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1. Introduction 

 

A contest refers to a non-cooperative game in which two or more participants contend for a prize. 

Models of contest have been employed extensively to analyze a variety of phenomena like rent 

seeking (Tullock 1980, Nitzan 1991, Baye et al. 2005, Amegashie, 2006), conflict (Hirshleifer 

1991, Skaperdas 1992), polarization (Esteban and Ray 2011), electoral candidacy (Snyder 1989, 

Skaperdas and Grofman 1995), sporting tournament (Szymanzki 2003), provision of public goods 

(Kolmar and Wagener 2011) and reward structure in firms (Rosen 1986)1.  In a contest, agents 

make irretrievable investments, which depending on the situation; can be money, effort or any other 

valuable resource.  

 

Essential to the notion of a contest is a contest success function (CSF), which specifies a 

contestant’s probability of winning the contest and obtaining a prize. An increase in each 

contestant’s outlay increases his chances of winning the contest and reduces his opponents’ 

chances. In a highly interesting contribution, Skaperdas (1996) characterized this probability for any 

contestant as the ratio between the level of effective investment made by the contestant and the sum 

of effective investments across all the contestants.  The effective investment of a contestant can be 

interpreted as the output determined by his effort, which may be regarded as his input in the contest.   

It is assumed to be an increasing and positive valued function of effort.  

 

Skaperdas (1996) also developed axiomatic characterizations of two functional forms of CSFs. One 

of the axioms employed by Skaperdas (1996) is an anonymity principle which demands that a 

contestant’s probability of success depends only on his outlays. Thus, the agents are not 

distinguished by any characteristic other than their outlays.  Clark and Riis (1997) broadened the 

Skaperdas (1996) framework by allowing the contestants to differ with respect to their contest-

related personal characteristics. Rai and Sarin (2009) generalized the characterizations of Skaperdas 

(1996) to the situation where agents can have investments that are of multiple types in nature. 

Münster (2009) extended the Skaperdas (1996) and Clark and Riis (1997) characterizations to 

contests between groups.    

 

The two characterizations of the functional forms advanced by Skaperdas (1996) invoke two 

alternative axioms of invariance. The first axiom, the scale invariance postulate, demands that an 

equiproportionate change in the efforts of all the agents will keep the winning probabilities 
                                                           
1 The literature has been surveyed by Nitzan (1994), Corchon( 2007), Konrad (2009) and Skaperdas and Garfinkel ( 
2012). See also Dixit (1987) for a general discussion.  
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unchanged. In contrast, the second axiom, which is known as the translation invariance postulate, 

requires invariance of winning probabilities under equal absolute changes in the efforts of all the 

agents. The underlying effective investment functions turn out to be of power function and logit  

function type respectively. (A systematic comparison of the properties of these two functional forms 

is  available in Hirshleifer (1989).) 

 

A natural generalization of scale and translation invariance axioms is an intermediate condition , 

which stipulates that a convex mixture of an equiproportionate change and an equal absolute change 

in the efforts should keep winning probabilities unchanged.  One objective of this paper is to 

characterize the entire class of CSFs that satisfies this generalized invariance concept. It is explicitly 

shown that the two functional forms characterized by Skaperdas (1996) become particular cases of 

the CSF that meets intermediate equivalence.  

 

Both the scale and translation invariance conditions are cardinal postulates. They can be relaxed to 

more general ordinal postulates. One such postulate that ensures ordinal property of CSFs is the 

scale consistency axiom, which says that if all the agents are participating in two contests and for 

some agents the probabilities of winning one contest are less than or equal to that of winning the 

other, then an equiproportionate change in the efforts of the agents in both contests will not alter the 

agents’ ordering of chances of winning the contests. To understand this, suppose the investements 

are measured in money units, say euro. Then of two contests, CI and CII, suppose some individuals’ 

chances of winning CI are more than that of CII. Now, if investments are converted into dollars 

from euro, the inequality between chances of winning CI and CII should not alter. Scale consistency 

demands this condition. Note that since the sum of probabilities of winning a contest across the 

agents is one if for some agents the probabilities of winning one contest over another are lower, 

then there will be at least one agent for whom the reverse inequality for probabilities of winning the 

contests will hold.  CSFs satisfying scale invariance are definitely scale consistent. However, there 

are CSFs that are scale consistent but not scale invariant.   

 

 Likewise, we can have a translation consistency axiom, which specifies that inequality between 

winning probabilities for two contests should remain invariant under equal absolute changes in all 

the efforts. Translation consistency implies translation invariance but the converse is not true.  

 

A second objective of the paper is to axiomatize the classes of CSFs that are scale and translation 

consistent respectively. It is shown explicitly that the Skaperdas (1996) CSFs that verify scale and 

translation invariance axioms become particular cases respectively of the scale and translation 
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consistent CSFs characterized in this paper. It is explicitly shown that the logit CSF satisfies both 

scale and translation consistencies.  

 

 

2. The Formal Framework 
 

Let { }nN ,...,2,1=  be a set of agents participating in a contest and let iy  stand for effort or 

investment of agent Ni ∈  in the contest. We denote the vector of investments ( )nyyy ,..,, 21

[ )n∞∈ ,0  by y , where [ )n∞,0  is the −n fold Cartesian product of [ )∞,0 . The success of any 

contestant is probabilistic. For any [ )ny ∞∈ ,0 , each contestanti ’s probability of winning the contest 

is denoted by ( )yp i . Evidently, [ ) [ ].1,0,0: →∞ nip The non-negative function p is called the Contest 

Success Function (CSF).  

 

The following axioms for a CSF have been suggested by Skaperdas (1996). 

(A1) ( )∑
=

=
n

i

i yp
1

1 and
 
for all [ )ny ∞∈ ,0 , if 0>iy  then ( ) .0>yp i   

(A2 �� ( )y  is increasing in ��  and decreasing in �� for all � ≠ �. 

(A3)For any permutation 	: � → �, �
��� ( )y = ���
� , �
� , … , �
��. 

(A4)For all � ⊆ � with at least two elements, the probability of success of agent Mi ∈  in a 

contest among the members of M is ( ) ( )
( )∑

∈

=

Mj

i

i
i
m yp

yp
yp  . 

(A5) ( )yp i
m  is independent of the efforts of the players not included in the subset � ⊂ � or ( )yp i

m  

can be written as ( )m
i
m yp , where �� = ���; � ∈ ��.  

(A 5′ ) ( ) ( )
( )∑

∈

=

Nj
j

ii

yf

yf
yp   for all   Ni ∈  and  ( ) ( )

( )∑
∈

=

Mj
j

ii
m yf

yf
yp    for all � ∈ � �⊆ ��, where  

[ ) [ )∞→∞ ,0,0:f  is positive on ( )0,∞  and increasing in its argument, where for at least one  

 Mj ∈ , ( ) 0>yp j
.  

 

(A1) states that the sum of winning probabilities across the participants in a contest is 1 and if some 

participant’s outlay is positive he has a positive chance of winning the contest. (A2) says that a 

participant’s probability of success is increasing in his own effort but decreasing in the efforts of the 

other participants.  According to (A3), the probability of success remains invariant under any 

reordering of the participant.  This is an anonymity condition which demands that any characteristic  
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other than individual outlays is irrelevant to the determination of success probabilities.  (A4) is a 

consistency condition, which says that for any subgroup of participants, the probabilities of success 

of the members of the subgroup are the conditional probabilities obtained by restricting the original 

probability distribution to the subgroup. (A5) means that for any subgroup of participants, the 

success probabilities are independent of the outlays of the participants who are not members of the 

subgroup. Finally, (A5′ ) provides a particular specification of the winning probabilities using a 

positive valued increasing function of efforts. We can refer to ( )iyf  as the effective investment 

made by contestanti . Increasingness of f  reflects the view that an increase in the actual investment 

increases effective investment. Skaperdas (1996) demonstrated that (A1)-(A5) hold simultaneously 

if and only if the CSF is of the form specified in (A5′ ). 

 

In order to identify specific functional forms of CSFs, Skaperdas (1996) imposed the following 

axioms: 

(A6) (Scale invariance): ( ) ( )ypyp ii λ= for all � > 0 and for all � ∈ �. 

(A7)(Translation invariance) ( ) ( )nii cypyp 1+= , where  n1  is the −n coordinated vector of ones 

and c  is a scalar such that  �� + ! ≥ 0 for all � ∈ �. 

The scale invariance axiom (A6) is a homogeneity condition, which says that proportional changes 

in the efforts of all the contestants do not change the winning probabilities. In contrast, (A7) is a 

translation invariance axiom, which demands that winning probabilities remain unchanged when all 

the efforts are augmented or diminished by the same absolute quantity. 

 

It has been shown in Skaperdas (1996) that a continuous CSF satisfies (A1) – (A5) and (A6) if and 

only if it is of the power function type, that is, of the form( )
∑
∈

=

Nj
j

ii

y

y
yp δ

δ

, where 0>δ  is a 

constant. Continuity of a CSF ensures that minor observational errors on investment do not change 

winning probabilities abruptly. The particular case 1=δ  was considered by Esteban and Ray 

(2011) in a behavioural model of conflict that provides a link between conflict, inequality and 

polarization. On the other hand, as Skaperdas (1996) established, the logit function, that is, 

( )
∑
∈

=

Nj

y

y
i

j

i

e

e
yp θ

θ

 is the only continuous CSF that satisfies (A1) – (A5) and (A7), where    0>θ  is a 

constant.  It is easy to verify that the only CSF that satisfies (A6) and (A7) is the constant function

( )
n

yp i 1= .  But constancy of a CSF is ruled out by the assumption that ( )yp i   is increasing in ��  

and decreasing in �� for all� ≠ �.  
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However, (A6) and (A7) turn out to be polar cases of the following intermediate invariance 

postulate: 

(A8)          ( ) ( )ypycyp ini =−++ )1)1(( µµ ,                                                       

whereµ , 10 ≤≤ µ ,  is a parameter which reflects a contestant’s view on winning probability 

equivalence, c  is a scalar such that [ )nnxcx ∞∈−++ ,01)1(( µµ  and n1  , the −n coordinated vector 

of ones, expressed in the unit of measurement of efforts, so that nxcxy 1)1(( µµ −++= becomes 

well defined. The scale and translation invariance criteria given by (A6) and (A7) emerge as polar 

cases of the intermediate notion (A8) when µ  takes on the values 1 and 0 respectively. As the value 

of µ  increases (decreases) to one (zero) the contestant becomes more concerned about scale 

(translation) invariance2. 

The following theorem isolates the CSF that satisfies (A8). We first identify the CSF for the 

parametric range 10 << µ . The two extreme cases will be discussed later.  

Theorem 1: Assume that the CSF is continuously differentiable in efforts. Then it satisfies axioms 

(A1) – (A5) and (A8) if and only it is of the following form 

                  ( ) ( )[ ]
( )[ ]∑

∈

−+

−+
=

Nj
j

ii

y

y
yp

µ
η

µ
η

µ

µ

11

11
 ,                                     (1)       

where 0>η  is a constant  and 10 << µ . 

 

Proof: By Theorem 1 of Skaperdas (1996), axioms (A1) – (A5) are satisfied if and only if the CSF 

is given by (A5′ ). Consider ( ) ( )2
21 ,0, ∞∈yy and note that ( ) ( )

( ) ( ) 2,1,
21

=
+

= i
yfyf

yf
yp ii . Then by 

(A8) we get,  

                            
( ) ( )[ ]

( )
( ) ( )[ ]

( )2

2

1

1 1111

yf

cycf

yf

cycf µµµµ −++
=

−++
 ,                                   (2)

                          

where for simplicity it is assumed that 0>c . From (2) it follows that 
( ) ( )[ ]

( )zf

czcf µµ −++ 11
  is 

independent of the effort levelz . Differentiating 
( ) ( )[ ]

( )zf

czcf µµ −++ 11
 with respect z we get,  

                                                           
2  In (A8) if we replace ip  by an inequality index and y  by the income distribution in an −n person society, then the 

resulting axiom becomes the Bossert-Pfingsten (1990) intermediate inequality equivalence axiom. See also Chakravarty 
(2014) for a recent discussion. 

ECINEQ WP 2014 - 340 September 2014



(7) 

 

( ) ( )[ ]
( ) 0

11 =






 −++
zf

czcf

dz

d µµ
,              (3) 

which implies that  

                �!# + 1�% ( )z %′'�!# + 1�( + !�1 − #�*= %′�(�%'�!# + 1�( + !�1 − #�*,                     (4)  

where  f ′ stands for the derivative of 
 

f . 

 

Equation (4) holds for all finite  0>z . Putting 1z =  on each side of (4) we get 

                         �!# + 1�%�1�%′�! + 1�= %′�1�%�! + 1�,                                       (5)
 

from which it follows that  

 

                                          
( )
( ) ( )

1

1 1

f c

f c c

η
µ

′ +
=

+ +
 ,                        (6) 

where 
( )
( )
1

0
1

f

f
η

′
= > (since f  is positive valued and increasing on( )0,∞ ).  Integrating both sides 

of (6) we get,  

                                   +,%�! + 1� = η
- +,�!# + 1� + ., (7) 

which yields:  

                                          %�! + 1� = �!# + 1�
/
012.                                                                        (8)

 
Thus,  

 
 

                                 ( ) ( ){ }1 1f z z
η
µξ µ= − +                                                                                   (9)   

where 0, >= ηξ ke  are constants. By continuity off , the solution extends to the case where  0=z . 

Substituting this form of  f  into ( ) ( )
( )∑

∈

=

Nj
j

ii

yf

yf
yp  we get the desired form of the CSF. This 

establishes the necessity part of the theorem. The sufficiency is easy to verify.  ∆  

 

As 0→µ , ( )yp i  in (1) approaches
∑
∈Nj

y

y

j

i

e

e
η

η

, the Skaperdas(1996) CSF associated with (A7) (given 

that ηθ =  ). (Here for evaluating the limit we use the fact that  ( ) ez z
z

=+
+→

1

0
1lim .) On other hand, for 

1=µ , ( )yp i   given by (1) coincides with the Skaperdas(1996) CSF corresponding to (A6) ( given 

that δη = ). Thus, ip  in (1) may be regarded as a generalization of scale and translation invariant 

CSFs. 
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Note that the scale invariance condition (A6) can very well be relaxed to the following more general 

ordinal property. 

 (A9)  Scale Consistency: For [ )nyx ∞∈ ,0, , if for some Ni ∈ , ( ) ( )xpyp ii ≥ holds, then 

( ) ( )xpyp ii λλ ≥ for all � > 0.  

Evidently, scale consistency implies scale invariance, but the converse is not true. Note that 

satisfaction of ( ) ( )xpyp ii λλ ≥  for all� > 0  implies fulfilment of ( ) ( )xpyp ii ≥ .  Note also that if  

( ) ( )xpyp ii >  holds, then there is at least one contestantij ≠  such that ( ) ( )xpyp jj <  holds. The 

reason for this is that ( ) ( )∑∑
==

==
n

i

i
n

i

i ypyp
11

1. (A9) is an ordinal property in the sense that the 

inequality remains invariant under any ordinal transformationΩ  of ip s. Furthermore, ( )ipΩ s 

given by ( )( ) ( )( )
( )( )∑

∈

Ω
Ω=Ω

Nj

j

i
i

yp

yp
yp , Ni ∈ , are probabilities3.  

 

The following theorem identifies the class of CSFs that fulfils (A9). 

Theorem 2: Assume that the CSF is continuously differentiable in efforts. Then it satisfies axioms 

(A1) – (A5) and (A9) if and only it is of the following form 

                  ( )















=

∑

∑

∈

∈

,

,

Nj

B
j

B
i

Nj

y

y

i

y

y

B

B

yp

j

i

β

β

                                                           (10)                               

where B  is a positive constant and β  is a non-zero  real number. 
 
Proof: By Theorem 1 of Skaperdas (1996), axioms (A1) – (A5) are satisfied if and only if the CSF 

is given by (A5′ ). Consider ( ) ( ) ( )2
2121 ,0,,, ∞∈xxyy . Observe that ( ) ( )

( ) ( )21

11

yfyf

yf
yp

+
= . Then 

( ) ( )xpyp 11 ≥  is same as 
( )

( ) ( )
( )

( ) ( )21

1

21

1

xfxf

xf

yfyf

yf

+
≥

+
  , that is, if and only if

( )
( )

( )
( )1

2

1

2

xf

xf

yf

yf
≤ . 

Thus, by (A8) we have, 

                           
( )
( )

( )
( )1

2

1

2

xf

xf

yf

yf
≤  if and only if 

( )
( )

( )
( )1

2

1

2

xf

xf

yf

yf

λ
λ

λ
λ

≤ for all 0>λ .                            (11)               

 
 

                                                           
3
  (A9) becomes Zheng’s (2007) unit consistency axiom if we replace ip  by an inequality index,y and x  by income 

distributions in two −n person societies and the weak inequality ≥  by the strict inequality> in (see also also 
Chakravarty 2014).   
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Now, we claim that
( )
( )

( )
( ) 






=

1

2

1

2

xf

xf
F

xf

xf
λλ

λ
    for some non-decreasing function34. To demonstrate 

this, consider two distinct effort vectors( ) ( ) ( )2
2121 ,0,,, ∞∈′′′′ xxyy . Then we have, 

( )
( )

( )
( )1

2

1

2

yf

yf

xf

xf

′
′

=
′
′

λ
λ

λ
λ

  

if and only if
( )
( )

( )
( )1

2

1

2

yf

yf

xf

xf

′
′

=
′
′

  . This implies that
( )
( )1

2

xf

xf

λ
λ

   is a function of
( )
( )1

2

xf

xf
  .  Non-

decreasingness of this function is a consequence of (11) 

 
 
Define 

         ( ) ( )
( )1

2
21, xf

xf
xxu

λ
λ

λ =              (12) 

and 

         ( ) ( )
( )1

2
21, xf

xf
xxq =               (13) 

 

Since 54 and q are functionally related, the Jacobian of 54  and 6 with respect to 1x  and 2x  must 

vanish. More precisely,  

                                                                      0

21

21 =

∂
∂

∂
∂

∂
∂

∂
∂

x

q

x

q
x

u

x

u λλ

.                                                                    (14) 

This  implies that  

 

                                           
( ) ( ) ( )

( )
( ) ( ) ( )

( )1

221

1

212

xf

xfxfxf

xf

xfxfxf λ
λ
λλ ′′

=
′′

.                                       (15) 

Equation (15) can be rearranged as  
    

   
( )
( )

( )
( )

( )
( )

( )
( )1

1

2

2

2

2

1

1 ..
xf

xf

xf

xf

xf

xf

xf

xf ′′
=

′′
λ
λ

λ
λ

.                                        (16) 

 

Now, (16) holds for all( ) ( )2
21 ,0, ∞∈xx . Putting 1,0 21 =>= xzx  in (16) and letting ( ) ( )

( )zf

zf
zh

′
= , 

we get  
            
             

                                 ℎ��(�ℎ�1� = ℎ�(�ℎ���.              (17)          

                                                                                  

Given that f  is positive valued on ( )∞,0  and increasing, h  is positive.  It is continuous as well. 

Since (8) holds for all positive z  andλ  , it is a fundamental Cauchy equation, of which the only 

continuous solution is given by  
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    ℎ�(� = 89(:                 (18) 
 
for some 89 > 0 and α  is a real number (Aczel, 1966, p. 41, Theorem 3). By continuity of h  the 

solution extends to the case where 0=z  .  

 
 
Case I: 1−≠α    

Then (18) yields:  

 

 
( )
( )

αzK
zf

zf
1=

′
.               (19)

 
                                                                                   

Integrating both sides of (19) we get,  
             
                                  ( )( ) KKzzf ′+= +1ln α ,                                                            (20)  

 
where K   and K ′  are real numbers. Equation (20) is equivalent to

                       
     %�(� = ;<=>

 ,                      (21)
 where 0,0 >=>= ′ KK eBeA  and αβ += 1  is a non-zero real number.

  
 
Case II:  1.α = −  

Then (18) becomes: 

 
( )
( )

1
1

−=
′

zK
zf

zf
 ,                        (22)                                               

 
which, on integration, gives 
                                                        ( )( ) ( ) KzKzf ′+= lnln 1 .                                                         (23) 
           .       
That is, 

 
 %�(� = ;(?               (24) 

 
where 0>= ′KeA and B  is a real number. Since Since  f  is increasing, we further require the 

restriction < > 0. 
 

Plugging the forms of f  given by (21) and (24) into ( ) ( )
( )∑

∈

=

Nj
j

ii

yf

yf
yp , we get the forms of ( )yp i  

specified in (10).This completes the necessity part of the proof of the theorem. The sufficiency can 

be easily verified by checking that CSF given by (10) fulfils (A1)-(A5) and (A9).∆  
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The second CSF in (10) is the Skaperdas CSF corresponding to (A6) (assuming that δ=B ). 

However, the first functional form in (10) is new, it has not been characterized earlier in the 

literature. In this first functional form if we substitute 1KeB =  and 1=β , then the resulting CSF 

coincides with the logit functional form (under the assumption θ=1K ). However, if 1≠β  then the 

underlying CSF is a violator of (A9). 

 

Finally we consider the following ordinal counterpart to (A7):   
 

(A10)  Translation Consistency:. For [ )nyx ∞∈ ,0, , if for some Ni ∈ , ( ) ( )xpyp ii ≥ holds, then) 

�� A� + !1 n B ≥ �� AC + !1 n B , where  n1  is the −n coordinated vector of ones and c  is a scalar 

such that  �� + ! ≥ 0 for all � ∈ �.   

Evidently, (A10) is sufficient but not necessary for (A7).  Like (A9), (A10)  is also an ordinal 

property. 

 

In the following theorem we characterize the entire class of CSFs that are translation consistent.   

Theorem 3: Assume that the CSF is continuously differentiable in efforts. Then it satisfies axioms 

(A1) – (A5) and (A10) if and only it is of the following form 

                  ( )















=

∑

∑

∈

∈

,

,

Nj

y

y

Nj

e

e

i

j

i

jy

iy

e

e

H

H

yp

υ

υ

ρ

ρ

                                                           (25)  

where H   and υ  are positive constants and ρ  is a non-zero  real number. 
  

Proof: Take, as in the proof Theorem 2, ( ) ( ) ( )2
2121 ,0,,, ∞∈xxyy . Then ( ) ( )xpyp 11 ≥  is same as 

( )
( )

( )
( )1

2

1

2

xf

xf

yf

yf
≤  . By (A9), 

 
( )
( )

( )
( )1

2

1

2

xf

xf

yf

yf
≤  if and only if 

( )
( )

( )
( )cxf

cxf

cyf

cyf

+
+

≤
+
+

1

2

1

2 for all 0>c .                        (26)                  

             
As in the proof of Theorem 2, one can easily see that there exists a continuous and increasing 

function DEsuch that 

 

( )
( )

( )
( ) 






=

+
+

1

2

1

2

xf

xf
G

cxf

cxf
c .              (27)
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Define 

           ( ) ( )
( )cxf

cxf
xxwc +

+
=

1

2
21, .              (28) 

       
Since FEand 6 are functionally related, the Jacobian of FEand 6 in (13)  with respect to 1x  and 2x  

must vanish.  This implies that 
 

( )
( )

( )
( )

( )
( )

( )
( )1

1

2

2

2

2

1

1 ..
xf

xf

cxf

cxf

xf

xf

cxf

cxf ′
+
+′

=
′

+
+′

                        (29) 

 

Equation (29) holds for al( ) ( )2
21 ,0, ∞∈xx . Putting  C9 = ( > 0, CG 0>= ε  and substituting 

( )
( )zf

zf ′
 

by H�(�, which is positive on ( )∞,0 , we get 
 
                                                H�( + !�H�ε � = H�(�H�! + I�.                                   (30)

            

Letting 0→ε and using continuous differentiability off , from (30) it follows that 

                                                H�( + !�H�0� = H�(�H�!�.                                                          (31) 

From (31) it emerges that H�0� > 0 . The equation (31) holds for all positive ( andc . The only 

continuous solution to (31) is given by 

 

 H�(� = υ 1 ρ =               (32) 
 

for some  positive ( )( )0ψυ =  and real ρ (see Aczel, 1966, p.84)  .  By continuity ofψ   , the solution 

extends to the case when 0=z  

 
From (31) it is evident that 
 

( )
( )

ze
zf

zf ρυ=
′

.                                      (33)

            
Case I 0≠ρ  

Integrating both sides of (33) we get,   

 

     +, ( )( )zf = 8JK1 ρ = + 8L ,                         (34) 
 
where 3K   and 4K  are real numbers. That is, 
 

 % ( )z = MNO ρ P
                (35) 

 
where 4KeE =  and υ3KeH =   are  positive constants.  
 
Case II: 0=ρ  
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Then (33) becomes: 
 

( )
( ) υ=
′
zf

zf
 .                (36) 

 
Integrating both sides of (36) we get,  

  
     +,%�(� = K( + Q                (37)

           
for some real number Q .  
 
 
Equation (37) is equivalent to: 
 

 %�(� = Q zeυ                           (38) 
 

0>= CeQ . For increasingness of f we need the restriction 0>υ . Substituting the forms of f  

given by (35) and (38) in ( ) ( )
( )∑

∈

=

Nj
j

ii

yf

yf
yp ,  the resulting forms of ( )yp i  become the ones 

specified in (25) . Hence the necessity part of the theorem is demonstrated. The sufficiency follows 
easily. ∆  
 
 

The second CSF in (25) (given that ηθ =  ) has been characterized by Skaperdas (1996) using (A7). 

However, the first CSF in (25) was not suggested in the literature earlier.  

 

3. Conclusions 

 

Axiomatic characterizations of contest success functions enable us to understand them in an 

intuitively reasonable way in the sense that necessary and sufficient conditions are identified to 

isolate them uniquely. Skaperdas (1996) characterized the power and logit type forms of success 

functions. In this paper we have substantially extended the characterizations of Skarpedas (1996) by 

considering a general axiom and two more axioms, scale and translation consistencies, which are 

ordinal in nature, a characteristic that has not been explored earlier in the literature. The Skaperdas 

(1996) functional forms drop out as particular cases of the functional forms axiomatized in the 

paper. Some new functional forms that have not been suggested earlier in the literature are also 

analyzed. It is clearly indicated that the Skaperdas (1996) translation invariant CSF is scale 

consistent although it is not scale invariant. 
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