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In the context of Social Welfare and Choquet integration, we briefly review, on the one hand,

the generalized Gini welfare functions and inequality indices for populations of n ≥ 2 individ-

uals, and on the other hand, the Möbius representation framework for Choquet integration,

particularly in the case of k-additive symmetric capacities.

We recall the binomial decomposition of OWA functions due to Calvo and De Baets [14]

and we examine it in the restricted context of generalized Gini welfare functions, with the

addition of appropriate S-concavity conditions. We show that the original expression of the

binomial decomposition can be formulated in terms of two equivalent functional bases, the

binomial Gini welfare functions and the Atkinson-Kolm-Sen (AKS) associated binomial Gini

inequality indices, according to Blackorby and Donaldson’s correspondence formula.

The binomial Gini pairs of welfare functions and inequality indices are described by a

parameter j = 1, . . . , n, associated with the distributional judgements involved. The j-th
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1 Introduction

The Gini inequality index [36, 37, 33, 25] plays a central role in Social Welfare
Theory and the measurement of economic inequality [6, 65]. In the literature
several extensions of the Gini index have been proposed [23, 70, 71, 72, 27,
17, 13], in particular the generalized Gini welfare functions and the associated
inequality indices introduced by Weymark [70] on the basis of the Atkinson-
Kolm-Sen (AKS) framework and Blackorby and Donaldson’s correspondence
formula [9, 10],

A(x ) = x̄−G(x )

where A(x ) denotes a generalized Gini welfare function, G(x ) is the associated
absolute inequality index, and x̄ denotes the arithmetic mean of the income
distribution x = (x1, . . . , xn) of a population of n ≥ 2 individuals. Recently,
the extended interpretation of this formula in terms of the dual decomposition
[32] of aggregation functions has been discussed in [4, 5], see also [31].

The generalized Gini welfare functions introduced by Weymark have the
form

A(x ) =
n∑

i=1

wi x(i)

where x(1) ≤ x(2) ≤ . . . ≤ x(n) and, as required by the principle of inequality
aversion, w1 ≥ w2 ≥ . . . ≥ wn ≥ 0 with

∑n
i=1 wi = 1. These welfare functions

correspond to the S-concave subclass of the ordered weighted averaging (OWA)
functions introduced by Yager [73], which in turn correspond [28] to the Choquet
integrals associated with symmetric capacities.

The use of non-additivity and Choquet integration [21] in Social Welfare
and Decision Theory dates back to the seminal work of Schmeidler [63, 64], Ben
Porath and Gilboa [8], and Gilboa and Schmeidler [34, 35]. In the discrete case,
Choquet integration [60, 19, 22, 38, 39, 53] corresponds to a generalization of
both weighted averaging (WA) and ordered weighted averaging (OWA), which
remain as special cases. For recent reviews of Choquet integration see Grabisch
and Labreuche [44, 45, 46], and Grabisch, Kojadinovich, and Meyer [43].

The complex structure of Choquet capacities can be described in the k-
additivity framework introduced by Grabisch [40, 41], see also Calvo and De
Baets [14], Cao-Van and De Baets [16], and Miranda, Grabisch, and Gil [59].
The 2-additive case, in particular, has been examined by Miranda, Grabisch,
and Gil [59], and Mayag, Grabisch, and Labreuche [55, 56]. Due to its low
complexity and versatility it is relevant in a variety of modelling contexts.

The characterization of symmetric Choquet integrals (OWA functions) has
been studied by Fodor, Marichal and Roubens [28], Calvo and De Baets [14],
Cao-Van and De Baets [16], and Miranda, Grabisch and Gil [59]. It is shown,
Gajdos [30], that in the k-additive case the generating function of the OWA
weights is polynomial of degree k. In the symmetric 2-additive case, in partic-
ular, the generating function is quadratic and thus the weights are equidistant,
as in the classical Gini welfare function.

In this paper we review the analysis of symmetric capacities in the Möbius
representation framework and, in particular, we recall the binomial decomposi-
tion of OWA functions due to Calvo and De Baets [14], with the addition of a
uniqueness result.
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Considering the binomial decomposition in the restricted context of gen-
eralized Gini welfare functions, with the addition of appropriate S-concavity
conditions, we show that the original expression of the binomial decomposition
can be formulated in terms of two equivalent functional bases, the binomial Gini
welfare functions and the Atkinson-Kolm-Sen (AKS) associated binomial Gini
inequality indices, according to the Blackorby and Donaldson’s correspondence
formula.

The binomial Gini welfare functions, denoted Cj with j = 1, . . . , n, have
null weights associated with the j − 1 richest individuals in the population and
therefore they are progressively focused on the poorest part of the population.
Correspondingly, the associated binomial Gini inequality indices, denoted Gj

with j = 1, . . . , n, have equal weights associated with the j−1 richest individuals
in the population and therefore they are progressively insensitive to income
transfers within the richest part of the population.

The paper is organized as follows. In Section 2 we review the notions of
welfare function and inequality index for populations of n ≥ 2 individuals. In
Section 3 we review the classical Gini index and the associated welfare function,
including a graphical representation in relation with the Lorenz curve. In Sec-
tion 4 we present the basic definitions and results on capacities and Choquet
integration, with reference to the Möbius representation framework. In Section
5 we consider the context of symmetric capacities and we recall the binomial
decomposition of OWA functions due to Calvo and De Baets [14], with the ad-
dition of a uniqueness result. In Section 6 we present the main results of the
paper. We focus on generalized Gini welfare functions and we examine the bino-
mial decomposition in two equivalent formulations, either in terms of binomial
Gini welfare functions, or in terms of the AKS associated binomial Gini inequal-
ity indices. In Section 7 we consider the binomial decomposition of generalized
Gini welfare functions in the 2-additive and 3-additive cases. Finally, Section 8
contains some conclusive remarks.

2 Welfare functions and inequality indices

In this section we consider populations of n ≥ 2 individuals and we briefly review
the notions of welfare function and inequality index in the standard framework
of aggregation functions on the [0, 1]n domain. The income distributions in this
framework are represented by points x ,y ∈ [0, 1]n. The correspondence with
the traditional income domain [0,∞) can be obtained by means of a rescaling
with respect to some appropriate conventional upper bound for the income val-
ues, given that the welfare functions and inequality indices under consideration
rescale analogously. In any case, most of our results extend immediately to the
traditional income domain [0,∞), or even R itself.

We begin by presenting notation and basic definitions regarding aggregation
functions on the domain [0, 1]n, with n ≥ 2 throughout the text. Comprehen-
sive reviews of aggregation functions can be found in Fodor and Roubens [29],
Calvo et al. [15], Beliakov et al. [7], and Grabisch et al. [47].

Notation. Points in [0, 1]n are denoted x = (x1, . . . , xn), with 1 = (1, . . . , 1),
0 = (0, . . . , 0) . Accordingly, for every x ∈ [0, 1] , we have x · 1 = (x, . . . , x).
Given x ,y ∈ [0, 1]n, by x ≥ y we mean xi ≥ yi for every i = 1, . . . , n, and
by x > y we mean x ≥ y and x ̸= y . Given x ∈ [0, 1]n, the increasing and
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decreasing reorderings of the coordinates of x are indicated as x(1) ≤ · · · ≤ x(n)

and x[1] ≥ · · · ≥ x[n], respectively. In particular, x(1) = min{x1, . . . , xn} = x[n]

and x(n) = max{x1, . . . , xn} = x[1] . In general, given a permutation σ on
{1, . . . , n}, we denote xσ = (xσ(1), . . . , xσ(n)). Finally, the arithmetic mean is
denoted x̄ = (x1 + · · ·+ xn)/n.

We define some standard properties of real functions on [0, 1]n.

Definition 1 Let A : [0, 1]n −→ [0, 1] be a function.

1. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x,y ∈ [0, 1]n. Moreover,
A is strictly monotonic if x > y ⇒ A(x) > A(y), for all x,y ∈ [0, 1]n.

2. A is idempotent if A(x · 1) = x, for all x ∈ [0, 1]. On the other hand, A
is nilpotent if A(x · 1) = 0, for all x ∈ [0, 1].

3. A is symmetric if A(xσ) = A(x), for any permutation σ on {1, . . . , n}
and all x ∈ [0, 1]n.

4. A is invariant for translations if A(x + t · 1) = A(x), for all t ∈ R and
x ∈ [0, 1]n such that x + t · 1 ∈ [0, 1]n. On the other hand, A is stable for
translations if A(x + t · 1) = A(x) + t, for all t ∈ R and x ∈ [0, 1]n such
that x + t · 1 ∈ [0, 1]n.

5. A is invariant for dilations if A(λ ·x) = A(x), for all λ > 0 and x ∈ [0, 1]n

such that λ · x ∈ [0, 1]n. On the other hand, A is stable for dilations if
A(λ · x) = λA(x), for all λ > 0 and x ∈ [0, 1]n such that λ · x ∈ [0, 1]n.

We introduce the majorization relation on [0, 1]n and we discuss the concept
of income transfer following the approach in Marshall and Olkin [54], focusing
on the classical results relating majorization, income transfers, and bistochastic
transformations, see Marshall and Olkin [54, Ch. 4, Prop. A.1].

Definition 2 The majorization relation ≼ on [0, 1]n is defined as follows:
given x,y ∈ [0, 1]n with x̄ = ȳ, we say that

x ≼ y if
k∑

i=1

x(i) ≥
k∑

i=1

y(i) k = 1, . . . , n (1)

where the case k = n is an equality due to x̄ = ȳ. As usual, we write x ≺ y if
x ≼ y and not y ≼ x, and we write x ∼ y if x ≼ y and y ≼ x. We say that y
majorizes x if x ≺ y, and we say that x and y are indifferent if x ∼ y.

Another traditional reading, which reverses that of majorization, refers to
the concept of Lorenz dominance: we say that x is Lorenz superior to y if
x ≺ y , and we say that x is Lorenz indifferent to y if x ∼ y .

Given an income distribution x ∈ [0, 1]n, with mean income x̄, it holds that
x̄ · 1 ≼ x since k x̄ ≥ ∑k

i=1 x(i) for k = 1, . . . , n. The majorization is strict,
x̄ · 1 ≺ x , when x is not a uniform income distribution. In such case, x̄ · 1 is
Lorenz superior to x . Moreover, for any income distribution x ∈ [0, 1]n with
mean income x̄ it holds that x ≼ (0, . . . , 0, nx̄), and the majorization is strict
when x ̸= 0.
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The majorization relation is a preorder, in which x ∼ y if and only if x
and y differ by a permutation. In general, x ≼ y if and only if there exists a
bistochastic matrix C (non-negative square matrix of order n where each row
and column sums to one) such that x = Cy . Moreover, x ≺ y if the bistochastic
matrix C is not a permutation matrix.

A particular case of bistochastic transformation is the so-called transfer, also
called T -transformation.

Definition 3 Given x,y ∈ [0, 1]n, we say that x is derived from y by means of
a transfer if, for some pair i, j = 1, . . . , n with yi ≤ yj, we have

xi = (1− ε) yi + εyj xj = εyi + (1− ε) yj ε ∈ [0, 1] (2)

and xk = yk for k ̸= i, j. These formulas express an income transfer, from
a richer to a poorer individual, of an income amount ε(yj − yi). The transfer
obtains x = y if ε = 0, and exchanges the relative positions of donor and
recipient in the income distribution if ε = 1, in which case x ∼ y. In the
intermediate cases ε ∈ (0, 1) the transfer produces an income distribution x
which is Lorenz superior to the original y, that is x ≺ y.

In general, for income distributions x ,y ∈ [0, 1]n and the majorization rela-
tion ≼, it holds that x ≼ y if and only if x can be derived from y by means of
a finite sequence of transfers. Moreover, x ≺ y if any of the transfers is not a
permutation.

Definition 4 Let A : [0, 1]n −→ [0, 1] be a function. In relation with the ma-
jorization relation ≼, the notions of Schur-convexity (S-convexity) and Schur-
concavity (S-concavity) of the function A are defined as follows:

1. A is S-convex if x ≼ y ⇒ A(x) ≤ A(y) for all x,y ∈ [0, 1]n

2. A is S-concave if x ≼ y ⇒ A(x) ≥ A(y) for all x,y ∈ [0, 1]n.

Moreover, the S-convexity (resp. S-concavity) of a function A is said to be
strict if x ≺ y implies A(x) < A(y) (resp. A(x) > A(y)).

Notice that S-convexity (S-concavity) implies symmetry, since x ∼ xσ and
thus A(x ) = A(xσ).

Definition 5 A function A : [0, 1]n −→ [0, 1] is an n-ary aggregation function
if it is monotonic and A(0) = 0, A(1) = 1. An aggregation function is said to
be strict if it is strictly monotonic.

For simplicity, the n-arity is omitted whenever it is clear from the context.
Particular cases of aggregation functions are weighted averaging (WA) functions,
ordered weighted averaging (OWA) functions, and Choquet integrals, which
contain the former as special cases.

Definition 6 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
∑n

i=1 wi

= 1, the Weighted Averaging (WA) function associated with w is the aggregation
function A : [0, 1]n −→ [0, 1] defined as

A(x) =
n∑

i=1

wi xi. (3)
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Definition 7 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
∑n

i=1 wi

= 1, the Ordered Weighted Averaging (OWA) function associated with w is the
aggregation function A : [0, 1]n −→ [0, 1] defined as

A(x) =
n∑

i=1

wi x(i). (4)

The traditional form of OWA functions as introduced by Yager [73] (OWA
operators) is as follows, A(x ) =

∑n
i=1 w̃i x[i] where w̃i = wn−i+1. In [74, 75]

the theory and applications of OWA functions are discussed in detail.
The following are two classical results particulary relevant in our framework.

The proofs, given here for convenience, are analogous. The first result, see in
particular Skala [68], regards a form of dominance relation between weighting
structures and OWA functions.

Proposition 1 Consider two OWA functions A, B : [0, 1]n −→ [0, 1] associated
with weighting vectors u = (u1, . . . , un) ∈ [0, 1]n and v = (v1, . . . , vn) ∈ [0, 1]n,
respectively. It holds that A(x) ≤ B(x) for all x ∈ [0, 1]n if and only if

k∑

i=1

ui ≥
k∑

i=1

vi for k = 1, . . . , n (5)

where the case k = n is an equality due to weight normalization.

Proof : Suppose first that the weights satisfy (5). Then, it holds that

A(x )−B(x ) =

= (u1 − v1)x(1) + (u2 − v2) x(2) + . . . + (un − vn) x(n)

≤ (u1 − v1)x(2) + (u2 − v2) x(2) + . . . + (un − vn) x(n)

= (u1 + u2 − v1 − v2) x(2) + . . . + (un − vn) x(n)

≤ . . . = (u1 + u2 + . . . + un − v1 − v2 − . . .− vn) x(n) = 0 .

Conversely, suppose that A(x ) ≤ B(x ) for all x ∈ [0, 1]n. Consider a point
x ∈ [0, 1]n whose coordinates are zero except for xk = . . . = xn = 1, for some
k = 1, . . . , n. Then

A(x ) =
n∑

i=k

ui ≤
n∑

i=k

vi = B(x )

which means that
∑n

i=k(ui − vi) ≤ 0 where the case k = 1 is an equality due
to weight normalization. Equivalently,

∑k
i=1(ui− vi) ≥ 0, where the equality is

now for k = n. 2

The next result, see for instance Chakravarty [18, p. 28], regards the relation
between the weighting structure and the S-convexity or S-concavity of the OWA
function.

Proposition 2 Consider an OWA function A : [0, 1]n −→ [0, 1] associated with
a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n. The OWA function A is S-convex
if and only if the weights are non decreasing, w1 ≤ . . . ≤ wn, and A is strictly

6

ECINEQ WP 2013 - 305 September 2013



S-convex if and only if the weights are increasing, w1 < . . . < wn. Analogously,
the OWA function A is S-concave if and only if the weights are non increasing,
w1 ≥ . . . ≥ wn, and A is strictly S-concave if and only if the weights are
decreasing, w1 > . . . > wn.

Proof : We prove the statements regarding S-concavity, those regarding S-
convexity have analogous proofs. We begin by proving that an OWA function A
is S-concave if and only if the weights are non increasing, w1 ≥ . . . ≥ wn. Sup-
pose first that the weights are non increasing. Consider two points x ,y ∈ [0, 1]n

with x ≼ y , that is,

k∑

i=1

(x(i) − y(i)) ≥ 0 k = 1, . . . , n (6)

where the case k = n is an equality due to x̄ = ȳ. Then, it holds that

A(x )−A(y) =

= w1(x(1) − y(1)) + w2(x(2) − y(2)) + . . . + wn(x(n) − y(n))

≥ w2(x(1) − y(1)) + w2(x(2) − y(2)) + . . . + wn(x(n) − y(n))

= w2(x(1) + x(2) − y(1) − y(2)) + . . . + wn(x(n) − y(n))

≥ . . . = wn(x(1) + x(2) + . . . + x(n) − y(1) − y(2) − . . .− y(n)) = 0 .

Conversely, suppose A is S-concave. Given a point y ∈ [0, 1]n with y1 < y2 <
. . . < yn, consider x ∈ [0, 1]n obtained from y by a transfer in the following
way: for some i = 1, . . . , n−1 and 0 ≤ δ ≤ (yi+1−yi)/2 we define xi = yi + δ ≤
yi+1 − δ = xi+1 and xj = yj for all j ̸= i, i + 1. Clearly, x ≼ y and thus
A(x ) ≥ A(y) due to the S-concavity of A. Since

A(x ) = A(y) + δ(wi − wi+1) ,

we obtain wi ≥ wi+1 for i = 1, . . . , n − 1, which means that weights are non
increasing.

Moreover, A is strictly S-concave if and only if the weights are decreasing,
w1 > . . . > wn. Suppose first that the weights are decreasing. Consider two
points x ,y ∈ [0, 1]n with x ≺ y as in (6), but now with

∑k
i=1(x(i) − y(j)) > 0

for at least one k = 1, . . . , n−1. We can then repeat the analysis of A(x )−A(y)
as above but now, using the fact that the weights are decreasing, at least one
of the inequalities will be strict.

Conversely, suppose A is strictly S-concave. We can then repeat the ar-
gument above but now, with ε > 0, the strict S-concavity of A leads to the
decreasingness of the weights. 2

We will now review the basic concepts and definitions regarding welfare
functions and inequality indices. In line with the standard framework of aggre-
gation functions, we refer consistently throughout the paper to the individual
income domain [0, 1], instead of the traditional income domain [0,∞). As long
as the functions involved are stable (or invariant) for dilations, which is the case
of generalized Gini welfare functions and the associated inequality indices, a
rescaling of the income domain corresponds to an identical rescaling (if any) of
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the function values, thereby obtaining equivalent constructions. In fact, given a
conventional upper bound λ for the income within the traditional domain [0,∞)
and an income profile x ∈ [0, 1]n, the equivalence of the two domain frameworks
is directly expressed by the law of stability for dilations, λA(x ) = A(λ · x ).

Certain properties which are generally considered to be inherent to the con-
cepts of welfare and inequality have come to be accepted as basic axioms for
welfare and inequality measures, see for instance Kolm [50, 51]. The crucial
axiom in this field is the Pigou-Dalton transfer principle, which states that
welfare (inequality) measures should be non-decreasing (non-increasing) under
transfers. This axiom translates directly into the properties of S-concavity and
S-convexity in the context of symmetric functions on [0, 1]n. In fact, a func-
tion is S-concave (S-convex) if and only if it is symmetric and non-decreasing
(non-increasing) under transfers, see for instance Marshall and Olkin [54].

Definition 8 An aggregation function A : [0, 1]n −→ [0, 1] is a welfare function
if it is continuous, idempotent, and S-concave. The welfare function is said to
be strict if it is a strict aggregation function which is strictly S-concave.

Due to monotonicity and idempotency, a welfare function is non decreasing
over [0, 1]n but increasing along the diagonal x = x ·1 with x ∈ [0, 1]. Moreover,
notice that S-concavity implies symmetry. Due to S-concavity, a welfare function
ranks any Lorenz superior income distribution with the same mean as x as no
worse than x , whereas a strict welfare function ranks it as better.

Give a welfare function A, the uniform equivalent income x̃ associated with
an income distribution x is defined as the income level which, if equally dis-
tributed among the population, would generate the same welfare value, A(x̃·1) =
A(x ). Due to the idempotency of A, we obtain x̃ = A(x ). Since x̄ · 1 ≼ x for
any income distribution x ∈ [0, 1]n, S-concavity implies A(x̄ · 1) ≥ A(x ) and
therefore A(x ) ≤ x̄ due to the idempotency of the welfare function. In other
words, the mean income x̄ and the uniform equivalent income x̃ are related by
0 ≤ x̃ ≤ x̄ ≤ 1.

In the literature, our welfare function A corresponds to the idempotent rep-
resentation of the social evaluation function W , which is assumed to be continu-
ous, non decreasing, increasing along the diagonal of [0, 1]n, and S-concave (thus
symmetric). Under these assumptions there exists a unique uniform equivalent
income x̃ such that W (x̃ ·1) = W (x ). Defining A(x ) = x̃ we obtain our welfare
function A, which is an increasing transform of the social evaluation function W .
Moreover, A is stable for translations (dilations) if and only if W is translatable
(homothetic), see Blackorby and Donaldson [9, 10], and Blackorby, Donaldson,
and Auersperg [11].

We now define the notions of absolute and relative inequality indices. The
former were introduced by Kolm [50, 51] and developed by Blackorby and Don-
aldson [10], Blackorby, Donaldson, and Auersperg [11], and Weymark [70]. Fol-
lowing Kolm (1976), inequality measures are described as relative when they are
invariant for multiplicative transformations (dilation invariance), and absolute
when they are invariant for additive transformations (translation invariance).

Definition 9 A function G : [0, 1]n −→ [0, 1] is an absolute inequality index
if it is continuous, nilpotent, S-convex, and invariant for translations. The
absolute inequality index is said to be strict if it is strictly S-convex.
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Definition 10 A function GR : [0, 1]n −→ [0, 1] is a relative inequality index
if it is continuous, nilpotent, S-convex, and invariant for dilations. The relative
inequality index is said to be strict if it is strictly S-convex.

In relation with the properties of the majorization relation discussed earlier,
it holds that: over all income distributions x ∈ [0, 1]n with the same mean
income x̄, a welfare function has minimum value A(0, . . . , 0, nx̄), and an absolute
inequality index has maximum value G(0, . . . , 0, nx̄).

In the AKS framework introduced by Atkinson [6], Kolm [49], and Sen [65],
a welfare function which is stable for translations induces an associated absolute
inequality index by means of the correspondence formula A(x ) = x̄−G(x ), see
Blackorby and Donaldson [10]. Analogously, a welfare function which is stable
for dilations induces an associated relative inequality index by means of the
correspondence formula A(x ) = x̄ (1 − GR(x )), see Blackorby and Donaldson
[9]. In both cases the welfare functions and the associated inequality indices are
said to be ethical, see also Sen [67], Blackorby, Donaldson, and Auersperg [11],
Weymark [70], Blackorby and Donaldson [12], and Ebert [26].

Definition 11 Given a welfare function A : [0, 1]n −→ [0, 1] which is stable
for translations, the associated Atkinson-Kolm-Sen (AKS) absolute inequality
index G : [0, 1]n −→ [0, 1] is defined as

G(x) = x̄−A(x) (7)

The fact that A is stable for translations ensures the translational invariance of
G. The absolute inequality index can be written as G(x) = x̄− x̃ and represents
the per capita income that could be saved if society distributed incomes equally
without any loss of welfare.

Definition 12 Given a welfare function A : [0, 1]n −→ [0, 1] which is stable for
dilations, the associated Atkinson-Kolm-Sen (AKS) relative inequality index
GR : [0, 1]n −→ [0, 1] is defined as

GR(x) = 1− A(x)
x̄

(8)

for x ̸= 0, and GR(0) = 0. The fact that A is stable for dilations ensures
the dilational invariance of G. The relative inequality index can be written as
GR(x) = (x̄− x̃)/x̄, with x̃ ≤ x̄, and represents the fraction of total income that
could be saved if society distributed the remaining amount equally without any
welfare loss. In other words, it can be interpreted as the proportion of welfare
loss due to inequality.

In the AKS framework, a welfare function A which is stable for both trans-
lations and dilations is associated with both absolute and relative inequality
indices G and GR, respectively, with G(x ) = x̄ GR(x ) for all x ∈ [0, 1]n.

A class of welfare functions that play an important role in this paper is
that of the generalized Gini welfare functions introduced by Weymark [70], see
also Mehran [57], Donaldson and Weymark [23, 24], Yaari [71, 72], Ebert [27],
Quiggin [61], Ben-Porath and Gilboa [8].

9

ECINEQ WP 2013 - 305 September 2013



Definition 13 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with w1 ≥
· · · ≥ wn ≥ 0 and

∑n
i=1 wi = 1, the generalized Gini welfare function associated

with w is the function A : [0, 1]n −→ [0, 1] defined as

A(x) =
n∑

i=1

wix(i) (9)

and the associated generalized Gini inequality index is defined as

G(x) = x̄−A(x) = −
n∑

i=1

(wi −
1
n

)x(i) . (10)

The generalized Gini welfare functions, which are strict if and only if w1 > . . . >
wn > 0, are clearly stable for both translations and dilations. For this reason
they have a natural central role within the AKS framework and Blackorby and
Donaldson’s correspondence formula.

3 The Gini inequality index and the associated
welfare function

Consider a population of n ≥ 2 individuals whose income distribution is repre-
sented by x = (x1, . . . , xn) ∈ [0, 1]n. At the individual level, the standard [0, 1]
domain of the aggregation functions framework can be obtained by rescaling
the traditional income domain [0,∞) with respect to some appropriate conven-
tional upper bound for the income values. The welfare functions and inequality
indices under consideration in this paper rescale analogously. In fact, most of
our results extend immediately to the traditional income domain [0,∞), or even
R itself.

The classical absolute Gini inequality index Gc is traditionally defined as

Gc(x ) =
1

2n2

n∑

i,j=1

|xi − xj | . (11)

However, the double summation expression for n2Gc(x ) in (11) corresponds to

(x(n) − x(n−1)) + (x(n) − x(n−2)) + . . . + (x(n) − x(2)) + (x(n) − x(1))
+ (x(n−1) − x(n−2)) + . . . + (x(n−1) − x(2)) + (x(n−1) − x(1))

...
+ (x(3) − x(2)) + (x(3) − x(1))

+ (x(2) − x(1))

which can be rewritten as

(n−1)x(n) +((n−2)−1)x(n−1) + . . .+(1− (n−2))x(2) +(−(n−1))x(1) . (12)

The classical absolute Gini inequality index Gc can thus be written in the form

Gc(x ) = −
n∑

i=1

n− 2i + 1
n2

x(i) (13)
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where x(1) ≤ x(2) ≤ . . . ≤ x(n). Notice that the coefficients of Gc have zero
sum,

∑n
i=1(n − 2i + 1) = 0. This expression shows explicitly the coefficients

associated with the ordered income variables and is thereby the most convenient
in our presentation.

Given an income distribution x ∈ [0, 1]n, the so called Lorenz area measures
the deviation from the uniform income distribution and is related with the
classical relative Gini inequality index. In a population of n ≥ 2 individuals, the
graphical representation of the classical relative Gini can be derived as follows.
Consider the auxiliary functions

V (x ) =
n∑

i=1

(x(1) + . . . + x(i)) = nx(1) + (n− 1)x(2) + . . . + x(n) (14)

U(x ) =
n∑

i=1

(x(i) + . . . + x(n)) = x(1) + 2x(2) + . . . + nx(n) . (15)

We can easily express U(x ) in terms of V (x ),

U(x ) =
n∑

i=1

[(x(1) + . . . + x(n))− (x(1) + . . . + x(i)) + x(i)]

= n2x̄− V (x ) + nx̄ = n(n + 1)x̄− V (x ) (16)

where x̄ = (x(1) + . . . + x(n))/n. Since

n2Gc(x ) = −
n∑

i=1

(n− 2i + 1)x(i)

= −((n− 1)x(1) + (n− 3)x(2) + . . . + (−n + 1)x(n)) (17)

we can write Gc(x ) in terms of x̄ and V (x ),

n2Gc(x ) = −(V (x )− U(x )) = n(n + 1)x̄− 2V (x ) . (18)

Consider now the area illustrated in Fig. 1, i.e., the sum of the grey rect-
angles. We are interested in the vertical differences between the diagonal i/n
values, associated with uniform cumulative income distribution, and the actual
cumulative income distribution expressed by the hi(x ) values,

hi(x ) =
x(1) + . . . + x(i)

x(1) + . . . + x(n)
(19)

where we assume x ̸= 0. The total area H(x ) indicated in Fig. 1 is then

H(x ) =
n∑

i=1

( i

n
− hi(x )

)
=

n∑

i=1

( i

n
− x(1) + . . . + x(i)

x(1) + . . . + x(n)

)

=
1

nx̄

[ n∑

i=1

(
i x̄− (x(1) + . . . + x(i))

)]

=
1

nx̄

[n(n + 1)
2

x̄− V (x )
]

=
n

2x̄
Gc(x ) (20)
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Figure 1: The classical relative Gini in the discrete case.

using (18). Finally, we obtain Gc(x ) = x̄ Gc
R(x ), where Gc

R stands for the
classical relative Gini inequality index,

Gc
R(x ) =

H(x )
n/2

. (21)

In the AKS framework, the welfare function associated with the classical
absolute Gini inequality index is

Ac(x ) = x̄−Gc(x ) (22)

and it can be written as

Ac(x ) =
n∑

i=1

2(n− i) + 1
n2

x(i) =
n∑

i=1

1
n

x(i) +
n∑

i=1

n− 2i + 1
n2

x(i) (23)

where the coefficients of Ac(x ) have unit sum,
∑n

i=1(2(n− i) + 1) = n2.
The pair Ac, Gc is the classical instance of Blackorby and Donaldson’s corre-

spondence formula for generalized Gini welfare functions and inequality indices.
In what follows we will describe how to obtain a general expansion of Blacko-
rby and Donaldson’s correspondence formula with respect to analogous pairs of
generalized Gini welfare functions and inequality indices.

4 Capacities and Choquet integrals

In this section we present a brief review of the basic facts on Choquet integra-
tion, focusing on the Möbius representation framework. For recent reviews of
Choquet integration see [44, 43, 45, 46] for the general case, and [59, 55, 56] for
the 2-additive case in particular.

Consider a finite set of interacting individuals N = {1, 2, . . . , n}. Any subsets
S, T ⊆ N with cardinalities 0 ≤ s, t ≤ n are usually called coalitions. The
concepts of capacity and Choquet integral in the definitions below are due to
[21, 69, 22, 38, 39].
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Definition 14 A capacity on the set N is a set function µ : 2N −→ [0, 1]
satisfying

(i) µ(∅) = 0, µ(N) = 1 (boundary conditions)

(ii) S ⊆ T ⊆ N ⇒ µ(S) ≤ µ(T ) (monotonicity conditions).

Capacities are also known as fuzzy measures [69] or non-additive measures
[22]. A capacity µ is said to be additive over N if µ(S∪T ) = µ(S)+µ(T ) for all
coalitions S, T ⊆ N , with S∩T = ∅. Alternatively, the capacity µ is subadditive
over N if µ(S ∪ T ) ≤ µ(S) + µ(T ) for all coalitions S, T ⊆ N with S ∩ T = ∅,
with at least two such coalitions for which µ is subadditive in the strict sense.
Analogously, the capacity µ is superadditive over N if µ(S∪T ) ≥ µ(S)+µ(T ) for
all coalitions S, T ⊆ N with S∩T = ∅, with at least two such coalitions for which
µ is superadditive in the strict sense. In the additive case,

∑n
i=1 µ({(i)}) = 1.

Definition 15 Let µ be a capacity on N . The Choquet integral Cµ : [0, 1]n −→
[0, 1] with respect to µ is defined as

Cµ(x) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) x = (x1, . . . , xn) ∈ [0, 1]n (24)

where (·) indicates a permutation on N such that x(1) ≤ x(2) ≤ . . . ≤ x(n).
Moreover, A(i) = {(i), . . . , (n)} and A(n+1) = ∅.

The Choquet integral is a continuous and idempotent aggregation function.
Within each comonotonicity cone of the domain [0, 1]n, the Choquet integral
reduces to a weighted mean, whose weights depend on the comonotonicity cone.
In fact, given x ∈ [0, 1]n, we can write Cµ(x ) =

∑n
i=1 wi x(i) where wi =

µ({(i), (i + 1), . . . , (n)}) − µ({(i + 1), . . . , (n)}), with wi ≥ 0, i = 1, . . . , n and∑n
i=1 wi = 1 due to the boundary and monotonicity conditions of the capacity.
In the additive case, since

µ(A(i)) = µ({(i)}) + µ({(i + 1)}) + . . . + µ({(n)}) = µ({(i)}) + µ(A(i+1)) (25)

the Choquet integral reduces to a weighted averaging function (WA),

Cµ(x ) =
n∑

i=1

[µ(A(i))− µ(A(i+1))]x(i) =
n∑

i=1

µ({(i)})x(i) =
n∑

i=1

µ({i})xi (26)

where the weights are given by wi = µ({i}), i = 1, . . . , n.
A capacity µ can be equivalently represented by its Möbius transform mµ

[62, 20, 41, 53, 58] in the following way.

Definition 16 Let µ be a capacity on the set N . The Möbius transform mµ :
2N −→ R associated with the capacity µ is defined as

mµ(T ) =
∑

S⊆T

(−1)t−sµ(S) T ⊆ N (27)

where s and t denote the cardinality of the coalitions S and T , respectively.
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Conversely, given the Möbius transform mµ, the associated capacity µ is
obtained as

µ(T ) =
∑

S⊆T

mµ(S) T ⊆ N . (28)

In the Möbius representation, the boundary conditions take the form

mµ(∅) = 0
∑

T⊆N

mµ(T ) = 1 (29)

and the monotonicity conditions can be expressed as follows: for each i =
1, . . . , n and each coalition T ⊆ N \ {i}, the monotonicity condition is written
as ∑

S⊆T

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (30)

This form of the monotonicity conditions derives from the original monotonicity
conditions in Definition 14, expressed as µ(T ∪ {i})− µ(T ) ≥ 0 for each i ∈ N
and T ⊆ N \ {i}.

The Choquet integral in Definition 15 can be expressed in terms of the
Möbius transform in the following way [53, 41],

Cµ(x ) =
∑

T⊆N

mµ(T ) min
i∈T

(xi) . (31)

Defining a capacity µ on a set N of n elements requires 2n − 2 real coeffi-
cients, corresponding to the capacity values µ(T ) for T ⊆ N . In order to control
exponential complexity, Grabisch [40] introduced the concept of k-additive ca-
pacities.

Definition 17 A capacity µ on the set N is said to be k-additive if its Möbius
transform satisfies mµ(T ) = 0 for all T ⊆ N with t > k, and there exists at
least one coalition T ⊆ N with t = k such that mµ(T ) ̸= 0.

In the k-additive case, with k = 1, . . . , n, the capacity µ is expressed as
follows in terms of the Möbius transform mµ,

µ(T ) =
∑

S⊆T, s≤ k

mµ(S) T ⊆ N (32)

and the boundary and monotonicity conditions (29) and (30) take the form

mµ(∅) = 0
∑

T⊆N, t≤ k

mµ(T ) = 1 (33)

∑

S⊆T, s≤ k−1

mµ(S ∪ i) ≥ 0 T ⊆ N \ i i = 1, . . . , n . (34)

Finally, we examine the particular case of symmetric capacities and Choquet
integrals, which play a crucial role in this paper.

Definition 18 A capacity µ is said to be symmetric if it depends only on the
cardinality of the coalition considered, in which case we use the simplified nota-
tion

µ(T ) = µ(t) where t = |T | . (35)
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Accordingly, for the Möbius transform mµ associated with a symmetric capacity
µ we use the notation

mµ(T ) = mµ(t) where t = |T | . (36)

In the symmetric case, the expression (28) for the capacity µ in terms of the
Möbius transform mµ reduces to

µ(t) =
t∑

s=1

(
t

s

)
mµ(s) t = 1, . . . , n (37)

and the boundary and monotonicity conditions (29) and (30) take the form

mµ(0) = 0
n∑

s=1

(
n

s

)
mµ(s) = 1 (38)

t∑

s=1

(
t− 1
s− 1

)
mµ(s) ≥ 0 t = 1, . . . , n . (39)

The monotonicity conditions correspond to µ(t)− µ(t− 1) ≥ 0 for t = 1, . . . , n.
The Choquet integral (24) with respect to a symmetric capacity µ reduces

to an Ordered Weighted Averaging (OWA) function [28, 73],

Cµ(x ) =
n∑

i=1

[µ(n− i + 1)− µ(n− i)]x(i) =
n∑

i=1

wi x(i) = A(x ) (40)

where the weights wi = µ(n− i+1)−µ(n− i) satisfy wi ≥ 0 for i = 1, . . . , n due
to the monotonicity of the capacity µ, and

∑n
i=1 wi = 1 due to the boundary

conditions µ(0) = 0 and µ(n) = 1. Comprehensive reviews of OWA functions
can be found in [74] and [75].

The weighting structure of the OWA function (40) is of the general form
wi = f(n−i+1

n )− f(n−i
n ) where f is a continuous and increasing function on the

unit interval, with f(0) = 0 and f(1) = 1. Gajdos [30] shows that the OWA
function A is associated with a k-additive capacity µ, with k = 1, . . . , n, if and
only if f is polynomial of order k. In fact, in (37), the k-additive case is obtained
simply by taking mµ(k + 1) = . . . = mµ(n) = 0, and the binomial coefficient
of the Möbius value mµ(k) corresponds to t(t − 1) . . . (t − k + 1)/k!, which is
polynomial of order k in the coalition cardinality t.

5 The binomial decomposition

In this section we consider OWA functions A : [0, 1]n −→ [0, 1] and we review
the analysis of the associated symmetric capacities in the Möbius representa-
tion framework. In particular, we recall the binomial decomposition of OWA
functions due to Calvo and De Baets [14], with the addition of a uniqueness
result.

We begin by introducing the convenient notation

αj =
(

n

j

)
mµ(j) j = 1, . . . , n . (41)
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In this notation the upper boundary condition (38) reduces to
n∑

j=1

αj = 1 (42)

and the monotonicity conditions (39) take the form
i∑

j=1

(
i−1
j−1

)
(
n
j

) αj ≥ 0 i = 1, . . . , n . (43)

Considering the OWA function A : [0, 1]n −→ [0, 1] associated with a sym-
metric capacity µ as in (40),

A(x ) =
n∑

i=1

wi x(i) wi = µ(n− i + 1)− µ(n− i) (44)

the capacity values as in (37) expressed in the new notation take the form

µ(n− i + 1) =

(
n−i+1

1

)
(
n
1

) α1 +

(
n−i+1

2

)
(
n
2

) α2 + . . . +

(
n−i+1

n−i

)
(

n
n−i

) αn−i +

(
n−i+1
n−i+1

)
(

n
n−i+1

) αn−i+1

µ(n− i) =

(
n−i
1

)
(
n
1

) α1 +

(
n−i
2

)
(
n
2

) α2 + . . . +

(
n−i
n−i

)
(

n
n−i

) αn−i . (45)

Accordingly, the weights wi, i = 1, . . . , n as in (44) are given by

wi =

(
n−i
0

)
(
n
1

) α1 +

(
n−i
1

)
(
n
2

) α2 + . . . +

(
n−i

n−i−1

)
(

n
n−i

) αn−i +

(
n−i
n−i

)
(

n
n−i+1

) αn−i+1

=
n−i+1∑

j=1

(
n−i
j−1

)
(
n
j

) αj (46)

where the coefficients αj , j = 1, . . . , n are subject to conditions (42) and (43).
We have used the standard formula

(
p
q

)
=

(
p+1
q+1

)
−

(
p

q+1

)
, with p, q = 0, 1, . . .

Notice that the boundary and monotonicity conditions (42) and (43) corre-
spond to the standard conditions wi ≥ 0 for i = 1, . . . , n and

∑n
i=1 wi = 1.

Finally, the OWA function A(x ) =
∑n

i=1 wi x(i) is written as

A(x ) =
n∑

i=1

wi x(i) =
n∑

i=1

n−i+1∑

j=1

αj

(
n−i
j−1

)
(
n
j

) x(i) (47)

where the coefficients αj , j = 1, . . . , n are subject to conditions (42) and (43).
In order to illustrate the weighting structure of the OWA function A, in terms
of the coefficients αj , j = 1, . . . , n, we can write (47) explicitly as follows,

A(x ) =
[
α1

(
n−1

0

)
(
n
1

) + α2

(
n−1

1

)
(
n
2

) + . . . + αn−1

(
n−1
n−2

)
(

n
n−1

) + αn

(
n−1
n−1

)
(
n
n

)
]
x(1)

+
[
α1

(
n−2

0

)
(
n
1

) + α2

(
n−2

1

)
(
n
2

) + . . . + αn−2

(
n−2
n−3

)
(

n
n−2

) + αn−1

(
n−2
n−2

)
(

n
n−1

)
]
x(2)

+ . . . +
[
α1

(
1
0

)
(
n
1

) + α2

(
1
1

)
(
n
2

)
]
x(n−1) +

[
α1

(
0
0

)
(
n
1

)
]
x(n) . (48)
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A fact that emerges clearly from expression (48) is that the values of the coef-
ficients αj , j = 1, . . . , n are uniquely determined by the weighting structure of
the OWA function A: wn determines α1, then wn−1 determines α2, and so on.

Interchanging the two summations in (47),

A(x ) =
n∑

i=1

[ n−i+1∑

j=1

αj

(
n−i
j−1

)
(
n
j

)
]
x(i) =

n∑

j=1

αj

[ n−j+1∑

i=1

(
n−i
j−1

)
(
n
j

) x(i)

]
(49)

we obtain the binomial decomposition of OWA functions due to Calvo and De
Baets [14]. Following the notation introduced by the authors, we begin with the
following definition.

Definition 19 The binomial OWA functions Cj : [0, 1]n −→ [0, 1], with j =
1, . . . , n, are defined as

Cj(x) =
n∑

i=1

wji x(i) =
n∑

i=1

(
n−i
j−1

)
(
n
j

) x(i) j = 1, . . . , n (50)

where the binomial weights wji, i, j = 1, . . . , n are null when i + j > n + 1
according to the usual convention that

(
p
q

)
= 0 when p < q, with p, q = 0, 1, . . .

In fact, with the exception of C1(x) = x̄, the binomial OWA functions Cj,
j = 2, . . . , n have an increasing number of null weights, in correspondence with
x(n−j+2), . . . , x(n).

The weight normalization of the binomial OWA functions,
∑n

i=1 wji = 1 for
j = 1, . . . , n, is due to the column-sum property of binomial coefficients,

n∑

i=1

(
n− i

j − 1

)
=

n−1∑

i=0

(
i

j − 1

)
=

(
n

j

)
j = 1, . . . , n . (51)

Proposition 3 Any OWA function A : [0, 1]n −→ [0, 1] can be written uniquely
as

A(x) = α1C1(x) + α2C2(x) + . . . + αnCn(x) (52)

where the coefficients αj, j = 1, . . . , n are subject to conditions (42) and (43).

Proof : The expression of the binomial decomposition (52) is due to Calvo and
De Baets [14, Theorem 2], on the basis of considerations which we have presented
in (42) - (49). On the other hand, uniqueness is due to the fact that the weights
wi, i = 1, . . . , n of the OWA function A are in one-to-one correspondence with
the coefficients αj , j = 1, . . . , n satisfying (42) and (43), as indicated after (48).

2

In the binomial decomposition (52), the k-additive case, with k = 1, . . . , n,
is obtained simply by taking αk+1 = . . . = αn = 0, in which case (52) reduces
to A(x ) = α1C1(x ) + . . . + αkCk(x ).

An interesting result concerning the cumulative properties of binomial weights
is due to Calvo and De Baets [14].

Proposition 4 The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the
following cumulative property,

i∑

k=1

wj−1,k ≤
i∑

k=1

wjk i = 1, . . . , n j = 2, . . . , n . (53)
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Proof : Given the binomial weight definition in (50), we wish to prove that

i∑

k=1

(
n−k
j−2

)
(

n
j−1

) ≤
i∑

k=1

(
n−k
j−1

)
(
n
j

) i = 1, . . . , n j = 2, . . . , n (54)

which can be written as
(

n

j

) i∑

k=1

(
n− k

j − 2

)
≤

(
n

j − 1

) i∑

k=1

(
n− k

j − 1

)
. (55)

Using the column-sum property of binomial coefficients, inequality (55) takes
the form

(
n

j

)[( n

j − 1

)
−

(
n− i

j − 1

)]
≤

(
n

j − 1

)[(n

j

)
−

(
n− i

j

)]
(56)

or, equivalently, (
n

j

)(
n− i

j − 1

)
≥

(
n

j − 1

)(
n− i

j

)
(57)

which holds trivially for n < i+ j, and for n ≥ i+ j reduces to n− j ≥ n− i− j,
always true for i = 1, . . . , n and j = 2, . . . , n. 2

Given that binomial weights have the cumulative property (53), Proposi-
tion 1 implies that the binomial OWA functions Cj , j = 1, . . . , n satisfy the
relations 1 ≥ x̄ = C1(x ) ≥ C2(x ) ≥ . . . ≥ Cn(x ) ≥ 0, for any x ∈ [0, 1]n.

Summarizing, the binomial decomposition (52) holds for any OWA function
A in terms of the binomial OWA functions Cj , j = 1, . . . , n and the correspond-
ing coefficients αj , j = 1, . . . , n subject to conditions (42) and (43).

6 The binomial Gini inequality indices

In this section we focus on generalized Gini welfare functions A : [0, 1]n −→
[0, 1], corresponding to S-concave OWA functions. We begin by showing that
the functions Cj in the binomial decomposition (52) are themselves generalized
Gini welfare functions. We then reexamine the binomial decomposition in the
restricted context of generalized Gini welfare functions A, adding appropriate
S-concavity conditions to the original monotonicity conditions.

The binomial weights wji, i, j = 1, . . . , n as in (50) have regularity properties
which have interesting implications at the level of the functions Cj , j = 1, . . . , n.

Proposition 5 The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the
following properties,

i. for j = 1 1/n = w11 = w12 = . . . = w1,n−1 = w1n

ii. for j = 2 2/n = w21 > w22 > . . . > w2,n−1 > w2n = 0

iii. for j = 3, . . . , n j/n = wj1 > wj2 > . . . > wj,n−j+2 = . . . = wjn = 0
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Proof : Concerning (i), we obtain w1i = 1/n for i = 1, . . . , n directly from the
binomial weight definition in (50). Moreover, given i = 2, . . . , n and j = 2, . . . , n,
we have

wj,i−1 − wji =
1(
n
j

)
[(

n− i + 1
j − 1

)
−

(
n− i

j − 1

)]
=

1(
n
j

)
(

n− i

j − 2

)
(58)

which means, for i = 2, . . . , n and j = 2, that w2,i−1−w2i = 1/
(
n
2

)
constant, as

in (ii). Finally, for j = 3, . . . , n, we obtain from (58) that

wj,i−1 − wji > 0 for i = 2, . . . , n− j + 2 (59)

wj,i−1 − wji = 0 for i = n− j + 3, . . . , n (60)

which proves (iii). 2

The functions Cj , j = 1, . . . , n are continuous, idempotent, and stable for
translations, where the latter two properties follow immediately from

∑n
i=1 wji =

1 for j = 1, . . . , n. Moreover, given that binomial weights are non increasing,
wj1 ≥ wj2 ≥ . . . ≥ wjn for j = 1, . . . , n, Proposition 2 implies that the functions
Cj , j = 1, . . . , n are S-concave, with strict S-concavity applying only to C2.

In relation with these properties, we conclude that the functions Cj , j =
1, . . . , n, which we hereafter call binomial Gini welfare functions, are generalized
Gini welfare functions on the income domain x ∈ [0, 1]n. It is then natural to
express the binomial decomposition (52) entirely in the context of generalized
Gini welfare functions, restricting the domain of the coefficients αj , j = 1, . . . , n
by means of appropriate S-concavity conditions.

Proposition 6 Any generalized Gini welfare function A : [0, 1]n −→ [0, 1] can
be written uniquely as

A(x) = α1C1(x) + α2C2(x) + . . . + αnCn(x) (61)

where the coefficients αj, j = 1, . . . , n are subject to conditions (42), (43), and

n∑

j=2

(
n−i
j−2

)
(
n
j

) αj ≥ 0 i = 2, . . . , n . (62)

Proof : In order to ensure the S-concavity of an OWA function A, thereby
obtaining a generalized Gini welfare function, the weights (46) must satisfy the
conditions wi−1 − wi ≥ 0 for i = 2, . . . , n, as in Proposition 2,

wi−1 − wi =
n−i+2∑

j=1

(
n−i+1

j−1

)
−

(
n−i
j−1

)
(
n
j

) αj ≥ 0 i = 2, . . . , n (63)

since
(
n−i
j−1

)
= 0 for j = n − i + 2. Therefore, given that the overall coefficient

of α1 is null, and that both binomial coefficients in the numerator are null for
j > n− i + 2, we obtain the S-concavity conditions (62). 2

Summarizing, the binomial decomposition (61) holds for any generalized
Gini welfare function A in terms of the binomial Gini welfare functions Cj ,
j = 1, . . . , n and the corresponding coefficients αj , j = 1, . . . , n subject to
conditions (42), (43), and (62).
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Definition 20 Consider the binomial Gini welfare functions Cj : [0, 1]n −→
[0, 1], with Cj(x) =

∑n
i=1 wjix(i) for j = 1, . . . , n. The binomial Gini inequality

indices Gj : [0, 1]n −→ [0, 1], with j = 1, . . . , n, are defined as

Gj(x) = x̄− Cj(x) j = 1, . . . , n (64)

which means that

Gj(x) = −
n∑

i=1

vjix(i) = −
n∑

i=1

[
wji −

1
n

]
x(i) j = 1, . . . , n (65)

where the coefficients vji, i, j = 1, . . . , n are equal to −1/n when i + j > n + 1,
since in such case the binomial weights wji are null. The weight normalization
of the binomial Gini welfare functions,

∑n
i=1 wji = 1 for j = 1, . . . , n, implies

that
∑n

i=1 vji = 0 for j = 1, . . . , n.

The binomial Gini inequality indices Gj , j = 1, . . . , n are continuous, nilpo-
tent, and invariant for translations, where the latter two properties follow im-
mediately from

∑n
i=1 vji = 0 for j = 1, . . . , n. Moreover, the Gj are S-convex:

given x ,y ∈ [0, 1]n with x̄ = ȳ, we have that x ≼ y ⇒ Cj(x ) ≥ Cj(y)
⇒ Gj(x ) ≤ Gj(y) for all x ,y ∈ [0, 1]n, due to the S-concavity of the Cj ,
j = 1, . . . , n .

In fact, the binomial Gini inequality indices Gj , j = 1, . . . , n in (64) corre-
spond to the Atkinson-Kolm-Sen (AKS) absolute inequality indices associated
with the binomial welfare functions Cj , j = 1, . . . , n, in the spirit of Blackorby
and Donaldson’s correspondence formula. Together, as we discuss below, the
binomial Gini welfare functions Cj and the binomial Gini inequality indices Gj ,
j = 1, . . . , n can be regarded as two equivalent functional bases for the class of
generalized Gini welfare functions and inequality indices.

In analogy with the binomial weights wji, i, j = 1, . . . , n, their inequality
counterparts vji, i, j = 1, . . . , n have interesting regularity properties, which
follow directly from Proposition 5.

Proposition 7 The coefficients vji ∈ [−1/n, (n − 1)/n], with i, j = 1, . . . , n,
have the following properties,

i. for j = 1 0 = v11 = v12 = . . . = v1,n−1 = v1n

ii. for j = 2 1/n = v21 > v22 > . . . > v2,n−1 > v2n = −1/n

iii. for j = 3, . . . , n j−1
n = vj1 > vj2 > . . . > vj,n−j+2 = . . . = vjn = −1/n

Notice that C1(x ) = x̄ and G1(x ) = 0 for all x ∈ [0, 1]n. On the other
hand, C2(x ) has n − 1 positive linearly decreasing weights and one null last
weight, and the associated G2(x ) has linearly increasing coefficients and is in fact
proportional to the classical Gini index, G2(x ) = n

n−1 Gc(x ). The remaining
Cj(x ), j = 3, . . . , n, have n − j + 1 positive non-linear decreasing weights and
j − 1 null last weights, and the associated Gj(x ), j = 3, . . . , n have n − j + 2
non-linear increasing weights and j − 1 equal last weights.

Therefore, the only strict binomial welfare function is C1(x ) = x̄ and the
only strict binomial inequality index is G2(x ) = n

n−1 Gc(x ). In the remaining
Gj(x ), j = 3, . . . , n the last j − 1 coefficients coincide and thus they are non
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strict absolute inequality indices, in the sense that they are insensitive to income
transfers involving only the j − 1 richest individuals of the population.

As an immediate consequence of Proposition 6, substituting for the binomial
Gini welfare functions in terms of the binomial Gini inequality indices, Cj(x ) =
x̄−Gj(x ) for j = 1, . . . , n, we obtain the following result.

Proposition 8 Any generalized Gini welfare function A : [0, 1]n −→ [0, 1] can
be written uniquely as

A(x) = x̄− α2G2(x)− . . .− αnGn(x) (66)

where the coefficients αj, j = 2, . . . , n are subject to the conditions

n∑

j=2

[
1− n

(
i−1
j−1

)
(
n
j

)
]
αj ≤ 1 i = 1, . . . , n (67)

and
n∑

j=2

(
n−i
j−2

)
(
n
j

) αj ≥ 0 i = 2, . . . , n (68)

Notice that G1(x) = 0 for all x ∈ [0, 1]n and thus its absence in (66) is in any
case immaterial.

Proof : The expression of the binomial decomposition (66) is obtained directly
from (61) in Proposition 6 by substituting for α1 = 1 − α2 − α3 − . . .− αn, as
in the boundary condition (42).

The S-concavity conditions (68) are the same as in Proposition 6, which do
not involve the coefficient α1. Consider now the monotonicity conditions (43).
Substituting for α1 = 1− α2 − α3 − . . .− αn, we obtain

1
n

+

[(
i−1
1

)
(
n
2

) − 1
n

]
α2 +

[(
i−1
2

)
(
n
3

) − 1
n

]
α3 + . . . +

[(
i−1
i−1

)
(
n
i

) − 1
n

]
αi

− 1
n

(αi+1 + . . . + αn) ≥ 0 i = 1, . . . , n (69)

which correspond to the following n monotonicity conditions in terms of the
n− 1 coefficients αj , j = 2, . . . , n,

n∑

j=2

[
1− n

(
i−1
j−1

)
(
n
j

)
]
αj ≤ 1 i = 1, . . . , n . (70)

The first and the last of these monotonicity conditions are always of the form
α2 + α3 + . . . + αn ≤ 1 and α2 + 2α3 + . . . + (n− 1) αn ≥ −1, respectively. 2

In the binomial inequality decomposition (66) the level of k-additivity of the
generalized Gini welfare function A is controlled by the coefficients α2, ..., αn

subject to the conditions (67). As k-additivity increases, the binomial decom-
position of A includes an increasing number of binomial Gini inequality indices
which are progressively insensitive to income transfers within the richest part of
the population. Moreover, the binomial Gini inequality indices are increasingly
stronger, 0 = G1(x ) ≤ G2(x ) ≤ . . . ≤ Gn(x ) ≤ 1 for any x ∈ [0, 1]n, in cor-
respondence with the analogous but inverse ordering of binomial Gini welfare
functions obtained after Proposition 4.
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7 The 2-additive and 3-additive cases

In this section we examine the binomial decomposition of generalized Gini wel-
fare functions (66) in the 2-additive and 3-additive cases, focusing on the par-
ticular form of the monotonicity and S-concavity conditions (67) and (68). The
3-additive case is illustrated for a population of size n = 6.

Consider the 2-additive case. The monotonicity conditions (67) take the
form [

1− n(i− 1)(
n
2

)
]
α2 ≤ 1 i = 1, . . . , n (71)

which are equivalent to
−1 ≤ α2 ≤ 1 (72)

corresponding to the first and last of the n conditions (71), the others been
dominated by these two. In turn, the S-concavity conditions (68) take the
common form

1(
n
2

) α2 ≥ 0 (73)

which is equivalent to
α2 ≥ 0 . (74)

Notice that in the 2-additive case both the monotonicity and the S-concavity
conditions are independent of n.

As an immediate consequence of Proposition 8, we have the following result.

Proposition 9 Any 2-additive generalized Gini welfare function A : [0, 1]n −→
[0, 1] can be written uniquely as

A(x) =
n∑

i=1

wix(i) = x̄− α2G2(x) (75)

where G2(x) is the binomial Gini inequality index

G2(x) = −
n∑

i=1

v2i x(i) = −
n∑

i=1

n− 2i + 1
n(n− 1)

x(i) (76)

and the coefficient α2 is subject to the conditions (72) and (74).

Given that G2 is proportional to the classical absolute Gini inequality index

G2(x ) =
n

n− 1
Gc(x ) (77)

any 2-additive Gini welfare function can be written as

A(x ) = x̄− n

n− 1
α2G

c(x ) (78)

where α2 is a free parameter subject to the conditions (72) and (74).
The strict case α2 > 0 in (78) corresponds to the well-known Ben Porath

and Gilboa’s formula [8] for Weymark’s generalized Gini welfare functions with
linearly decreasing (inequality averse) weight distributions, see also [42].
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In particular, with α2 = (n − 1)/n, we obtain the classical Gini welfare
function

A(x ) = Ac
G(x ) α2 =

n− 1
n

. (79)

Other interesting parametric choices for α2 could be α2 = (n − l)/n with
l = 0, 1, . . . , n. In the case l = 0 all the Choquet capacity structure lies in
the non-additive Möbius values mµ(2), the case l = 1 corresponds to the clas-
sical absolute Gini inequality index, and the remaining cases correspond to
increasingly weak structure being associated with the values mµ(2), towards
the additive case l = n. In other words, the parametric choices associated with
l = 0, 1, . . . , n correspond to an interpolation between A(x ) = x̄ = C1(x ) (with
l = n) and A(x ) = C2(x ) (with l = 0) through the intermediate (with l = 1)
case A(x ) = Ac(x ), the classical Gini welfare function.

Consider now the 3-additive case. The monotonicity conditions (67) take
the form

[
1− n

(
i−1
1

)
(
n
2

)
]
α2 +

[
1− n

(
i−1
2

)
(
n
3

)
]
α3 ≤ 1 i = 1, . . . , n . (80)

In turn, the S-concavity conditions (63) take the form

1(
n
2

) α2 +
n− i(

n
3

) α3 ≥ 0 i = 2, . . . , n . (81)

The S-concavity conditions reduce to the i = 2 and i = n cases,

α3 ≥ −1
3

α2 α2 ≥ 0 (82)

since the intermediate conditions

α3 ≥ − (n− 2)
3(n− i)

α2 i = 3, . . . , n− 1 (83)

are dominated by the first, given the last constraint α2 ≥ 0. Notice that in the
3-additive case the monotonicity conditions depend on n, but the S-concavity
conditions are independent of n.

As an immediate consequence of Proposition 8, we have the following result.

Proposition 10 Any 3-additive generalized Gini welfare function A : [0, 1]n −→
[0, 1] can be written uniquely as

A(x) =
n∑

i=1

wix(i) = x̄− α2G2(x)− α3G3(x) (84)

where G2(x) is as in (76), and G3(x) is the binomial Gini inequality index

G3(x) = −
n∑

i=1

v3i x(i) = −
n∑

i=1

2n2 − 2 + 3i− 6in + 3i2

n(n− 1)(n− 2)
x(i) (85)

and the coefficients α2 and α3 are subject to the conditions (80) and (82).
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Notice that in G3 the last 2 coefficients coincide (v3,n−1 = v3n = −1/n ) and
thus G3 is a non strict absolute inequality index, in the sense that it is insensitive
to income transfers involving the 2 richest individuals in the population.

Example 1 Consider the case n = 6. The weights wji of the binomial Gini
welfare functions Cj, j = 1, . . . , 6 are given by

C1 : ( 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 )

C2 : ( 5
15 , 4

15 , 3
15 , 2

15 , 1
15 , 0)

C3 : ( 10
20 , 6

20 , 3
20 , 1

20 , 0, 0)

C4 : ( 10
15 , 4

15 , 1
15 , 0, 0, 0)

C5 : ( 5
6 , 1

6 , 0, 0, 0, 0)

C6 : (1, 0, 0, 0, 0, 0)

On the other hand, the coefficients vji of the binomial Gini inequality indices
Gj, j = 1, . . . , 6 are given by

G1 : (0, 0, 0, 0, 0, 0)

G2 : (− 5
30 ,− 3

30 ,− 1
30 , 1

30 , 3
30 , 5

30 )

G3 : (−20
60 ,− 8

60 , 1
60 , 7

60 , 10
60 , 10

60 )

G4 : (−15
30 ,− 3

30 , 3
30 , 5

30 , 5
30 , 5

30 )

G5 : (−4
6 , 0, 1

6 , 1
6 , 1

6 , 1
6 )

G6 : (−5
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 )

Consider now the 3-additive case for n = 6. We have the following six
monotonicity conditions (80) in terms of the two coefficients α2 and α3,





α2 + α3 ≤ 1
3α2 + 5α3 ≤ 5
2α2 + 7α3 ≤ 10
2α2 − α3 ≥ −10
3α2 + 4α3 ≥ −5
α2 + 2α3 ≥ −1

(86)

and the corresponding feasible region is illustrated in Fig. 2. The dark subregion
is obtained with the two extra conditions (82) associated with S-concavity,

{
α2 + 3α3 ≥ 0
α2 ≥ 0 .

(87)

The overall region in Fig. 2 refers to the binomial decomposition of OWA func-
tions in Proposition 3, whereas the dark subregion refers to the binomial decom-
position of generalized Gini welfare functions in Propositions 6 and 8.

8 Conclusions

We have considered the binomial decomposition of OWA functions due to Calvo
and De Baets [14] and we have examined it in the restricted context of gener-
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Figure 2: Feasible region associated with conditions (86) and (87).

alized Gini welfare functions, with the addition of appropriate S-concavity con-
ditions. The original expression of the binomial decomposition can be equiv-
alently formulated either in terms of the binomial Gini welfare functions Cj ,
j = 1, . . . , n, or in terms of the Atkinson-Kolm-Sen (AKS) associated binomial
Gini inequality indices Gj , j = 1, . . . , n, according to Blackorby and Donaldson’s
correspondence formula Gj(x ) = x̄− Cj(x ), with j = 1, . . . , n.

The first pair of binomial Gini welfare function and inequality index is
C1(x ) = x̄ and G1(x ) = 0, for all x ∈ [0, 1]n. In the second pair, C2(x )
has n− 1 positive linearly decreasing weights and one null last weight, and the
associated G2(x ) has linearly increasing coefficients and is in fact proportional
to the classical Gini index, G2(x ) = n

n−1 Gc(x ). In the remaining pairs, Cj(x ),
j = 3, . . . , n, have n− j +1 positive non-linear decreasing weights and j−1 null
last weights, and the associated Gj(x ), j = 3, . . . , n have n − j + 1 non-linear
increasing weights and j − 1 equal last weights.

The binomial Gini welfare functions Cj , j = 1, . . . , n have null weights as-
sociated with the j − 1 richest individuals in the population and therefore, as
j increases from 1 to n, they behave in analogy with poverty measures which
progressively focus on the poorest part of the population. Correspondingly, the
binomial Gini inequality indices Gj , j = 1, . . . , n have equal weights associated
with the j− 1 richest individuals in the population and therefore, as j increases
from 1 to n, they are progressively insensitive to income transfers within the
richest part of the population.

The binomial Gini welfare functions and inequality indices bear some anal-
ogy with the S-Gini family of welfare functions and absolute inequality indices
introduced by Donaldson and Weymark[23], and independently by Kakwani [48]
as an extension of a poverty measure proposed by Sen [66], see also Donaldson
e Weymark [24], Yitzhaki [76], Bossert [13], Aaberge [1, 2, 3]. The welfare
functions of the S-Gini family are of the form

AS
δ (x ) =

n∑

i=1

[(n− i + 1
n

)δ

−
(n− i

n

)δ]
x(i) (88)

where δ ∈ [1,∞) is an inequality aversion parameter. In analogy with the
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binomial Gini welfare functions, AS
1 (x ) = x̄ and AS

2 (x ) = x̄ − Gc(x ), where
Gc is the classical Gini. As the inequality aversion parameter increases, AS

δ

tends to the limit case AS
∞(x ) = x(1). In other words, the full range of the

inequality aversion parameter, from δ = 1 to δ = ∞, corresponds to a continuous
interpolation of the index j = 1, . . . , n, with AS

1 = C1 and AS
∞ = Cn.

The welfare functions of the S-Gini family (88) are of the general form

Af (x ) =
n∑

i=1

[
f
(n− i + 1

n

)
− f

(n− i

n

)]
x(i) (89)

where f is a continuous and increasing function on the unit interval, with f(0) =
0 and f(1) = 1. The integer parametric choices f(t) = tk, with k = 1, . . . , n,
can be seen in relation with the k-additivity of the welfare function, as discussed
in Gajdos [30].

An alternative generalization of the classical Gini which again has some
analogy with the binomial Gini welfare functions and inequality indices is that
proposed by Lorenzen [52], see Weymark [70],

AL
j (x ) =

j∑

i=1

j + n− 2i + 1
nj

x(i) =
j∑

i=1

1
n

x(i) +
j∑

i=1

n− 2i + 1
nj

x(i) (90)

with j = 1, . . . , n. The extreme cases are AL
1 (x ) = x(1) and AL

n(x ) = x̄ −
Gc(x ) = Ac(x ), where Gc is the classical Gini. As j increases from 1 to n, the
Lorenzen welfare function AL

j involves only the j poorest individuals in the pop-
ulation, to whom it assigns linearly decreasing positive weights. Analogously,
the binomial Gini welfare functions Cn−j+1, for j = 1, . . . , n − 1, also involve
only the j poorest individuals but assign them non-linear binomial weights, from
Cn(x ) = x(1) to C2(x ) = Ac(x )− 1

n−1 Gc(x ), where Gc is the classical Gini and
Ac is the associated welfare function.

Finally, a continuous inequality aversion parameter is also present in the
two classical families of decomposable inequality indices, the Kolm family [50]
of absolute inequality indices and the Atkinson family [6] of relative inequality
indices. The associated welfare functions correspond to the two classical families
of decomposable aggregation functions, the exponential quasi-arithmetic means
and the power quasi-arithmetic means, respectively. The former are stable for
translations and are thus associated with absolute inequality indices, whereas
the latter are stable for dilations and are thus associated with relative inequality
indices.
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