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Abstract

It is well-known that Gini coefficient is influenced by granularity of measurements. When there
are few observations only or when they get reduced due to grouping, standard measures exhibit a
non-negligible downward bias. At times, bias may be positive when there is an apparent reduction
in sample size. Although authors agreed on distribution-free and distribution-specific parts of it,
there is no consensus in regard to types of bias, their magnitude and the methods of correction in
the former. This paper deals with the distribution-free downward biases only, which arise in two
forms. One is related to scale and occurs in all the cases stated above, when number of observations
is small. Both occur together if initial number of observations is not sufficiently large and further
they get reduced due to grouping. Underestimations associated with the former is demonstrated
and addressed, for discontinuous case, through alternative formulation with simplicity following the
principle of mean difference without repetition. Equivalences of it are also derived under the geometric
and covariance approaches. However, when it arises with the other, a straightforward claim of it in
its full magnitude may be unwarranted and quite paradoxical. Some exercises are done consequently
to make Gini coefficient standardized and comparable for a fixed number of observations. Corrections
in case of the latter are done accordingly with a newly proposed operational pursuit synchronizing
the relevant previous and present concerns. The paper concludes after addressing some definitional
issues in regard to convention and adjustments in cases of small observations.
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1. INTRODUCTION 

It is well-known that Gini coefficient is influenced by granularity of measurements.  For 

example, five quintiles (low granularity) usually yield significantly a lower Gini coefficient 

than twenty ventiles (high granularity) taken from the same distribution. This is commonly 

perceived as an often encountered problem with measurements. However, there is no 

consensus on the issue in theoretical and empirical literature. In his recent study, Milanovic 

(2010) computes Gini coefficients from micro data for some countries with large number of 

observations and then he squeezes micro data for each of the countries into twenty ventiles 

and computes Gini coefficients again. He observes that for each of such cases loss in Gini 

coefficient is negligible. For example, in table 3 of his paper (considering the case of Belarus 

only, p. 10), when number of observations is changed from 5227 to 20, Gini coefficient is 

reduced from 28.67 to 28.5 meaning 0.6 per cent underestimation. On the contrary, according 

to Deltas (2003, p. 227), “… a reduction in the sample size leads to a reduction in apparent 

inequality as measured by the Gini coefficient”. He examines the extent of bias using Monte 

Carlo simulations and claims that Gini coefficient may exhibit a bias of up to 7.5 per cent for 

a sample size of 20 in contrast to that of the whole population with a finite size. According to 

him (p. 227), “… the bias varies substantially across distributions”. In line with these 

methodological notes on ‘small-sample bias’ he also cites example of ‘small-size bias’, which 

occurs  for availability of few observations only (p. 227). At times, positive bias may arise as 

well in adjusted Gini when incomes are generated by a uniform distribution
1
 (Deltas, 2003, p. 

230). Considering its distribution-free and the distribution-specific parts, he terms those as 

first-order and second-order biases respectively. The underestimation due to first-order bias is 

caused by the fact that in cases of small observations, standard measures produce results in 

truncated scales, not in 0-100 point scale. In regard to its correction, he suggests one 

multiplicative factor [n/(n-1), where n = number of observations] with geometric intuition
2
, 

which adjusts results by putting them in 0-100 point scale. Interestingly, this correction factor 

corresponds to the contribution of Deaton
3
 (1997, p. 139), who derives one formula of 

computing Gini coefficient more directly without relating it to the Lorenz curve framework 

and without mentioning any inconsistency under discussion. Deaton (1997, p. 139) claims 

                                                
1 An example is cited in section 5.3 showing positive bias even before adjustments. 

2 Does not eliminate bias associated with stochastic processes. 

3 Some other formulae also correspond to this, such as Majumder (2007, pp. 4-5) and World Bank (2003, p. 22). 
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that: " … the Gini coefficient is often defined from the Lorentz curve, but can also be defined 

directly”. It is shown later that his formula is clearly related to (maximum inequality) Lorenz 

curve framework. Qurti and Clarke (2010) contribute significantly on the issue of 

underestimation or bias associated with Gini coefficient due to grouping. They report that the 

grouping of income into relatively small number of categories imparts a non-negligible 

downward bias, as found in a study by Lerman and Yitzhaki (1989), where  biases from using 

grouped data with ten and five income categories are about 2.5 per cent and 7 per cent 

respectively as compared to the Gini calculated from micro data. As above, although authors 

go similarly in views of the approaches and on the subject of concern, they differ 

significantly in terms of reasoning. Also there is no consensus in regard to types of bias, 

which are distribution-free, their magnitude and the methods of correction. It is clear when 

Qurti and Clarke (2010, p. 983) comment that the correction factor proposed by Deltas (2003) 

in regard to the first-order bias “… neglects that the small-sample bias of the Gini is 

distribution specific”. They also classify bias similarly into two types: first-order and second-

order considering the distribution-free and distribution-specific parts of it respectively and 

consequently derive a first-order correction factor [k
2
/(k

2
-1), where k = number of equally 

sized groups] from a measurement error framework. As the correction factors proposed by 

them differ, the concept of so-called ‘first-order’ bias will also do. We demonstrate later that 

the ‘first-order’ bias as highlighted by Deltas (2003) is not distribution-specific. Further, we 

reveal that the distribution-free bias, in such cases
4
, arises in two forms. They are to be 

corrected first by the ‘first-order correction factor’ proposed by Qurti and Clarke (2010) and 

then by that proposed by Deltas (2003). Although the issue has been addressed 

methodologically by Qurti and Clarke (2010) as well as used by Milanovic (2010), there is no 

reflection of such an operational pursuit in their works. However, in order to proceed further, 

we term the first-order bias classified by Deltas (2003) as the bias of ‘Type I’, the first-order 

bias perceived by Qurti and Clarke (2010) as that of ‘Type II’ and the remaining second order 

distribution-specific one as bias of ‘Type III’. Underestimations associated with the first two 

are the main concern of this paper. Nevertheless, as above, the present paper plans to 

synchronise the concerns and approaches on the issue of underestimation with more emphasis 

to use them in alternative theoretical derivations relating them with the standard sets of 

                                                
4 Of course when initial number of observations is not sufficiently large and further they reduced due to 

grouping. 
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measures. For example, it may be observed that under the Gini’s mean difference approach, 

the inconsistency with small observations occurs when the computation is based on the 

principle of mean difference with repetition. Consequently, one formula is suggested where 

computation is done following the principle of mean difference without repetition. Under the 

geometric approach, such inconsistencies occur when computation of Gini coefficient 

includes the area beyond the maximum inequality Lorenz curve. An alternative formulation is 

proposed accordingly within the framework of maximum inequality Lorenz curve. Under the 

covariance approach, the alternative derivation follows that of the geometric approach. The 

standard formula considers all the income ranks corresponding to the all cumulative 

proportions of population. However, as the correction under the geometric approach 

abandons one cumulative proportion of population (beyond the maximum-inequality Lorenz 

curve), the new formula under the covariance approach follows that. With such precise 

objectives of deriving alternative sets of measures (including the narrations presented above 

while making arguments), the paper also maintains that computation of Gini coefficient 

should be more user-friendly in regard to the use of simple spreadsheet programmes
5
. As 

literature on Gini coefficient is vast and wide and as it seems fairly impossible to cover all, 

the tradition of discrete approach is followed, which is popularised, among other, by Anand 

(1983), Milanovic (1994, 1997), Subramanian (1997) and Xu (2004).         

  This paper consists of sections, which: (i) simplifies the standard measure under the 

Gini’s mean difference approach in regard to use of simple spreadsheet programmes, (ii) 

highlights the source of Type I bias under the Gini’s mean difference approach, geometric 

approach and the covariance approach and proposes alternative formulations, (iii) discusses 

about Type II bias and its possible solution, (iv) demonstrates the method of correction when 

both Type I and Type II biases occur together with numerical examples, and (v) discusses the 

case when Type I bias cannot be claimed in its full magnitude and consequently does some 

(numerical) exercises to make Gini coefficient standardised and comparable for a fixed 

number of observations. The paper concludes after addressing some definitional issues in 

regard to convention and adjustments in cases of small observations.    

 

                                                
5 For example, by presenting a simple measure, Milanovic (1997) claims that since all the components of the 

formula are easy to calculate, the Gini coefficient can be obtained using a simple hand calculator. 
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2. THE GINI’S MEAN DIFFERENCE APPROACH 

2.1. The standard measure 

Although there are various ways of expressing and calculating Gini coefficient, we begin 

with the following (see Anand, 1983, p. 313):  

  






n

1j

n

1i

2

1 ji
yyμ)(1/2nG ,               (1) 

where, G stands for Gini coefficient, the subscript denotes its sequence in the paper and  yi is 

the income of person or group i, yj is that of person or group j,  is the average income, i = 1, 

2, 3, …, n, j = 1, 2, 3, …, n and y1 ≤ y2 ≤ … ≤ yn. The formula tells that Gini coefficient is 

one-half the average value of absolute differences between all pairs of incomes divided by the 

mean income. For operational advantage, we plan to work with distribution of income. In that 

case we comprehend yi and yj as proportions or shares of income corresponding to person or 

group i and j respectively (such that µ = 1/n, as summation over all proportions of income is 

equal to one). 

 The above formulation is due to Kendall (1948, p. 42), who, for discontinuous case, puts 

forward the principles of computing ‘mean difference with repetition’ and ‘mean difference 

without repetition’
6
. The case of repetition is for all i = j = 1, 2, 3, …, n; and that of without 

repetition is for all i = 1, 2, 3, …, n and i ≠ j. Formula (1) corresponds to the first case of 

‘with repetition’. However, while working out Gini’s mean difference (with repetition), 

Kendall (1948, p. 45) considers one set of terms of type (yi – yj) only in the numerator, sum of 

which is half the sum of all pairs of differences. While demonstrating equivalence of formula 

(1) with the ones under different approaches, Anand (1983, pp. 313-314) also restricts 

number of elements to the lower triangular matrix of the following symmetric matrix for i = 

1, 2, 3, …, n and j ≤ i: 
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Gini index, in response to the above restriction, is expressed as following: 

                                                
6 This is, according to him, unimportant when n is large. 
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as sum of all (absolute) terms is twice the sum of terms in the lower triangular matrix: 
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 
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.                (2) 

As the composite term inside the parenthesis in the above expression (formula 2) can be 

computed easily using simple spreadsheet programmes, it is one of the simplest formulae of 

Gini coefficient. It says that Gini coefficient is a function of weighted sum of share of 

income
7
, where the weight is nothing but the rank of individuals or groups in the distribution, 

when arranged in ascending order.  

2.2. Bias of Type I with the standard measures 

If we imagine the extreme situation, where all resources are given to one individual or group, 

share of that person or group will be 1. For n = 20 (and when G is multiplied by 100 and  is 

replaced by 1/n, henceforth we will not mention these):  

 1)201*20*(2
20

1
*100G 2   

  95 . 

In ideal case, when all resources are equally divided among all, share of each individual or 

group will be 0.05. For n = 20, 

 }1200.05)*20...0.05*20.05*{2(1
20

1
*100G 2  , 

  0 . 

                                                
7 Income only (rather than share of income), if work is done with absolute income levels. 
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So, in case of n = 20, the standard measure produce results in 0-95 point scale.  It may be 

checked that, in extreme case, for n = 10, G2 = 90; for n = 5, G2 = 80. The lower limit (in 

ideal case) is however, always equal to zero. 

 Alternatively, this inconsistency may also be checked from formula (1). For example, 

when n = 5, in the extreme case (when all resources are given to one group or individual) we 

have the following pairs of difference (considering the absolute values only): 

 























01111

10000

10000

10000

10000

. 

Sum of all pairs of difference is 8. 
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  8
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1
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  80 . 

In ideal condition (when all resources are equally divided among all), the pairs of difference 

are: 
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In that case: 

 0G1  . 

So, when n = 5, standard measure produces results in 0-80 point scale. So, it is clear that for 

small observations the standard measure of Gini coefficient does not produce result in 0-100 

point scale. A careful observation reveals that in such cases, maximum value depends up on 

the factor: (n-1)/n. As above, under the standard measure, Gini coefficient is underestimated 

by 5 per cent when n = 20, by 10 per cent when n = 10, and by 20 per cent when n = 5, and so 

on. This is an example of underestimation or downward bias of Type I. It is distribution-free, 

as we understand that the concept of distribution breaks in the extreme case when all 
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resources are given to one individual. It is rather related to scale. Results can be corrected by 

the correction factor proposed by Deltas (2003): n/(n-1).  

2.3. The alternative formulation to check bias of Type I 

According to Kendall (1948, p. 42), in case of obtaining Gini’s mean difference without 

repetition, in the above symmetric matrix, we are confined to elements for all i = 1, 2, 3, …, n 

and j ≠ i. In other words, we are confined to the elements in the lower (for j < i) and upper 

(for j > i) triangular portions of it except the diagonal ones.  The divisor, according to him, 

will be as many as elements under consideration, exactly n(n-1) for the situation stated above. 

Now, following Kendall (1948, p. 45), if we consider one set of terms of type (yi – yj) only 

from the lower triangular portion of the matrix, number of terms reduces to: n(n-1)/2.  Also, 

as  

   
 



 ij ij
ji

n

1i

n

1i

)y(y2yy
ji

, 

Gini coefficient appears to be: 

 



 ij

ji

n

1i
3 )y(y

1)μn(n

1
G .               (3) 

The above formula says that (when we work with absolute income levels) Gini coefficient is 

one-half the average value of differences between the least possible combinations of pairs of 

incomes divided by the mean income. 

As, 

 }i)y(n1)y{(iyy i

n

1i
i

ij

n

1i
ji

 






, 

following the similar steps as we do in case of G2, we have:  

 1)niy(2
1)μn(n

1
G

n

1i

i4 


 


.               (4) 

G3 and G4 are same, but expressed somewhat differently. The expression in G3 is similar to 

the formula of Gini coefficient proposed by Deaton (1997, p. 139): 

  



 j

ji
ji

xx
1)μN(N

1
γ .                (5) 
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They are free from the issue of underestimation, as they produce results in 0-100 point scale 

as demonstrated below. 

 In the extreme case, for n = 20:  

 1)-021*20*(2
1)-(20

1
*100G 4   

  100 . 

It may be checked that in ideal case, G4 = 0 irrespective of number of observations. 

3. THE GEOMETRIC APPROACH 

3.1. The standard geometric formula 

Equivalence of formula (2) with the ones under geometric approach is demonstrated by 

Anand (1983, pp. 311-313). However, we derive the geometric formula following Majumder 

(2007) in order to move with the spirit of the paper
8
. Figure 1 shows a simple illustration of 

Lorenz curve framework with five quintiles. If the area between the line of equality and the 

Lorenz curve be A and the total area below the line of absolute equality be (A + B), by 

definition, Gini coefficient = A / (A + B). As, the total area under the line of absolute equality 

is 1/2, Gini coefficient appears to be 2A. 

 If we look at the figure 1, we see that B consists of five (n in general) triangles and four 

[(n-1) in general] rectangles. Area of each triangle is:  

 iy
n

1

2

1
heightbase

2

1
 . 

Sum of all triangles is: 

 
2n

1
, as 



n

1i
i 1y . 

Area of each rectangle is:  

 heightbase . 

Sum area of all (n-1) rectangles is: 

 )y...y(y
n

1
...)y(y

n

1
y

n

1
1n21211   

                                                
8 As we need to demonstrate the role of the area beyond the maximum inequality Lorenz curve. 
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or,  ]1)}y(n{n...2)y(n1)y[(n
n

1
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
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1i
ii iy

n

1
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We understand that:  

 1yy
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Also,  

 n

n

1i
i

1n

1i
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





.  

If we replace these results in the above expression (6), the sum area of (n-1) rectangles is: 

 )nyiy(
n

1
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n
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

, or,  

 


n
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n
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B  = Sum area of n triangles + Sum area of (n-1) rectangles, 
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A = 1/2 - B, as (A + B) = 1/2.  

So, 




























n

1i
iiy

n

1
1

2n

1

2

1
A , 

    

























 
 



n

1i

iiy
n

1
1

2n

1n
,  

ECINEQ WP 2013 - 298 August 2013



11 

 

    )1niy(2
2n

1 n

1i

i  


                 (8) 

As, G = 2A,  

 1)niy(2
n

1
G

n

1i

i5  


. 

Multiplying the numerator and denominator of the above expression by n we have: 

 1)niy(2
μn

1
G

n

1i

i25  


,  as  µ = 1/n.             (9) 

   = G2. 

G5 is the standard formula of computing Gini coefficient under the geometric approach, 

which corresponds to the case of Gini’s mean difference with repetition. It is needless to say 

that G5 is subject to the bias of Type I as discussed in case of G2 in the previous section. 

 However, formula (9) can be given a geometric look as per the Lorenz curve 

specification:  

   1)pyp(2G
n

1i
ii6 



,                     (10) 

where, pi = i/n or cumulative proportion of population, and p = 1/n or proportion of 

population in each group.  

3.2. The alternative geometric formulation to check bias of Type I  

In figure 2, we spotted one area: C, which is taken away from the area previously denoted by 

B in figure 1. Now, the effective area beyond the Lorenz curve is B̂ . A light reasoning will 

reveal the rationale behind taking away the area denoted by C. When number of observations 

is sufficiently large, C does not arise and results are expressed in 0-100 point scale. When 

number of observations is small, C arises and consequently we get underestimated results 

(not expressed in 0-100 point scale) as it is included in the computation procedure. It is not a 

part of the maximum inequality Lorenz curve
9
 when number of observations is small and its 

presence in the denominator in the process of computation unnecessarily truncates the scale. 

                                                
9 Please see figure 2, as presented by Deltas (2003, p. 229). 
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Geometrically, when number of observations is small and when all resources are given to one 

particular group or individual (the n
th

 or the richest one after rearrangement in ordering), 

Lorenz curve will never coincide with the right-hand side boundary of the triangle below the 

line of absolute equality. Although it starts from the point (0, 0) and ends at the point (1, 1), it 

never passes through point (1, 0) in case of small observations. Rather, before reaching the 

end of the base, it takes a turn to the right-hand side upper corner of the triangle from a point 

where proportion of population is: (n-1)/n. As we made this illustration with five quintiles, 

the turn takes place at a point where proportion of population is: (5-1)/5 = 0.8. Also, as n is 

small, the area C is prominent. If n is sufficiently large, it disappears. However, in principle, 

such an area should not be taken into account in computation of Gini coefficient, when 

number of observations is small. In new case the maximum possible area below the Lorenz 

curve is: 

 CBB̂  . 

 heightbase
2

1
C   

    1
n

1

2

1
  

   
2n

1
 .                         (11) 

So,  
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, substituting the values of B from expression (7). 
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
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n

1
1B̂ .          

Also, the total effective area below the line of equality is not 1/2, it is (1/2 - C) or, 

 









2n

1

2

1
B̂A ,   

      






 


2n

1n
.                       (12) 

The modified geometric Gini coefficient is: 
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B̂A

A
G 7


  

  2A
1n

n










 , putting the results of (A + B̂ ) from expression (12) above. 

  


















 



1)niy(2
2n

1
2

1n

n n

1i

i
, putting the result of A from expression (8) from the 

previous section. 

  1)niy(2
1)(n

1 n

1i

i 


 


.                     

Multiplying the numerator and denominator of the above expression by n we have: 

 1)niy(2
1)μn(n

1
G

n

1i

i7 


 


, as  µ = 1/n.               (13) 

  = G3 = G4. 

 When the geometric formula is based on the maximum possible area below the maximum 

inequality Lorenz curve, it corresponds to that under the Gini’s mean difference without 

repetition or to the one proposed by Deaton (1997, p. 139) as shown in formula (5).  

Although Deaton (1997, p. 139) claims that his formula is independent of Lorenz curve 

framework, we see that it is also related to the geometric one based on the concept of 

maximum inequality Lorenz curve.   

 Formula (13) can be given a geometric look as per the Lorenz curve specification, as we 

do in case of formula (10) as follows:  

 1)pyp(2
1)(n

n
G

n

1i
ii8 






, as µ = 1/n,  

where, pi = i/n or cumulative proportion of population, and p = 1/n or proportion of 

population in each group. Now, if we move a step further, we have: 

 kp̂yp̂2G
n

1i
ii8 



,                      (14) 

where, ip̂ = npi/(n-1), p̂  = np/(n-1) and k = n/(n-1). Each factor in G8 is multiplied by another 

factor: n/(n-1). This is how it differs from G6 or any standard measure.  It is to be noted that 
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this factor is identical with the correction factor proposed by Deltas (2003). This further 

confirms that such a derivation corresponds to Deltas’s (2003) proposition in regard to the 

correction for underestimation. G7 and G8 are identical and it is obvious that they are free 

from bias of Type I. They produce results in 0-100 point scale.  

4. THE COVARIANCE APPROACH 

4.1. The standard formula under the covariance approach 

Under the covariance approach, Gini coefficient is defined by Pyatt, Chen and Fei (1980) and 

Anand (1983, p. 315)
10

 independently in a similar fashion: 

 )ycov(i,
nμ

2
G i9  . 

According to Anand (1983, pp. 315-316), up to a multiplicative constant, Gini coefficient can 

be expressed as the covariance of income and its rank such that: 

 μ
2

1)(n
iy

n

1
)ycov(i,

n

1i
ii






, and  

 
n

1)(n
iy

μn

2
G

n

1i
i29






. 

If we move a step further,  

  1)niy(2
μn

1
G

n

1i
i29 



,                   (15) 

   = G2 = G5 = G6. 

 In case of covariance approach, the standard formula is equivalent to the one based on 

Gini’s mean difference with repetition and the one under geometric approach corresponding 

to figure 1. G9 is subject to the inconsistency under discussion and the empirical exercise of 

section 2.2 is equivalently applicable here.  

4.2. Alternative formulation under the covariance approach 

Xu (2004, p. 20), who threw some more light on Anand’s (1983, pp. 315-316) work, 

explained that the basic formula under the covariance approach is obtained by taking 

covariance between yi and i and dividing i by the number of observations, n (as there are i/n 

numbers of cumulative proportions of population) such that:  

                                                
10 Xu (2004) reports that Anand’s thesis, which is the basis of Anand (1983), was completed in 1978. 
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 i),cov(y
n

1
i/n),cov(y ii  . 

 If we move to the case of maximum inequality Lorenz curve in figure 2, we realise that 

effectively there are (n-1) cumulative proportions of population. If n is replaced by (n-1) we 

have: 

   i),cov(y
1n

1
1)i/(n,ycov ii


 , or 

if we multiply the ranks (or cumulative proportions of population) i/n by the factor: n/(n-1) as 

we do in case of G8,  we have: 

 i),cov(y
1n

1

1n

n
*

n

i
,ycov ii





















. 

In response to the above, Gini coefficient appears to be: 

  )ycov(i,
1)μ(n

2
G i10


 ,                  

  






 







μ
2

1)(n
iy

n

1

1)μ(n

2 n

1i
i . 

  1)niy(2
1)μn(n

1 n

1i
i 






.                   (16) 

  = G3 = G4 = G7 = G8. 

G10 shows that the formula under the covariance approach is equivalent to that based on 

Gini’s mean difference without repetition and the geometric one based on maximum 

inequality Lorenz curve corresponding to figure 2. G10 is free from underestimation due to 

bias of Type I.   

5. TYPE II BIAS AND POSSIBLE GEOMETRIC SOLUTION 

5.1. Source of Type II bias 

We observed that Type II bias occurs with the Type I when number of initial observations is 

not sufficiently large and further they get reduced due to grouping. In section 2.2, we see that 

the maximum value of the Gini coefficient in the extreme case is: (n-1)/n.  So, 

underestimation due to bias of Type I is: 

 
n

1

n

1n
1 


 . 

For example, when n = 20, underestimation is 1/20 = 0.5 or 5 per cent (when expressed as 

percentage).  In section 3.2, we take away the area C from B to remove the bias of Type I. In 
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order to check bias of Type II, we take away n
th

 fraction of the area C, (say, Ĉ = C/n) from B. 

In new case, the possible area beyond the Lorenz curve is denoted by Ḃ in figure 3. So,   

 ĈB)(ABA   . 

   Ĉ
2

1
 .                       (17) 

 
n

1
CĈ  . 

Substituting the value of C from expression (11), we have: 

 
n

1

2n

1
Ĉ  , 

  
22n

1
Ĉ  . 

Substituting the value of Ĉ in expression (17), we have: 

 









22n

1

2

1
BA  , 

 









2

2

n

1-n

2

1
.                        (18) 

The manipulated geometric Gini coefficient is: 

 
BA

A
G11 

 , 

  2A
1n

n
2

2











 , putting the results of (A + Ḃ) from expression (18) above. 

Substituting the values of A from expression (8), we have: 

 


















 



)1niy(2
2n

1
2

1n

n
G

n

1i

i2

2

11 , 

  1)niy(2
n

1

1n

n n

1i

i2

2




 


. 

Multiplying the numerator and denominator of the above expression by n we have: 

 1)niy(2
μn

1

1n

n
G(Adjusted)

n

1i

i22

2

11 


 


 , as  µ = 1/n.            (19) 
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  22

2

G
1-n

n
 . 

G11 is a manipulated formula of Gini coefficient and it checks bias of Type II.  The correction 

factor is the same as derived by Qurti and Clarke (2010). The source of bias is the n
th

 fraction 

of the area C, as shown in figure 3. As a result, when we take out C/n from computation, the 

bias is checked.  

5.2. Numerical examples of biases of Type I and Type II and methods of correction 

One hypothetical example is cited to understand Type I and Type II bias more clearly. We 

assume an arrangement of income for n = 5200, where the first individual has 1 unit of 

income, the second individual has 2 units of income and so on such that the 5200
th

 individual 

has 5200 units of income. We compute total income and make a distribution of income by 

dividing each individual income by the total income. We have taken n = 5200, to compare 

our results with that of Milanovic (2010) as cited above. We use simple spreadsheet 

programme and do the exercise for n = 5200 initially and then squeeze the distribution for n = 

20, 10 and 5 respectively.  First, we follow a standard formula (say, G2 or equivalently G5 or 

G9) and then one alternative one (say, G4 or equivalently G7 or G10) and summarise the 

results in table 1.  

 We see that when n=5200, G = 33.327 in standard measures and G= 33.333 in alternative 

measures. It is also to be noted that when n → ∞ for a uniform distribution
11

, as cited above, 

G = 33.333. Now, if we move down along column 2 in table 1, we realise presence of bias of 

Type II. When n is changed from 5200 to 20, it is of 0.25 per cent and is negligible as 

reported by Milanovic (2010). This continues to increase with the fall in number of 

observations as shown in column 5. For n = 5, underestimation of Type II is 4 per cent. We 

need to correct this first: 

 
1n

n
GG

2

2
5n

Standard

5200n

Standard


 
, 

       
15

5
994.31

2

2


 , 

       327.33 . 

As bias of Type I exists with the above result, it has also to be corrected. 

                                                
11 Please see table 1 of Deltas (2003, p. 229). 
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1n

n
GG 5200n

Standard

5200n

eAlternativ


  , 

   
15200

5200
327.33


 , 

   333.33 . 

Bias of Type III (which is distribution-specific) is absent in a uniform distribution.  

 We began with the example of Belarus from Milanovic (2010), where G = 28.67 for n = 

5227 and G = 28.5 for n = 20. If corrected for Type II bias: 

 
1n

n
GG

2

2
20n

Standard

5227n

Standard


  ,     

   
120

20
28.5

2

2


 , 

   57.28 . 

At the second step, it may be corrected for bias of Type I: 

 
1n

n
GG 5227n

Standard

5227n

eAlternativ


  , 

     
15227

5227
28.57


  

     58.28 . 

The remaining part of underestimation (28.67-28.58 = 0.09 or 0.3 per cent) seems to be 

distribution-specific and hence it may be of Type III. Corrections for Type II bias are shown 

in column 7 in table 1. After correction, results of the standard measures for small 

observations (n ≤ 20) are identical with that based on 5200 observations.  

5.3. An example of small-sample bias in the positive direction 

At times, positive bias may arise as well when there is an apparent reduction in sample size in 

a uniform distribution. We draw sample of 20 randomly many times from the above-

mentioned uniform distribution. We get few cases of positive bias, one of which is shown in 

table 2 below.  We know that for a uniform distribution (when number of observations is 

sufficiently large) Gini coefficient is 33.33. In the sampled distribution it is 34.21. It is clear 

that the result is positively biased. However, as n = 20, it is subject to a downward bias of 

five per cent. It further implies that at times bias of Type III (distribution-specific) may be 

positive and in the present case, magnitude of this due to change in distribution in the sample 

exceeds that (Type I) related to scale. 
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5.4. Type I bias and the paradox 

It is said that underestimation of Type I occurs in all cases when number of observations is 

small. For example, when n = 20, Gini coefficient is underestimated due to bias of Type I by 

5 per cent, as in such a case, standard measures produce results in 0-95 point scale. So, the 

result of Belarus (Milanovic, 2010) as cited above is also underestimated by 5 per cent for n = 

20.  When corrected: 

 
120

20
*28.5GBelarus

20n

eAlternativ


 , 

         30 . 

It is clear that the corrected Gini coefficient is larger than that obtained from micro data. So, a 

correction for Type I bias may overestimate the Gini coefficient to some extent. Nevertheless, 

in true sense, this is not an overestimation: 28.5 in 95 (0-95 point scale) means 30 in 100 (0-

100 point scale)
12

. This is quite paradoxical. However, it has been an example of downward 

bias that occurred due to grouping of income into smaller number of categories. It is subject 

to biases of Type I and Type II together. As demonstrated above, we need to correct it for 

Type II bias first and then for the Type I to get rid of the paradoxical situation.  

 However, if we have few observations only, we need to correct it for Type I bias only. 

For example, when we have n = 5 and the following distribution (say, for Project-Y): 

 y1 = 0.070, y2 = 0.120, y3 = 0.190, y4 = 0.270, y5 = 0.350; 

1]50.350)}5(0.270)4(0.190)3(0.170)2(0.070)[2{(1
5

1
100G Y

5n

Standard  ,

     4.82 . 

If corrected for bias of Type I, 

 
15

5
4.28GY

5n

eAlternativ


 , 

        .5035 . 

When n = 10 and we have the following distribution (say, for Project-Z): 

  y1 = 0.007, y2 = 0.027, y3 = 0.060, y4 = 0.097, y5 = 0.110,  

  y6 = 0.112, y7 = 0.121, y8 = 0.145, y9 = 0.157, y10 = 0.164; 

 1]010.164)}01(0.157)9(...0.027)2(0.007)[2{(1
10

1
100GZ

10n

Standard  , 

                                                
12 Since with given rank order of incomes the Gini index is linear (Chakravarty, 1990, p. 83). 

ECINEQ WP 2013 - 298 August 2013



20 

 

      .328 . 

If corrected for bias of Type I, 

 
110

10
28.3G Z

10n

eAlternativ


 , 

        31.39 . 

 In line with the above, correction of results from standard measures and results from 

alternative derivations are presented in columns 3 and 6 respectively (in table 1).   After 

correction, the results obtained from standard measures are identical with those of alternative 

ones.  

 From the above analyses we understand that Gini coefficient is not independent of 

number of observations
13

.  There are two issues to be addressed in this regard. First, even 

after correction for bias of Type I, Gini coefficients are not comparable for different number 

of observations (for their dependency on them); and second, a correction makes Gini 

coefficient inflated to some extent
14

. In order to address these issues we do an exercise to 

make Gini coefficient standardised and comparable for a fixed number of observations. 

Primarily, we do an exercise with the previously presented hypothetical example. In table 1, 

we see that when n = 20: 

     34.993G02n

eAlternativ  . 

Now, we want to make it standardised for N = 5200 assuming that the pattern of income 

distribution in cases of n = 20 and N = 5200 remains unchanged. In that case: 

  
1N

N

1n

n

n

1-n
GG

2

2
20n

eAlternativ

5200N20n

edStandardis





 
,             (20) 

      
12005

5200

102

02

20

1-20
993.34

2

2





 , 

      33.33 . 

From the above hypothetical example we understand that it is possible to make Gini 

coefficient standardised for a fixed number of observations.  

                                                
13 As long as they are not sufficiently large. 

14 Although the point is not valid theoretically, but it is quite paradoxical as we see in case of correction of the 

result of Belarus (Milanovic, 2010) for bias of Type I in the previous section. 
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 Let us now try with the example of Belarus cited above from Milanovic (2010). After 

correction for bias of Type I, Gini coefficient is inflated from 28.5 to 30. We will now 

standardise it for N = 5227: 

    
1N

N

1n

n

n

1-n
GG

2

2

Belarus

20n

eAlternativ

5227N

Belarus

20n

edStandardis





  , 

           
15227

5227

120

20

20

1-20
30

2

2





 , 

           58.82 . 

The standardised result, as above, exactly matches with the corrected result presented in 

section 5.2. From these two exercises we realise that the standardisation technique works well 

and it is independent of income distribution.  

    We now apply this technique for standardisation for N = 5200 for the results obtained 

from the two specific income distributions presented in this section above. We have: 

 50.53GY

5n

eAlternativ   and 31.39GZ

10n

eAlternativ  . 

Following expression (20), for the first: 

 
1N

N

1n

n

n

1-n
GG

2

2

Y

5n

eAlternativ

5200N

Y

5n

edStandardis





  , 

      
15200

5200

15

5

5

1-5
50.35

2

2





 , 

      59.92 . 

Similarly, for the second: 

 
1N

N

1n

n

n

1-n
GG

2

2

Z

20n

eAlternativ

5200N

Z

20n

edStandardis





 
, 

     
15200

5200

120

20

20

1-20
31.39

2

2





 , 

     .9092 . 

After standardisation, Gini coefficients are now comparable: 

  5200N

Y

5n

edStandardis G   < 5200N

Z

20n

edStandardis G  .  

Although, before standardisation: 

 Y

5n

StandardG  > Z

20n

StandardG , and  
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 Y

5n

eAlternativ G  > Z

20n

eAlternativ G . 

So, ignoring the distribution-specific bias, we may conclude that inequality in the Project Z is 

higher than that of Project Y.    

6. SOME ISSUES WITH DEFINITION 

While commenting on Deaton’s formula (1997, p. 139), Deltas (2003, p. 232) comments that 

although the expression incorporates the small-sample adjustment, “… but it is not equal to 

twice the area above the Lorentz curve”. It is to be kept in mind that G = 2A is not a 

definition, although it appears to be in the context of a Lorenz curve framework as presented 

in figure 1. The maximum area of the triangle below the diagonal is 1/2, when we take the 

ratio of A to 1/2, we get the above result. The standard definition is known to all, for 

example, according to Sen (1997, p. 30), “… it is the ratio of the difference between the line 

of absolute equality (the diagonal) and the Lorenz curve to the triangular region underneath 

the diagonal.” Further, to keep in mind that such standard definitions are applicable when 

number of observations is sufficiently large. And the ‘triangular region underneath the 

diagonal’ is to mean the maximum possible area in case of total inequality. Obviously, the 

maximum area is 1/2 when number of observations is sufficiently large; (1/2 - C) otherwise.   

 According to Yitzhaki (1998, p. 22), “the best known version of the Gini coefficient is as 

the area between the Lorenz curve and the 45° line divided by the maximum value of the 

index.” This will be an workable definition for us if we replace the term ‘value of the index’ 

by ‘area underneath the diagonal’. Deltas (2003, p. 229) is right to say that the maximum 

value of the Gini coefficient equals two times the area beneath the diagonal of the maximum 

inequality Lorenz curve (figure 2 in his paper, p. 229), that is: (n-1)/n. It follows that the 

maximum area beneath the diagonal is: (n-1)/2n. If we take the ratio of A to (n-1)/2n:  

 7G2A
1n

n
G 










 ,  

not simply 2A. It is 2A multiplied by his own correction factor: n/(n-1), which is proposed 

from ‘geometric intuition’ only. The derivation is shown geometrically (taking away the area 

C from B) in section 3.2 while deriving G7 above.  

 However, if we modify the definition of Yitzhaki (1998, p. 22), Gini coefficient is: 

 
diagonaltheunderneathreaaMax.

A
G  . 
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1)/2n(n

A


 , 

  2A
1n

n










 , 

  47 GG  , 

where G7 and G4 are alternative formulations of Gini coefficient related to the maximum 

inequality Lorenz curve framework and the concept of Gini’s mean difference without 

repetition respectively. 

7. CONCLUSION 

We begin with a popular concern on granularity of measurements and consequent downward 

bias in Gini coefficient. We review theoretical and empirical literature and do not find any 

consensus on the issue in regard to their types, magnitude and the methods of correction. We 

identify three types of bias, two of which are distribution-free. The remaining one is uncertain 

and distribution-specific.  Of the first two, one occurs due to availability of few observations 

only, as in such cases the standard measures do not produce results in 0-100 point scale. The 

other occurs due to grouping of income into relatively smaller number of parts. And the both 

occur together if initial number of observations is not sufficiently large and further they get 

reduced due to grouping.  At times, bias may be positive as well when there is an apparent 

reduction in sample size, if sampling is done from a uniform distribution. However, this 

paper deals with the distribution-free downward biases only associated with the first three 

cases stated above. Underestimations associated with the first, when there are few 

observations only, is demonstrated and addressed with simplicity, for discontinuous case, 

with alternative formulation following the principle of Gini’s mean difference without 

repetition. Equivalences of it are also derived under the geometric and covariance 

approaches. We see that in such cases downward bias appears to be five per cent for n = 20, 

ten per cent for n = 10 and twenty per cent for n = 5, and so on. In case of grouping of income 

into relatively smaller number of parts (with equally sized groups) bias is estimated as a 

quarter of a per cent for n = 20, one per cent for n = 10 and four per cent for n = 5 and so on. 

When both the biases arise together, a straightforward claim of the first (which is related to 

scale) in its full magnitude may be unwarranted and quite paradoxical.  Adjustments in this 

case are done accordingly with a newly proposed operational pursuit, where the bias that 

arises due to grouping is corrected first followed by correction for the one that is related to 
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scale. However, when there are few observations only, alternative measures, or standard 

measures with correction for the bias seem to inflate Gini coefficient to some extent, although 

theoretically it is not an overestimation. So, unlike the point from where we began, 

granularity of measurements, in such cases, may work in the positive direction. 

Consequently, we do some exercises to make Gini coefficient standardised and comparable 

for a fixed number of observations. We also dealt with issues related to definition and find 

that the area beyond the maximum inequality Lorenz curve plays the crucial role to eliminate 

biases in cases of small observations with conformity to the concept of Gini’s mean 

difference without repetition. By addressing the issues of small-size distribution-free 

downward biases of Gini coefficient methodologically with a discreet approach with 

simplicity and synchronising the relevant previous and present concerns, this study tries to 

contribute significantly a gamut of new knowledge to the existing literature. 
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Figure 1 

Standard illustration of Lorenz curve framework with five quintiles 
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Figure 2 

 Illustration of maximum inequality Lorenz curve with five quintiles to check Type I bias 
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Figure 3 

Illustration of Lorenz curve with five quintiles to check Type II bias 
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Tables 

Table 1. Underestimation of Gini coefficient: standard Vs. alternative measures 

n 

Measures of  

Gini coefficient (G) 

Underestimation 

(%) 

Correction for Type I & II 

underestimation 

Standard Alternative
*
 Type I Type II

 
Type I: Standard 

G* n/(n-1) 

Type II: 

Standard G* 

n
2
/(n

2
-1) 

(1) (2) (3) (4) (5) (6) (7) 

5200 33.327 33.333 0.02 - 33.333 - 

20 33.244 34.993 5 0.25 34.993 33.327 

10 32.994 36.660 10 1.00 36.660 33.327 

5 31.994 39.993 20 4.00 39.992 33.327 
* G11 is not considered 

Source: Self elaboration 

 

Table 2. An example of small-sample bias in the positive direction


 

Rank (i) Income (Y) Distribution (yi) i*yi 

1 181 0.004 0.004 

2 337 0.007 0.013 

3 431 0.009 0.026 

4 499 0.010 0.040 

5 878 0.017 0.087 

6 1433 0.029 0.171 

7 2136 0.042 0.297 

8 2302 0.046 0.366 

9 2344 0.047 0.419 

10 2408 0.048 0.478 

11 2423 0.048 0.529 

12 2937 0.058 0.700 

13 3016 0.060 0.779 

14 3104 0.062 0.863 

15 3324 0.066 0.990 

16 3664 0.073 1.164 

17 4025 0.080 1.359 

18 4634 0.092 1.657 

19 5120 0.102 1.932 

20 5158 0.102 2.049 

Total 50354 1.000 13.921 

 A sample of 20 is drawn randomly from the uniform distribution (as cited above)  
with N = 5200, where Gini coefficient = 33.33. 

Gini coefficient (in the above sample)  = [100{(2*13.921) – 20 – 1}/20] = 34.21.  
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