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1 INTRODUCTION

1 Introduction

While the “pro-poor" growth literature has traditionally worked with one continu-
ous variable at a time, recently researchers have been interested in connecting the
“pro-poor" growth concepts with non-monetary measures of well-being, and multidi-
mensional poverty indices in particular. For instance, Berenger and Bresson (2012)
provide dominance conditions to probe the “pro-poorness" of growth when well-being
is measured jointly by continuous and discrete variables. Ben Haj Kacem (2013) mea-
sures the “pro-poorness" of growth in income when the initial conditioning situation
is not income itself but a non-monetary multidimensional index of poverty or well-
being. Boccanfuso et al. (2009) apply the now traditional “pro-poor" growth toolkit to
assess changes in the individual scores of a non-monetary poverty composite index,
where the weights are determined by multiple correspondence analysis (MCA). Since
they use a vast number of indicators, their scores can take several values, thereby
mimicking a continuous variable.

We pose a related question in the context of multidimensional poverty counting
measures: What are the conditions under which a poverty reduction experience is
more “pro-poorest" than another one in a robust manner? In other words, under which
conditions does poverty reduction not only reduce the average poverty score further
but also decrease deprivation inequality among the poor more, for a broad family of
poverty indices that are sensitive to these distributional aspects? In a companion pa-
per (Gallegos and Yalonetzky, 2014), we have answered this question for anonymous
assessments in which we compare two cross-section datasets from different points in
time, by adapting and extending methods developed by Lasso de la Vega (2010).

Meanwhile, when we have a panel dataset we can also perform a non-anonymous
assessment of robust pro-poorest poverty reduction, in which we take into account
the particular poverty transitions experienced by individuals or households.1 For this
purpose, in this paper we work with transition matrices and propose four second-
order dominance conditions whose fulfillment allows us to conclude that multidimen-
sional poverty reduction is more egalitarian in one poverty-transition experience vis-
à-vis another one, for a broad family of poverty indices which are sensitive to de-
privation inequality among the poor, and from an ex-ante conception of inequality of
opportunity. 2

1See Grimm (2007), for a thorough discussion of the distinction between anonymous and non-
anonymous analysis of pro-poor growth in the continuous-variable context.

2See Fleurbaey and Peragine (2013) for an explanation of the distinction between ex-ante and ex-
post inequality of opportunity.
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1 INTRODUCTION

The dominance rules focus on the distributions of expected deprivation scores con-
ditioned on having certain values of the score in the initial period, i.e. inspired by
the concept of “mobility as progressivity" put forward by Benabou and Ok (2001). The
first, special rule works for the case in which both societies or time periods have the
same initial uniform distributions of conditioning deprivation scores, i.e. the compar-
ison is only based on differences in the vectors of conditional expected deprivation
scores. The second, less restrictive rule works for the case in which both societies
or time periods have the same initial (but not necessarily uniform) distributions of
conditioning deprivation scores. The third, more general rule allows for differences
(across time periods, or between societies) in the distributions of conditional expected
deprivation scores, which in turn depend both on the initial distributions of condition-
ing scores, and on the vectors of possible values for the conditional expected scores.
Finally, the four rule is an application of the third one, working with the ergodic
probability distributions of expected conditional deprivation scores (i.e. the ergodic
distribution from the transition matrix replaces the initial distribution of condition-
ing scores).

We illustrate the non-anonymous conditions using a yearly panel dataset from the
Peruvian National Household Surveys spanning two periods: 2002-2006 and 2007-
2010. In the former period, Peru experienced a commodity boom, which translated
into high GDP growth rates, from 4 % in 2003 to 8.9 % in 2007, and a steady decrease
in monetary poverty headcounts, from 58.7 % in 2004 to 42.4 % in 2007. However,
between 2008 and 2013, Peru’s economic performance was affected by the world eco-
nomic situation: GDP growth fell from 9.8 % in 2008 to 0.9 % in 2009, and then sta-
bilizing around 7 % between 2010 and 2012. Notwithstanding this fluctuation, mon-
etary poverty levels kept decreasing steadily, from 37.3 to 27.8 %. But how did the
Peruvian population fare in terms of non-monetary multidimensional poverty? We
measure non-monetary poverty with wellbeing indicators corresponding to four di-
mensions: household education, dwelling material infrastructure, access to services,
and vulnerability related to household dependency burden.

We search for robust rankings among the poverty transitions (2002-2004, 2004-
2006, 2007-2008, and 2008-2010) according to their degree of ex-ante “pro-poorest"
poverty reduction, i.e. the extent to which they reduce expected poverty while re-
ducing inequality among the poor at the same time. When we implement the first
condition, we find that the mobility matrix of 2002-2004 is the pro-poorest in the
sense of yielding a set of expected conditional poverty experiences that second-order
dominates the vector induced by all the other matrices. Then, the matrix of 2004-
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

2006 turns up as the second-best, since its expected distribution dominates those of
2007-2008 and 2008-2010, while being dominated by its predecessor’s. Meanwhile
the matrix of 2007-2008 turns up as the least desirable. In summary, the pre-crisis
poverty transitions induced preferable distributions of expected poverty scores from
a welfare-utilitarian point of view. When we implement the second condition, we find
again that the matrix of 2002-2004 dominates all the others, except that of 2008-2010.
By contrast, when we implement the third condition, the matrix of 2008-2010 dom-
inates the two pre-crisis matrices, pointing to the importance of its more desirable
initial distribution of conditioning deprivation scores. Finally, when we implement
the fourth condition, based on ergodic distributions, we find that, again, the matrix of
2002-2004 prevails over the others, except for 2008-2010 against which it cannot be
ordered. The latter matrix also dominates those of 2004-2006 and 2007-2008 in the
case of the fourth condition.

The rest of the paper proceeds as follows: The next section presents our robust
“pro-poorest” poverty-reduction conditions for non-anonymous assessments. First,
it introduces the family of counting poverty measures for which the conditions are
relevant and applicable, then it shows the three dominance conditions. The third
section provides the empirical illustration on multidimensional poverty reduction in
Peru. Finally, the paper concludes with some remarks.

2 Robust pro-poorest poverty reduction with count-
ing measures

2.1 Inequality-sensitive poverty measures

Consider N individuals and D indicators of wellbeing. xnd stands for the level of at-
tainment by individual n on indicator d. If xnd < zd, where zd is a deprivation line
for indicator d, then we say that individual n is deprived in indicator d. In order
to account for the breadth of deprivations, counting measures rely on individual de-
privation scores which produce a weighted count of deprivations. If the weights are
denoted by: wd ∈ [0,1] ⊂ R+∣∑Dd=1wd = 1, then the deprivation score for individual n is:
cn ≡ ∑Dd=1wdI(xnd < zd), where I is the indicator function. 3 Following Alkire and Fos-
ter (2011) we can also identify those multidimensionally poor with a flexible counting
approach that compares each cn against a multidimensional cut-off k ∈ [0,1] ⊂ R+, so

3Taking the value of 1 if the argument in parenthesis is true, otherwise it is equal to 0.
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

that person n is poor if and only if: cn ≥ k.
Our analysis focuses on a family of social poverty counting measures that are sym-

metric across individuals, additively decomposable (hence also subgroup consistent),
scale invariant and population-replication invariant. If pn ∶ cn × k → [0,1] ∈ R+ is the
individual poverty measure, and P ∶ [0,1]N → [0,1] is the social poverty measure then
our family is the following:

P = 1

N

N∑
n=1pn (1)

Our conditions of pro-poorest poverty reduction will also be useful for a broader
family of subgroup consistent measures: Q =H(P ) as long as H() is a strictly increas-
ing, continuous function. For the sake of subgroup consistency, the weights must be
set exogenously. Additionally we want P to fulfill the following key properties:

Axiom 1. Focus (FOC): P should not be affected by changes in the deprivation score
of a non-poor person as long as for this person it is always the case that: cn < k.

Axiom 2. Monotonicity (MON): P should increase whenever cn increases and n is poor.

Axiom 3. Progressive deprivation transfer (PROG): A rank-preserving transfer of a
deprivation from a poorer individual to a less poor individual, such that both are
deemed poor, should decrease P .

In relation to the latter axiom, there are different approaches to capture sensi-
tivity to deprivation inequality in the literature, although most of the approaches
are virtually equivalent.4 Axiom PROG is critical to the assessment of “pro-poorest”
poverty reduction, as it forces social poverty indices to be sensitive to the distribu-
tion of deprivation across the poor, and to prioritize the wellbeing of the most jointly
deprived among them.

In order to fulfill the above key properties, we narrow down the family of social
poverty indices by rendering the functional form of pn less implicit:

P = 1

N

N∑
n=1 I(cn ≥ k)g(cn), (2)

where I(cn ≥ k) is the Alkire-Foster poverty identification function that also se-
cures the fulfillment of FOC; and g ∶ cn → [0,1], such that: g(0) = 0, g(1) = 1, g′ > 0

and g′′ > 0. The function g captures the intensity of poverty, which is understood as
4For a comparative review of these approaches see Silber and Yalonetzky (2013). A different frame-

work is provided by Alkire and Seth (2014).
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

number of deprivations in the counting approach. Several examples of g have been
proposed by Chakravarty and D’Ambrosio (2006).

2.2 The non-anonymous case based on the distributions of ex-
pected deprivation scores

In the counting approach, there is only one vector of possible values of cn for each par-
ticular choice of deprivation lines and weights. We define that vector: V ∶= (v1, v2, ..., vl),
and note that v1 = 0 (the case of someone without any deprivation), and vl = 1 (the
case of someone deprived in every indicator). Moreover it is easy to show that the
maximum number of possible values is given by: max l = ∑Di=0 (Di ). In the particular,
but common, case of equal weights (wd = 1

D ), the number of possible values is much
smaller: l = D + 1. Hence the distribution of cn in the sample is bound to be discrete,
as there will be several individuals for every value of cn.

In the non-anonymous case we can track the experience of each individual across
periods with a panel dataset. More precisely we can construct a transition matrix
with the social probabilities of attaining a particular deprivation score in the final
year of the period, conditional on having had a specific deprivation score in the initial
year. Then we can compute the expected value of the deprivation score conditional
on a given value of the deprivation score in the initial year, by adding the products of
the conditional probabilities of attaining each score in the final year times the score
itself.

Thus we have as many conditional expected values of the score as the values for
the score, i.e. l. Then we can provide social evaluations of the distribution of the condi-
tional expected values of the scores. For instance, we may require properties similar
to MON and PROG in the social evaluation of expected values. Hence, inspired by
Benabou and Ok (2001), we can implement an ex-ante non-anonymous assessment
of robust “pro-poorest” poverty reduction. In this assessment, we compare different
transition matrices and rank them in terms of their capacity to reduce poverty, prior-
itizing reductions in the expected deprivation score of those who start the poorest.

If this assessment is applied to samples of parents and their adult offspring (so
that the initial period corresponds to the former, and the final period to the latter),
or at least to relatively long periods (e.g. several years), then it can also become an
analysis of ex-ante inequality of opportunity (i.e. as long as we normatively posit that
poverty prospects should not depend on past poverty experiences over which there is
little or no control).
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

Let ctn be the score of individual n in period t. The probability of attaining a partic-
ular score in period t conditional on a specific score attained in period t − 1 is defined
as: mi∣j = Pr[ctn = i∣ct−1

n = j]. The array of all these probabilities (i.e. from m0∣0 to m1∣1)
constitutes a transition matrix M . If the number of values for the deprivation score
(given a choice of weights and deprivation lines) is l then the transition matrix is an
l-dimension square matrix. For any initial score value in period t − 1 the conditional
expected score in period t is:

E[ctn∣vj] = 0 ×m0∣vj + v2 ×mv2∣vj + v3 ×mv3∣vj + ... + 1 ×m1∣vj , (3)

where the sum in 3 has l elements. Note also that, unlike cn, E[ctn∣vj] for any j

can, in principle, take any value in the real interval [0,1], even when weights and
deprivation lines are fixed, because it also depends on the elements of M . The vector
of expected deprivation scores is: E ∶= (E[ctn∣0],E[ctn∣v2], ...,E[ctn∣1]). Consider also an
l-dimensional vector Π containing the probability distribution of scores in period t− 1:
Π ∶= [π(0), π(v2), ..., π(1)]. π(vi) ≡ Pr[ct−1

n = vi] and ∑li=1 π(vi) = 1.
Now for the sake of presenting the conditions below, it is useful to rely on the

following assumption:

Assumption 1. E[ctn∣1] ≥ E[ctn∣vl−1] ≥ ... ≥ E[ctn∣v2] ≥ E[ctn∣0].
Assumption 1 states that the expected deprivation score does not decrease when-

ever the conditioning score value in the initial period increases. This assumption is
not really necessary to derive the “pro-poorest” conditions below, but it substantially
simplifies their presentation. Moreover, the assumption is likely to manifest regu-
larly in empirical applications. In fact, all the transition matrices in our illustration
satisfy assumption 1.5

For the conditions below, we also need to use a reverse generalized Lorenz (RGL)
curve of the distribution of expected deprivation scores at the beginning and at the
end of the time period. We define firstly the RGL curve for the distribution of expected
deprivation scores not weighted by their relative frequency in the population. Hence
an RGL curve is a function L ∶ [0,1]→ [0,1] that maps from a cumulative number s of
the highest values in the vector of conditional expected deprivation scores, i.e. ranked

5Note that assumption 1 is much less stringent than imposing monotonicity on the matrices. A
monotone transition matrix is characterized by consecutive first-order stochastic dominance between
its adjacent columns (or rows). For example, in the case of M , monotonicity would require: ∑k

i=1mvi∣vj
≥∑k

i=1mvi∣vj+1 ∀j ∈ [1,2, ..., l − 1], k ∈ [1,2, ..., l]. Clearly, a monotone transition matrix suffices to uphold
assumption 1, but it is not necessary.
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

from the highest to the lowest values of E[ctn∣vj], to the incomplete average of E[ctn∣vj],
i.e. the sum of all the highest s scores, E[ctn∣vj], divided by l:

L(s) = 1

l

s∑
j=1E[ctn∣vl−j+1] s = 1,2, ..., l. (4)

Now using superscripts to denote populations where appropriate, we propose the
following theorem:

Theorem 1. 1
l ∑lj=1 g(EA[ctn∣vj]) < 1

l ∑lj=1 g(EB[ctn∣vj]) for all convex, strictly increasing,
continuous functions g, if and only if LA(s) ≤ LB(s) ∀s ∈ [1,2, ..., l] ∧ ∃s∣LA(s) < LB(s).
Proof. This theorem is similar in spirit to theorem 2 by Shorrocks (1983); the differ-
ence being that the former uses a RGL curve, whereas the latter involves a general-
ized Lorenz curve. However since Muirhead’s theorem (e.g. see Marshall et al., 2011,
p. 7-8) applies equally to values (of incomes, expected deprivation scores, etc.) ranked
in descending or in ascending order, both results can be obtained. A full-fledged proof
is available on request.6

When Theorem 1 holds, MA induces a stronger reduction in poverty than MB, in
terms of prioritizing the expected deprivation scores of those who start with higher
scores in t − 1 (under assumption 1).

2.2.1 From the union approach to other poverty identification approaches

Note that Theorem 1 assumes a union approach to poverty identification (i.e. k lower
than the minimum deprivation weight in the poverty identification function I(cn ≥ k)).
However, the theorem can be restricted and applied to less lenient poverty identifica-
tion criteria. The route to follow is to censor all scores whose value is below a chosen
kmin, i.e. replacing cn with c∗n such that: c∗n = 0 if cn < kmin; otherwise c∗n = cn. Then
the rest of the analysis proceeds as established above, noting that some cells in the
transition matrices will be merged.

6RGL curves have also been used by Lasso de la Vega (2010) and Chakravarty and Zoli (2009) in the
case of integer variables. In their applications they compare the distributions of deprivation scores,
cn, between A and B, but both sharing, effectively, the same vectors V . Therefore any social welfare
differences between A and B are driven by differences in Π. By contrast, theorem 1 works with EA

and EB , the vectors of expected deprivation scores, which are generally not identical, while implicitly
assuming πA(i) = πB(i) = 1

l
∀i ∈ [1,2, .., l]. Theorem 2 below works with E and, more generally, πA(i) =

πB(i)∀i ∈ [1,2, .., l]. Again, in this case, the vectors of expected deprivation scores are not identical,
and in fact they drive any differences in the RGL curves, since otherwise the initial distributions are
identical. Finally, theorem 3 below works with E and Π, and in both cases, A and B can be different.
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

2.3 The non-anonymous case with equal initial distributions
of deprivation scores

Theorem 1 focuses exclusively on the values that the expected deprivation scores
can take in each population, thereby neglecting the proportions of people who face
each possible expected deprivation score. If we want the welfare evaluation of ex-
pected deprivation scores to be sensitive to their distribution, then we redefine the
social evaluation function for the expected deprivation scores so that now we have:
∑lj=1 π(vj)g(E[ctn∣vj]). One starting point is to consider πA(i) = πB(i)∀i ∈ [1,2, .., l], gen-
erally (i.e. now πA(i) = πB(i) = 1

l∀i ∈ [1,2, .., l] is just one particular case among many
others). In this case of equal and general initial distributions of deprivation scores,
it is easy to show that Theorem 1 does not work anymore. Instead we require the
following Theorem 2:7

Theorem 2. 1
l ∑lj=1 π(vj)g(EA[ctn∣vj]) < 1

l ∑lj=1 π(vj)g(EB[ctn∣vj]) for all convex, strictly
increasing, continuous functions g, and for every possible Π, if and only if EA[ctn∣vj] <
EB[ctn∣vj] ∀j ∈ [1,2, ..., l].
Proof. The sufficiency of EA[ctn∣vj] < EB[ctn∣vj] ∀j ∈ [1, l] is easy to ascertain, given
the strict monotonicity properties of g. For the necessity, take each and every initial
probability to its limit of 1, and it becomes clear that vector dominance of EA over EB

is required to ensure that 1
l ∑lj=1 π(vj)g(EA[ctn∣vj]) < 1

l ∑lj=1 π(vj)g(EB[ctn∣vj]) for every
possible Π.

Interestingly, Theorem 2 states that MA induces a stronger reduction in poverty
than MB (in the terms mentioned above), whenever the distributions of initial de-
privation scores are identical, if and only if for every initial deprivation score, the
respective conditional expected deprivation score in A is lower than in B; i.e. only
provided there is vector dominance of EA over EB.

2.4 The non-anonymous case with different initial distributions
of deprivation scores

We could also justify taking into account the actual proportions of people who would
be facing each possible expected deprivation score, in each period (or society), i.e. the
actual Π. For instance it could be the case that two societies have the same vectors
of conditional expected deprivation scores, except that the highest expected score in

7I would like to thank Francesco Andreoli for helping me derive this result.
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

society A is higher than in B. Both theorems 1 and 2 would judge the distribution
of B to be preferable. However, if now the distribution ΠA is different from ΠB, and
in fact A has a smaller proportion of its population facing the highest expected score,
then a priori we could not be sure anymore that any social welfare function based on
any individual evaluation function g (as in Theorem 1 or 2) would rank B above A.

In this subsection we derive an alternative to Theorem 2 relevant to social poverty
comparisons in which ΠA and ΠB are different. We consider the following reverse
generalized Lorenz curve:

Lπ(s) = s∑
j=1E[ctn∣vl−j+1]π(vl−j+1), s = 1,2, ..., l. (5)

Then theorem 3 states the following:

Theorem 3. ∑lj=1 πA(vj)g(EA[ctn∣vj]) < ∑lj=1 πB(vj)g(EB[ctn∣vj]) for all convex, strictly
increasing, continuous functions g, if and only if LAπ (s) ≤ LBπ (s) ∀s ∈ [1,2, ..., l] ∧∃s∣LAπ (s) < LBπ (s).
Proof. Similar to the proof used for Theorem 1, but now the distributions ΠA and ΠB

need to be considered. Available upon request.

When Theorem 3 holds, MA, together with ΠA, yields a distribution of expected
conditional deprivation scores characterized by lower average expected deprivation
scores and less inequality (in the sense captured by PROG) vis-a-vis the distribution
of expected scores generated by MB in combination with ΠB.

There is also an interesting sufficient condition guaranteeing that LAπ (s) is never
above LBπ (s) , and is strictly below for at least one value of s. In order to introduce it
we need to define the poverty headcount in the initial period:

H(k) ≡ 1

N

N∑
n=1 I(cn ≥ k) (6)

Now we get the following proposition:

Proposition 1. If (EA[ctn∣vl−j+1]−EA[ctn∣vl−j]) ≤ (EB[ctn∣vl−j+1]−EB[ctn∣vl−j])∀j ∈ [1,2, ..., l−
1] ∧ EA[ctn∣v1] ≤ EB[ctn∣v1] (with at least one of the former inequalities being strict),
and HA(vi) ≤ HB(vi) ∀i ∈ [1,2, ..., l] ∧ ∃i∣HA(vi) < HB(vi), then: LAπ (s) ≤ LBπ (s) ∀s ∈[1,2, ..., l] ∧ ∃s∣LAπ (s) < LBπ (s).
Proof. Firstly, using summation by parts (Abel’s formula) we can show that: LAπ (s) =∑s−1
j=1 H(vl−j+1)[EA[ctn∣vl−j+1] −EA[ctn∣vl−j]] +H(vl−s+1)EA[ctn∣vl−s+1]. Secondly, we can also
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2 ROBUST PRO-POOREST POVERTY REDUCTION WITH COUNTING MEASURES

show that if (EA[ctn∣vl−j+1]−EA[ctn∣vl−j]) ≤ (EB[ctn∣vl−j+1]−EB[ctn∣vl−j])∀j ∈ [1,2, ..., l−1] ∧
EA[ctn∣v1] ≤ EB[ctn∣v1], then it must be the case that: EA[ctn∣vj] ≤ EB[ctn∣vj] ∀j ∈ [1,2, ..., l].
Finally, the rest follows by inspection.

Proposition 1 states that if the absolute gaps between expected scores in A are
never larger than in B (and they are strictly lower for at least one gap), and the
poverty headcounts in period t − 1 are never higher in A than in B (and they are
strictly lower for at least one score value) then any social poverty function described
in Theorem 3 ranks A favourably with respect to B.

2.4.1 The non-anonymous case with different ergodic distributions of de-
privation scores

Some mobility assessments based on transition matrices often resort to the ergodic,
or equilibrium distributions (e.g. Kremer et al., 2001). In the non-anonymous case of
robust ‘pro-poorest’ poverty reduction we can also apply directly Theorem 3 to ergodic
distributions, i.e. replacing Π with Π̂, where Π̂ ∶= (π̂(0), π̂(v2), ..., π̂(1)) is the ergodic
distribution of deprivation scores. The idea would be that, after each transition, the
spot initial distribution Π changes, until equilibrium is reached (provided that the
transition matrix fulfills some regularity conditions). So the ergodic distribution help
us conduct robust poverty comparisons in expected deprivation scores when the tran-
sition matrix does not change its distribution anymore.

Interestingly, the following proposition provides a sufficient condition, based only
on transition probabilities, whose fulfillment guarantees that MA yields an ergodic
distribution of expected conditional deprivation scores characterized by lower average
expected deprivation scores and less inequality (in the sense captured by PROG) vis-
a-vis the ergodic distribution of expected scores generated by MB.

Proposition 2. ∑lj=1 π̂A(vj)g(EA[ctn∣vj]) < ∑lj=1 π̂B(vj)g(EB[ctn∣vj]) for all convex, strictly
increasing, continuous functions g, if ∀j ∈ [1,2, ..., l] ∶ ∑qi=1mA

vi∣vj ≥ ∑qi=1mB
vi∣vj ∀q ∈ [1,2, ..., l] ∧∃q∣∑qi=1mA

vi∣vj > ∑qi=1mB
vi∣vj .

Proof. 1. Adapting a result by Dardanoni (1995), we can show that: ∀j ∈ [1,2, ..., l] ∶
∑qi=1mA

vi∣vj ≥ ∑qi=1mB
vi∣vj ∀q ∈ [1,2, ..., l] ∧ ∃q∣∑qi=1mA

vi∣vj > ∑qi=1mB
vi∣vj implies ĤA(vs) <

ĤB(vs) ∀s ∈ [2, ..., l] (by definition: ĤA(v1) = ĤB(v1) = 1).
2. Let Fvq ∣vj ≡ ∑qi=1mvi∣vj for 1 ≤ q ≤ l be a cumulative transition probability. Now if

we sum 3 by parts we get: E[ctn∣vj] = −∑l−1
i=1 Fvi∣vj[vi+1 − vi] + 1. Hence if ∀j ∈ [1,2, ..., l] ∶

∑qi=1mA
vi∣vj ≥ ∑qi=1mB

vi∣vj ∀q ∈ [1,2, ..., l] ∧ ∃q∣∑qi=1mA
vi∣vj > ∑qi=1mB

vi∣vj , then it must be the
case that: EA[ctn∣vj] < EB[ctn∣vj] ∀j ∈ [1,2, ..., l].
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3. Now let A ≡ ∑lj=1 π̂A(vj)g(EA[ctn∣vj]). We can express it the following way: A =
∑lj=1 π̂A(vj)[g(EB[ctn∣vj])+ (g(EA[ctn∣vj])− g(EB[ctn∣vj]))]. Then the social welfare differ-
ence betweenA andB is: A−B = ∑lj=1[π̂A(vj)−π̂B(vj)]g(EB[ctn∣vj])+∑lj=1 π̂A(vj)[g(EA[ctn∣vj])−
g(EB[ctn∣vj])].

4. Integrating by parts the first element on the right-hand side of the expres-
sion for A − B in point 3, we now get: A − B = ∑lj=2[ĤA(vj) − ĤB(vj)][g(EB[ctn∣vj]) −
g(EB[ctn∣vj−1])] +∑lj=1 π̂A(vj)[g(EA[ctn∣vj]) − g(EB[ctn∣vj])]

5. The rest follows by inspection, bringing together the results in points 1 and 2,
plus the properties of g and assumption 1.

Even though its fulfillment guarantees a robust comparison of ergodic distribu-
tions of expected deprivation scores, one advantage of Proposition 2 is that, it does not
require the actual computation of ergodic distributions, as it relies solely on transition
probabilities. Hence the proposition can actually be tested with standard procedures,
as proposed in the next section.

3 Statistical inference

3.1 Test of Theorem 2

In the empirical application, we test the condition from Theorem 2 after that for Theo-
rem 1. However, it is more convenient to begin this section with an explanation of the
test for Theorem 2. Different tests are possible, but we implement one in which a null
hypothesis of EA[ctn∣vj] ≤ EB[ctn∣vj] ∀j ∈ [1,2, ..., l] is set against an alternative whereby∃j∣EA[ctn∣vj] > EB[ctn∣vj]. If we do not reject the null we can state that either A vector-
dominates B or the two vectors perfectly overlap, which implies that expected poverty
in A can never be above B for the given choice of weights and deprivation lines, and
for any poverty function considered in Theorem 2. Alternatively, rejecting in favour
of the alternative means that "A does not dominate B", i.e. either A is dominated by
B or the two distributions of expected deprivation scores cross (which in turn implies
that the poverty comparison is sensitive to the choice of poverty functions, even for a
given set of weights and deprivation lines).

In practice, we have a joint intersection null hypothesis: Ho ∶ EA[ctn∣vj] = EB[ctn∣vj] ∀j ∈[1,2, ..., l] against a union alternative Ha ∶ ∃j∣EA[ctn∣vj] > EB[ctn∣vj]. For that purpose,
and considering that A and B are independently distributed, we construct the follow-
ing statistics:
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T (j) = EA[ctn∣vj] −EB[ctn∣vj]√
σ2
EA
(j)

πA(vj)NA + σ2
EB
(j)

πB(vj)NB

, (7)

where:

σ2
EA(j) ≡ V ΩA(vj)V ′, (8)

and ΩA(vj) is an l×l covariance matrix such that the diagonal element i is: ΩA
ii(vj) ≡

mA
i∣j(1−mA

i∣j) and the off-diagonal element for row i and column k consists of: ΩA
ik(vj) ≡−mA

i∣jmA
k∣j. (See e.g. Formby et al., 2004)

Then we test Ho ∶ T (j) = 0 against Ha ∶ T (j) > 0 for every value of j. Given the
requirements of Theorem 2, we conclude that A does not dominates B if there is at
least one j for which T (j) > Tα, where Tα is the right-tail critical value for a one-tailed
“z-test” corresponding to a level of significance α. Since we test multiple comparisons,
the actual size of the whole test is not α. Under reasonable assumptions, it can be
shown that it is β = ∑li=1[l−i+1]αi(−1)i−1. With l = 5, we choose α = 0.01, so that β ≈ 0.05.

3.2 Test of Theorem 1

In the empirical illustration, we first test the condition from Theorem 1 based on the
RGL curve. Different tests are possible, but we implement a convenient one in which
a null hypothesis of LA(s) ≤ LB(s) ∀s ∈ [1,2, ..., l] (as in 4) is set against an alternative
whereby ∃s∣LA(s) > LB(s). If we do not reject the null we can state that either A
dominates B or the two distributions perfectly overlap, which implies that poverty in
A can never be above B for the given choice of weights and deprivation lines, and for
any poverty function considered in Theorem 1. Alternatively, rejecting in favour of
the alternative means that "A does not dominate B", i.e. either A is dominated by
B or the two RGL curves cross (which in turn implies that the poverty comparison
is sensitive to the choice of poverty functions, even for a given set of weights and
deprivation lines).

In practice, we have a joint intersection null hypothesis: Ho ∶ LA(s) = LB(s) ∀s
against a union alternative Ha ∶ ∃s∣LA(s) > LB(s). For that purpose, and considering
that A and B are independently distributed, we construct the following statistics:

T (s) = LA(s) −LB(s)√
σ2
LA

(s) + σ2
LB

(s) , (9)

where:
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σ2
LA(s) ≡ 1

l2

s∑
j=1

σ2
EA

(l − j + 1)
πA(vl−j+1)NA

(10)

Then we test Ho ∶ T (s) = 0 against Ha ∶ T (s) > 0 for every value of s. Given the
requirements of Theorem 1, we conclude that A does not dominates B in terms of
Theorem 1 if there is at least one T (s) > Tα, where Tα is the right-tail critical value
for a one-tailed “z-test” corresponding to a level of significance α. As before, since we
test multiple comparisons, the actual size of the whole test is not α. Under reasonable
assumptions, it can be shown that it is β = ∑li=1[l − i+ 1]αi(−1)i−1. With l = 5, we choose
α = 0.01, so that β ≈ 0.05.

3.3 Test of Theorem 3

We follow the same procedure as in the test for Theorem 1, but we note that the
RGL curve is constructed differently. Let θvi,vj ≡ mvi∣vjπ(vj) be the joint probability of
attaining a score of vj in period t − 1 and a score of vi in period t. Then:

E[ctn∣vj]π(j) = l∑
i=1 θvi,vjvi, (11)

and:

Lπ(s) = s∑
j=1

l∑
i=1 θvi,vl−j+1vi, s = 1,2, ..., l. (12)

Then we construct a statistic analogous to 9, but σ2
LA

(s) (same for B) is replaced
by

σ2
LAπ

(s) ≡ 1

NA
[ s∑
j=1

l∑
i=1[θvi,vl−j+1(1 − θvi,vl−j+1)]v2

i − s∑
j=1

l∑
i=1 θvi,vl−j+1vi(

s∑
k=1

l∑
r=1 θvr,vl−k+1vr − θvi,vl−j+1vi)]

(13)
The reminder of the test proceeds exactly as in the test for Theorem 1.

3.4 Test of Proposition 2

We recall the definition Fvq ∣vj ≡ ∑qi=1mvi∣vj from the proof for Proposition 2. Because
this is a sufficient condition we can set the null hypothesis to be Ho ∶ FA

vq ∣vj = FB
vq ∣vj ∀j ∈[1,2, ..., l] ∧ q ∈ [1,2, ..., l − 1] against a union alternative Ha ∶ ∃(q, j)∣FA

vq ∣vj < FB
vq ∣vj .

The statistic is:
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T (q, j) = FA
vq ∣vj − FB

vq ∣vj√
σ2
FA

(q, j) + σ2
FB

(q, j) , (14)

where:

σ2
FA(q, j) ≡ F

A
vq ∣vj(1 − FA

vq ∣vj)
πA(vj)NA

(15)

Then we test Ho ∶ T (q, j) = 0 against Ha ∶ T (q, j) < 0 for every pairwise value (q, j).
Given the requirements of Proposition 2, we conclude that A does not dominates B in
terms of proposition 2 if there is at least one pair (q, r) such that: T (q, r) < −Tα, where
Tα is the right-tail critical value for a one-tailed “z-test” corresponding to a level of
significance α. As before, since we test multiple comparisons (l(l − 1), in fact), the
actual size of the whole test is not α. Under reasonable assumptions, it can be shown
that it is β = ∑l(l−1)

i=1 [l(l − 1) − i + 1]αi(−1)i−1. With l(l − 1) = 20, we choose α = 0.001, so
that β ≈ 0.02.

4 Empirical illustration: Multidimensional poverty
in Peru

4.1 Background and data

As mentioned, Peru experienced a commodity boom between 2003 and 2007, which
translated into high GDP growth rates, from 4 % in 2003 to 8.9 % in 2007, and a
steady decrease in monetary poverty headcounts, from 58.7 % in 2004 to 42.4 % in
2007. However, between 2008 and 2013, Peru’s economic performance was affected
by the world’s economic situation: GDP growth fell from 9.8 % in 2008 to 0.9 % in
2009, and then stabilizing around 7 % between 2010 and 2012. Notwithstanding this
fluctuation, monetary poverty levels kept decreasing steadily, from 37.3 to 27.8 %.
How did the Peruvian population fare in terms of non-monetary multidimensional
poverty?

We use Peruvian National Household Surveys (ENAHO). For the non-anonymous
assessment, we exploit ENAHO’s two recent household panel surveys, spanning 2002-
2006 and 2007-2010, each providing 1,570 and 2,260 households, respectively.

Our multidimensional poverty measure relies on four dimensions, and on the
household as the unit of analysis. Firstly, household education, comprising two indi-
cators: (1) school delay, which is equal to one if there is a household member in school
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age who is delayed by at least one year, and (2) incomplete adult primary, which is
equal to one if the household head or his/her partner has not completed primary ed-
ucation. The household is considered deprived in education if any of these indicators
takes the value of one.

The second dimension considers two indicators on infrastructure dwelling condi-
tions: (i) overcrowding, which takes the value of one if the ratio of the number of
household members to the number of rooms in the house is larger than three; and
(ii) inadequate construction materials, which takes the value of one if the walls are
made of straw or other (almost certainly inferior) material, if the walls are made of
stone and mud or wood combined with soil floor, or if the house was constructed at an
improvised location inadequate for human inhabitation. The household is deprived
in living conditions if any of the above indicators takes the value of one.

The third dimension is access to services. The household is deemed deprived in
this dimension if any of the following indicators takes the value of one: (i) lack of
electricity for lighting, (ii) lack of access to piped water, (iii) lack of access to sewage
or septic tank, and (iv) lack of access to a telephone landline. The fourth dimension is
household vulnerability to dependency burdens. The household is deprived or vulner-
able if household members who are younger than 14 or older than 64 are three times
or more as numerous as those members who are between 14 and 64 years old (i.e. in
working age).

We weigh each dimension equally. Therefore the household score can take only
any of the following five values: (0,0.25,0.5,0.75,1).
4.2 Results

Tables 1 through 4 show the transition matrices for deprivation scores. In each matrix
the row π shows the initial distribution of scores, the row E[ctn∣j] shows the expected
deprivation score conditional on a score value of j in the initial year, and the row
π̂ shows the ergodic, equilibrium distribution. Overall, all matrices are monotone,
therefore the expected deprivation scores increase with the value of the initial, con-
ditioning score. The matrices also exhibit relatively high levels of path-dependence
(likelihood of replicating initial conditions in after the transition) as measured by
Shorrock’s trace index (where 0 means complete immobility and 1 means equality
of conditional distributions). The respective values in chronological order are: 0.41,
0.41, 0.33, 0.37. For instance, the probability of being non-deprived in any dimension
conditional on having that initial status remains fairly stable, across the matrices,
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between 82% (2) and 88% (3). Whereas the probability of being deprived in every di-
mension conditional on having that initial status fluctuates between 42% (2) and 70%
(4).

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

4.3 Theorem 1

Table 5 provides the main findings for Theorem 1. It features the vertical coordinates
of the RGL curves of expected deprivation scores (the five horizontal coordinates cor-
respond to the number of expected deprivation scores and are common to the four
transition matrices). The ensuing partial ordering, related to Theorem 1, states that
if the initial relative frequencies of scores were identical within and across samples,
then the ex-ante expected social poverty induced by matrix 1 (2002-2004) would be
lower than the levels produced by matrices 3 (2007-2008) and 4 (2008-2010), for any
social poverty function that increases both with higher conditional expected depriva-
tion scores and with higher inequality between them (by contrast the point estimates
of the RGL curves of matrix 1 and matrix 2 (2004-2006) cross between the horizontal
coordinates 1 and 2). Likewise, matrix 2 induces lower ex-ante expected poverty than
matrices 3 and 4. Finally, a similar robust ordering cannot be established between
matrices 3 and 4 since their two respective RGL curves cross (between horizontal
coordinates 1 and 2). In summary, the conditional distributions of expected depriva-
tion scores produced by the pre-crisis transition matrices second-order dominate the
distributions yielded by the crisis/post-crisis matrices, according to theorem 1.

[Table 5 about here.]

Table 6 shows the test statistics for the tests of Theorem 1. The tests confirm the
dominance results featured in Table 5. Additionally, the only instance in which the
RGL curve of matrix 1 (2002-2004) is above that of matrix 2 (2004-2006) is not sta-
tistically significant (T (1) = 0.778). Hence, actually we cannot reject the hypothesis
that the RGL curve of matrix 1 is never above that of matrix 2, which means that
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either both curves perfectly overlap, or the former RGL curve dominates the latter.
Likewise, the only instance in which the RGL curve of matrix 3 (2007-2008) is below
that of matrix 4 (2008-2010) is not statistically significant (T (1) = −1.484). With these
results we cannot reject the hypothesis that the RGL curve of matrix 3 is never below
that of matrix 4. Thus these statistical results provide us with a complete order-
ing according to Theorem 1, whereby if the initial relative frequencies of scores were
identical within and across samples, then the ex-ante expected social poverty induced
by matrix 1 (2002-2004) would be lower than the levels produced by all the other
matrices, for any social poverty function that increases both with higher conditional
expected deprivation scores and with higher inequality between them. Likewise the
expected social poverty induced by matrix 2 (2004-2006) would be lower than the lev-
els produced by the two subsequent matrices. Finally, matrix 3 (2007-2008) would
yield the highest expected social poverty among all matrices, in terms of the afore-
mentioned criteria.

[Table 6 about here.]

4.4 Theorem 2

Table 7 provides the main findings for Theorem 2. It shows again the values of all the
expected deprivation scores, conditioned by the different values of ct−1

n for each tran-
sition matrix. Vector dominance is absent from every possible pairwise comparison
between transition periods. Therefore we conclude that the transition matrices can-
not be ordered according to Theorem 2, which is based on equal Π between compared
samples. This means that the social expected poverty rankings, in every pairwise
comparison, depend on the choice of Π, i.e. no ordering is robust. For example, as it
turns out, each matrix could induce the lowest ex-ante expected poverty depending
on Π. Should π(1) → 1 then matrix 2 (2004-2006) would induce the lowest poverty
(while inducing the highest level if π(0)→ 1). If π(0.25)→ 1 then matrix 1 (2002-2004)
achieves the lowest level, while if π(0.5) → 1 then matrix 4 (2008-2010) does. Finally,
if π(0)→ 1 then matrix 3 (2007-2008) reaches the lowest level.

[Table 7 about here.]

Table 8 shows the test statistics for the tests of Theorem 2. We reject the null
hypothesis that at least one expected deprivation score from matrix 1 (2002-2004) is
significantly higher than its counterpart in matrix 2 (2004-2006). In fact the evidence
suggests dominance of matrix 1 in terms of Theorem 2. Likewise we find dominance
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of matrix 1 over matrix 3 (2007-2008), as well as dominance of matrix 2 over matrix
4 (2008-2010), and dominance of matrix matrix 4 over matrix 3. Finally, we cannot
ascertain dominance between matrix 1 and matrix 4 since the pairwise differences in
their expected deprivation scores are all statistically insignificant.

[Table 8 about here.]

4.5 Theorem 3 with initial distributions

Table 9 provides the main findings for Theorem 3, using actual initial distributions,
Π. It features the vertical coordinates of the RGL curves, as in Table 5. The ensuing
partial ordering, related to Theorem 3, states that, with the actual initial relative
frequencies of scores, the ex-ante expected social poverty induced by matrix 4 (2008-
2010) would be lower than the levels produced by matrix 3 (2007-2008), for any social
poverty function that increases both with higher conditional expected deprivation
scores and with higher inequality between them. All the other comparisons feature
RGL curve-crossing.

[Table 9 about here.]

Table 10 shows the test statistics for the tests of Theorem 3 with actual initial
distributions, Π. The evidence shows matrix 1 (2002-2004) being dominated by both
matrix 3 (2007-2008) and matrix 4 (2008-2010) (since the curve-crossings are not
statistically significant).Likewise we find that matrix 4 dominates matrix 2 (2004-
2006). In the case of the other three comparisons, the pairwise differences between
the RGL curves are not statistically significant at all, i.e. in these cases we would not
be able to reject a null hypothesis of perfect curve overlap.

[Table 10 about here.]

4.6 Theorem 3 with ergodic distributions

Table 11 provides the main findings for Theorem 3, using ergodic distributions, Π̂.
It features the vertical coordinates of the RGL curves, as in previous tables. The
ensuing ordering, related to Theorem 3, states that, with the ergodic distributions
of scores, the ex-ante expected social poverty induced by matrices 1 (2002-2004) and
4 (2008-2010) would be lower than the levels produced by the other two matrices,
for any social poverty function that increases both with higher conditional expected
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deprivation scores and with higher inequality between them. Meanwhile, a robust
ordering between these two matrices is not possible. Additionally, matrix 2 (2004-
2006) induces lower ex-ante expected poverty than matrix 3 (2007-2008).

[Table 11 about here.]

Tables 12, 13, 14, 15, 16, and 17 show the test statistics for the tests of Proposition
2. The results are coherent with the point-estimate comparisons based on Table 11.
Even though Proposition 2 requires consistency across the signs of all the statistics,
when we test, it turns out that the statistics with the “wrong” sign (in terms of being
inconsistent with the comparisons in Table 11) are not statistically significant indi-
vidually. In fact most statistics do not appear statistically significant at the stringent
level of significance set above (α = 0.001 for each statistic individually, in order to
achieve an overall level of β = 0.02). However, even if the statistics with the “wrong”
sign were significant and they appear along with statistics with the “right” sign for a
given hypothesis, we must recall that Proposition 2 is sufficient, but not necessary, in
order to ensure the fulfillment of a robust ordering in the spirit of Theorem 11.

[Table 12 about here.]

[Table 13 about here.]

[Table 14 about here.]

[Table 15 about here.]

[Table 16 about here.]

[Table 17 about here.]

5 Concluding remarks

The non-anonymous approach to robust inter-temporal poverty comparisons with
counting measures, presented in this paper, is basically an intra-generational mo-
bility assessment comparing the outcomes of the same people across different peri-
ods. Generally, when non-anonymous conditions are fulfilled, we can conclude that,
ex-ante, the distribution of expected deprivation scores (conditioned on different ini-
tial deprivation scores) of A second-order dominates that of B; meaning, inter alia,
that the distribution in A features both lower average expected deprivation scores,
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and less dispersion than B’s in Lorenz-consistency terms. In that sense the poverty
reduction experience is more “pro-poorest” in A than in B.

More specifically we proposed different conditions based on alternative ways of
constructing the distributions of expected deprivation scores. The first two methods
simply compare the vectors of expected deprivation scores without any information
on their actual distributions (or expected equilibrium distributions in the future).
But they differ in their welfare interpretation. In particular, when Theorem 2 holds,
the social poverty comparison is robust to all possible distributions of initial (con-
ditioning) scores, as long as the distributions are the same between the compared
samples. By contrast, the latter two methods compare distributions of expected de-
privation scores so that their respective Reversed Generalized Lorenz (RGL) curves
depend both on the vector of expected deprivation scores and their distribution. In
one method the distribution is taken to be the initial distribution of scores. In the
other case the distribution is the ergodic one. Of course, all these conditions hold only
for specific choices of deprivation lines and dimensional weights. With alternative
selections, the conditions must be tested again.

Our empirical illustration of the non-anonymous condition, using the Peruvian
panel datasets, showed that the existence and nature of robust partial orderings de-
pend crucially on the theorem being applied. For instance, in the case of Theorem 1
the mobility matrix of deprivation scores corresponding to the 2002-2004 period in-
duced a preferable distribution of expected deprivation scores vis-a-vis all the other
matrices, i.e. those of 2004-2006, 2007-2008, and 2008-2010. The second-best matrix
was that of period 2004-2006, which was also preferable to the two crisis/post-crisis
matrices (but not to its predecessor, 2002-2004). At the other end, the matrix for
2007-2008 turned out the least desirable according to Theorem 1.

In the case of Theorem 2, it was not possible to rank the mobility matrices ro-
bustly just by comparing the point estimates of the expected deprivation scores. How-
ever, since many of the pairwise differences between scores of different matrices were
not statistically significant, we can conclude that the matrix of 2002-2004 dominates
those of 2004-2006 and 2007-2008 (whereas no difference is statistically significant
in the comparison of scores between 2002-2004 and 2008-2010). We also found that
matrix 2004-2006 is dominated by all the others, and that the matrix of 2008-2010
dominates that of 2007-2008.

When we made the RGL curves depend not only on the vectors of expected depri-
vation scores, but also on their distributions in each society, we found few statistically
significant comparisons for the chosen levels of significance, in the case of Theorem
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3 and initial distributions of conditioning scores. But we did find that the matrix
of 2008-2010 dominates that of 2002-2004. If we allow for slightly higher test size,
the dominance of 2007-2008 over 2002-2004, and of 2008-2010 over 2004-2006, also
turn out statistically significant. This result stands in contrast to that for Theorem
1, in which the mobility matrix of 2002-2004 was the most preferable, followed by
2004-2006. The driving source of difference must be the initial distribution, which
is first-order stochastically dominated by those of the matrices from later transition
periods.

A somewhat intermediate result is provided by the case of Theorem 3 with ergodic
distributions. Since the ergodic distribution of 2002-2004 is more preferable than the
other matrices’, which is not the case when comparing their respective initial dis-
tributions, it turns out that, again, the matrix of 2002-2004 robustly induces lower
social expected poverty than all the other matrices, except for 2008-2010; which, in
turn, also dominates 2004-2006 and 2007-2008. This latter criterion cannot order
2002-2004 and 2008-2010, since their respective RGL curves based on ergodic distri-
butions cross.
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TABLES

Table 1: Transition matrix of deprivation scores, Peru, 2002-2004

2002
0 0.25 0.5 0.75 1

0 0.87 0.21 0.02 0.0 0.0
0.25 0.11 0.65 0.20 0.04 0.0

2004 0.5 0.02 0.14 0.67 0.33 0.09
0.75 0.0 0.0 0.11 0.61 0.36
1 0.0 0.0 0.0 0.02 0.55
π 0.18 0.28 0.36 0.17 0.01
E[ctn∣j] 0.039 0.235 0.467 0.653 0.864
π̂ 0.47 0.27 0.20 0.06 0.00
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TABLES

Table 2: Transition matrix of deprivation scores, Peru, 2004-2006

2004
0 0.25 0.5 0.75 1

0 0.82 0.19 0.02 0.0 0.0
0.25 0.15 0.68 0.19 0.03 0.0

2006 0.5 0.03 0.12 0.69 0.21 0.0
0.75 0.0 0.01 0.11 0.74 0.58
1 0.0 0.0 0.0 0.02 0.42
π 0.23 0.28 0.34 0.15 0.01
E[ctn∣j] 0.051 0.239 0.473 0.686 0.854
π̂ 0.35 0.31 0.23 0.11 0.00
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TABLES

Table 3: Transition matrix of deprivation scores, Peru, 2007-2008

2007
0 0.25 0.5 0.75 1

0 0.88 0.14 0.01 0.0 0.0
0.25 0.10 0.71 0.15 0.01 0.0

2008 0.5 0.02 0.14 0.74 0.24 0.0
0.75 0.0 0.0 0.10 0.74 0.40
1 0.0 0.0 0.01 0.01 0.60
π 0.27 0.27 0.29 0.15 0.01
E[ctn∣j] 0.034 0.251 0.489 0.686 0.900
π̂ 0.33 0.26 0.28 0.12 0.01
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Table 4: Transition matrix of deprivation scores, Peru, 2008-2010

2008
0 0.25 0.5 0.75 1

0 0.86 0.17 0.03 0.0 0.0
0.25 0.13 0.68 0.24 0.05 0.0

2010 0.5 0.01 0.14 0.64 0.26 0.05
0.75 0.0 0.01 0.10 0.67 0.25
1 0.0 0.0 0.0 0.02 0.70
π 0.283 0.267 0.293 0.148 0.01
E[ctn∣j] 0.039 0.250 0.451 0.666 0.913
π̂ 0.43 0.32 0.18 0.06 0.00
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Table 5: RGL curves of expected deprivation scores (as defined in 4).
Vertical coordinates.

1 2 3 4 5
2004∣2002 0.863 1.516 1.983 2.218 2.257
2006∣2004 0.854 1.540 2.013 2.252 2.304
2008∣2007 0.900 1.586 2.074 2.325 2.359
2010∣2008 0.913 1.578 2.029 2.279 2.318
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Table 6: Z-statistics for tests of Theorem 1.

Ho ∶ LA(s) = LB(s) ∀s 1 2 3 4 5
Ha ∶ ∃s∣LA(s) > LB(s)
A = 2004∣2002; B = 2006∣2004 0.778 -1.902 -2.367 -2.655 -3.610
A = 2004∣2002; B = 2008∣2007 -3.217 -6.046 -7.804 -9.037 -8.615
A = 2004∣2002; B = 2010∣2008 -4.149 -5.166 -3.739 -4.897 -4.881
A = 2006∣2004; B = 2008∣2007 -5.103 -4.972 -6.496 -7.588 -5.765
A = 2006∣2004; B = 2010∣2008 -6.094 -3.896 -1.563 -2.588 -1.360
A = 2008∣2007; B = 2010∣2008 -1.484 0.866 5.140 5.146 4.620
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Table 7: Conditional expected deprivation scores

Transition ct−1
n 0 0.25 0.5 0.75 1

2004∣2002 0.039 0.235 0.467 0.652 0.864
2006∣2004 0.051 0.239 0.473 0.686 0.854
2008∣2007 0.034 0.251 0.489 0.686 0.900
2010∣2008 0.039 0.250 0.451 0.666 0.913
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Table 8: Z-statistics for tests of Theorem 2.

Ho ∶ EA[ctn∣vj] = EB[ctn∣vj] ∀j 1 2 3 4 5
Ha ∶ ∃j∣EA[ctn∣vj] > EB[ctn∣vj]
A = 2004∣2002; B = 2006∣2004 -1.427 -0.394 -0.651 -2.578 0.155
A = 2004∣2002; B = 2008∣2007 0.562 -1.708 -2.485 -2.942 -0.643
A = 2004∣2002; B = 2010∣2008 -0.030 -1.544 1.825 -1.077 -0.829
A = 2006∣2004; B = 2008∣2007 2.253 -1.279 -1.764 -0.015 -1.020
A = 2006∣2004; B = 2010∣2008 1.673 -1.132 2.491 1.634 -1.218
A = 2008∣2007; B = 2010∣2008 -0.780 0.100 4.590 1.905 -0.296
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Table 9: RGL curves of expected deprivation scores ( as defined in 5, using
initial distributions). Vertical coordinates.

1 2 3 4 5
2004∣2002 0.006 0.120 0.287 0.351 0.358
2006∣2004 0.007 0.109 0.270 0.336 0.348
2008∣2007 0.008 0.114 0.255 0.324 0.333
2010∣2008 0.008 0.107 0.239 0.306 0.317
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Table 10: Z-statistics for tests of Theorem 3.

Ho ∶ LAπ (s) = LBπ (s) ∀s 1 2 3 4 5
Ha ∶ ∃s∣LAπ (s) > LBπ (s)
A = 2004∣2002; B = 2006∣2004 -0.169 0.994 1.021 0.885 0.627
A = 2004∣2002; B = 2008∣2007 -0.611 0.559 2.101 1.725 1.566
A = 2004∣2002; B = 2010∣2008 -0.649 1.272 3.239 2.874 2.604
A = 2006∣2004; B = 2008∣2007 -0.422 -0.528 0.991 0.761 0.883
A = 2006∣2004; B = 2010∣2008 -0.460 0.190 2.136 1.916 1.923
A = 2008∣2007; B = 2010∣2008 -0.041 0.801 1.283 1.292 1.166

33

ECINEQ WP 2014 - 351 December 2014



TABLES

Table 11: RGL curves of expected deprivation scores ( as defined in 4, using
ergodic distributions). Vertical coordinates.

1 2 3 4 5
2004∣2002 0.003 0.044 0.142 0.205 0.223
2006∣2004 0.004 0.084 0.191 0.265 0.282
2008∣2007 0.007 0.090 0.223 0.289 0.301
2010∣2008 0.004 0.053 0.140 0.218 0.234

34

ECINEQ WP 2014 - 351 December 2014



TABLES

Table 12: Z-statistics for tests of Proposition 2, Ho ∶ F 2002−2004
vq ∣vj = F 2004−2006

vq ∣vj ∀(q, j),
Ha ∶ ∃(q, j)∣F 2002−2004

vq ∣vj < F 2004−2006
vq ∣vj

0 0.25 0.5 0.75 1
0 1.579 0.847 0.560 - -
0.25 0.399 -0.591 0.601 0.627 -
0.5 0.184 1.130 0.166 2.984 1.048
0.75 0.184 - 0.661 -0.090 -0.622
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Table 13: Z-statistics for tests of Proposition 2, Ho ∶ F 2002−2004
vq ∣vj = F 2007−2008

vq ∣vj ∀(q, j),
Ha ∶ ∃(q, j)∣F 2002−2004

vq ∣vj < F 2007−2008
vq ∣vj

0 0.25 0.5 0.75 1
0 -0.610 2.757 2.289 -1.008 -
0.25 -0.373 -0.058 2.751 2.227 -
0.5 0.964 -0.856 0.066 3.080 1.048
0.75 - - 1.522 -1.070 0.293
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Table 14: Z-statistics for tests of Proposition 2, Ho ∶ F 2002−2004
vq ∣vj = F 2008−2010

vq ∣vj ∀(q, j),
Ha ∶ ∃(q, j)∣F 2002−2004

vq ∣vj < F 2008−2010
vq ∣vj

0 0.25 0.5 0.75 1
0 0.334 1.621 -0.870 - -
0.25 -0.761 0.454 -1.902 -0.359 -
0.5 - 1.463 -0.533 1.462 0.411
0.75 - - -0.986 0.165 0.849
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Table 15: Z-statistics for tests of Proposition 2, Ho ∶ F 2004−2006
vq ∣vj = F 2007−2008

vq ∣vj ∀(q, j),
Ha ∶ ∃(q, j)∣F 2004−2006

vq ∣vj < F 2007−2008
vq ∣vj

0 0.25 0.5 0.75 1
0 -2.476 1.852 1.735 -1.008 -
0.25 -0.856 0.589 2.092 1.519 -
0.5 0.850 -1.860 -0.108 -0.192 -
0.75 -0.552 - 0.839 -0.921 1.020
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Table 16: Z-statistics for tests of Proposition 2, Ho ∶ F 2004−2006
vq ∣vj = F 2008−2010

vq ∣vj ∀(q, j),
Ha ∶ ∃(q, j)∣F 2004−2006

vq ∣vj < F 2008−2010
vq ∣vj

0 0.25 0.5 0.75 1
0 -1.512 0.709 -1.455 - -
0.25 -1.260 1.102 -2.518 -1.016 -
0.5 -0.542 0.184 -0.700 -1.730 -1.025
0.75 -0.542 - -1.439 0.254 1.615
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Table 17: Z-statistics for tests of Proposition 2, Ho ∶ F 2007−2008
vq ∣vj = F 2008−2010

vq ∣vj ∀(q, j),
Ha ∶ ∃(q, j)∣F 2007−2008

vq ∣vj < F 2008−2010
vq ∣vj

0 0.25 0.5 0.75 1
0 1.211 -1.277 -3.296 1.008 -
0.25 -.524 0.568 -4.924 -2.797 -
0.5 -1.063 2.360 -0.631 1.719 -1.025
0.75 - - -2.252 1.335 0.666
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