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Abstract  

This note presents an innovative inference procedure for assessing if a pair of distributions 
can be ordered according to inverse stochastic dominance (ISD). At order 1 and 2, ISD 
coincides respectively with rank and generalized Lorenz dominance and it selects the 
preferred distribution by all social evaluation functions that are monotonic and display 
inequality aversion. At orders higher than the second, ISD is associated with dominance 
for classes of linear rank dependent evaluation functions. This paper focuses on the class 
of conditional single parameters Gini social evaluation functions and illustrates that these 
functions can be linearly decomposed into their empirically tractable influence functions. 
This approach gives estimators for ISD that are asymptotically normal with a variance-
covariance structure which is robust to non-simple randomization sampling schemes, a 
common case in many surveys used in applied distribution analysis. One of these surveys, 
the French Labor Force Survey, is selected to test the robustness of Equality of 
Opportunity evaluations in France through ISD comparisons at order 3. The ISD tests 
proposed in this paper are operationalized through the user-written “isdtest” Stata routine. 
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1 Introduction

This note presents an innovative inference procedure for assessing if a pair of distributions
can be ordered according to inverse stochastic dominance (ISD), that can be applied to data
sampled according to non-simple (i.e. stratified, cluster, or multistage) random sampling
schemes (see Zheng 2002). This is often the case for many economic surveys used in applied
inequality analysis.

The ISD partial order has been introduced by Muliere and Scarsini (1989) as an alter-
native to the traditional (direct) stochastic dominance relations (Fishburn 1976, Fishburn
and Vickson 1978, Davidson and Duclos 2000). At order one, two distributions can be
ordered according to ISD if the Pen’s Parade chart (i.e. the quantile functions curves) of
the dominant distribution lies no point below and at least some points above the one of the
dominated distribution. This condition is also called rank dominance (Saposnik 1981). At
order two, a similar dominance condition is extended to the integrals of the Pen’s parade of
the two distributions at any population quantile, that correspond to the generalized Lorenz
curves (Kolm 1969, Shorrocks 1983).

Generalized Lorenz dominance is extensively adopted as a robust criterion that per-
mits to incorporate efficiency and inequality considerations in evaluating pairs of income
distributions. In fact, if a pair of distributions can be ranked according to generalized
Lorenz dominance, then all social evaluation functions that are increasing and display in-
equality aversion (i.e. are sensitive to progressive transfers) would agree that the dominant
distribution provides higher social welfare than the dominated distribution. Robustness
in evaluation cames at a price: when generalized Lorenz curves intersect, the underlying
distributions cannot be robustly ordered. A possibility is to use complete orders based
on inequality indicators. Alternatively, once can impose stronger dominance conditions.
Foster and Shorrocks (1988), Davies and Hoy (1995) and Zoli (1999, 2002) provide con-
ditions for ranking intersecting Generalized Lorenz curves based on third order stochastic
dominance or ISD. As pointed out by Muliere and Scarsini (1989), the two criteria do
not coincide at order three and above. Davidson and Duclos (2000) study the inference
procedures for the stochastic dominance relations at order higher than the second. Here,
the focus is on the inference for ISD at higher orders.

Two distributions can be ordered according to ISD at order 3 if, for every quantile,
the integral of the generalized Lorenz curve of the dominating distribution is always larger
than, or at most equal to the integral of the generalized Lorenz curve of the dominated
distribution (see Zoli 1999). The condition can be easily extended to higher orders of
dominance making use of recursive integration. As the order of dominance increases the
criterion becomes more discriminatory. In fact, ISD at order k induces unanimity in the
evaluation of the preferred income distribution within a strict subset of the social evaluation
functions displaying inequality aversion, assigning increasing weight to the lowest incomes
in the distribution (Zoli 1999, Zoli 2002, Aaberge 2009).

Maccheroni, Muliere and Zoli (2005) (see also Muliere and Scarsini 1989) showed that
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ISD at order k can be equivalently verified by comparing Single Parameter Gini social
evaluation functions (Donaldson and Weymark 1983) parametrized by the order of domi-
nance k. For example, ISD at order 3 is equivalent to verify, for all quantiles, that the well
known (absolute) Gini inequality index, computed for all incomes lower than a given in-
come threshold identified by a quantile of the dominating distribution, is always lower than
the Gini index computed with respect to the same quantile of the dominated distribution.

The present paper builds on the fundamental relation between ISD and the family of
conditional S-Gini social evaluation functions to derive a novel inference procedure to con-
struct ISD comparisons at order higher than the second, denoted the threshold estimator
approach. The analogy allows to construct empirically tractable and asymptotically valid
estimators for the covariance structure between social evaluation functions calculated at
different quantiles of any pair of distributions. This is done by (i) linearly decomposing
each of the sample estimators of the conditional S-Gini social evaluation functions into
the corresponding influence functions, that measure the marginal influence of each obser-
vation on the estimator (see Barrett and Donald 2009); (ii) showing that the asymptotic
variance-covariance structure of the conditional S-Gini social evaluation functions estima-
tors coincides with the variance-covariance structure of their influence functions, that can
be rewritten as transformations of the generalized Lorenz curve influence functions; (iii)
providing an empirically tractable formulation of the influence functions estimator that
can be implemented on the data. Standard asymptotic algebra shows that normality is
granted at

√
n convergence. This result permits to use Wald-type joint test statistics to

verify the hypothesis of equality or dominance among pairs of vectors of conditional S-Gini
social evaluation functions estimates, that is ISD at any order higher than the second.

The approach presented in this paper can be considered as dual to the approach by
Davidson and Duclos (2000), who test if two distributions can be ordered according to
stochastic dominance making use of a set of linear restrictions on the realizations of the
Foster, Greer and Thorbecke (1984) family of poverty indicators, calculated at different
poverty lines.

I define a distribution free approach that applies also to data obtained by non-simple
random sampling rules. This is a common feature of many datasets used to carry on
empirical distribution analysis, such as PSID, CPS or the French Labor Force Survey
(Zheng 2002). Other approaches have been proposed in the literature for testing ISD at
order 1 and 2 that are distribution free (Beach and Davidson 1983, Davidson and Duclos
2000) and/or robust to non-simple sampling rules (Zheng 1999, Zheng 2002, Kovacevic
and Binder 1997). Aaberge (2006, 2007) has proposed an estimator for the covariance
structure between the quantiles of the integrals of the generalized Lorenz curve. However,
the empirical counterpart of this estimator seems to be consistent only in the case of data
obtained from simple random sampling rules. All these different approaches for testing
ISD are implemented in a user-written Stata routine called isdtes, made available to the
research community.

This paper concludes with an application. Recently, Lefranc, Pistolesi and Trannoy
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(2009) have exported the analysis of ISD at order 2 to the study of equality of opportunity
for income acquisition in France. According to their model, equality of opportunity is
granted whenever the income distribution associated to different types of the population
(partitioned according to morally irrelevant characteristics, such as parental background)
cannot be ranked according to ISD at order 2. I use the French Labor Force Survey
(areolar data) to verify the robustness of equality of opportunity assessments, focusing on
comparisons of ISD at order 3. The empirical analysis illustrates how different estimators
may lead to diverging conclusions.

The rest of the paper is organized as follows. The ISD model and its relations with
social evaluation comparisons are formalized in Section 2. The setting of the analysis
is in Section 3 while the main convergence results are reported in Section 4. Empirical
implementation and ISD estimators are discussed in Section 5. ISD and equality null
hypothesis and test statistics are discussed in Section 6 and implemented in Section 7.
Finally, Section 8 concludes.

2 Rank dominance, generalized Lorenz dominance and ISD

Let Y be a random variable with distribution F (.) and inverse (quantile) distribution
function.1 F−1(p), for p ∈ [0, 1]. Following Gastwirth (1971), the integral function

GL(p) =
∫ p

0
F−1(t) dt

defines the Generalized Lorenz (GL) curve of the distribution F (y). Successive integrals
of the GL curve with respect to p lead to the curve Λk(p), which is defined recursively by
the following relations:

Λk(p) =
∫ p

0
Λk−1(t) dt, p ∈ [0, 1]

Λ2(p) = GL(p).

Muliere and Scarsini (1989) introduced the inverse stochastic dominance partial order
as a criterion to rank pairs of distributions. Given two distributions F and G, the relation
F <ISDk G indicates that the distribution F inverse stochastic dominates the distribution
G, where ISDk for every k = 1, . . . is identified as follows:

F (y) <ISDk G(y) ⇔ ΛkF (p) ≥ ΛkG(p) ∀p ∈ [0, 1].
1If the cumulative distribution function F (or alternatively G) is only left continuous, we define F−1 by

the left continuous inverse distribution of F :

F−1(p) = inf{y ∈ R+ : F (y) ≥ p}, with p ∈ [0, 1].
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Figure 1: Quantile function (the Pen’s Parade), its integrals in three selected coordinates
and the generalized Lorenz curve representation.

ISD1 is first order dominance while ISD2 coincides second order stochastic dominance,
and they can be verified using the following remark:

Remark 1 For any pair of cdfs F and G it holds that:

F <ISD1 G ⇔ F rank dominates G,

F <ISD2 G ⇔ F GL dominates G.

Figure 1 represents the relation between the quantile function of F , also known as the
Pen’s Parade “of dwarfs and giants” incomes (see Cowell 2000) and its integrals in the
space of quantiles, giving the GL curve. ISD1 induces a partial order of distributions.
In fact, F rank dominates G if for any position p in the incomes ranking it holds that
F−1(p) ≥ G−1(p). There are normative considerations that motivate the use od ISD1 in
income distributions analysis. In fact, ISD1 is related to agreement within the class R1 of
social evaluation functions (SEF hereafter) admitting the Yaari’s (1987) rank dependent
model representation. A SEF W maps incomes distributions into social welfare levels, and
W ∈ R1 only if

W (F (y)) =
∫ 1

0
w(p)F−1(p)dp,

where w(p) is called the weighting functions that applies a distortion to the probability
p of observing an income lower than F−1(p), such that w(p) ≥ 0 ∀p ∈ [0, 1] and w̃(p) =∫ p
0 w(t)dt ∈ [0, 1] with w̃(1) = 1.

When ISD1 is violated, agreement within R1 is lost. However, the distributions can
be ordered according to weaker criteria than ISD1, such as ISD2. If F <ISD2 G then there
is agreement within R2, the subclass of all SEF in R1 displaying inequality aversion, in
ranking F as socially preferred to G. Inequality aversion is modeled as a condition on the
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weighting function: w(p) must be decreasing in p, i.e. the SEF attach higher weights to
lower income realizations.

If ISD2 is violated, agreement within R2 is lost. Higher orders of ISDk dominance can
be used to refine the ISD2 partial order. ISDk is associated with higher order restrictions
on the derivatives of the weighting functions w(p), so that if F <ISDk G then there is
agreement within Rk (a subset of R2), the class of all SEF displaying higher degrees
of inequality aversion, in ranking F as socially preferred to G. The class Rk can be
characterized as follows (Zoli 2002, Maccheroni et al. 2005, Aaberge 2009):

Rk =
{
W ∈ R : (−1)i−1 · d

iw̃(p)
dpi

≥ 0,
diw̃(1)
dpi

= 0 ∀p ∈ [0, 1] and i = 1, 2, 3, . . . , k
}
.

It follows that F <ISDk G if and only if W (F ) ≥ W (G) ∀W ∈ Rk. Since ISDk refines
ISD1, F <ISDk G implies F <ISDl G, for all l > k but not the inverse.2

Zoli (2002) and Maccheroni et al. (2005) investigate the relation between ISDk and
the family of Generalized Single Parameter Gini (S-Gini) SEF (Donaldson and Weymark
1983), denoted W k(F ) and defined as follows:3

W k(F ) = k

∫ 1

0
(1− p)k−1F−1(p)dp.

The conditional Generalized S-Gini SEF at population percentile q, denoted W k(q, F ) (see
for instance Zoli 2002) is:

W k(q, F ) := k

∫ q

0
(q − p)k−1F−1(p)dp, (1)

where W k(1, F ) = W k(F ). Restriction on the parameter k permit to model increasing
inequality aversion. The parameter is also related to ISDk:

Remark 2 Given a pair of distributions F and G:

F <ISDk G ⇔ W k−1(q, F ) ≥W k−1(q,G) for all q ∈ [0, 1].

Therefore, ISD3 can be tested by looking at dominance for all conditional Gini indices
Gini(F ), since W 2(F ) = µF (1 − Gini(F )), where µF is the average of F . The Remark
2 sets conditions for ISD that play the same role as the Foster et al. (1984) generalized
poverty index in assessing direct stochastic dominance at orders higher than the second.
The inference procedure studied here is therefore dual, and complements, the analysis by
Davidson and Duclos (2000) (Theorem 1).

2The rank dependent model differs from the expected utility model for preferences. At order 1 and

2, stochastic dominance SD (Fishburn 1976, Fishburn and Vickson 1978) and ISD coincides and the two

representations of SEF are equivalent. This does not hold for dominance at order 3 and above.
3One can derive from this SEF the whole family of absolute or relative single parameter S-Gini inequality

measures.
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3 Setting

Let {Yi}ni=1 be a sequence of independent random variables Yi with common distribution
F and inverse F−1. The distribution F represents, for instance, an income distribution,
where Y(i) indicates that the random variables have been ordered according to the index
i, ranging from the lowest Y(1) to the highest Y(n) position. Let assume that a random
samples is available, so that income distributions can be estimated from the data. A sample
Y is a collection of n realizations from identically (but not necessarily independently, if
not otherwise stated) distributed variables, thus accommodating both simple and non-
simple sampling schemes. The realizations of Yi are denoted with small letters y such that
y1 ≤ . . . ≤ yi ≤ . . . ≤ yn. To simplify the exposition, I assume that all the observed values
in the sample are distinct (thus n values are observed), so that the index i can be used
to denote observations. Moreover, [y] denotes the integer part of the real number y while
1(.) is the indicator function taking value one whenever its argument is verified.

The empirical distribution of F is F̂ (y) = 1
n

∑n
i=1 1(Yi ≤ y) while the empirical quantile

function is F̂−1(p) = inf{y : F̂ (y) ≥ p}.
The analysis of ISD permits to compare pairs of distributions F and G using their

empirical counterparts F̂ and F̂ respectively, that can be obtained from either paired or
unpaired samples (in general nF 6= nG). I make clear from the outset two important points.
First, I verify ISD relations for discrete processes, defined over a finite amount of population
quantiles, in order to assess when F <ISDk G (as in Dardanoni and Forcina 1998, Lefranc
et al. 2009), rather than studying continuous processes (as in Barrett and Donald 2003).
Second, the results are derived under the assumptions that samples have a simple random
structure. I show that the extension to non-simple sampling schemes is immediate under
the influence function decomposition.

4 Convergence results for testing ISDk

4.1 Tools and methods

I propose methods for estimating and testing assumptions on F , whose parametric form is
in general not known by the econometrician. Following Muliere and Scarsini (1989), one
gets the following equivalent representation of the (k − 1)-th integral of F̂−1:

Λ̂k(p) =
1

(k − 2)!

∫ p

0
(p− t)k−2F̂−1(t)dt, p ∈ [0, 1], k = 2, 3, . . . (2)

If F̂ is a consistent estimator of F , then Λ̂k(p) must be a consistent estimator for Λk(p).
This first consideration leads to the first estimation approach, based on the direct estimator
of ISDk. In practice, the Λk(p) curve is characterized by a set of ordinates corresponding
to a set of pre-chosen m abscissae indexed by p1, . . . , pm so that 0 < p1 ≤ . . . ≤ pm ≤ 1.
The empirical ordinates of the curves are denoted by the sequence Λ̂k(p1), . . . , Λ̂k(pm),
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which in compact vector notation gives:

Λ̂
k

=
(

Λ̂k(p1), . . . , Λ̂k(pm)
)t
∈ Rm,

with Λk being the corresponding vector in the population. The direct approach posits
dominance or equality conditions among pairs of vectors Λk

F and Λk
G associated to distri-

butions F and G respectively, as in Beach and Davidson (1983).
Alternatively, the empirical counterpart of the conditional Generalized Gini SEF in

(1) can be obtained by replacing F̂−1 in W k(q, F ) to obtain Ŵ k(q, F̂ ). If F̂ is a consistent
estimator of F , then Ŵ k(q, F̂ ) is a consistent estimator for W k(q, F ). This consideration
motivates the second approach for testing ISDk based on a threshold estimator. It re-
quires to compute conditional Generalized Gini SEF for a finite sequence of m thresholds
q1, . . . , qm so that 0 < q1 ≤ . . . ≤ qm ≤ 1. The empirical counterparts of the indicators
are denoted by the sequence Ŵ k(q1, F̂ ), . . . , Ŵ k(qm, F̂ ), which in compact vector notation
gives:

Ŵk
F =

(
Ŵ k(q1, F̂ ), . . . , Ŵ k(qm, F̂ )

)t
∈ Rm,

with Wk
F being the corresponding vector in the population. The threshold approach

posits dominance or equality conditions among pairs of vectors Wk
F and Wk

G associated to
distributions F and G respectively. The approach has not be yet taken into consideration
in the literature and it is, in some sense, dual to the Davidson and Duclos (2000) analysis.

This section investigates the asymptotic distribution and properties of the random vec-
tors

√
n
(
Λ̂
k
−Λk

)
and
√
n
(
Ŵk −Wk

)
for k = 3, 4, . . .. When k = 1, 2, the asymptotic

distribution of the first estimator has been already established in Lemma 1 and Theorem
1 by Beach and Davidson (1983). When k ≥ 3, some results in Aaberge (2006, 2007)
have demonstrated the asymptotic normality of the direct estimator. None of the two
approaches, however, can be easily extended to the case in which only non-simple random
samples are available. This points highlight the relevance of the threshold estimator.

4.2 The direct estimator approach

For a pair of empirical distributions F̂ and Ĝ, the direct approach requires to compare the
estimators Λ̂

k

F and Λ̂
k

G at a finite number of population percentiles. The ISDk can be
statistically tested making use of joint tests for the equality or dominance null hypothesis.
To derive the test distribution, one needs the asymptotic distribution, the asymptotic
covariance matrix and its estimator for both vectors of estimates Λ̂

k

F and Λ̂
k

G.
For a given distribution F̂ , the asymptotic distribution and the respective covariance

matrix of the quantile functions and the GL curve (that are Λ̂
k

for k = 1, 2 respectively)
have been derived by Beach and Davidson (1983). The main results are summarized in
the following Lemma:

Lemma 1 Suppose that for a set of proportions {pj |j = 1, . . . ,m} such that 0 < p1 <
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. . . < pm < 1, Λ̂ =
(
F̂−1(p1), . . . , F̂−1(pm)

)t
is a vector of m sample quantiles and

Λ̂
2

=
(
ĜL(p1), . . . , ĜL(pm)

)t
is a vector of m ordinates of the GL curve estimator (where

ĜL(1) = µ̂, the sample mean) obtained from a sample of size n drawn from a continuous
population density f(y) with cdf F (y) which is strictly monotonic with quantile function
F−1(p). Then:

i) the vector
√
n
(
Λ̂−Λ

)
converges in distribution to a m variate normal distribution

with mean zero and asymptotic covariance matrix Σ1, whose element j, j′ correspond-
ing to population proportions pj and pj′ is:

σ1(j, j′) =
pj(1− pj′)

f(F−1(pj))f(F−1(pj′))
.

ii) the vector
√
n
(
Λ̂

2
−Λ2

)
converges in distribution to a m variate normal distribution

with mean zero and asymptotic covariance matrix Σ2, whose element j, j′ correspond-
ing to population proportions pj and pj′ is:

σ2(j, j′) = pjv
2
pj + pj(1− pj′)(F−1(pj)− µpj )(F−1(pj′)− µpj′ ) +

+pj(F−1(pj)− µpj )(µpj′ − µpj ) for pj ≤ pj′ ,

where v2
pj and µpj are respectively the variance and expected value of a random vari-

able Y distributed as F conditional on Y ≤ F−1(pj).

The sample counterparts of σ1(j, j′) and σ2(j, j′) can be obtained by replacing the pop-
ulation moments (quantiles, population shares and the conditional means and variances)
with the respective sample estimators, while f is non-parametrically identified.

The result in Lemma 1 can be extended to compare the integrals of the GL curves,
that is Λ̂

k
with k ≥ 3. However, the resulting covariance matrix is hardly empirically

tractable.

Proposition 1 Suppose that for a set of proportions {pj |j = 1, . . . ,m} such that 0 < p1 <

. . . < pm < 1, Λ̂
k

=
(

Λ̂k(p1), . . . , Λ̂k(pm)
)t

for k = 3, 4, . . . is a vector of m ordinates of the

estimator of Λk(.), the (k− 1)-th integral of the quantile function, obtained from a sample
of size n drawn from a continuous population density f(y) with cdf F (y) which is strictly
monotonic with quantile function F−1(p). Then the vector

√
n
(
Λ̂
k
−Λk

)
converges in

distribution to a m variate normal distribution with mean zero and asymptotic covariance
matrix Σk for k = 3, 4, . . .. The element j, j′ of Σk corresponding to population proportions
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pj and pj′ is:

σk(j, j′) =
1

(k − 2)!

[
pjΛk−1(pj) + (k − 1)Λk(pj)

] [
(1− pj′)Λk−1(pj′) + (k − 1)Λk(pj′)

]
+

+
∫ F−1(pj)

0
(pj − F (x))k−2F (x)dx

∫ F−1(pj)

x
(pj′ − F (y))k−2dy −

−
∫ F−1(pj)

0
(pj − F (x))k−2dx

∫ F−1(pj)

x
(pj′ − F (y))k−2F (y)dy.

Proof. The empirical quantile function estimates only a lower bound for the real
population quantile at population share p, that is Λ̂k(p) = 1

nΛk(p) + O(n−1). Using
E[F−1(p)] = F−1(p) + o(n−1/2) from Lemma 1 (result i)) and the linearity of the operator
in (2), one obtains that:

E
[
Λ̂k(p)

]
= Λk(p) + o(n−1/2).

The central limit theorem applies and therefore the vector
√
n
(
Λ̂
k
−Λk

)
is a multi-

variate normal with zero means and finite covariance. Consider:

cov
[
n−1/2Λ̂k(pj), n−1/2Λ̂k(pj′)

]
where pj ≤ pj′ . (3)

The empirical estimator of Λ̂k(p) is given by:

Λ̂k(pj) =
1

(k − 2)!

[pjn]∑
i=1

(
[pjn]− i

n

)k−2

Y(i) + o(n−1),

so that, for any pj ≤ pj′ , the covariance in (3) can be rewritten as:

1
n

1
(k − 2)!

[pjn]∑
i=1

[pj′n]∑
h=1

(
[pjn]− i

n

)k−2( [pj′n]− h
n

)k−2

cov(Y(i), Y(h)) + o(n−1). (4)

Making use of the consistent estimator of the covariance cov
[
Y(i), Y(h)

]
in Lemma 1, it is

possible to write (4) as:

1
n

1
[(k − 2)!]2

[pjn]∑
i=1

i∑
h=1

(
[pjn]− i

n

)k−2( [pj′n]− h
n

)k−2
(
h
n

) (
1− i

n

)
nF̂ ′(F̂−1(h/n))F̂ ′(F̂−1(i/n))

+

+
1
n

1
[(k − 2)!]2

[pjn]∑
i=1

[pj′n]∑
h=i+1

(
[pjn]− i

n

)k−2( [pj′n]− h
n

)k−2
(
1− i

n

) (
h
n

)
nF̂ ′(F̂−1(h/n))F̂ ′(F̂−1(i/n))

+ o(n−1). (5)

The estimator n cov
[
n−1/2Λ̂k(pj), n−1/2Λ̂k(pj′)

]
can be estimated with asymptotic

precision equal to o(1). As a consequence, summations can be replaced by integrals to

10



obtain the following formulation of (5):∫ pj

0
(pj − p)k−2(1− p)dF

−1(p)
dp

∫ p

0
(pj′ − q)k−2q

dF−1(q)
dq

dqdp+

+
∫ pj

0
(pj − p)k−2p

dF−1(p)
dp

∫ pj′

p
(pj′ − q)k−2(1− q)dF

−1(q)
dq

dqdp.

After a change in variables, this integral can be written as:∫ F−1(pj)

0
(pj − F (x))k−2(1− F (x))dx

∫ x

0
(pj′ − F (y))k−2F (y)dy +

+
∫ F−1(pj)

0
(pj − F (x))k−2F (x)dx

∫ F−1(pj′ )

x
(pj′ − F (y))k−2(1− F (y))dy.

Integration by parts and the appropriate substitutions of the integration terms give
the desired result.

A direct consequence of Lemma 1 and Proposition 1 is that for any k = 1, . . .:

Λ̂k is asymptotically distributed as N
(

Λk,
Σk

n

)
(6)

The estimation of Σk under the direct approach presents some problems. Either one
decides to (non-)parametrically identify f and uses the formula in (5) as an estimator for
the variance-covariance matrix, thus incorporating non-standard features of the sampling
scheme when estimating f , or one makes use of the Aaberge’s (2006) estimator for σk(j, j′),
which is valid only under simple random sampling schemes.

4.3 The threshold estimator approach

Making use of the result presented in Remark 2, ISD at order k can be tested by comparing
the vectors Ŵk−1

F and Ŵk−1
G associated to the distributions F and G, respectively. The

asymptotic distribution and the covariance matrix of Ŵk studied in this paper are obtained
using some results presented in Barrett and Donald (2009), although the procedure for
testing ISDk was not considered by the authors. Barrett and Donald study the asymptotic
standard errors of the S-Gini SEF and provide its sample estimator making use of the
influence functions decomposition of W k(F ). I use a similar strategy to decompose the
conditional S-Gini SEF W k(q, F ) into their influence functions.

Integrating by parts one can show that the conditional Gini SEF Ŵ k(p, F ) can be
written as:

Ŵ k(p, F̂ ) = k(k − 1)
∫ 1

0
(q − p)k−2ĜL(p)1(p ≤ q)dp = T (Ĥ), (7)

where T (Ĥ) is a scalar valued functional of some process Ĥ that is defined on [0, 1]. In
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(7), Ĥ is the GL curve estimator. Using Hadamard differentiability of the functional T
(for references, see Barrett and Donald 2009), one obtains that:

√
n
(
T (Ĥ)− T (H)

)
=

1√
n

n∑
i=1

T ′H

(
φi(., Ĥ)

)
+ o(1),

where the random variables φi(., Ĥ) are often referred to as the influence functions, and
give the effect of an observation i on the estimator Ĥ. The value of the function at q is
φ(q, Ĥ).

The threshold estimators builds on the fact that the function T (Ĥ) = Ŵ k(p, F̂ ) can be
written as a transformation of the ĜL influence functions, since Ĥ = ĜL and the estimator
√
n
(
Ĥ −H

)
can be decomposed into its influence functions φi(p, ĜL). This point is made

clear by the following sequence of passages:

√
n
(
Ŵ k(q, F̂ )−W k(q, F )

)
= k(k − 1)

∫ 1

0
(q − p)k−2√n

(
ĜL(p)−GL(p)

)
1(p ≤ q)dp

= k(k − 1)
∫ 1

0
(q − p)k−2

(
1√
n

n∑
i=1

φi(p, ĜL)

)
1(p ≤ q)dp+ o(1)

=
1√
n

n∑
i=1

k(k − 1)
∫ 1

0
(q − p)k−2φi(p, ĜL)1(p ≤ q)dp+ o(1) (8)

=
1√
n

n∑
i=1

φi(Ŵ k(q, F̂ )) + o(1). (9)

The terms of the summation in (8) are the influence functions of Ŵ k(q, F̂ ), denoted
φi(Ŵ k(q, F̂ )). Extending this result to a m×1 vector of conditional S-Gini SEF computed
at different shares q gives:

√
n
(
Ŵ

k
−W k

)
=

1√
n

n∑
i=1

(
φi(Ŵ k(q1, F̂ )), . . . , φi(Ŵ k(qm, F̂ ))

)t
+ o(1)(1, . . . , 1)t.

The following proposition establishes the asymptotic distribution of Ŵ k(p, F̂ ).

Proposition 2 Suppose that for a set of proportions {qj |j = 1, . . . ,m} such that 0 <

q1 < . . . < qm < 1, Ŵk =
(
Ŵ k(q1, F̂ ), . . . , Ŵ k(qm, F̂ )

)t
for k = 2, 3, 4, . . . is a vector

of m ordinates of the estimator of W k(q, F ), which is the conditional Gini SEF condi-
tional on population share q parametrized at k, obtained from a sample of size n drawn
from a continuous population density f(y) with cdf F (y) which is strictly monotonic with
quantile function F−1(p). Then, the vector

√
n
(
Ŵk −Wk

)
converges in distribution to

a m variate normal distribution with mean zero and asymptotic covariance matrix Σk for
k = 2, 3, . . ., The element j, j′ of Σk corresponding to population proportions qj and qj′ is:

ςk(qj , qj′) = E
[
φi(Ŵ k(qj , F̂ ))φi(Ŵ k(qj′ , F̂ ))

]
. (10)
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Proof. By (8), for a given q the random variable
√
n
(
Ŵ k(q, F̂ )−W k(q, F̂ )

)
satisfies

the central limit theorem, and it is therefore asymptotically normal with mean zero and
finite variances and covariances. Using (9),

√
n
(
Ŵk −Wk

)
=
∑n

i=1φi + o(1)em where

φi =
(
φi(Ŵ k(q1, F̂ )), . . . , φi(Ŵ k(qm, F̂ ))

)t
and em is an m×1 vector of ones. The random

vector is multivariate normal with zero mean and finite covariance equal to

E

[
1√
n

n∑
i=1

φi ·
1√
n

n∑
i′=1

φti′

]
, (11)

which, using the properties of the expectations, becomes:

1
n

n∑
i=1

n∑
i′=1

E
[
φi · φti′

]
.

Since the random vectors φi and φi′ are independent by construction of the influence
function, one gets that E

[
φi · φti′

]
= 0 for i 6= i′ and that E

[
φi · φti

]
= E

[
φi′ · φti′

]
for

all i, i′. This implies that the covariance in (11) is equal to E
[
φi · φti

]
, which defines the

covariance matrix parameters. The term ςk(pj , pj′) in (10) corresponds to one of the cells
of this matrix.

The proposition clarifies that the covariance structure between the conditional S-Gini
SEF computed at different quantiles coincides with the influence functions covariance struc-
ture. A direct consequence is that for any k ≥ 3:

Ŵk is asymptotically distributed as N
(

Wk,
Σk

n

)
. (12)

The implementation problems and empirical solutions are discussed in the following
section. The asymptotic result can be extended to non-simple random samples by incor-
porating the sampling structure and the weighting scheme in the calculation of (10).

4.4 Bootstrapping techniques

A third possibility for testing ISDk consists in bootstrapping the variance covariance ma-
trix of the threshold estimator of Ŵk

F . Bootstrapping is often used in the empirical dis-
tributional analysis to produce estimators of the standard errors of inequality indicators.
Here, I propose to bootstrap vectors of conditional S-Gini SEF for each of the {q1, . . . , qm}
quantiles separately for a sufficiently large number of sub-samples drawn from the original
sample. Then, the covariance matrix of the conditional S-Gini SEF is estimated by the
empirical correlation between the indicators values calculated at every bootstrap iteration.

Let Y be the original sample of size n drawn from the distribution F . Bootstrap
computations are constructed conditional on Y. Let a random sample of size n∗ drawn
with replacement from Y be denoted as Yb = {Y b

i }n
∗
i=1 with empirical distribution F̂ b. It
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is often the case that n∗ = n. For every sub-sample Yb calculate the conditional S-Gini
SEF at order k for a finite number of m quantiles, denoted by Ŵ k(qj , F̂ b). By repeatedly
drawing random samples from Y, say B times, and calculating for each of the sub-samples
the vector of conditional S-Gini SEF, one obtains a B ×m matrix of data. The m ×m
empirical covariance matrix computed from these data is the bootstrap estimator of Σk/n,
the asymptotic covariance matrix of Ŵk in (12). Hence:

ς̂kB(qj , qj′)
n

=
1

B − 1

(
B∑
b=1

Ŵ k(qj , F̂b)Ŵ k(qj′ , F̂b) − BŴ
k

(qj , F̂b) Ŵ
k

(qj′ , F̂b)

)
,(13)

Ŵ
k

(q, F̂b) =
1
B

B∑
b=1

Ŵ k(q, F̂b).

The application of the bootstrap estimator only requires the calculation of a vector of
m conditional S-Gini SEF estimators within each re-sampling stage, although in general it
does not offer a refinement of the asymptotic approximation illustrated in Proposition 2.

5 Sample implementation

Consider a sample of size n where realizations are y1, . . . , yn ordered such as y1 ≤ . . . ≤
yi ≤ . . . ≤ yn. The estimator of the empirical cdf F̂ at any point y is:

F̂ (y) =
1
n

n∑
i=1

1(yi ≤ y), (14)

The quantile function estimator at population share p, denoted F̂−1(p), is:

F̂−1(p) = yi where i− 1 < pn ≤ i. (15)

For all quantiles (j − 1)/n < p ≤ j/n, the estimator of (2) is given by:

Λ̂k(p) := Λ̂k
(
j

n

)
=

1
(k − 2)!

1
n

j∑
i=1

(
j − i
n

)k−2

yi, ∀k ≥ 2. (16)

The conditional S-Gini SEF can be calculated using the following approximation, re-
sulting from the assumption that sample realizations are distinct. Let p̂i = F̂ (yi) be the
population share associated to observed value yi, corresponding to p̂i = i/n in this case.
Using the fact that

∫ 1
0 =

∑n
j=1

∫ pi
pi−1

with p0 = 0, the sample estimator of the conditional
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S-Gini SEF can be written as follows:

Ŵ k(q, F̂ ) = k

∫ 1

0
(q − p)k−1F̂−1(p)1(p ≤ q)

=
n∑
i=1

yi

∫ p̂i

p̂i−1

k(q − p)k−11(p ≤ q)dp

=
n∑
i=1

yj

{
(q − p̂i−1)k − (q − p̂i)k

}
1(i ≤ qn) + y[qn](q − p̂[qn])1(qn 6= [qn])

≈
n∑
i=1

yi

{(
n− i+ 1

n

)k
−
(
n− i
n

)k}
1(i ≤ [qn]). (17)

Unless pi = q, the last line is only an approximation of Ŵ k(q, F̂ ), since there remain a
residual proportional to [qn] − i which vanishes as soon as the sample grows. Given the
large size of the sample used in our applications, we take the empirical estimators (17) as
the consistent estimator of W k(q, F ).

The consistent estimator of the asymptotic covariance matrix of the conditional S-
Gini SEF, Σk/n = 1

nE
[
φi · φti

]
can be obtained by replacing the population influence

functions with the sample influence functions estimators. In the case of simple random
sampling schemes, the empirical counterpart becomes:

Σ̂
k

n
=

1
n

∑n
i=1φi · φ

t
i

n
.

With a more complicated sampling rule (as in the case of stratified or clustered samples)
the estimator must be computed using a non-uniform weighting schemes, as discussed by
Zheng (2002). From Proposition 2, the estimator of the covariances between Ŵ k(qj , F̂ )
and Ŵ k(qj′ , F̂ ) coincides with the covariances of the sums of the influence functions of
Ŵ k(q, F̂ ) associated to qj and qj′ , which gives (since the influence function average is
zero):

ς̂k(qj , qj′)
n

=
1
n

∑n
i=1 φi

(
Ŵ k(qj , F̂ )

)
φi

(
Ŵ k(qj′ , F̂ )

)
n

.

To compute the empirical covariances it is necessary to estimate the influence functions
φi

(
Ŵ k(qj , F̂ )

)
of Ŵ k(qj , F̂ ) for every qj , defined in (8). I make use of the results in Barrett

and Donald (2009) to derive the conditional S-Gini SEF influence functions estimators,
denoted φ̂i

(
Ŵ k(q, F̂ )

)
. Following Barrett and Donald, the estimator φ̂i(q, ĜL) of the GL

curve influence functions is:

φ̂i(q, ĜL) = (qF̂−1(q)− ĜL(q))− 1(yi ≤ F̂−1(q))(F̂−1(q)− yi). (18)

Substituting (18) into (8) gives the empirical counterpart of the influence function of
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Ŵ k(q, F̂ ), which can be decomposed into three components:

φ̂i

(
Ŵ k(q, F̂ )

)
=

3∑
h=1

Ih.

Depending on the value of q and on the sample size, it is possible to derive either exact
or approximate (by a number equal to qn − [qn]) empirical estimators. Since the correc-
tion term vanishes when the sample size is large, we only provide the formulation of the
approximate estimators. These terms are:

i) I1 :=
∑n

j=1 yj

[
−k
(
j
n

(
[qn]−j
n

)k−1
− j−1

n

(
[qn]−j+1

n

)k−1
)
− dj(k)

]
1(j ≤ [qn]),

ii) I2 :=
∑n

j=1

[
k

((
[qn]−j
n

)k−1
ĜL(j/n)−

(
[qn]−j+1

n

)k−1
ĜL((j − 1)/n)

)
+ dj(k)

]
1(j ≤ [qn]),

iii) I3 :=
∑n

j=1−k (yi − yj) 1(yi ≤ yj) [dj(k − 1)] 1(j ≤ [qn]),

where dj(α) =
(

[qn]−j
n

)α
−
(

[qn]−j+1
n

)α
with α a positive natural number and ĜL = Λ̂2

defined in (16).

6 Null hypothesis and test statistics for ISD and equality

This section makes use of the convergence results in (6) and (12) to derive tests statistics
(and their limiting distributions) that permit to establish if distribution F ISD at order
k the distribution G. Similarly to many other contributions dealing with estimation of
stochastic orders (see for instance Barrett and Donald 2003), I assume ISDk (F <ISDk

G) as the null hypothesis. According to the direct estimator approach, ISDk imposes
restrictions on integrals of the quantile functions at every quantile p. Hence for k ≥ 1:

Hk
0 : ΛkF (p) ≥ ΛkG(p) for all p ∈ [0, 1];

Hk
1 : ΛkF (p) < ΛkG(p) for some p ∈ [0, 1].

One can easily test for equality by reversing the role of F and G and testing if dominance
is accepted also in this case.

According to the threshold estimator, ISDk imposes restrictions on the conditional
S-Gini SEF at every quantile q. The null and alternative hypothesis for ISD at order k ≥ 3
can be stated as follows:

Hk
0 (W ) : W k−1(q, F ) ≥W k−1(q,G) for all q ∈ [0, 1];

Hk
1 (W ) : W k−1(q, F ) < W k−1(q,G) for some q ∈ [0, 1].

In practice, however, dominance can be tested only for a finite number m of percentiles.
I take a similar stance as in Dardanoni and Forcina (1998, 1999) and Lefranc et al. (2009),
among others, by constructing direct tests of dominance for a finite number m of linear
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constraints. Therefore the null assumption F <ISDk G can be expressed as Λk
F −Λk

G ≥ 0,
which leads to the direct estimator approach for ISDk. Alternatively, the null of dominance
can be expressed as Wk−1

F −Wk−1
G ≥ 0, which leads to the threshold estimator approach

developed in this paper.

6.1 Setting

To simplify the exposition, D = F,G denotes a distribution while Θ̂
k

D identifies the sample
estimator used to test ISDk. The direct estimator approach requires to set Θ̂

k

D = Λ̂
k

D for
k ≥ 1, while the threshold estimator approach sets Θ̂

k

D = Ŵk−1
D for k ≥ 3.

Let Θk be the 2m×1 vector obtained by staking the vectors Θk
F and Θk

G. The sample
counterpart of Θk is denoted Θ̂

k
and is obtained from sub-samples of size nF and nG

respectively, where n = nF + nG indicates the pooled sample size. The scalars rF = nF /n

and rG = nG/n indicate the relative size of each of the two samples compared to the pooled
sample.

The hypothesis of dominance can be reformulated as a sequence of m linear constraints
placed on the vector Θk. Let R = (Im,−Im) be the m × 2m differences matrix, with Im
indicating the m×m identity matrix. Define the parametric vector δk ∈ Rm as:

δk = RΘk.

I maintain the (non testable) assumption that F and G are generated by independent
processes. The various hypothesis of dominance or equality can be written in terms of
linear inequalities involving δk, with δ̂k indicating its empirical counterpart. Using the
results in (6) or (12) and under the independence assumption, the following asymptotic
result holds for every k ≥ 1:

√
n δ̂k =

√
nR Θ̂k is asymptotically distributed as N

(√
nR Θk, Ω

)
, (19)

where δ̂k denotes the sample estimator of δk, and

Ω = R diag
(

Σk
F

rF
,
Σk
G

rG

)
Rt.

According to the direct estimator approach, ISDk empirical implementation is pos-
sible by using the estimator of the asymptotic covariance of Λ̂

k

D as an estimator for the
asymptotic variance Ω̂. According to the threshold estimator approach, Ω̂ coincides with
the estimator of the asymptotic covariance of Ŵk−1

D in (10). The asymptotic normality of
the estimators permits to test dominance through Wald-type tests statistics.
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6.2 Testing equality

In the case of equality testing, the null and alternative hypothesis are:

Hk
0 : δk = 0 Hk

1 : δk 6= 0.

Under the null hypothesis, it is possible to resort to a Wald test static T k1 :

T k1 := n δ̂
t

k Ω̂
−1
δ̂k.

Given the convergence results in (19), the asymptotic distribution of the test T k1 is χ2
m.

The p-value tabulation follows the usual rules.

6.3 Testing dominance

In the case of strong dominance testing, i.e. F <ISDk G, the null and alternative hypothesis
for direct and threshold ISDk testing can be stated as follows:

Hk
0 : δk ∈ Rm

+ Hk
1 : δk �∈ Rm

+ .

The Wald-type test statistic under inequality constraints has been developed by Kodde
and Palm (1986). Under the null Hk

0 the test statistics T k2 is:

T k2 = min
δk∈Rm+

{
n (δ̂k − δk)t Ω̂

−1
(δ̂k − δk)

}
.

Kodde and Palm (1986) have shown that the statistic T k2 is asymptotically distributed
as a mixture of χ2 distributions, provided that the asymptotic normality in (19) holds:

T k2 ∼ χ2 =
m∑
j=0

w
(
m,m− j, Ω̂

)
Pr
(
χ2
j ≥ c

)
,

where w
(
m,m− j, Ω̂

)
denotes the probability that m − j elements of δk are strictly

positive.4

To test the reverse dominance order, that is G <ISDk F , it is sufficient to replace −δ̂k
and −δk in the calculation of T k2 .

7 Illustration: Equality of opportunity in France

This section provides an illustrative application of ISD to check for robustness in equal-
ity of opportunity (EOP hereafter) assessments. EOP for income acquisition posits that

4To estimate w
(
m,m− j, Ω̂

)
, we draw 10,000 multivariate normal vectors and covariance matrix Ω̂,

provided it is positive definite. Then we compute the proportion of vectors with m− j positive elements.
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differences in family background across individuals should not predict their labor market
income prospects (Fleurbaey 2008).

Let assume for simplicity that there are only two distinct family backgrounds a and
b, addressed to as individual circumstances c ∈ {a, b}. Within this setting, the income
yi of individual i is determined by two components, her circumstances c and her effort
e, so that yi = y(c, e). If the two components are independent, the effort exerted by
i can be associated to her position in the ranking of incomes, let say p, so that p = e

(as in Roemer 1998) and the individual income can be estimated by the overall income
distribution. Let F̂ be the empirical income process, it follows that yi = F̂−1(p|c).

According to the Lefranc et al. (2009) view, EOP prevails if there is no agreement
among inequality averse social evaluation functions in preferring a society where incomes
are distributed according to F̂−1(p|a) rather than F̂−1(p|b) or vice-versa. That is:

F̂ (.|c) ��<ISD2 F̂ (.|c′) with c 6= c′.

When EOP prevails, the cases F̂ (.|c) <ISD3 F̂ (.|c′) and F̂ (.|c) <ISDk F̂ (.|c′) with k arbi-
trary large are equivalent. However, there is larger agreement on the existence of an unjust
advantage of c over c′ whenever ISD3 holds than there is whenever ISDk holds. Hence, if
EOP is accepted it is essential to test at least for ISD3 in order to understand how much
robust is the violation of ISD2.

To qualify the degree of EOP robustness, I make use of ISD tests under the hypothesis
of equality or dominance at order k. Practically, a test for EOP robustness requires (i) to
partition the sample into groups defined by circumstances a and b, (ii) to determine the
groups specific distributions F̂ (.|a) and F̂ (.|b) and (iii) to check the minimal order k at
which F̂ (.|a) <ISDk F̂ (.|b) or F̂ (.|b) <ISDk F̂ (.|a) or both. The focus will be exclusively
on ISD3 comparisons.

I make use of the FLFS - French Labor Force Survey data (Enquête Emploi) provided
by INSEE to estimate the labor income prospects made conditional on family background
characteristics: the circumstance a gathers all French workers whose parents are either
non-french or were occupied as manual workers or farmers; the circumstance b is instead
associated to the middle class parental background, gathering artisans, small entrepreneurs
and non-manual workers.5 The investigations are restricted to FLFS waves 2004, 2006,
2008 and 2010 and to cohorts born between 1958 and 1962 to approximate the expected
earning profile with an homogeneous sample in terms of age patterns and experience in
the labor market.6 Note that the approach is fully distributional and it does not involve
the comparisons of individual realizations.

5The higher social class, comprising white collars, managers, professionals is not considered in this

illustrative example.
6The FLFS is a rotating panel. The panel rotation after 2003 is of one year and a half (that is, one-sixth

of the sample is replaced every trimester). Picking up information every two years allows to deal with a

renewed sample, as in years 2004, 2006, 2008 and 2010. The year 2002 is not exploited due to imperfections

in the data collected.
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(a) Pen’s Parade (b) Generalized Lorenz curves

Figure 2: ISD1 and ISD2 relations between circumstance a an circumstance b.

The estimating sample consists of 2, 326 French workers (1, 810 observations are associ-
ated to circumstance a and 516 to circumstance b). Figure 2 reports the Pen’s Parade and
the generalized Lorenz curves of the two circumstances’ incomes distributions.7 The two
income profiles cannot be ranked according to ISD1 or ISD2 since their respective quantile
functions and the generalized Lorenz curves cross at least once. It seems clear, however,
that the poorest workers in group a enjoy an higher advantage than the poorest workers in
group b, while the order swaps as soon as the income deciles grow. This relation suggests
that the correct dominance relation to verify is F̂ (.|a) <ISDk F̂ (.|b) for k = 1, 2, 3.

The FLFS data are areolar: they are not drawn directly from a selection of households
or individuals, but from a selection of geographical areas made up of twenty adjacent
households on average. Then, information on earnings for workers aged 15 to 65 within
each area is collected in the survey. I take the clustered sampling scheme of the FLFS into
account when computing the covariance structure of the influence functions associated to
the conditions S-Gini social evaluation functions calculated at different income deciles.

Table 1 reports incomes quantiles, generalized Lorenz curves coordinates, Λ3 coordi-
nates as well as conditional S-Gini SEF W 3(., F ) indices for selected deciles of F (.|a) and
F (.|b), calculated accounting for the survey design of FLFS only for the threshold estima-
tor approach. The table shows that, independently on the evaluation method used to infer
ISD3, pairwise comparisons of estimated coefficients at fixed deciles leads to inconclusive
results: in many cases the differences in quantiles curves, generalized Lorenz curves, in-
tegrals of the generalized Lorenz curves or conditional S-Gini SEF at a given decile are
statistically zero, or their signs do not concord across deciles. Joint tests for the equality
and dominance null hypothesis are therefore preferred.

The Wald-type test statistics and their simulated p-values are reported in Table 2.
Joint tests show that rank and generalized Lorenz equality/dominance nulls are rejected
at 1%. Thus EOP is satisfied and ISD comparisons at higher orders become relevant. The

7Data have been depurated of years of survey fixed effects.
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Table 1: Statistics and standard errors for F̂ (.|a) <ISDk F̂ (.|b).
Wage, circumstance a Wage, circumstance b Difference

(1) (2) (1)-(2)
Coeff. (SE) Coeff. (SE)

Rank dominance
10% 446.3 ( 963.51) 378.8 ( 1188.67) 67.44
30% 1327.3 ( 736.97) 1327.3 ( 1200.39) 0.00
50% 1593.9 ( 707.16) 1666.5 ( 1107.57) -72.63
70% 1950.4 ( 1009.56) 2253.0 ( 1529.40) -302.66*
90% 2700.0 ( 2258.25) 3319.7 ( 3418.10) -619.74*

Generalized Lorenz dominance
10% 31.5 ( 47.68) 28.0 ( 39.29) 3.41
30% 230.1 ( 337.98) 196.5 ( 375.59) 33.62
50% 522.0 ( 429.43) 500.1 ( 498.45) 21.86
70% 871.9 ( 535.44) 893.6 ( 690.61) -21.71
90% 1321.1 ( 695.79) 1430.8 ( 935.84) -109.71*

ISD at order 3 (threshold estimator)
10% 2.7 ( 4.79) 2.2 ( 4.08) 0.41
30% 48.2 ( 104.32) 38.6 ( 80.26) 9.63*
50% 196.8 ( 291.01) 175.9 ( 264.26) 20.85
70% 472.8 ( 546.76) 448.9 ( 513.15) 23.97
90% 906.3 ( 896.97) 904.0 ( 854.19) 2.38

ISD at order 3 (direct estimator)
10% 1.3 ( 3.40) 1.2 ( 2.97) 0.17
30% 24.1 ( 65.46) 19.5 ( 54.17) 4.60
50% 98.4 ( 165.54) 88.0 ( 167.98) 10.38
70% 236.4 ( 308.29) 225.4 ( 340.01) 11.05
90% 453.2 ( 527.69) 453.5 ( 608.52) -0.28

ISD at order 3 (bootstrap estimator)
10% 2.7 ( 0.25) 2.3 ( 0.35) 0.40*
30% 48.2 ( 2.09) 38.6 ( 3.04) 9.58*
50% 196.8 ( 6.35) 176.0 ( 9.78) 20.76*
70% 472.9 ( 11.47) 449.0 ( 16.83) 23.84*
90% 906.4 ( 17.09) 904.2 ( 24.52) 2.21

Mean 1727.0 ( 31.72) 1984.9 ( 70.05) -257.86*
Sample size: 1810 516 -

Notes: FLFS data, waves 2004, 2006, 2008 and 2010. The threshold and bootstrap estimators report

conditional S-Gini coordinates for the selected deciles. Standard errors reported in parenthesis account for

the clustering structure of the sample (aires). Bootstrapped standard errors with 200 repetitions.
∗ denotes significantly different from zero at 5% on the basis of a two-tailed test.

threshold estimator, the preferred inference strategy, shows that ISD3 cannot be rejected
by the data at 1% significance level, while equality of conditional S-Gini SEF vectors is
clearly rejected at any significance level. Interesting, the bootstrapping procedure (which
is computationally less intensive) leads to similar conclusions as the threshold estimator.
Both procedures permit to take into account the clustering design the data. The direct
estimator for ISD3, instead, consider data as obtained from a simple random sampling
scheme. As a consequence the direct estimator rejects dominance, while equality of the
integrals of the generalized Lorenz curves cannot be rejected even at 10% significance level.
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Table 2: Wald tests and p-values for F̂ (.|a) <ISDk F̂ (.|b).
Null hypothesis: Equality Dominance

(1) (2)
Wald test p-value Wald test p-value

Rank 55.13 0.000 41.35 0.000
Generalized Lorenz 45.33 0.000 17.91 0.000
ISD order 3

- Threshold est. 842.75 0.000 0.00 0.652
- Direct est. 4.55 0.871 0.00 1.000
- Bootstrap est. 8600.90 0.000 0.00 0.951

Notes: FLFS data, waves 2004, 2006, 2008 and 2010. Wald-type tests for equality and dominance based on

distributions deciles. The threshold and bootstrap tests are performed over conditional S-Gini coordinates.

P-values for equality obtained from a Chi-squared distribution. P-values for the dominance hypothesis are

obtained via Monte-Carlo simulations. The null hypothesis of dominance cannot be rejected (is rejected)

at the significance level α if the Wald test is lower (larger) than the corresponding lower bound lbα (upper

bound ubα). For α = 10%, 5%, 1% the corresponding lower bounds are lbα = 1.642, 2.706, 5.412 and the

corresponding upper bounds are ubα = 14.067, 16.274, 20.972 (see Kodde and Palm 1986).

To conclude, EOP cannot be rejected. However, EOP seems not to be robust since the
two distributions associated to circumstances a and b can be ranked according to ISD3.

8 Concluding remarks

Inverse Stochastic Dominance (ISD) is a convenient tool for constructing robust welfare
comparisons between pairs of distributions. Using the parallel with the dual theory of
choice under risk (Yaari 1987), income distributions play the role of risky lotteries. ISD
impose empirically testable criteria on the data that permit to identify the class of social
evaluation functions where agreement is reached over the preferred income lottery. One
important class of social evaluation functions originates from the Single Parameter Gini
(S-Gini) index family (Donaldson and Weymark 1983), parametrized by the ISD order of
dominance. For instance, the Gini index can be related to ISD at order three. I pro-
pose an innovative procedure for constructing ISD dominance at orders higher than the
second by setting dominance conditions among conditional single parameters Gini social
evaluation functions, calculated at various quantiles of the distribution. Standard errors
are computed by calculating the influence functions of the conditional S-Ginis SEF for
each distributions. Differently from other approaches, the influence functions permit to
account for non-standard randomization procedures in sample data collection, a character-
istic common to many economic surveys. One of these is the French Labor Force Survey,
which is used to test the robustness of the Equality of Opportunity evaluations. The ISD
tests proposed in this paper are operationalized through the user written isdtest Stata
routine.
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