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Abstract

Skaperdas (1996) characterized the contest success function (CSF), which stipulates the win-
ning probabilities of the contestants, using respectively the scale invariance and translation
invariance axioms. This paper first characterizes the entire family of CSF's that fulfils a convex
mixture of the two axioms. This family contains the Skaperdas CSF's as special cases. Next,
we consider two ordinal axioms, scale consistency and translation consistency, and characterize
the respective classes of CSFs. While the former consists of the Skaperdas scale invariant and
translational invariant CSF's and some new functional forms, the latter contains the Skaperdas
translation invariant CSF and some additional CSFs that were not considered in the literature

earlier.
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1. Introduction

A contest refers to a non-cooperative game in which two or metieipants contend for a prize.
Models of contest have been employed extensively to analyze edyvafiphenomena like rent
seeking (Tullock 1980, Nitzan 1991, Baye et al. 2005, Amegashie, 2006), coHilishl¢ifer

1991, Skaperdas 1992), polarization (Esteban and Ray 2011), electoral car8iulgisr 1989,

Skaperdas and Grofman 1995), sporting tournament (Szymanzki 2003), provision ofgpoblc
(Kolmar and Wagener 2011) and reward structure in firms (Rosen'19&6)a contest, agents
make irretrievable investments, which depending on the situation; caoriey, effort or any other

valuable resource.

Essential to the notion of a contest is a contest successofun@iSF), which specifies a
contestant’s probability of winning the contest and obtaining a prize.inrkrease in each
contestant’s outlay increases his chances of winning the comtdsteduces his opponents’
chances. In a highly interesting contribution, Skaperdas (1996) characterizawhiability for any
contestant as the ratio between the level of effective imesgtmade by the contestant and the sum
of effective investments across all the contestants. Theieffenvestment of a contestant can be
interpreted as the output determined by his effort, which may bedezhas his input in the contest.

It is assumed to be an increasing and positive valued function of effort.

Skaperdas (1996) also developed axiomatic characterizations of twofahéorms of CSFs. One
of the axioms employed by Skaperdas (1996) is an anonymityipdeénehich demands that a
contestant’s probability of success depends only on his outlays. Thusagdms are not
distinguished by any characteristic other than their outlaysrk@nd Riis (1997) broadened the
Skaperdas (1996) framework by allowing the contestants to diffier iespect to their contest-
related personal characteristics. Rai and Sarin (2009) geeer#he characterizations of Skaperdas
(1996) to the situation where agents can have investments that amaltiple types in nature.
Minster (2009) extended the Skaperdas (1996) and Clark and Riis (1997)terirmiaons to

contests between groups.

The two characterizations of the functional forms advanced by Slaepdgi996) invoke two
alternative axioms of invariance. The first axiom, the saalariance postulate, demands that an

equiproportionate change in the efforts of all the agents wilp kbe winning probabilities

! The literature has been surveyed by Nitzan (1984fchon( 2007), Konrad (2009) and Skaperdas arin®el (
2012). See also Dixit (1987) for a general disaussi
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unchanged. In contrast, the second axiom, which is known as the tangl@@riance postulate,
requires invariance of winning probabilities under equal absolute changjes efforts of all the

agents. The underlying effective investment functions turn out to be of power functiomgind lo

function type respectively. (A systematic comparison of the propertiessaf tive functional forms
is available in Hirshleifer (1989).)

A natural generalization of scale and translation invariancamexis an intermediate condition ,
which stipulates that a convex mixture of an equiproportionate change agdahmlesolute change
in the efforts should keep winning probabilities unchanged. One objectitlisopaper is to
characterize the entire class of CSFs that satisfies this Gee@ravariance concept. It is explicitly
shown that the two functional forms characterized by Skap€i®@8@6) become particular cases of

the CSF that meets intermediate equivalence.

Both the scale and translation invariance conditions are cardinalgiesturhey can be relaxed to
more general ordinal postulates. One such postulate that ermdieal property of CSFs is the
scale consistency axiom, which says that if all the agaetparticipating in two contests and for
some agents the probabilities of winning one contest are less itlegual to that of winning the
other, then an equiproportionate change in the efforts of the agdyathi contests will not alter the
agents’ ordering of chances of winning the contests. To understanduppose the investements
are measured in money units, say euro. Then of two contests, Cl and Cll, suppogelsoduals’
chances of winning Cl are more than that of Cll. Now, if investmman¢ converted into dollars
from euro, the inequality between chances of winning Cl and CII should not aliéx.censistency
demands this condition. Note that since the sum of probabilities of ngirmicontest across the
agents is one if for some agents the probabilities of winning onestamner another are lower,
then there will be at least one agent for whom the reversedligdfor probabilities of winning the
contests will hold. CSFs satisfying scale invariance afmitely scale consistent. However, there

are CSFs that are scale consistent but not scale invariant.

Likewise, we can have a translation consistency axiom, whichfisgethat inequality between
winning probabilities for two contests should remain invariant undealexpsolute changes in all

the efforts. Translation consistency implies translation invariance but thersens@ot true.

A second objective of the paper is to axiomatize the clads€SFs that are scale and translation
consistent respectively. It is shown explicitly that the Skagme(1996) CSFs that verify scale and

translation invariance axioms become particular cases respgabivéhe scale and translation

(3)
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consistent CSFs characterized in this paper. It is explslithyvn that the logit CSF satisfies both

scale and translation consistencies.

2. The Formal Framework
Let N :{12,...,n} be a set of agents participating in a contest andylestand for effort or
investment of agent JN in the contest. We denote the vector of investme(ly;syz,..,yn)
D[O,oo)n byy, where [0,00)” is the n—fold Cartesian product ofO,oo). The success of any
contestant is probabilistic. For apy] [O, oo)“, each contestans probability of winning the contest

is denoted by'(y). Evidently,p' :[0, oo)n - [OJ].The non-negative functiomis called the Contest
Success Function (CSF).

The following axioms for a CSF have been suggested by Skaperdas (1996).

(A1) Z p'(y) =1 andfor allyd[0,0)", if y, >0 thenp'(y)> 0.
i=1

(A2 pt (y) is increasing iry; and decreasing iy for all j  i.
(A3)For any permutation: N - N, p™ @ (y) = p(yr,, Vi,» ) Vi, )-
(Ad)For all M = N with at least two elements, the probability of success of ageMl in a

contest among the members\is p (y) = Z?Ié.y()) .
y

oM

(A5) p' (y) is independent of the efforts of the players not included in the sMisét or p! (y)

can be written ap!, (y,,), wherey,, = (y;;j € M).

(A5)p'(y)= —(—)i gy‘g ')

forall iON and p (y)= for alli € M (S N), where
j 21 (yj)

jON iOMm
f :[O,oo) - [O,oo) IS positive on(O,oo) and increasing in its argument, where for at least one

iOM, p'(y)>o0.

(Al) states that the sum of winning probabilities across thecjpeamits in a contest is 1 and if some
participant’s outlay is positive he has a positive chance of wintiegcontest. (A2) says that a
participant’s probability of success is increasing in his own effort buedsicrg in the efforts of the
other participants. According to (A3), the probability of successames invariant under any

reordering of the participant. This is an anonymity condition which demands yhethanacteristic

(4)
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other than individual outlays is irrelevant to the determination cfemscprobabilities. (A4) is a
consistency condition, which says that for any subgroup of partisiptne probabilities of success
of the members of the subgroup are the conditional probabilities abtaynestricting the original
probability distribution to the subgroup. (A5) means that for any subgobyparticipants, the
success probabilities are independent of the outlays of the participhatare not members of the
subgroup. Finally, (&) provides a particular specification of the winning probabilitiesagis

positive valued increasing function of efforts. We can referf {g,) asthe effective investment
made by contestantincreasingness of reflects the view that an increase in the actual investment

increases effective investment. Skaperdas (1996) demonstrated Ih&4AB hold simultaneously
if and only if the CSF is of the form specified in§A.

In order to identify specific functional forms of CSFs, Skape(d@96) imposed the following

axioms:

(A6) (Scale invariance)p' (y) = p'(Ay)for all 1 > 0 and for alli € N.

(A7)(Translation invariance)' (y)= p'(y+c1"), where 1" is the n—coordinated vector of ones

andc is a scalar such that; + ¢ > 0 foralli € N.

The scale invariance axiom (A6) is a homogeneity condition, whightbat proportional changes
in the efforts of all the contestants do not change the winning ptitleabiln contrast, (A7) is a
translation invariance axiom, which demands that winning probabilgmeain unchanged when all

the efforts are augmented or diminished by the same absolute quantity.

It has been shown in Skaperdas (1996) that a continuous CSF sati¢jies(é5) and (A6) if and

y,

Y

JON

only if it is of the power function type, that is, of the fopify)= , where >0 is a

constant. Continuity of a CSF ensures that minor observational errensyestment do not change
winning probabilities abruptly. The particular ca®e=1 was considered by Esteban and Ray
(2011) in a behavioural model of conflict that provides a link betweenicprifiequality and
polarization. On the other hand, aga®rdas (1996) established, the logit function, that is,

is the only continuous CSF that satisfies (A1) — (A5) and (Aligrer € >0 is a

constant. It is easy to verify that the only CSF that sasigA6) and (A7) is the constant function

p'(y)= 1 But constancy of a CSF is ruled out by the assumptiongHa) is increasing iny;
n

and decreasing ip; for allj # i.

(5)
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However, (A6) and (A7) turn out to be polar cases of the followingnrediate invariance

postulate:
18)  ply+c(uy+@a-m)=p'(y),

whereu,0< u<1, is a parameter which reflects a contestant’'s view on winpnofpability
equivalenceg is a scalar such that c(ux+ (- u)1" O [O,oo)n and1" , the n—coordinated vector

of ones, expressed in the unit of measurement of efforts, soythat+ c(ux+ (L— u)1"becomes

well defined. The scale and translation invariance criteriangoye(A6) and (A7) emerge as polar

cases of the intermediate notion (A8) whertakes on the values 1 and 0 respectivelyth&svalue
of u increases (decreases) to one (zero) the contestant becone<aonoerned about scale

(translation) invariance

The following theorem isolates the CSF that satisfies (A8. fikst identify the CSF for the

parametric rang® < ¢ <1. The two extreme cases will be discussed later.

Theorem 1 Assume that the CSF is continuously differentiable in effdtien it satisfies axioms
(A1) — (A5) and (A8) if and only it is of the following form

p'(y)= [1+,U(yi _1)]% , (1)

> le uy, -1

JON

wherey >0 is a constant and< p <1.

Proof: By Theorem 1 of Skaperdas (1996), axioms (Al) — (A5) are sdtigfend only if the CSF

o , . - fly) .
is given by (45'). Consider(y,,y,)0(0,0)?and note thap'(y)= ———2-—,i =12. Then by
(l 2) ( ) () f(yl)"'f(yz)
(A8) we get,
Fle(+ py, +clt-p)] _ L+ p)y, +clt-p)]
- ’ (2)
t(v,) t(y,)
where for simplicity it is assumed that>0. From (2) it follows thatf[c(“#)ﬁc(l_ﬂ)] is

f(2)

Fle@+p)z+cll-p)] with respectz we get,

t(2)

independent of the effort level Differentiating

2 In (A8) if we replacepi by an inequality index an@ by the income distribution in ai — person society, then the

resulting axiom becomes the Bossert-Pfingsten (LB&6rmediate inequality equivalence axiom. See &hakravarty
(2014) for a recent discussion.
(6)
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di( f[C(1+,u)Z+C(1—,L[)]j:O, (3)
z f(2)
which implies that

(cu+ Df (2 flen+ Dz +c(1 - W¥= F @ f {(eu+ Dz + c(1 — )}, 4)

where f'stands for the derivative of .

Equation (4) holds for all finitez > 0. Puttingz =1 on each side of (4) we get

(cu+ DD (c+ D= Df(c+ D), (5)

from which it follows that

f'(c+1
(c+)__n )
f(c+l) (cu+)

f'(2) : . ” . . : .
where 7 = : (1) >0 (since f is positive valued and mcreasmg(@r,po)). Integrating both sides
of (6) we get,

Inf(c+1) = %ln(cu +1) + k, )
which yields:
n
flc+1) = (cu+ Drek. (8)
Thus,
n
f(2) = lu(z-1)+ ©

wheref = €*,7 > Oare constants. By continuity f, the solution extends to the case where 0.

L . . - f(y,) . .
Substituting this form of f into p' (y):—('—) we get the desired form of the CSF. This
RN

JjON

establishes the necessity part of the theorem. The suffydeeasy to verify.A

) /7Yi
Asu - 0, p' (y) in (1) approacheﬁ, the Skaperdas(1996) CSF associated with (A7) (given
e ]

jON
1
thatd = ). (Herefor evaluating the limit we use the fact tha'tg (1+ z)E =e.) On other hand, for

u=1, p'(y) given by (1) coincides with the Skaperdas(1998F @orresponding to (A6) ( given

that7 =9). Thus, p' in (1) may be regarded as a generalization oesaatl translation invariant

CSFs.
(7)
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Note that the scale invariance condition (A6) carywvell be relaxed to the following more general
ordinal property.

(A9) Scale Consistency: Forx,yD[O,oo)", if for somaéON

iON, p'(y)=p'(x)holds, then
p' (dy)= p'(Ax)for all 2 > 0.

Evidently, scale consistency implies scale invargnbut the converse is not true. Note that

satisfaction ofp'(dy) = p'(Ax) for allA > 0 implies fulfiment ofp' (y)= p'(x). Note also that if

p'(y)> p'(x) holds, then there is at least one contegtait such thatp’(y) < p’(x) holds. The
reason for this is thad_ p'(y)=>_ p'(y)=1. (A9) is an ordinal property in the sense that the
i=1 i=1

inequality remains invariant under any ordinal sfanmatiorQ of p's. Furthermore Q(p')

: v alp'ly) .
given by Q(p' (y)) = Salp (v) i 0N, are probabilitied

JON

The following theorem identifies the class of C#tat fulfils (A9)

Theorem 2: Assume that the CSF is continuously differentiablefforts. Then it satisfies axioms
(A1) — (A5) and (A9) if and only it is of the follaing form

B)/i/J

>

py)=1"" (19
Yi

where B is a positive constant anfl is a non-zero real number

Proof: By Theorem 1 of Skaperdas (1996), axioms (Al) 5)(@e satisfied if and only if the CSF
is given by (A8'). Consider(y,, Y, ), (., x,)d(0,)?. Observe thap*(y) = (%)

” ¥ )+ 1) )(yz) Then
y)> pt |ssameaq f > X atis, if and only i 72 < —2/
w4)2 P T Ty et e it 1
Thus, by (A8) we(ha\)/e (X)

if and only if fy, )s f(/])(Z)for all A>0
f(y) ™ fx) f

Oivs) = T () | -

(A9) becomes Zheng'’s (2007) unit consistency axibwe replace ! by an inequality indexy and X by income
p X

distributions in two N —person societies and the weak inequality by the strict inequality> in (see also also
Chakravarty 2014).

(8)
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. f(A f :
Now, we claim thatm = F{ (XZ)] for some non-decreasing functipnTo demonstrate

) fx)
: . - f(Ax,) _ f(Ay,)
this, consider two distinct effort vectdsg, v, ), (X, X,) 0(0,»)*. Then we have,——2i = 2
88, v5), (3, %) 0(0,0) ()~ ()
if and only iff(X%) = f(y%) . This implies tha{f(/‘—XZ) is a function OM . Non-
i) v (A%, f(x)
decreasingness of this function is a consequen¢ELdf
Define
_ i)
U, (%, %,) = t(x,) (12)
and
_ flx)
q(xl'XZ)_ f(xl) (13)

Sinceu, and gare functionally related, the Jacobianugf andg with respect tox, and x, must

vanish. More precisely,

0x, 0%, | _
o ol 0. (14)
0x,  0X,
This implies that
()10 )G) _ 1(6)f )1 () a5
f(Ax,) f(x)
Equation (15) can be rearranged as
() 1) _ 1) £/(x) )
) fl)  flax)" flx)
Now, (16) holds for a(lxl,xz)D(O,oo)z. Puttingx, = z>0,x, =1 in (16) and letting)(z) = ffT(zZ))
we get
h(Az)h(1) = h(z)h(A). a7

Given thatf is positive valued orﬁo,oo) and increasingh is positive. It is continuous as well.

Since (8) holds for all positive andA , it is a fundamental Cauchy equation, of whiak dnly

continuous solution is given by

(9)
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h(z) = K,z“ (18)

for somek; > 0 anda is a real number (Aczel, 1966, p. 41, TheorenBg)continuity of h the

solution extends to the case where 0 .

Casel:a#z-1
Then (18) yields:

f(a=mf. (19)

Integrating both sides of (19) we get,
In(f(z)) = Kz** +K', (20)
where K andK' are real numbers. Equation (20) is equivalent to

f(z) = AB# | (21)
where A=e¥ >0,B=¢eX > 0andB =1+a is a non-zero real number.

Casell: a=-1.

Then (18) becomes:

~—

ffi =K,z", (22)

(2)

which, on integration, gives
In(f(z)) =K, In(z)+K". (23)

That is,
f(z) = AzP (24)

whereA=¢eX >0and B is a real number. Since Sincd is increasing, we further require the

restrictionB > 0.

. . o f (y) ,
Plugging the forms off given by (21) and (24) intp' (y) = —(—)' , we get the forms op'(y
jON
specified in (10).This completes the necessity pathe proof of the theorem. The sufficiency can

be easily verified by checking that CSF given b9) (fLlfils (A1)-(A5) and (A9)A

(10)
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The second CSF in (10) is the Skaperdas CSF comdsp to (A6) (assuming thBt=0).
However, the first functional form in (10) is new, has not been characterized earlier in the
literature. In this first functional form if we sstitute B = e and S =1, then the resulting CSF
coincides with the logit functional form (under thgsumptionK, = ). However, if 5 #1 then the

underlying CSF is a violator of (A9).

Finally we consider the following ordinal counterp@ (A7):

(A10) Translation Consistency: Forx,yd[0,e)", if for somé ON, p'(y)= p'(x)holds, then)
p* (y + cl") >p! (x + cl”) , Where 1" is the n—coordinated vector of ones amdis a scalar
such thaty; + ¢ > 0 for alli € N.

Evidently, (A10) is sufficient but not necessary {&7). Like (A9), (A10) is also an ordinal
property.

In the following theorem we characterize the entless of CSFs that are translation consistent.

Theorem 3: Assume that the CSF is continuously differentiablefforts. Then it satisfies axioms
(A1) — (A5) and (A10) if and only it is of the folving form

H el Vi

p'(y)=1" (25)
e 1

et

JON

whereH andv are positive constants anal is a non-zero real number.

Proof: Take, as in the proof Theorem(3,, v, ),(x,,%,)0(0,%)?. Then p*(y)= p(x) is same as
f(yz) < f(XZ) . By (Ag),

fly) ™ flx)

(%)

—h
—~
<
N
~

—h

if and only if flyz+e)  fho+e) e neso. (26)
f(Yl"'C) f(X1+C)

As in the proof of Theorem 2, one can easily saéttiere exists a continuous and increasing

functionG.such that

f((x2 +c)) _ Gc[ f(xz)]' 27)

(11)
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Define

md&mg=iﬁi}%- (28)

Sincew.andgq are functionally related, the Jacobiarmwgfindg in (13) with respect to, and x,
must vanish.This implies that

e +0) (s 29

Equation (29) holds for &k,,x,)0(0,»)’. Putting x; = z > 0,x,= £ >0 and substituting—i,((zz))

by ¥ (z), which is positive or(O,oo), we get

Yz +P(e) =P2)P(c + o). (30)

Letting £ — Oand using continuous differentiability &f from (30) it follows that

Y(z + )Y(0) = Y(2)p(o). (31)
From (31) it emerges thgt(0) > 0 . The equation (31) holds for all positiweandc. The only

continuous solution to (31) is given by

¥(z) = veP” (32)

for some positives(= ¢(0)) and realp (see Aczel, 1966, p.84) . By continuityof, the solution

extends to the case wher 0
From (31) it is evident that

G (33)

Caselp#0
Integrating both sides of (33) we get,

In(f(2)) = Ksve P* 1K, (34)

whereK, andK, are real numbers. That is,

Fl2) = Ene”” (35)

Kav

whereE = e+ andH =e** are positive constants.

Casell: p=0

(12)
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Then (33) becomes:

@, (36)

i)

Integrating both sides of (36) we get,

~—"

Inf(z) =vz+C (37)

for some real numbeft .

Equation (37) is equivalent to:
f2)=Qe” (38)

Q=¢® >0. For increasingness of we need the restriction > 0. Substituting the forms of

given by (35) and (38) ip' (y)— f(yi) , the resulting forms ofp' (y) become the ones

_Zf(yj)

JON
specified in (25) . Hence the necessity part oftti@®rem is demonstrated. The sufficiency follows
easily. A

The second CSF in (25) (given tdat 7 ) has been characterized by Skaperdas (1996) (5i)g

However, the first CSF in (25) was not suggestdtiénliterature earlier.
3. Conclusions

Axiomatic characterizations of contest success tfons enable us to understand them in an
intuitively reasonable way in the sense that neogsand sufficient conditions are identified to
isolate them uniquely. Skaperdas (1996) charaerihe power and logit type forms of success
functions. In this paper we have substantially edéel the characterizations of Skarpedas (1996) by
considering a general axiom and two more axiomalesand translation consistencies, which are
ordinal in nature, a characteristic that has nenbexplored earlier in the literature. The Skaperda
(1996) functional forms drop out as particular casé the functional forms axiomatized in the
paper. Some new functional forms that have not Iseggested earlier in the literature are also
analyzed. It is clearly indicated that the Skaper@a996) translation invariant CSF is scale

consistent although it is not scale invariant.
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