
ECINEQ WP 2014 - 328

 

Working Paper Series

Multidimensional Lorenz dominance:

A definition and an example

Asis Kumar Banerjee



 

ECINEQ 2014 - 328
April 2014

www.ecineq.org

Multidimensional Lorenz dominance:

A definition and an example

Asis Kumar Banerjee†

Institute of Development Studies Kolkata

Abstract

This paper seeks to extend the unidimensional notion of Lorenz dominance to the multidi-
mensional context. It formulates a definition of a multidimensional Lorenz dominance relation
(MLDR) on the set of alternative distributions of well-being in an economy by incorporating
generalizations of the well-known Pigou-Dalton condition of unidimensional theory. Besides
the definitional requirements, an MLDR is also desired to satisfy two other conditions which
seem to be intuitively reasonable. The paper notes that the existing literature does not seem
to contain an example of an MLDR with these characteristics and seeks to close this gap.

Keywords: Multidimensional Lorenz dominance.

JEL Classification: D63.

†Contact details: Institute of Development Studies Kolkata 27/D, DD Block, Sector I, Salt Lake, Kolkata
700064, India. E-mail: asisbanerjee.cu@gmail.com.

file:www.ecineq.org


2 
 

                                                      1. Introduction  
 

 

    It is by now generally recognized that well-being of an individual depends not only on his 

or her income but also on other attributes (such as, education, health etc.). Therefore, the 

methods of measuring inequality in the distribution of well-being among the individuals in an 

economy need to be extended from the unidimensional to the multidimensional context.  

 

    As in the case of a single dimension, the method of comparing between the levels of 

inequality of alternative multidimensional distributions may take the approach of constructing 

a complete ordering over the set of distributions by proposing a scalar-valued inequality 

index. 

 

  However, since different inequality indices may lead to different complete orderings of the 

distributions, attention may also be given to the task of constructing orderings which may be 

partial but which would be more readily acceptable in some intuitive sense. In single-attribute 

theory the most widely used partial ordering of this type is the Lorenz partial ordering: a 

distribution x Lorenz dominates another distribution y if the Lorenz curve for x does not lie 

below that for y at any point and lies above it at, at least, one point. x is then interpreted to be 

a more desirable distribution than y. In the multidimensional case a main task in this 

approach is to extend the notion of Lorenz dominance to the multi-attribute context.  

 

  Although the economic theory of multidimensional inequality measurement as a whole is a 

relatively new field of research, within this field the first of the two approaches mentioned 

above has by now led to a sizable literature containing important contributions. For reviews 

see, for instance, Savaglio (2006) and Weymark (2006).  

 

  The second approach, however, seems be a relatively neglected area. In this paper we shall 

be concerned with multidimensional Lorenz dominance.  

 

 In this context it is convenient to describe the allocations of the different attributes to the 

different individuals by a matrix. We shall suppose that in a distribution matrix each column 

refers to an attribute and each row to an individual. The entries represent the allocations. If X 

and Y are two distribution matrices, the question under what conditions X is to be considered 

to Lorenz dominate Y does not seem to have an obvious and unique answer. Various 

suggestions have been made, many of them belonging to the mathematical literature. (See, for 

instance, Arnold (2005) and Koshevoy and Mosler (2007). For reviews see Savaglio (2006) 

and Trannoy (2006)).   

 

   This paper seeks to develop an economic approach to the problem. Towards that end it 

formulates a definition of a multidimensional Lorenz dominance relation (MLDR) on the set 

of distribution matrices. The definition uses, apart from other standard requirements, two 

different (and independent) generalizations of the Pigou-Dalton transfer condition of 

unidiensional theory viz. the Uniform Majorization (UM) condition due to  Kolm (1977) and 

the Pigou-Dalton Bundle Principle (PDBP) introduced in Fleurbaey and Trannoy (2003).  

 

  Both UM and PDBP were origianally introduced in the literature as conditions on equity-

sensitive social evaluation functions. Later they have also been stated as conditions on 

multidimensional inequality indices. The inequality index version of each of these conditions 

takes the following form: Letting I(X) denote the value of an inequality index I for any 
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distribution matrix X, each of the conditions requires that if the distribution matrix Y is 

obtained from X by subjecting it to a specified type of transformation, then I(X) < I(Y). 

However, since the conditions require any inequality index to behave in the specified way, 

intuitively it seems reasonable to adapt these to the present context by restating them to 

require that X Lorenz dominates Y if Y is obtained from Y in the specified manner.        

 

  We shall also desire an MLDR to satisfy two additional conditions which seem to be 

intuitively reasonable. One of these is the condition of Correlation Increasing Majorization 

(CIM) introduced in the economic literature by Tsui (1999). We shall, again adapt it from the 

inequality index context for our purposes. The essential idea behind this condition is that 

greater correlation among the columns of the distribution matrix increases multidimensional 

inequality, however such inequality may be measured.  

 

  The other condition, to be called Conditional Equalizing Majorization (CEM), relates to the 

question whether equalizing the distribution of an attribute would lead to an unambiguous 

improvement in the state of distribution in the society. Given a distribution matrix X and an 

attribute j, let Y be the matrix obtained by replacing each entry in the j-th column of X by the 

arithmetic mean of the column. CEM requires that Y dominates X if the distribution of the  j-

th attribute in X is “sufficiently” more unequal (in a sense to be made precise) than that of 

each of the other attributes.        

    

  The existing literature does not seem to contain an example of an MLDR satisfying all of 

the conditions considered here. We seek to close this gap by suggesting such an MLDR.   

 

  Section 2 below introduces the notations, develops a definition of an MLDR and introduces 

the conditions of CIM and CEM. Section 3 reviews the literature to search in vain for an 

MLDR satisfying these conditions. Section 4 proposes a specific binary relation on the set of 

distribution matrices and proves that it is an MLDR possessing these characteristics. Section 

5 concludes the paper.   

 

                    

                                    2. Notations, Definitions and Axioms  

 

   Consider an economy with n individuals whose levels of well-being are determined by the 

amounts of m attributes that are allocated to them. Allocations are assumed to be non-

negative. M = {1, 2,….,m} and N = {1, 2,….,n}  will denote the set of attributes and the  set 

of individuals respectively. Since we shall be concerned with inequality among the standards 

of living of the individuals, we assume that n ≥ 2.  However, we assume that while m is 

exogenously fixed, n is allowed to be any positive integer. This allows inequality 

comparisons to be made across populations of different sizes.   

 

   By a distribution matrix X we shall mean an n× m non-negative matrix whose (p-th row, j-

th column) term, xp
j
, is the amount of attribute j allocated to individual p for all j in M and for 

all p in N. Thus, a distribution matrix describes a pattern of allocations of the attributes in the 

economy. For a distribution matrix X, xp will denote its p-th row and x
j
 its j-th column.   

 

    It is assumed that in any distribution matrix the sum of each column is positive i.e. for 

every attribute there is a positive total amount to be distributed among the individuals.  
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Thus the domain of matrices under consideration is: X = {X ε 
nm

+ : µ(x
j
) > 0, j 1.2,….,m, 

and n ≥2}for some given and fixed positive integer m where, for any vector y, µ(y) denotes 

its arithmetic mean.   

 

. We define a weak inequality dominance relation, D, on X. For all X and Y in X, if X D Y, 

this will be interpreted to mean that relative inequality in the distribution of overall well-

being in the pattern of allocations described by X is not more than that in the pattern 

described by Y, whatever may be the specific method of measuring the degree of overall 

inequality. DP and DI will denote the asymmetric and the symmetric components of D 

respectively, i.e., for all X and Y in X, X DP Y if and only if [X D Y and  ( Y D X)] ; and  

X DI Y if and only if [X D Y and Y D X].  

 

   We shall impose a number of conditions on D. We start with some basic conditions which 

are not related to equity considerations.  

 

Ratio-Scale Invariance (RSI): For all n × m matrices X in X and for all diagonal matrices Λ 

with positive entries along the main diagonal, X DI (XΛ). 

 

Quasi-ordering (QORD): D is a quasi-ordering.  

 

Anonymity (ANON): If X and Y in X are such that Y is obtained by a permutation of the 

rows of X, then X DI Y.  

 

Population Replication Invariance (PRI): For all X and Y in X such that Y is obtained by a  

k-fold replication of the population in X for some positive integer k  i.e., for all p in N, 

                                        xp = yp = yn + p = .......= yn(k ‒ 1) + p, 

X DI Y.     

   

  One of the first issues that arise in any multidimensional analysis is that of 

commensurability of the attributes. Commensurability requires that the attributes are 

measured in the same or, at least, similar (for instance, monetary) units. Since this may not be 

true of the original data, we make the entries in the distribution matrices independent of the 

scales of measurement of the different attributes. Imposing the condition of RSI is one way 

of doing this.  It requires that if each column of a distribution matrix is multiplied by a 

positive constant (possibly different for the different columns), the matrix obtained is 

‘equivalent’ to the original matrix in terms of the weak equality dominance relation D. The 

requirement also tallies with the fact that in this paper we shall be concerned with relative 

inequality.  

  QORD states that D is a reflexive and transitive relation which is not necessarily complete. 

ANON requires that the labelling of the individuals in the economy should be 

inconsequential. PRI implies that in any distribution matrix it is the proportion of the 

population (rather than the absolute number of individuals) getting a particular allocation of 

an attribute that is important.      
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  We now turn to equity considerations. In the case where there is a single attribute (m = 1), 

the standard notion of inequality dominance is that of Lorenz dominance. For any non-

negative distribution vector x specifying the allocations of the attribute to the n individuals, 

let x῀ denote the rearrangements of x in non-decreasing order and let μ(x) denote the 

arithmetic mean of x. As per the standard Gastwirth (1971) definition of a Lorenz curve 

applied to the case of a discrete distribution, the Lorenz curve of x is the curve in the unit 

square obtained by joining  

the (n + 1) points (0, 0) and (k/n, (1/n) 


k

i 1

xi῀ /μ(x)), k = 1, 2,........,n by line segments, xi῀ 

being the i-th component of x῀.  

 

   For the distribution vector x, the mapping from [0, 1] into [0, 1] described by the Lorenz 

curve of x is denoted by Lx. For all distribution vectors, x and y, x Lorenz dominates y if and 

only if Lx (p) ≥ Ly (p) for all p in [0, 1]. It strictly Lorenz dominates y if, in addition, Lx (p) > 

Ly (p) for some p in [0, 1].  

 

   We shall denote the unidimensional Lorenz dominance relation on the set of all non-

negative distribution vectors by L: for all distribution vectors x and y, x L y if and only if x 

Lorenz dominates y. Clearly, L is a quasi-ordering. P will denote the strict Lorenz dominance 

relation: x P y if and only if x strictly Lorenz dominates y. P coincides with the asymmetric 

component of L. The symmetric component of L will be denoted by I. For all distribution 

vectors x and y, x I y if and only if the Lorenz curve of x coincides with that of y ( i.e. x = y 

or x is a permutation of y).   

 

  In unidimensional theory Lorenz dominance is closely related to the notion of Pigou-Dalton 

(PD) transfers. If the attribute in question is income, a PD transfer is an income transfer from 

a richer to a poorer person by an amount less than their initial income difference. The 

following three statements are equivalent (Hardy, Littlewood and Polya (1952) and Marshall 

and Olkin (1979, Ch.1)): (1) x Lorenz dominates y; (2) x Pigou-Dalton majorizes y i.e. x is 

obtained from y by a finite sequence of PD transfers; and (3) x = By for some bistochastic 

matrix B. (A bistochasic matrix is a non-negative matrix in which each row as well as each 

column sums to 1.)   

  

  The literature on multidimensional inequality contains generalizations of the concept of 

Pigou-Dalton majorization. One of the most widely used among such generalization is the 

concept of Uniform Majorization UM). (See Kolm (1977).) For all n × m matrices X and Y 

in X, Y is said to uniformly majorize X if Y ≠ X and Y = BX for some bistochastic matrix B 

which is not a permutation matrix. Since Y = BX implies, y
i
 = Bx

i
 for all i in M, y

i
 Pigou-

Dalton majorizes x
i
 for each i ; and since the same matrix B is used to majorize all the 

columns of X, the majorization is said to be uniform across the attributes. A variant of this 

type of majorization is w-majorization formulated in Savaglio (2006, 2007, 2010) where B is 

required to be a row-stochastic (but not necessarily a bistochastic) matrix.  
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  Kolm (1977) used UM to formulate an axiom regarding an equity-sensitive social evaluation 

function. According to this axiom, for all X and Y, if Y uniformly majorizes X, then the 

society considers Y to be superior to X from the distributional point of view. In the present 

framework we do not use a social evaluation function. However, axioms similar to the ones 

mentioned above can be formulated in terms of multidimensional indices of equality. Take, 

for instance, the concept of UM.  Let f  be a mapping of X into the real line. If f is to be an 

index of multidimensional equality, it is to satisfy the following axiom (called the axiom of 

UM): for all X and Y in X, if Y is a UM of X, then f (Y) > f (X). [In the literature on 

unidimensional distribution it is customary to define indices of inequality. We shall, however, 

couch the discussion in terms of equality indices. Dominance in terms of equality seems to be 

in line with the notion of Lorenz dominance.]  

 

   We wish to formulate a condition under which a distribution matrix can reasonably be said 

to dominate another. However, in analogy with the unidimensional case, the statement that Y 

dominates X may be interpreted to mean that, according to any reasonable measure of  

multidimensional inequality, Y would have a lower degree of inequality than X. Hence, the 

generalizations of the Pigou-Dalton majorization can be used to formulate suitable conditions 

of inequality dominance in the multidimensional context. This type of adaptation of the 

axiom of UM leads to the following condition on D. 

 

Uniform Majorization (UM):: For all X and Y in X such that Y is a UM of X, Y DP X .     

 

  The recent literature on inequality has, however, pointed out a number of inadequacies of 

the axiom of UM. First, all attributes may not be transferable in principle. (What, for 

instance, do we mean by transferring educational attainments or health status?), Secondly,  

even when all of these are transferable, there seem to be cases in which  a transfer is non-

uniform across the attributes and yet there seem to be reasonable grounds for  hypothesizing 

that it leads to an unambiguously superior state of distribution.. UM does not cover these 

cases. For a more detailed discussion on these two issues see, for instance, Lasso de la Vega, 

Urrutia and Amaia de Sarachu (2010).  

 

   

  In this paper in order to take these considerations into account we shall use the Pigou-Dalton 

Bundle Principle (PDBP) introduced by Fleurbaey and Trannoy [2003 in the context of the 

normative theory of inequality. (See Lasso de la Vega et. al. [2010] for an innovative use of 

PDBP for the purpose of deriving a multidimensional inequality index.) 

 

  Consider the case where the amounts of the attributes that are transferred are allowed to 

differ between attributes and are not restricted to be non-zero for all attributes. It is, however, 

assumed (i) that transfers from an individual q to an individual p are allowed only if q is 

unambiguously richer than p (i.e. q has more of every attribute than p) and (ii) that transfers 

preserve the relative ranks, in each dimension, of the two individuals whose allocations are 

altered.                                                                                                   
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Definition 2.1: For all X and Y in X, Y is said to be derived from X by a Pigou-Dalton 

Bundle Transfer (PDBT) if there exist p and q in N such that 

 

(i) xq > xp ; 

  

(ii) yq = xq – d and yp = xp + d for some d in m
+ such that d ≠ 0. 

 

(iii) yr = xr for all r in N – {p, q} ; 

 

(iv) yq  ≥ yp. 

  

  Part (i) of Definition 2.1 states that individual q is unambiguously richer than individual p in 

the initial allocation matrix X. Part (ii) requires that non-negative amounts of the different 

attributes are transferred from individual q to individual p. The amounts or the proportions of 

the transfers need not be the same for all attributes. Neither is it required that some amounts 

of all attributes must be transferred i.e. it is recognized that some attributes may, by their 

nature, be non-transferable. It is required, however, that the transfer is non-trivial i.e. some 

amount of at least one attribute is transferred. Part (iii) states that all individuals other than p 

and q are unaffected by the transfer. Part (iv) states that after the transfer q remains 

unambiguously at least as well off as p. 

 

  As an illustration consider the case in which n = 3, m = 2, X = 
















67

82

910

and Y = 
















67

84

98

.            

In X individual 1 is unambiguously richer than individual 2. Y is obtained from X by 

transferring 2 units of the first attribute from individual 1 to individual 2. This is a PDBT 

since, as is easily checked, all parts of Definition 2.1 are satisfied.    

 

 We impose the following condition on the dominance relation D. 

 

Pigou-Dalton Bundle Principle (PDBP): For all X and Y in X such that Y is obtained from 

X by a finite sequence of PDBT’s, Y DP X.  

 

We are now ready to state the definition of a multidimensional inequality dominance relation. 

 

Definition 2.2: A multidimensional inequality dominance relation (MIDR), D, is a binary 

relation on X satisfying RSI, QORD, ANON, PRI, UM and PDBP.    

   

  Since we are interested in obtaining a generalization of the unidimensional Lorenz 

dominance relation, L, it is natural to require that the dominance relation reduces to L if there 

is just one attribute. 

 

Definition 2.3: A multidimensional Lorenz dominance relation (MLDR), L
M

, is an MIDR on 

X such that L
M

 = L if m = 1.    
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The antisymmetric and symmetric components of an MLDR, L
M

, will be denoted by P
M

 and 

I
M

 respectively. 

 

 

  All inequality dominance relations are, by definition, concerned with equity considerations. 

Some basic aspects of such considerations are captured by generalizations of the Pigou-

Dalton transfer principle such as PDBP and UPDM. In multi-attribute theory, however, there 

are still other aspects of the matter.  We now state two conditions that deal with some of these 

aspects. The first of these focuses on the pattern of inter-relation among the attributes and its 

relation to multidimensional inequality.      

 

  For all X in X and for all p,q in N, let xp   xq denote the vector {min(xp
1
, xq

1
), min(xp

2
, 

xq
2
),...,min (xp

m
, xq

m
)} and xp    

 xq  the vector {max(xp
1
, xq

1
), max (xp

2
, xq

2
), ........,max(xp

m
, 

xq
m
)}. 

 

Definition 2.4: For all X and Y in X such that X is not equal to Y or a row permutation of Y, 

X is said to be obtained from Y by a Correlation Increasing Transfer (CIT) if there exist p and 

q in N such that  

(i) xp = yp    yq ;  

 

(ii) xq = yp   yq ; and  
 

(iii) xr = yr for all r in N – {p, q}. 

  

We shall desire L
M

 to satisfy the following condition:  

 

Correlation Increasing Majorisation (CIM): For all X and Y in X such that Y is obtained 

from X by a finite sequence of CIT’s, X P
M

 Y.  

 

 The basic idea behind CIM is that greater correlation among the different columns of the 

distribution matrix implies greater inequality, irrespective of how inequality is measured. It 

was introduced in the economic literature by Tsui (1999) in the context of inequality 

measurement. In the statistical literature it was proposed by Boland and Proschan (1988). The 

concept of CIT on which it is based was studied in Atkinson and Bourguignon (1982) and in 

Epstein and Tanny (1980).   

 

    The acceptability of a condition depends on its intuitive plausibility. CIM seems to have a 

strong intuitive appeal. Consider, for instance, the following example. Let n = 2 = m.            

Let Y = 








36

79
 and X = 









76

39
. Y is obtained by a switch of the entries in the second 

column of X. It is easily checked that this is a CIT. If it is now asked whether we should 

consider X to Lorenz dominate Y (i.e. whether X should be judged to display a lower degree 

of equality as per any measure of inequality), there seems to be intuitive grounds for an 

affirmative answer. In X individual 1 has a higher allocation of attribute 1 than individual 2.  

But this is at least partially compensated for by the fact that w.r.t. attribute 2 it is individual 2 

who has a lower allocation. In Y, however, the effect of the lower allocation of attribute 1 to 

allocation 2 is compounded by the fact that individual 2 faces the same predicament w.r.t. 

attribute 2 i.e. there is a compounding of inequalities across the attributes.  
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  For the purpose of stating our second additional condition on L
M

 it will be convenient to use 

the notion of scaled distribution matrices. For any distribution matrix X, X* denote the matrix 

obtained by dividing each entry in X by the arithmetic mean of the column containing it. 

(Similarly, for a distribution vector x, x* will its scaled version.) By RSI, X L
M

 Y if and only 

if X* L
M

 Y*. 

 

 Suppose that a distribution matrix X has a column x
j
 which is strictly Lorenz dominated by 

all columns. Thus, x
j
 is unambiguously the most unequally distributed column in X. We ask 

whether replacing x
j
 by the column vector µ(x

j
)1n (i.e. making the distribution of the relevant 

attribute perfectly equal) would lead to an unambiguous improvement in the state of 

distribution in the economy. Thus, the question is whether the matrix obtained from X by the 

proposed operation dominates X. If X is comonotonic, an affirmative answer would seem to 

be reasonable. [An n × m distribution matrix X is comonotonic if either x1
j
 ≥ x2

j
 ≥ … ≥ xn

j
 for 

all j in M or the same is true with all the weak inequalities reversed.] Indeed, in this special 

case, equalization of any column of X (rather than that of only the most unequally distributed 

column) which is not equally distributed to start with can reasonably be considered to be an 

unambiguous improvement.  

 

  In the general case, however, the answer is less obvious. Consider first the case where n = 2 

= m. Let X and Y be such that X* = 








01

21
 and Y* = 









11

11
. Since Y* represents the 

situation where every attribute is equally distributed and since this is not true for X*, it seems 

reasonable to require that Y strictly dominates X. Consider now the non-comonotonic matrix 

Z for which Z* =  












01

21

d

d
where d is a real number in (0, 1]. The matrix W* = 













11

11

d

d
 

is obtained by equalizing the most unequal column (to wit, the second) in Z*. If d is “small”, 

W* would be “close” to the matrix of perfect equality Y* while Z* would be “close” to X*. 

For such a value of d, therefore, it may, again, seem reasonable to require that W* dominates 

Z* i.e. that W dominates Z.. However, if we now go on increasing d, there would come a 

stage where the requirement would lose intuitive appeal. For instance, in the extreme case 

where d = 1, Z* and W* become 








02

20
 and 









12

10
 respectively. The requirement that W* 

dominates Z* can now be questioned. Indeed, if the society considers the two attributes to be 

equally important i.e. if it attaches equal weights (or “prices”) to them, then it is Z* which 

would seem to represent a situation of perfect over-all equality, balancing the inequalities in 

the two attributes perfectly by setting them against each other. In any case the requirement 

that W* dominates Z* is now unreasonable. 

   

  In general, therefore, the question seems to be not only whether the column of the matrix 

that is to be equalized is the most unequally distributed among all the columns but also 

whether it is “sufficiently” unequal i.e. whether the distribution in each of the other columns 

is “sufficiently” more equal. One way of formalizing the question in the context of the above 

example is ask whether d is such that the (scaled) distribution vector 












d

d

1

1
( = c, say) is 

“closer” to 








1

1
(= a, say) than to 









0

2
(= b, say). Whether or not this is true cannot be checked 

on the basis of the notion of (undimensional) Lorenz dominance. However, one simple 
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procedure (which can be stated in terms of Lorenz dominance) would be to examine whether 

c Lorenz dominates [(a + b) / 2]. If this is the case, the stipulation that W* dominates Z* 

would seem to be acceptable.   

 

  More generally, let X
1
 denote the set of all distribution matrices (vectors) where m = 1. Let 

the binary relation P* on X
1
 be defined as follows: for all n-vectors x and y in X

1
, x P* y  if 

and only if x* P [(y* + 1n) / 2] where P is the asymmetric component of L.                  

             

  It may be noted that, for any x and y, [x P* y] implies y ≠ 1n and that, for any such y, [(y* + 

1n) / 2] P y*. Since P is transitive, it follows that, for all x and y, [x P* y] implies [x P y]. The 

converse, however, is not true. Thus, P*   P.   

 

For any n × m matrix X in X and for any j in M, let X
−j,µ

 denote the matrix obtained from X 

by replacing x
j
 by µ(x

j
)1n.                

 

The following condition on L
M

 is proposed.  

 

Conditional Equalizing Majorizaation (CEM): For any n × m matrix X in X if j in M is 

such that x
i
 P* x

j
 for all i in M such that i ≠ j, then X

−j,µ
 P

M
 X.    

   

  CEM states that if a distribution matrix X contains a column x
j
 which is “sufficiently more 

unequally distributed ” than each of the other columns (in the sense that each of the other 

columns strictly Lorenz dominates the arithmetic mean of x
j
* and the equal distribution      

1n), then the matrix obtained from X by equalizing x
j
 strictly dominates X. 

 

  In course of our work below we shall see that there exist MLDR’s which satisfy CIM but 

violate CEM. There also are MLDR’s that violate CIM but satisfy CEM. Thus, CIM and 

CEM are independent conditions.  

 

  In this paper we look for binary relations on X which are MLDR’s as per Definition 2.3 and 

which also satisfy CIM and CEM.  

 

  The reader will notice that while UM and PDBP have been stated as parts of the definition 

of an MLDR, CIM and CEM have only been given the status of additionally desired 

properties. [This is in deference to the fact that in the inequality index literature there are 

indices which have come to be accepted as multidimensional inequality indices but which do 

not necessarily satisfy (the inequality index version of) CIM.] The results of this paper can 

easily be suitably restated if these additional conditions are included in the definitional 

requirements of an MLDR.   

   

 

                                             3. “Candidate” MLDR’s 

 

 

  The existing literature contains a number of specific suggestions regarding the construction 

of MLDR’s. In this Section we review some of these suggestions and assess their 

acceptability in terms of the conditions stated in Section 2.   

 

Examples of Suggested MLDR’s:  
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(1) Directional Lorenz Majorization (L
1
): L

1
 is the binary relation on X such that, for all X 

and Y in X, X L
1
 Y if and only if X is a directional Lorenz majorization of Y i.e. (Xw) L 

(Yw) for all w in m
. 

  

(2) Lorenz Majorization by Non-negative Weights (L
2
):  L

2
 is such that, for all X and Y in 

X, X L
2
 Y if and only if X is a majorization of Y by non-negative weights i.e. (Xw) L (Yw) 

for all w in the set of non-negative m- dimensional real vectors  +
m
. 

 

(3) Lorenz Majorization by Equal Weights (L
3
):  L

3
 is such that, for all X and Y in X, X L

3
 

Y if and only if X is a majorization of Y by equal weights i.e. (Xw) L (Yw) where w is the m-

vector in which each entry is 1/m.   

 

(4) Columnwise Lorenz Majorization (L
4
): For all X and Y in X,  X L

4
 Y if and only if X is 

a columnwise majorization of Y i.e. x
i
 L y

i
 for all i in M  i.e. (Xw) L (Yw) for all m-vectors w 

such that wi = 1 for some i in M and wj = 0 for all j in M such that j ≠ i.  

 

   For L
1
 and L

2
 see, for instance, Bhandari (1988),  Kolm (1977), List (1999) and Koshevoy 

and Mosler (2006). L
1
, L

2
 and L

4
 are also mentioned by Arnold (2005) among ‘candidate 

definitions’ of multi-attribute Lorenz dominance.  L
3
 has been included in the list in view of 

the fact the use of equal weights seems to be widespread in empirical research on 

multidimensional inequality because of its computational simplicity.   

 

Clearly, L
1L

2L
3
. Also, L

2L
4
. But L

3
 and L

4
 are not nested.  

 

  

(5) Majorization of Lorenz Zonoids (L
Z
): While the MLDR’s illustrated in Examples 1 

through 4 are suggested multi-attribute analogues of Lorenz dominance in the single-attribute 

case, they do not suggest a multi-attribute Lorenz curve. It would seem that a more 

satisfactory approach would be to proceed in more direct analogy with the single-attribute 

case i.e. to first suggest an extension of the concept of Lorenz curve to the case of multiple 

attributes and then to define Lorenz dominance for this case in terms of dominance relations 

between the generalized curves for different distribution matrices. Because of the 

mathematical difficulties inherent in this approach, progress along these lines has been slow. 

Arnold (1983) and Taguchi (1972) were among the early attempts in this direction. In recent 

statistical literature a more satisfactory definition of such a multi-attribute analogue has 

emerged. See Koshevoy (1995) for the case of empirical distributions and Koshevoy and 

Mosler (2007) and Mosler (2002) for extension to the case of random variables and other 

developments.  

 

  (More recently, Sarabia and Jorda (2013) has used the definition proposed in Arnold (1983) 

to obtain closed expressions for bivariate Lorenz curves. However, their formulation involves 

specific assumptions regarding the underlying bivariate distributions.)    

 

   The Koshevoy-Mosler  approach is based on the notion of a Lorenz zonoid. First define the 

lift zonoid of an n×m  matrix X, Z(X) (say), as the Minkowski sum of the n line segments   

[0m + 1 , ((1/n), (xp/n)], p = 1, 2,....,n, in m + 1
. It is a convex set. The Lorenz zonoid of a 

distribution matrix X, Z*(X) (say), is then defined as the lift zonoid of X*, the scaled version 

of X. Thus, for all X, Z*(X) = Z(X*). For details see the references cited above.  
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  Koshevoy and Mosler (2007 ) introduced the following strict dominance relation: for all n × 

m matrices in X and Y,  X strictly Lorenz dominates Y if and only if Z*(X)   Z*(Y).   

 

  As shown by the authors, for all n× m matrices X and Y, Z*(X)  Z*(Y) if and only if 

(X*w) P (Y*w) for all w in m
. We shall denote this strict dominance relation by P

Z
. It is 

easily seen that P
Z
 does not coincide with P

1
 but is more restrictive i.e. P

Z   P
1
. 

 

  Hence, we can obtain a “candidate” MLDR by constructing a quasi-ordering whose 

asymmetric component would coincide with P
Z
. We shall consider the relation L

Z
 defined as 

follows. L
Z
 = P

Z
   I 

Z 
where I 

Z 
is the relation on X such that, for all X and Y in X, X I 

Z
 Y if 

and only if Z*(X) =  Z*(Y).   

 

 

 (6) Majorization of Extended Lorenz Zonoids (L
eZ

): Koshevoy and Mosler (2007) also 

introduced the concept of the extended Lorenz zonoid. Define the extended lift zonoid of a 

distribution matrix X, eZ (X), as the lift zonoid augmented by all points that are below a point 

in the lift zonoid Z(X) w.r.t. the first coordinate and above the point w.r.t. the other m 

coordinates:  

eZ(X) = {(v0, v1,.....,vm) : v0 ≤ z0, vj ≥ zj, j = 1, 2, ......, m, for some (z0, z1, ........, zm) ε Z(X)}.  

 

   The extended Lorenz Zonoid of a distribution matrix X, eZ*X), is the extended lift zonoid 

of the scaled version of X i.e. eZ*(X) = eZ (X*).  

 

  In similarity with the case of Lorenz zonoids a strict dominance relation P
eZ

 (say) can be 

defined in terms of strict set set inclusion of extended Lorenz zonoids: for all admissible X 

and Y, X P
eZ

 Y if and only if eZ*(X)   eZ*(Y). However, it has been shown that, for all X 

and Y, eZ*(X)   eZ*(Y) if and only if (X*w) P (Y*w) for all w in  +
m
.  Thus, P

eZ
 is not 

the asymmetric component P
2
 of L

2
 but is, rather, a subset of it.   

 

  We shall consider the acceptability, as MLDR, of a relation L
eZ

 on X whose asymmetric 

component would coincide with P
eZ

 .  We define L
eZ

 to be P
eZ

   I 
eZ

  where  I 
eZ

 is the 

relation on X for which, for all X and Y in X, X I 
eZ

 Y if and only if eZ*(X) = eZ*(Y).    
 

                                                                                                                                         

(7) Majorization by data-driven weights (L
w
): The idea of using data-driven weights for the 

purpose of majorization of distribution matrices has also been pursued in the literature. The 

following criterion was suggested in Banerjee (2014). 

 

  For any pair (X, Y) of n × m matrices in X first define the pair (X0, Y0) as follows: If X and 

Y are such that  

(i) µ(x
j
) = µ(y

j
) for all j in M; and  

(ii) for some non-empty subset N′ of N, xp = yp for all p in N′, 

then X0 and Y0 are the (n − n′) × m matrices (where n′ is the cardinality of  N′) obtained from 

X and Y respectively by deleting the common rows. In all other cases (X0, Y0) = (X, Y).  

 

  Now, for any matrix X, let X^ denote its comonotonization i.e. the comonotonic matrix 

obtained by rearranging, if necessary, the entries in each column of X. Again, for any X, let 

X* be its scaled version. Let C(X) denote the covariance matrix of X  

 

ECINEQ WP 2014 - 328 April 2014



13 
 

  The suggested criterion L
w
 is defined to be such that, for all X and Y in X, X L

w
 Y if and 

only if [(X0*) w(X0
*
)] L [(Y0*)w(Y0

*
)] where, for all X in X, w(X0

*
) is the first eigen vector 

(i.e. the eigen vector associated with the maximal eigen value) of C[(X0
*
) ^].    □ 

 

  None of the seven binary relations on X mentioned above, however, is an MLDR satisfying 

CIM and CEM. To show this we first establish that, among these relations, L
2
 and L

4
 are the 

only ones that satisfy Definition 2.3 of an MLDR.    

 

 All of the seven relations satisfy QORD, ANON and PRI. Moreover, all of them coincide 

with the unidimensional Lorenz dominance relation when m = 1. However, L
3
 violates RSI. 

For instance, consider the case where n = 2 = m, X = 








42

04
 and Λ = 









10

02
. RSI requires 

that X I
 3

 (XΛ) = 








44

08
i.e. it requires that, for w = 









2/1

2/1
,  Xw either equals or is a row 

permutation of (XΛ)w. However, Xw = 








3

2
 and (XΛ)w = 









4

4
, violating the requirement. 

The same argument shows that RSI is also violated by L
1
 and L

2
.  

 

  It may be noted, however, that slightly restated versions of these relations would avoid this 

problem. Redefine L
3
 in terms of the scaled versions of the matrices: for all X and Y in X, X 

L
3
 Y if and only if (X*w) L (Y*w) where w is the m-vector in which each entry is 1/m. In 

what follows all references to L
3
 will assume that it has been so redefined. L

1
 and L

2
 will also 

be assumed to have been similarly restated. 

 

 L
4
 is easily seen to satisfy RSI. 

  

  It is seen, however, that even the restated version of L
1
 (which allows negative entries in w) 

violates UM and PDBP.  

 

L
2
 and L

4
, however, satisfy these conditions.  

 

  L
3
 is also easily seen to satisfy PDBP. However, it violates UM. Consider, for instance, X = 










11

11
 and Y = 









20

02
 and note that X = BY where B is the bistochastic matrix  










2/12/1

2/12/1
. However, if w1 = ½ = w2, Xw = 









1

1
 = Yw. 

     

 Consider now the relations L
Z
 and L

eZ
.  Since these are stated in terms of scaled matrices, 

RSI is satisfied. However, they fail to satisfy UM. The same examples of X, Y and w as in 

the preceding paragraph suffice to establish this.  

 

  Finally, while L
w
 satisfies RSI by construction and is known to satisfy PDBP, it violates 

UM. To show this, consider, again, the matrices X and Y as specified for the case of L
3
 

above. It can be checked that, in this example, (X, Y) = (X0, Y0) and that the first eigen 

vectors of C(X0^) and C(Y0^) are  the same, to wit,  








2/1

2/1
 = w0 (say). Again, therefore, Xw0 
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= 








1

1
 = Yw0 so that UM is violated. This completes the demonstration of the fact that, 

among the binary relations on X reviewed above, L
2
 and L

4 
are the only ones that are 

MLDR’s as per the definition developed in the previous Section.  

 

  It is easily seen that L
4
 satisfies CEM also. However, it violates CIM.  The example of L

4
, 

therefore, shows that CEM does not imply CIM. On the other hand, it can be checked that L
2
 

satisfies CIM. However, it violates CEM. Consider, for instance, the case where n = 2 = m, 

X = 








13/2

13/4
 and Y = 









23/2

03/4
. Since  









3/2

3/4
 P [(1/2) 









2

0
 + (1/2) 









1

1
], CEM requires 

that (X P
2
 Y) where P

2
 is the asymmetric component of L

2
 i.e.it requires that [(Xw L Yw) for 

all w ≥ 0] and  [(Yw L Xw) for all w ≥ 0]. However, if w = (2/3, 1/3), the requirement is 

seen to be violated. Thus, CIM does not imply CEM. 

 

   

 

                                    4. An MLDR satisfying CIM and CEM 

 

  Since the existing literature does not seem to contain an example of an MLDR that satisfies 

CIM and CEM, in this Section we attempt to suggest one that does.   

 

  The suggested relation is defined indirectly in terms of unidimensional relative equality 

indices.   

 

Definition 4.1: A Unidimensional Relative Equality Index (UREI), E, is a mapping from X
1
 

into  + satisfying  

(i) Anonymity[i.e., for all x and y in X
1
 such that y is a permutation of x, E(x) = E(y)];  

(ii) Mean Independence [i.e., for all x in X
1
, E(kx) = E(x) for all positive scalars k]; 

(iii) Population Invariance [i.e., for all x and y in X
1
 such that y is a k-fold replication of x for 

any positive scalar k, E(x) = E(y)];   

(iv) the Pigou-Dalton (PD) condition [i.e., for all x and y in X
1
 such that x is a Pigou-Dalton 

majorization of y, E(x) > E(y)] . 

 

Let E be the set of all UREI’s. 

 

In view of mean independence E(x) = E(x*) for E in E and for all x in X
1. 

 

  There is an equivalence result regarding unidimensional Lorenz dominance and dominance in 

terms of all UREI’s. 

  

Lemma 4.1: For any x and y in X1 the following statements are equivalent: 

(1) E(x) ≥ E(y) for all I in I. 

(2) x L y. 

 

  The result in Lemma 4.1 is due to Foster (1985). (Also see Chakravarty (1990, pp. 35 – 36). We 

have, however, stated here in terms of equality (rather than inequality) indices. (For closely elated 

results see Eichhorn and Gehrig (1982), Fields and Fei (1978) and Kurabayashi and Yatsuka 

(1977).)  
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  In the multidimensional case for any E in E and for any given vector w of attribute weights  

we first construct a multidimensional analogue of E. For convenience we shall, however, 

assume that, for all n-vectors x in X
1
 such that x= µ(x)1n, E(x) = 1 (i.e. E takes the value 1 for 

perfectly equal distributions) and that w is in the set W = {w: w ε 
m

+ and 


m

j 1

wj = 1} (i.e. 

the attribute weights are non-negative and they sum to 1).   

    

 

  In this case, however, the contribution of an attribute (i, say) toward the over-all degree of 

equality is not simply equal to E(x
i
) which is its “direct”(or “own”) contribution. The indirect 

effects of the attribute through its interactions with the other attributes are to be taken into 

account. Let E
ij 

(X) denote the contribution that attribute i makes toward over-all equality in 

conjunction with attribute j. One aspect of such interactions between attributes is sought to be 

captured by considerations such as those underlying the condition of CIM. (Essentially, this 

aspect relates to the point that the magnitude of the interaction effect should be sensitive to 

rank correlations between the distributions of the attributes.) However, the issue is more 

general. For instance, even when x
i
 and x

j
 are comonotonic, the magnitude of this effect 

should be allowed to change when x
i 
changes to, say, y

i
 but y

i 
and x

j
 are, again, comonotonic.  

 

  For simplicity, however, we shall consider the special case where, for all X in X and for all i 

and j in M, E
ij
(X) = E[(x

i
 + x

j
) / 2]. This assumption incorporates some intuitively plausible 

features of such interdependence. For instance, the effect on equality of the “interaction” of 

an attribute with itself coincides with its “own” contribution i.e. E
ii
(X) = E(x

i
) for all i in M. 

Moreover, the interaction effects are symmetric: E
ij
(X) = E

ji
(X) for all i and j in M. (On the 

other hand, it restricts E
ij
(X) to be independent of x

k
 for all k in M such that i ≠ k ≠ j.)  

 

  For all non-negative vectors of attribute weights w, for all E in E, for all X in X and for all i 

in M, E
M

w(X) will denote the degree of multidimensional equality in the economy while       

E
Mi

w(X) will denote the total (i.e. direct and indirect) contribution of attribute i toward  

multidimensional equality. The proposed procedure is based on the following two 

assumptions. For all admissible w  

(1) E
Mi

w(X) = 


m

j 1

wjE[(x
i
 + x

j
) / 2] for all i in M ; and  

(2) E
M

w(X) = A


m

i 1

E
Mi

w(X) where A is a positive constant such that E
M

w(X) = 1 if x
j
 is 

equally distributed for all j in M.. 

 

(1) states that, for any given attribute, its total contribution to multidimensional equality is the 

weighted average of the contributions generated through its interaction with all the attributes 

(including itself). The contribution generated through attribute j is weighted by wj for all j in 

M.       

 

(2) states that the degree of multidimensional equality in the economy is proportional to the 

sum of the contributions  of the attributes. The restriction on A stated in (2) obviously implies 

that A = (1/m).  

 

Consider now the binary relation, L
M

 on X defined as follows: 
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Definition 4.2: For all X and Y in X, X L
M

 Y if and only if E
M

w(X*) ≥ E
M

w(Y*) for all E in E 

and for all w in W where, for all such w and E and for all X in X, E
M

w(X) is as defined in (1) 

and (2) above.     

  

P
M

 and I
M

 will denote the asymmetric and symmetric components of L
M

 respectively. 

 

Proposition 4.1: L
M

 is an MLDR satisfying CIM and CEM. 

 

Proof: 

I. L
M

 is an MLDR: 

 

  We first show that L
M

 is an MLDR as per Definition 2.3. RSI and QORD are easily 

checked. To check ANON let X and Y in X be such that Y is a row permutation of X. Then 

µ(x
j
) = µ(y

j
) for all j in M ; and, for all i and j in M, [(x

*i
 + x*

j
)/2] is a permutation of          

[(y*
i
 + y*

j
)/2]. Since any E in E satisfies Anonymity, it follows that, for all admissible w and  

E, E
M

w(X*) = E
M

w(Y*). Hence, X I
M 

Y. To see that L
M

 satisfies PRI, let X and Y in X be 

such that Y is obtained by a k -fold population replication of X for a positive integer k. For all 

i and j in M, [(y*
i
 + y

*j
)/2] is now a k-fold replication of [(x*

i
 + x*

j
)/2]. The result now 

follows from the fact that any E in E satisfies Population Invariance.    
 
    

  

    To prove that L
M

 satisfies PDBP i.e. to show that if X and Y in X are such that Y is 

obtained from X by a finite sequence of PDBT’s, then Y L
P
 X, first suppose that Y is 

obtained from X by a single PDBT. Recall that, according to Definition 2.1 of PDBT, this 

implies that there exist q and p in N such that xq > xp and that positive amounts of one or 

more attributes are transferred from individual q to individual p subject to the restriction that 

yq ≥ yp.    

  It can be seen that, under these conditions, for any pair of attributes i and j, [(y*
i
 + y*

j
)/2] 

equals [(x*
i
 + x*

j
)/2] if the PDBT under consideration does not involve transfers of the 

attributes i and j. If it involves a transfer of at least one of these two attributes, the former 

vector is a Pigou-Dalton majorization of the latter. Thus, for all E in E, E[(y*
i
 + y*

j
)/2] ≥ 

E[(x*
i
 + x*

j
)/2] with strict inequality holding whenever positive amounts of either (or both) 

of the two attributes are transferred.  

  It follows that, for all admissible w and E, E
M

w(Y*) ≥ E
M

w(X*). Hence, Y L
M

 X. Moreover, 

since, by hypothesis, at least one of the attributes is transferred, the same argument also 

shows that it is not the case that E
M

w(X*) ≥ E
M

w(Y*) for all w and E. Thus,  [ X L
M

 Y]. 

Therefore, Y L
P
 X.  

  If, now, Y is obtained from X by a finite sequence of PDBT’s rather than a single such 

transfer, the same conclusion is reached by a repeated application of this argument. 
 
   

  To show that L
M

 satisfies UM, let X and Y in X be such that X = BY where B is a 

bistochastic (but not a permutation) matrix. Then X* = BY*. For all j in M, therefore, x*
j
 = 

By*
j
. Hence, for all i and j in M, [(x*

i
 + x*

j) 
/2] = B[(y*

i
 + y*

j
)/2] i.e. [x*

i
 + x*

j
)/2] Pigou-
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.Dalton majorizes [(y*
i
 + y*

j
)/2]. For any E in E, therefore, E[(x*

i
 + x*

j
)/2] > E[(y*

i
 + y*

j
)/2] 

for all i and j in M. It follows that X L
P
 Y.   

  This completes the proof of the fact that L
M

 is an MIDR as per Definition 2.2. To show that 

it is an MLDR, it only remains to check that if m =1, L
M

 = L. This, however, is a consequence 

of Lemma 4.1   

II.  L
M

 satisfies CIM. 

  Let X and Y in X be such that Y is obtained from a finite sequence of CIT’s but is not a row 

permutation of X. To show that X L
P
 Y, it suffices to prove this for the case where Y is 

obtained from X by a single CIT. In this case Y* is obtained from X* by a CIT. Definition 

2.4 of a CIT is seen to imply that, for all i and j in M, one of the following two statements is 

true: 

(i)  [(x*
i
 + x*

j
)/2] is a permutation of [(y*

i 
+ y*

j
)/2]. 

(ii)  [(x*
i
 + x*

j
)/2] is a Pigou-Dalton 

 
majorization of {(y*

i
 + y*

j
)/2]. 

Moreover, since by hypothesis Y is not a permutation of X, it follows that (ii) is true for some 

i and some j in M. Hence, for any E in E, E[(x*
i
 + x*

j
)/2] ≥ E[(y*

i
 + y*

j
)/2] for all i and j      

in M, with strict inequality holding for at least one pair (i, j). It is then easily checked that X 

L
M

 Y but  [Y L
M

 X]. Hence, X L
P
 Y.  

III. L
M

 satisfies CEM. 

  Let X in X and j in M be such that x
i 
P* x

j
 for all i in M such that i ≠ j. To establish that          

Y L
P
 X where Y = X

−j, µ
, we need to prove that, for all admissible w and E, E

M
w(Y*) ≥ 

E
M

w(X*) and that, for some admissible w and E, the inequality is strict. We show that, in fact, 

E
M

w(Y*) > E
M

w(X*) for such w and E. However, we indicate the proof of this assertion for 

the special case in which n = 2 = m since the argument generalizes in a straightforward 

manner.  

  For this purpose let X in X be such that X* = 








db

ca
 and let x

1 
P

* 
x

2
 i.e. 









b

a
 P     














2/)1(

2/)1(

d

c
. Let Y be the matrix obtained from X by equalizing x

2
. Hence, Y* = 









1

1

b

a
. For 

any admissible w and E, it can be checked that, since the components of w sum to 1,             

E
M

w(Y*) > E
M

w(X*) if w1E(y
1
) + w2E(y

2
) + E [(y

1
 + y

2
)/2] > w1E(x

1
) + w2E(x

2
) + E[(x

1
 + 

x
2
)/2].  

 Now, [x
1 

P* x
2
] precludes the possibility that c = 1 = d. Hence, if a = 1 = b, the desired  

inequality follows trivially.  

Assume, therefore, w.l.o.g., that a > b.   
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Since E(y
1
) = E(x

1
) and y

*2
 = 









1

1
 (so that  y

2
 P x

2
 and, therefore, E(y

2
) > E(x

2
)), to prove the 

desired inequality it suffices to show that E[(y
1
 + y

2
)/2] > E[(x

1
 + x

2
)/2] for all E in E i.e. that 

[(y
1
 + y

2
)/2] P [(x

1
 + x

2
)/2]. Consider first the case where c > d. Since c + d = 2, c > 1 > d. 

We have: [(x
1
 + x

2
)/2] = 













2/)(

2/)(

db

ca
 and, in the case under consideration, [(a + c)/2] > [(b + 

d)/2]. On the other hand, [(y
1
 + y

2
)/2] = 













2/)1(

2/)1(

b

a
 and [(a + 1)/2] > [(b + 1)/2]. The desired 

result is obtained by noting that [(b + 1)/2] > [(b + d)/2]. In the case where c < d, first note 

that the hypothesis that x
1
 P* x

2
 implies x

1
 P x

2 
so that (a – b) < (d – c) and, therefore, [(b + 

d)/2] > [(a + c)/2]. Hence, the desired result will follow if [(b + 1)/2] > [(a + c)/2] i.e. if (a – 

b) < (1 – c). Since d = 2 – c, this inequality is seen to be implied by the hypothesis which 

requires a < [(d + 1)/2] and b > [(c + 1)/2].     □            

 

                                                       5. Conclusion 

  In this paper we have sought to assess the different multidimensional Lorenz dominance 

relations that have been suggested in the literature. For this purpose we have formulated a 

definition of such a relation by using a number of conditions which seem to reflect the basic 

requirements of an inequality dominance relation. Two additional conditions which seem to 

be intuitively reasonable requirements have also been stated. It is seen, however, that none of 

the relations that have so far been suggested satisfies all of these conditions. The question, 

therefore, arises as to whether there exists a relation possessing all of the desired 

characteristics. We have sought to give an affirmative answer to the question by proposing a 

new dominance relation.  
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