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Abstract

We show that, when measuring inequality of opportunity with survey data, scholars incur two
types of biases. A well-known downward-bias, due to partial observability of circumstances
that affect individual outcome, and an upward bias, which depends on the econometric method
used and the quality of the available data. We suggest a simple criterion to balance between the
two sources of bias based on cross validation. An empirical application, based on 26 European
countries, shows the usefulness of our method.
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1 Introduction

The measurement of inequality of opportunity (IOp) is a growing topic in economics, in the
last two decades the number of empirical contributions to this literature has exploded (Ferreira
and Peragine, 2015; Roemer and Trannoy, 2015). The vast majority of this contributions are
based on the approach proposed by Roemer (1998) to measure IOp. This method is based on a
two-step procedure: (i) first, starting from a distribution of outcome (typically income or con-
sumption), a counterfactual distribution is derived, which reproduces only unfair inequality (i.e
inequality due to circumstances beyond individual control) and does not reflect any inequal-
ity arising from choice and effort of individuals; (ii) second, the inequality is measured in this
counterfactual distribution.

The empirical literature has extensively used two approaches to estimate the counterfactual
distribution based on survey data: a parametric and a non-parametric approach. One of the
main drawbacks of both approaches is that, unless all circumstances beyond individual control
that affect outcome are observable, they produce biased estimate of IOp. While the magnitude
of this bias may be impossible to identify (Bourguignon et al., 2013), under few assumptions
it can be shown that the sign of the bias is negative (Roemer, 1998; Ferreira and Gignoux,
2011; Luongo, 2011). This explains why IOp estimates are generally interpreted as lower-
bound estimate of the real one. Recently, the usefulness of those lower bound measures has
been criticized (Kanbur and Wagstaff, 2015; Balcazar, 2015). In particular, Balcazar (2015) has
suggested that the downward bias in estimated IOp may lead to a substantial underestimation
of the real level of IOp.

Typically, authors address this problem by using rich data sources containing an increasing
number of circumstances. In this paper, we show that attempts to reduce the downward bias
by increasing the number of circumstances, increase the variance of the estimated counterfac-
tual distribution and, in turn, gives rise to an upward bias. Interestingly this aspect has been
surprisingly neglected in this literature.

In what follows we suggest a method to select the best econometric specification to balance
between the need of minimizing both biases. The method is based on cross validation can
be easily implemented with survey data. In order to show the usefulness of our approach we
implement our method to estimate IOp in 26 European countries.

The remaining of the paper is organized as follows: Section 2 introduces the canonical
model used to measure IOp, presents the two estimation methods used to implement it, and
clarifies the two possible sources of bias. Section 3 proposes a criterion to balance the trade-
off between the two biases when selecting the method to estimate IOp. Section 4 presents an
empirical implementation. Section 5 concludes.
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2 Downward and upward biased IOp

The canonical equality of opportunity model can be summarized as follows (see Ferreira and
Peragine, 2016). Each individual in a society realizes an outcome of interest, y, by means of
two sets of traits: circumstances beyond individual control, C, belonging to a finite set Ω =

{C1, ...,CJ}, and a responsibility variable, e, typically treated as scalar. A function g : Ω × <+

→<+ defines the individual outcome:

y = g(C, e)

For all j ∈ {1, ..., J} let us denote by K j the possible values taken by circumstance C j and by∣∣∣K j

∣∣∣ the cardinality K j. For instance, if C j denotes gender, then K j = {male, f emale} . We can
now define a partition of the population into T types, where a type is a set of individuals which
share exactly the same circumstances. That is, T =

∣∣∣ΠJ
i=1K j

∣∣∣. Let us denote by Y the overall
outcome distribution.

IOp is then defined as inequality in the counterfactual distribution, Ỹ , which reproduces all
inequality due to circumstances and does not reflect any inequality due to effort. A number of
methods has been proposed to obtain Ỹ and, in general, the chosen method affects the resulting
IOp measure (Ferreira and Peragine, 2015; Ramos and Van de gaer, 2015). In what follows,
we focus on the ex-ante approach, introduced by Bourguignon et al. (2007) and Checchi and
Peragine (2010), which is by far the most largely adopted method in the empirical literature
(Brunori et al., 2013). This approach interprets the type-specific outcome distribution as the
opportunity set of individuals belonging to each type. Then, a given value vt of the opportunity
set of each type is selected. Finally, Ỹ is obtained replacing the outcome of each individual
belonging to type t with the value of her type vt, for all t = 1, ...,T .

2.1 Counterfactuals estimation

Ex-ante IOp can be estimated either by a parametric or a non parametric approach. Checchi
and Peragine (2010) propose to estimate Ỹ non-parametrically following the typical two stages:
(i) after partitioning the sample into types on the basis of all observable circumstances, they
choose the arithmetic mean of type t, denoted by µt, as the value vt of type t, hence they estimate
µ1, ..., µT ; (ii) for each individual i belonging to type t they define ỹi = µ̂t - where is the sample
estimate for µt - and measure inequality in Ỹ . The reliability of those estimates requires a
sufficient number of observations in each type and, in practice, this might represent a severe
constraint as individuals are, most likely, not uniformly distributed across types. In order to
overcome this drawback, scholars tend to limit the number of circumstances in the definition of
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types or to aggregate types in broader categories: for example, districts of birth are aggregated
in macro-region, parental occupations only distinguishes white from blue collar, and so on.

Bourguignon et al. (2007) propose to measure ex-ante IOp estimating Ỹ parametrically as
the prediction of the following reduced form regression

yi =

J∑

j=1

K j∑

k=1

χ jkci jk + ui (1)

where ci jk identifies each category by means of a dummy variable and χ jk is the correspond-
ing coefficient. The parametric approach does not directly measure types’ mean but captures
the variability explained by the circumstances by a linear combination. In particular, parametric
estimation has been proposed as a good alternative to the nonparametric one when few obser-
vations are available (see Ferreira and Gignoux, 2011).

However, we notice that the two methods coincide when the counterfactual is obtained by
the prediction of a regression model where y is regressed on all possible interactions among
the circumstances. In this case each regressor captures the effect of belonging to one of all the
possible circumstances combination, which is the effect of belonging to a given type:

yi =

T∑

t=1

βtπit + ui (2)

where πit are T binary variables obtained by interacting all categories.
In all other cases, the corresponding IOp measures might be very different, and - by con-

struction - the parametric approach (1) will explain less inequality than the nonparametric (2).
Moreover, while the linear specification might be too restrictive, the choice to include the full
number of combinations among categories might lead to a large variance of the estimated coun-
terfactual distribution.

2.2 Variance-bias trade-off in estimating IOp

It has been shown that, if the “true” set of circumstances is not fully observable, the estimated
IOp will be lower than the real IOp. This result follows from the assumption of orthogonality
between circumstances and effort (see on this Roemer, 1998) and explains why IOp measures
are generally interpreted as lower-bound estimates of IOp.

Typically authors attempt to solve this problem by using rich dataset containing an increas-
ing number of circumstances (Bjorklund et al., 2012). Recently, Niehues and Peichl (2014)
endorse an extreme perspective and, by exploiting longitudinal datasets, they measure IOp in-
cluding individual fixed effects among circumstances beyond individual control.
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However, when using survey data, whenever one makes an effort to reduce the downward
bias by increasing the number of circumstances, one obtains a counterfactual distribution based
on a finer partition in types where, by construction, each type contains less observations. This
strategy might lead to both (i) higher between-group inequality and (ii) a larger sample variance
when estimating the effect of C on y.

However, the empirical literature on the estimates of IOp has so far neglected this second
implication1. We face the classical variance-bias trade-off: if we are willing to reduce the
downward bias, we have to accept higher uncertainty on the shape counterfactual distribution.

Following similar reasoning, it is important to notice that, when measuring inequality, higher
variance of the estimated distribution implies an upward bias. This result is easily shown apply-
ing what Chakravarty and Eichhron (1994) proved for the case of estimating inequality when
the variable of interest is measured with error. The same result can be applied here: instead of
a classical measurement error, we have a variable - the type mean - which is estimated with a
higher sample variance, the finer is the partition in types2.

This discussion clarifies that, when estimating IOp, we should be worried about two sources
of distortion that bias our measure in opposite directions: partial observability and sample vari-
ance of the counterfactual distribution. The following section proposes a simple method for
choosing the best model - that is the best way to exploit information contained in survey data -
in terms of balancing the two biases.

3 Model selection for measuring IOp

In this section we propose a method to select the most suitable model among the simple linear
model (1) - the lowest extreme - and a flexible model which includes the full number of com-
binations among categories (2) - the highest extreme - also considering all the intermediate
specifications which include only subset of categories’ combinations. In a statistical learning
framework, we evaluate the variance bias trade-off of model predictions. On the one hand, a
more flexible model reduces the typical downward bias in IOp measurement but increases the
prediction variance leading to upward (IOp) bias. On the other hand, a more restricted model
reduces the variance and hence the upward bias, but suffers of omitted variable bias, that is the
typical downward bias well known in the literature. We propose to exploit the property of Mean
Square Error (MSE) and choose the best model conditioned to available information by means
of Cross Validation (CV).

1Brunori et al. (2015) working with Sub-Saharan African surveys have only noticed that the use of very detailed
circumstances such as ‘village of birth’ tends to dramatically increase estimated IOp.

2A formal proof is available upon request.
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In a regression setting the MSE is defined as:

MS E =
1
n

n∑

i=1

(
yi − f̂ (xi)

)2

where y is the dependent variable, x are the regressors, and i = 1, ..., n are the observations.
For given out of sample observations y0 and x0, the MSE can always be decomposed in variance
of f̂ (x0), square bias of f̂ (x0) and variance of the error term

E
(
y0 − f̂ (x0)

)2
= Var( f̂ (x0)) +

[
Bias

(
f̂ (x0)

)]2
+ Var(ε)

where f̂ (x0) are the predictions. Note that the variance of the error can not be reduced.
Thus, in order to minimize the MSE, we need to minimize both the bias and the variance. A
comparison among different specifications is performed by CV. In a CV procedure, the sample
is randomly divided into k equal-sized parts. Leaving out part k (test sample), the model is
fitted to the other k − 1 parts (training sample) whereas out of sample predictions are obtained
for the left-out kth part.3 For each specification, the average of the k MSEs is stored and the best
specification is selected by minimizing it. This simple CV procedure is the criterion that we
propose to select the best specification on a number of possible alternatives: model (1), (2), and
all possible specification obtained interacting only a subset of circumstances.

4 An empirical illustration and conclusion

We use the EUSILC 2011 dataset on 26 countries: The sample consists of Austria (AT), Bel-
gium (BE), Czech Republic (CZ), Germany (DE), Denmark (DK), Estonia (EE), Greece (GR),
Spain (ES), Finland (FI), France (FR), Hungary (HU), Ireland (IE), Iceland (IS), Italy (IT),
Lithuania (LT), Luxemburg (LU), Latvia (LV), Netherlands (NL), Norway (NO), Poland (PL),
Portugal (PT), Sweden (SE), Slovenia (SI), Slovakia (SK) and Great Britain (UK), Bulgaria
(BG), Switzerland (CH) and Romania (RO). Following Checchi et al. (2016), we restrict the
sample to individuals aged between 30 and 60 who are either working full or part-time, unem-
ployed or fulfilling domestic tasks and care responsibilities. Our outcome variable is disposable
income. We consider gender, country of origin and family background as circumstances affect-
ing individual incomes irrespective of individual responsibility. All variables are categorical
and we consider them both a parsimonious and a broad categories’ partition. In the most parsi-
monious case, we use four binary variables: gender, country of origin (native, foreign), parental

3Cross-validation compared with AIC, BIC and adjusted R2 provides a direct estimate of the error. Overfitted
models will have high R2 values, but will perform poorly in predicting out-of-sample cases. CV is also useful to
choose among alternative non linear specifications together with non nested models.
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Figure 1: IOp in 26 European countries under different model specifications
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education (low, high) and parental occupation (elementary, not elementary). In the broadest
partition, we consider: gender; country of origin (Native, Foreign EU, Foreign non EU), mother
and father occupation (each one coded in 10 values)4 and parental education (four values for
mother and four values for father)5. Descriptive statistics are in Table 1 in the Appendix.

Figure 1 shows the Gini IOp measures of three cases: (i) the linear case (low) - with no
interactions - when categories are defined in the most parsimonious case; (ii) the model where
the categories are fully interacted, up; (iii) an intermediate measure derived by the best model
selected by the CV method, best.

The three alternative measures clearly differ among each other, in some cases (left) the best
model is exactly the linear model, largely adopted by the literature. In other cases (right) the
best model is distant from the linear specification and close to the most flexible specification.
Moreover, the rank of countries depends on the model specification suggesting that it is ex-
tremely important to introduce a shared statistical criteria to select the best fitted model among
many possible specifications.

4 ISCO-08: Armed forces occupations; Managers; Professionals; Technicians and associate professionals;
Clerical support workers; Service and sales workers; Skilled agricultural, forestry and fish; Craft and related trades
workers; Plant and machine operators; Elementary occupations.

5Could neither read nor write in; Low level (pre-primary, primary education); Medium level (upper secondary
education); High level (first stage of tertiary education).
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5 Conclusions

Scholars are well aware that the estimates they obtain when measuring IOp are downward bi-
ased. The bias is a consequence of the partial observability of circumstances beyond individual
control that do affect individual outcome. However, because IOp is measured as inequality in
a counterfactual distribution of unfair inequality, a second possible source of bias is the sample
variance of the estimated counterfactual distribution. We have discussed this further source of
bias - which has been surprisingly neglected by the literature - showing that it implies an upward
bias. We have therefore suggested that when choosing the model specification to estimate IOp
scholars should opt for the best balance between the two opposite biases. We have interpreted
this problem as a typical variance-bias trade-off and we have proposed to adopt a simple CV
method to solve it. Finally, in order to show the empirical relevance of our results, we have
implemented our method to measure IOp in 26 European countries. The exercise clarifies that
the choice of the model specification affects the estimated IOp and shows the importance to
have a criterion to identify the best possible specification.
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Appendix

A large number of observable circumstances implies upward biased IOp
estimate

Chakravarty and Eichhron (1994) distinguish between the true distribution of income, y, and
the observed one ỹ where ỹ = y + e and e is commonly defined as measurement error such that
e ∼ iid(0, σ2). By considering a strictly concave von Neumann-Morgenstern utility function of
the individuals, U, they prove by analogy that if, we measure inequality I(ỹ) with an inequality
index I that satisfies symmetry and Pigou-Dalton transfer principle, then the inequality of the
true counterfactual distribution is smaller than what observed in the sample.

A finer partition of the population and, therefore, smaller sample size leads to a larger distor-
tion of the sample mean. Also, considering the variance bias-trade off, when estimating a group
mean we get higher sample variance the smaller is the sample size of the group. Hence, in the
case of between group inequality, we expect the distortion of the counterfactual distribution to
increase with the number of groups in which we have partitioned the population especially if
the variance in the groups is high. An implication of this might be that the more we exploit
information contained in the data, the more we will upward bias our between-group inequal-
ity measure. More in details, if µt is the type mean when the number of observations within
types is small, we expect a biased estimates of sample mean, such that µ̃t = µt + η where µ̃t is
the estimated type mean, µt is the ”true” parameter and η is the standard error of µ̃t, i.e. σ√

Nt
.

Simulations prove that the error component leads to a positive distortion and by construction
converges to zero as Nt → ∞. Following Chakravarty and Eichhron (1994) we can easily prove
that between inequality derived by a larger partition of the population is an overestimation of
that derived by smaller (and more representative) ones.

Assuming that U is strictly concave by Jensen’s inequality, we have

E (U (µ̃t|µt)) < U (E (µ̃t|µt))

given that

µ̃t = µt + η (3)

= E (µ̃t|µt) +

η︷            ︸︸            ︷
(µ̃t − E (µ̃t|µt))

µ̃t − η = E (µ̃t|µt) from (3) µ̃t − η = µt
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and
U (E (µ̃t|µt)) = U (µt) (4)

Then
E (U (µ̃t|µt)) < U (µt)

Taking expectation of both sides of (4) with respect µt, we get

E (U (µ̃t)) < U (E (µt)) (5)

Given that µ̃t and µt asymptotically - as Nt → ∞ - have the same mean and U is strictly concave.
Therefore, given the circumstances observed, IOp estimates are an upward biased estimate

of the real between-type inequality. The bias is monotonically increasing with the number of
observed circumstances and is monotonically decreasing with the sample size.
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