≤≤− , n≥2, can show different behaviours with respect to the PPTS. When we move 

to the right in a row, the indexes go from satisfying the PPTS for I(1,n−1)∈δδδδ, I(2,n−2)∈γγγγN, to 

only satisfying the principle in a subinterval of [0,1] and, finally, to satisfying the contrary to 

what the PPTS implies in the case of I(n−1,1)∈αααα.  

With respect to the PDT, we should observe that if an index shows inequality aversion 

( 0)p('' <φ ) and the third derivative of the preference function is non-negative ( 0)p(''' ≥φ ), then 

it will satisfy the PDT for all the concave income distributions ( 0)p(F '' < ) because the 

condition [15] is then satisfied. Thus, all the elements of γγγγN and δδδδ satisfy the PDT when the 

income distributions are concave. In these cases, the concavity of F is a sufficient condition.  

Particularly, the Gini index satisfies the PDT when the income distribution is strictly 

concave. For the Bonferroni index, B=I(1,1), expression [15], or equivalently [17], is 

0  x, ))x(F/())x(F())x(F/1( 2''' >> , which is equivalent to the strict concavity of ln(F(x)); a less 

demanding condition than the concavity of F(x). Therefore, the set of distributions for which B 

satisfies PDT strictly contains the set of distributions for which G satisfies this principle. It is, 

let IΩ  be the set of distributions for which the index I satisfies the PDT, the relation of 

inclusion is BG Ω⊂Ω . 
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The behaviour of the indexes of γN, α and δ with respect to PDT and the relations of 

inclusion among the set of distributions for which these indexes satisfy the PDT, are studied in 

depth in Imedio at al. (2010). It is shown that as the degree of inequality aversion of the indexes 

of a family increases (decreases), the set of distributions for which the indexes satisfy the PDT 

is larger (smaller). 

 

6. Illustration 

This section empirically illustrates the different degree of inequality aversion of the 

indexes of the ββββ family and their different sensitivity to changes in the income distribution 

depending on the part of the distribution where the change affects most. 

We use data from the European Union Statistics on Income and Living Conditions (EU-

SILC) for the year 2008 on Spain
12
. We consider three variables: 

- Total annual disposable household income (X1). 

- Total annual disposable household income before social transfers other than old-age and 

survivor's benefits (disposable household income before transfers, X2). 

- Total annual disposable household income plus tax on income and social contributions 

(income before taxes, X3). 

Social transfers are skewed towards the left tail of the distribution. On the other hand, 

tax on income and social contributions are skewed towards the right tail of the distribution.  

We evaluate the effect of both income components on the indexes 6ts)}t,s(I{ =+ , 

.NN)t,s( ×∈  They are the elements of the fifth row of the triangle that represents ββββN. The five 

selected indexes have different characteristics
13
. Their degree of inequality aversion diminish 

                                                           
12
 EU-SILC is the reference source for comparative statistics on income distribution, living conditions and 

social exclusion at the European level. Household incomes are adjusted (‘equivalised’) to take account of 

the differences between them in terms of size and composition. We use the modified OECD equivalence. 

This scale attaches a value of 1 to the first adult member of the household, 0.5 to the remaining adult 

members and 0.3 to each member under 14 years of age. 
13
 Even though any selection of indexes is arbitrary, the one considered combines a reduced number of 

different indexes : one from the δ family, other form γN, other form α and two more that do not belong to 

known families (I(3,3) and I(2,4)). Any row of the triangle that represents ββββN have a similar composition 

of indexes. 
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from I(1,5)  to I(5,1) . The weight attached to  I(1,5)  is strictly decreasing in )1,0( , focusing on 

low incomes. The weights attached to I(2,4) , I(3,3)  and I(4,2)  reach their maximum values in 

25,0p = , 50,0p =  and 75,0p = , respectively. Index I(5,1)  focuses on high incomes and the 

corresponding weight
14
 function is strictly increasing in ).1,0(   

Table 1 shows the values of 6tst)}{I(s, =+  for X1, X2 and X3 respectively. Under these 

values we show the percentage of variation in inequality when we go from X2 to X1 (social 

transfers) and from X3 to X1 (tax on income).  

 

 

Distribution 
Table 1. Inequality indexes 6tst)}I(s,{ =+ , NNt)(s, ×∈  

I(1,5) I(2,4) I(3,3) I(4,2) I(5,1) 
X1 0.667 0.520 0.408 0.299 0,177 

X2 0.727 0.563 0.438 0.320 0.189 

X3 0.689 0.547 0.434 0.323 0.194 

Variation      

X2 to X1 − 8.2% − 7.6% − 6,8% − 6.6% − 6.3% 
X3 to X1 − 3.2% − 4.9% − 6.0% − 7,4% − 8.8%  

 

Both income components reduce inequality. The percentage reductions in the indexes 

differ depending on the effect these components have on the income distribution. Social 

transfers (mainly received by people with low incomes) produce a greater reduction in the 

indexes focused on the left tail of the distribution. Tax collection is mainly concentrated in the 

right tail of the distribution. The redistributive effect of the tax is more pronounced when we use 

indexes that show more sensitivity to changes in higher incomes.  

The above demonstrates that the same transfer can be evaluated as having a greater or 

lesser impact on inequality depending on the part of the distribution in which the index used 

pays more attention. If policymakers focus on low incomes and choose I(1,5) to measure 

inequality, then transfers will reduce inequality more than taxes (8.2% vs. 3.2%). On the other 

hand, if policymakers focus on higher incomes and evaluate the impact of both components of 

income with I(5,1), they will point to taxes as being more effective for reducing inequality 

                                                           
14
 We have to note that each inequality measure summarises the distribution of income and that the 

weights are attached to the cumulative local inequality up to each percentile. Therefore, the value of the 

index does not only depends on the point where the weighting function reaches its maximum. 
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(8.8% vs. 6.3%). Using )I(3,3  both income components have a similar effect on inequality. In 

short, when measuring inequality it is important to bear in mind the characteristics of the 

indexes being used.  

 

7. Conclusions  

The indexes of the ββββ class introduce different criteria in the measurement of inequality. 

At the same time, they share a common set of properties and have a clear formal analogy. 

Because of this we are able to treat different well-known families of inequality measures 

uniformly. Other advantage of this class of inequality measures is that it is possible to choose 

the indexes that focus on a particular percentile of the income distribution. 

Each element of ββββ weights cumulative local inequality in a different way. The 

characteristics of the weighting schemes define the properties of the indexes: i.e. income 

percentiles where the index attaches more importance, level of inequality aversion and the effect 

of transfers depending on rank or income differences between the donor and the receiver, and 

depending on the part of the distribution where the receiver and the donor are located. 

The subclass ββββN is obtained when the two parameters of the indexes of ββββ are positive 

integers and the subclass contains the families γγγγN, αααα and δδδδ. These families cover a wide 

spectrum of inequality aversion that can be introduced by an index. These families introduce 

indexes with different behaviours with respect to the PPTS or to the PDT and contain infinite 

and countable indexes. But the indexes in the same row of the triangle that represent ββββN are 

finite families of the kind 1ns1)}sn,s(I{ −≤≤− , n≥2. The degree of inequality aversion in these 

families changes, but does not reach the extreme, while the responses to the principles of 

transfers also change. When we move from left to right in each row, the sensitivity of the 

indexes to changes in different parts of the income distribution also changes.  

It is obvious that the real effectiveness of an economic policy to affect inequality or 

welfare in a certain part of the distribution does not depend on the index used to assess the 

impact. Even so, it is interesting to be able to choose indexes that are more sensitive to changes 
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in the part of the distribution we are interested in focusing our attention on. All of this allows us 

to quantitatively assess the policy to be implemented in a better manner. 

In practice, the choice of a small set of elements of ββββ allows inequality to be measured 

according to different distributive criteria, the preferences of the social evaluator and the 

particular nature of each empirical case. If we attempt to rank a set of income distributions with 

these indexes, it is likely that different rankings will be obtained depending on the index. 

Bearing in mind the characteristics of each measure, a result of this type would be highly 

revealing, such as the case of robust rankings.  
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Figure 1. Lorenz curve and Bonferroni curve 
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Figure 2. ω(s,t) functions. 
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Figure 3. Weights for 5ts)}t,s(I{ =+  
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Figure 4. Preference functions. 
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Figure 5. Preference distribution of the indexes 5ts)}t,s(I{ =+ . 
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