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In this study, the standard Mincer earnings regression equation in the form of the lognormal
(LN) model is generalized into the form of the double-Pareto-lognormal (dPLN) model, sub-
stantially improving the goodness-of-fit to wage data. The empirical study contrasts the new
and traditional models with respect to relationships between the wage and its determinant fac-
tors other than the primary equation for the conditional mean of log-wage, given potential work
experience and education, such that, the wage distributions predicted by the dPLN-regression
model faithfully reproduce the log-wage quantile regression results of the original data, whereas
those by the LN-regression model fail such reproduction. Furthermore, the dPLN-regression
model predicts that higher education has statistically significant positive effects on wage dis-
persion, particularly at the higher end, whereas the LN-regression model predicts insignificant
negative effects even when heteroskedasticity in the error term is incorporated into the model.
Thus, the new model is expected to be useful for not only accurately estimating contributions
of wage determinant factors to wage dispersions and the shares of low-wage workers, but also
improving the existing analysis methods using earnings equations such as the Oaxaca-Blinder
decomposition and return of education by utilizing the dispersion regression equations.
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1 Introduction 
 
Several parametric models that address the size distribution of income and earnings have 
been proposed and are thus far highly regarded, such as the Singh-Maddala distribution 
(Singh and Madalla 1975), Dagum distribution (Dagum 1977) and generalized beta 
distribution of the second kind, in short ‘GB2’ (McDonald 1984). Nevertheless, regression 
equations (abbreviated as ‘reg.’ and ‘eqs.’, respectively hereafter) in the form of the 
lognormal (LN) model (also called the ‘LN-regression model’), such as the Mincer earnings 
reg. eq., have been still utilized (often implicitly) to analyze the determinant factors of 
income and earnings. The better-fitted models have rarely been applied to reg. modeling1, 
although the LN distribution does not necessarily fit well with income and earnings data. 
The reasons for the popularity of the LN linear reg. model likely include that the ordinary 
least square method is applicable to the model fitting after log-transforming the objective 
variable to obtain unbiased estimates of reg. coefficients (abbreviated as ‘coeffs.’ hereafter) 
in the primary eq. for the conditional mean of log-earnings of workers, given potential work 
experience and education (in years), even when the error term neither follows normal 
distribution nor satisfies homogeneity. However, when researchers attempt to estimate the 
effects of the determinant factors on other characteristics of the earnings distribution – such 
as the quantiles and dispersion – the LN-reg. model may possibly be unsuitable, even when 
heteroskedasticity in the error term is incorporated into the reg. model. 

In this study, the Mincer earnings reg. eq. is generalized into a reg. eq. in the form of the 
double Pareto-lognormal (dPLN) model (or ‘dPLN-regression model’) to obtain the 
advantages of the dPLN distribution proposed by Reed (2003), such as its better goodness-
of-fit to income/earnings distributions than the existing parametric models (Reed and Wu 
2008; Okamoto 2012) and the parameters have clear roles on a basis of the LN model which 
allows natural generalization of the traditional LN-reg. model. An empirical study using 
Italian male wage data demonstrates that the dPLN-reg. model substantially improves the 
goodness-of-fit compared with that of the LN-reg. model. The wage distributions predicted 
by the dPLN-reg. model faithfully reproduce the results of log-wage quantile reg. applied 
to the original sample data, whereas the distributions predicted by the LN-reg. model fail 
the reproduction. Both types of reg. models are also contrasted with the predicted effects of 
wage determinant factors on wage dispersion, such that, whereas the LN-reg. predicts that 
                                                   
1 Recently some researchers made attempts to apply more appropriate parametric models. Sohn et al. (2014) 
and Klein et al. (2015) analyzed the determinants of male earnings using the Dagum distribution as the base 
model although their regression models differ from the ordinary Mincer-type equations. They used the term 
‘distributional regression’ for conditional wage distributions modeled using a parametric size distribution 
(more flexible than the LN) of which each parameter is regressed on covariates. In other research fields, the 
generalized gamma distribution is employed to model the relation between child age and clinical variables 
in a similar manner (Noufaily and Jones 2013). The major disadvantages of use of the existing beta- and 
gamma-type distribution models are that the roles of the parameters are unclear and the derived equations for 
the conditional mean are complicated. 
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longer education does not increase wage dispersion, the dPLN-reg. predicts the statistically 
significant positive effects on wage dispersion, particularly at the higher end. Such 
empirical findings highlight the importance of developing reg. models using a better-fit 
statistical distribution model as the base model for studies using earnings equations such as 
wage dispersion, the Oaxaca-Blinder decomposition and return of education. 

The remainder of this article is organized as follows. In section 2, the LN-reg. model is 
generalized into the dPLN-reg. model, which is followed by the introduction of a procedure 
for fitting the models and measures for evaluating the goodness-of-fit. Then, Mincer-type 
LN- and dPLN-reg. models are fitted to Italian male wage data in the next section. Two LN-
reg. and four dPLN-reg. models are devised based on whether and how they incorporate 
heteroskedasticity/heterogeneity in the error term. In addition to the usual goodness-of-fit 
comparisons, those reg. models are compared regarding the log-wage quantile reg. results 
of the predicted wage distributions and the predicted effects of the determinant factors on 
wage dispersion. The last section concludes with discussions and future issues. The 
formulas for the score functions and observed Fisher information matrices of the dPLN and 
dPLN-reg. models required for the maximum likelihood estimation as well as the fitting 
procedure in detail are deferred to appendices. 
 
 
2 Methodology 
 
2.1 Generalization of the Mincer earnings regression model 
 
Reg. eqs. in the form of the LN model have been utilized (often implicitly) to analyze 
determinant factors of income and earnings, such as the Mincer earnings reg. eq., despite 
the fact that the LN distribution does not necessarily fit income and earnings data well. The 
LN distribution has the following probabilistic density function (pdf) and cumulative 
distribution function (cdf): 

𝑓𝑓𝐿𝐿𝐿𝐿(𝑦𝑦; 𝜇𝜇,𝜎𝜎) =
1
𝜎𝜎𝜎𝜎

𝜙𝜙 �
log 𝑦𝑦 − 𝜇𝜇

𝜎𝜎
�  and 𝐹𝐹𝐿𝐿𝐿𝐿(𝑦𝑦; 𝜇𝜇,𝜎𝜎) = Φ�

log 𝑦𝑦 − 𝜇𝜇
𝜎𝜎

�  for 𝑦𝑦 > 0, (1) 

where 𝜇𝜇 denotes the location parameter and 𝜎𝜎(> 0) denotes the dispersion parameter; 

moreover, 𝜙𝜙(𝑥𝑥) ≔ 1
√2𝜋𝜋

exp �− 𝑥𝑥2

2
� and Φ(𝑥𝑥) ≔ ∫ 𝜙𝜙(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥

−∞  denote the pdf and cdf of 

the standard normal distribution, respectively. The first and higher order moments of the 
LN distribution are expressed as follows (cf. Kleiber and Kotz 2003): 

𝐸𝐸(𝑌𝑌ℎ) = 𝑒𝑒ℎ𝜇𝜇+
1
2ℎ

2𝜎𝜎2 . (2) 

The standard Mincer eq. regresses parameter 𝜇𝜇 on three regressors: years of potential 
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work experience, the square of the years and years of education, as follows: 
𝑌𝑌~𝐿𝐿𝐿𝐿{𝜇𝜇(𝐱𝐱),𝜎𝜎} and  

𝜇𝜇(𝐱𝐱) = � 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

= 𝑏𝑏0 + 𝑏𝑏1𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑏𝑏2𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑏𝑏3𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, (3) 

where 𝑌𝑌  denotes a variable of earnings; 𝐱𝐱 = {𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3} = {1, 𝑒𝑒𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒𝑒𝑒2, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} 
denotes a regressor vector in which ‘𝑒𝑒𝑒𝑒𝑒𝑒’ and ‘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒’ stand for years of potential work 
experience and education, respectively. Reg. eq. 𝜇𝜇(𝐱𝐱) shall be referred to the ‘primary 
equation for the conditional mean’ or simply ‘primary equation’ The ordinary least square 
(OLS) method can be applied to estimate partial reg. coeffs. 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2 and 𝑏𝑏3. Model (3) 
is typically expressed as follows: 

log𝑌𝑌~𝑏𝑏0 + 𝑏𝑏1𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑏𝑏2𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑏𝑏3𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜀𝜀. (4) 
If 𝑌𝑌  strictly follows the LN-reg. model in (3), the error term 𝜀𝜀  follows a normal 
distribution with expectation zero and variance 𝜎𝜎2. The LN-reg. is widely used, even in the 
cases in which 𝜀𝜀 is neither normal nor homogenous, probably because the OLS estimates 
satisfy unbiasedness (under the assumption that 𝜀𝜀  is not correlated with regressors). 2 
However, when researchers aim to estimate the effects of the determinant factors on the 
characteristics of earnings distributions other than the conditional means, the LN-reg. may 
possibly be unsuitable. To address this issue, this study shall examine wage reg. eqs. in the 
form of the dPLN model. The dPLN distribution has the following pdf and cdf:3 

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛼𝛼,𝛽𝛽)

=
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
𝛽𝛽𝑦𝑦𝛽𝛽−1𝑒𝑒−𝛽𝛽𝛽𝛽+

1
2𝛽𝛽

2𝜎𝜎2Φ𝑐𝑐 �
log 𝑦𝑦 − 𝜇𝜇 + 𝛽𝛽𝜎𝜎2

𝜎𝜎
�

+
𝛽𝛽

𝛼𝛼 + 𝛽𝛽
𝛼𝛼𝑦𝑦−𝛼𝛼−1𝑒𝑒𝛼𝛼𝛼𝛼+

1
2𝛼𝛼

2𝜎𝜎2Φ�
log 𝑦𝑦 − 𝜇𝜇 − 𝛼𝛼𝜎𝜎2

𝜎𝜎
�  and 

(5) 

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛼𝛼,𝛽𝛽)

=
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
𝑦𝑦𝛽𝛽𝑒𝑒−𝛽𝛽𝛽𝛽+

1
2𝛽𝛽

2𝜎𝜎2Φ𝑐𝑐 �
log 𝑦𝑦 − 𝜇𝜇 + 𝛽𝛽𝜎𝜎2

𝜎𝜎
�

−
𝛽𝛽

𝛼𝛼 + 𝛽𝛽
𝑦𝑦−𝛼𝛼𝑒𝑒𝛼𝛼𝛼𝛼+

1
2𝛼𝛼

2𝜎𝜎2Φ�
log 𝑦𝑦 − 𝜇𝜇 − 𝛼𝛼𝜎𝜎2

𝜎𝜎
�

+ Φ�
log 𝑦𝑦 − 𝜇𝜇

𝜎𝜎
�    for 𝑦𝑦 > 0, 

(6) 

                                                   
2 As the empirical example in this study uses microdata with weights for tabulation, the weighted least 
square method is applied instead. The corresponding prerequisite for the unbiasedness is that there is no 
weighted-correlation between 𝜀𝜀 and regressors. 
3 Reed (2003) derived the dPLN distribution from the assumption that individual log earnings follow 
Brownian motion with constant parameter 𝜇𝜇 and 𝜎𝜎, and elapsed time from individual birth (entry into the 
labor market) to death (retirement from the labor market) follows an exponential distribution. However, Toda 
(2012) showed that individual earnings follow a dPLN distribution after a sufficiently long time has passed 
without the specific heterogeneity assumption if a mean-reverting independent transitory component exists 
with the Brownian motion. 
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where 𝛼𝛼  and 𝛽𝛽  are additional positive parameters; Φ𝑐𝑐(𝑥𝑥) ≔ 1 −Φ(𝑥𝑥)  is the 
complementary cdf of the standard normal distribution. The dPLN distribution follows 
power laws of orders determined by 𝛽𝛽 and 𝛼𝛼 in the left and right tails, as follows: 

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)~𝑘𝑘1𝑦𝑦𝛽𝛽−1 (𝑦𝑦 → 0)  and  𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)~𝑘𝑘2𝑦𝑦−𝛼𝛼−1 (𝑦𝑦 → ∞), 
where 𝑘𝑘1, 𝑘𝑘2 denote positive constants. The dPLN distribution converges to the lognormal 
distribution with parameters 𝜇𝜇 and 𝜎𝜎 when 𝛼𝛼,𝛽𝛽 → ∞. The first and higher moments of 
the dPLN distribution are expressed as follows (Reed 2003): 

𝐸𝐸(𝑌𝑌ℎ) =
𝛼𝛼𝛼𝛼

(𝛼𝛼 − ℎ)(𝛽𝛽 + ℎ) 𝑒𝑒
ℎ𝜇𝜇+12ℎ

2𝜎𝜎2   for 𝛼𝛼 > ℎ. (7) 

The dPLN distribution has certain advantages as the base model for earnings reg. eqs.: 
Several researchers have shown that the dPLN is better fitted to income and earnings 
distributions than other parametric models such as the LN and GB2. Moreover, the 
parameters have clear roles on a basis of the LN model that allows the LN-reg. in (3) and 
(4) to be generalized naturally, so that the primary eq. for the conditional mean can be 
obtained in the same form as the LN-reg. Finally, the predicted earnings distribution has an 
analytic expression of the Gini index by regarding it as a mixture distribution of dPLNs 
(Okamoto 2012). Thus, the effects of the determinant factors on wage dispersion measured 
by the Gini index can be estimated from the predicted wage distribution. 

The logarithm of a dPLN random variable 𝑌𝑌  follows a Normal-Laplace (NL) 
distribution (Reed and Wu 2008) as follows: 

log𝑌𝑌 = 𝜇𝜇 + 𝜀𝜀 = 𝜇𝜇 + 𝜎𝜎𝜎𝜎 + 𝛼𝛼−1𝐿𝐿1 − 𝛽𝛽−1𝐿𝐿2, (8) 
where 𝑍𝑍~𝑁𝑁(0,1), i.e., a standard normal random variable, 𝐿𝐿1 and 𝐿𝐿2 follow exponential 
distributions with pdf 𝑒𝑒−𝑥𝑥 and those three variables are assumed to be independent of one 
another. The expectation of the NL distribution in (8) is expressed as follows: 

𝐸𝐸(log𝑌𝑌) = 𝜇𝜇 + 𝛼𝛼−1 − 𝛽𝛽−1. (9) 
If 𝜀𝜀 ≔ 𝜎𝜎𝜎𝜎 + 𝛼𝛼−1𝐿𝐿1 − 𝛽𝛽−1𝐿𝐿2 in (8) is regarded as the error term, then, the expectation of 
the error term is non-zero when 𝛼𝛼 ≠ 𝛽𝛽. Thus, if only 𝜇𝜇 is regressed on 𝐱𝐱 in the dPLN 
model, the reg. coeffs. do not agree with those of the LN-reg., i.e., the reg. of 𝜇𝜇 does not 
correspond to the primary eq. for the conditional mean of the LN-reg. When 𝛼𝛼 and 𝛽𝛽 are 
homogeneous, the difference emerges only at the intercept; otherwise, the difference also 
emerges with other coeffs. Let formula (8) be deformed as follows: 

log𝑌𝑌 = 𝜇𝜇 + 𝛼𝛼−1 − 𝛽𝛽−1 + 𝜀𝜀′, (10) 
where 𝜀𝜀′ ≔ 𝜀𝜀 − 𝛼𝛼−1 + 𝛽𝛽−1, then, the expectation of 𝜀𝜀′ is zero. From eq. (10), it appears 
natural to regress the reciprocals of 𝛼𝛼 and 𝛽𝛽 on 𝐱𝐱 in addition to 𝜇𝜇 as follows: 

𝑌𝑌~𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝜇𝜇(𝐱𝐱),𝜎𝜎, 1  𝛼𝛼−1(𝐱𝐱)⁄ , 1  𝛽𝛽−1(𝐱𝐱)⁄ }, 

𝜇𝜇(𝐱𝐱) = � 𝑐𝑐𝑖𝑖
𝜇𝜇𝑥𝑥𝑖𝑖

𝑖𝑖
,𝛼𝛼−1(𝐱𝐱) = � 𝑐𝑐𝑖𝑖𝛼𝛼𝑥𝑥𝑖𝑖

𝑖𝑖
 and 𝛽𝛽−1(𝐱𝐱) = � 𝑐𝑐𝑖𝑖

𝛽𝛽𝑥𝑥𝑖𝑖
𝑖𝑖

. (11) 

The dPLN-reg. (11) creates asymptotic equivalences 𝑏𝑏𝑖𝑖 = 𝑐𝑐𝑖𝑖
𝜇𝜇 + 𝑐𝑐𝑖𝑖𝛼𝛼 + 𝑐𝑐𝑖𝑖

𝛽𝛽 , which bring 
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about the primary eq. of the dPLN-reg. Some discrepancies may arise in practice due to the 
misspecification, such as that the actual reg. functions are not strictly linear, but 
approximate equivalences are still expected to hold in the usual cases4. When 𝜎𝜎 is also 
heterogeneous, 𝜎𝜎 or its transformed value using an appropriate link function, such as a 
logarithm function, should also be regressed on 𝐱𝐱. Thus, there can exist at most three reg. 
eqs. for the conditional dispersion of the error term. Nonetheless, the equivalence of the 
primary eqs. with the LN-reg. are expected to be (approximately) satisfied. 

Despite the (approximate) equivalence of the primary eqs., there exist important 
differences between the LN- and dPLN-reg. models: The latter has two parameters, 𝛼𝛼 and 
𝛽𝛽, in addition to 𝜎𝜎 relating to the homogeneity/heterogeneity in the error term and that 
those two parameters also explicitly affect the primary eq. in contrast to 𝜎𝜎. Thus, this 
parameter addition may affect the interpretation of the primary eq., such that reg. coeffs. do 
not represent the genuine returns of wage determinant factors; rather, the coeffs. include the 
contribution of population heterogeneity (see footnote 3). Note that, because of the 
equivalence property, the ambiguity in the interpretation also holds for the primary eq. of 
the LN-reg. when the dPLN-reg. model is appropriate as the actual wage distribution model. 
 
2.2 Estimation procedure 
 
The LN- and dPLN-reg. models briefly discussed in the previous subsection is fitted to 
wage data in such a manner as to maximize the following log-likelihood function: 

ℓ = � 𝑤𝑤𝑖𝑖 log 𝑓𝑓 �𝑦𝑦𝑖𝑖; 𝜇𝜇�𝐱𝐱𝑖𝑖
𝜇𝜇�,𝜎𝜎, 1 𝛼𝛼−1(𝐱𝐱𝑖𝑖𝛼𝛼)⁄ , 1 𝛽𝛽−1 �𝐱𝐱𝑖𝑖

𝛽𝛽�� �
𝑖𝑖

= �𝑤𝑤𝑖𝑖 log 𝑓𝑓{𝑦𝑦𝑖𝑖;𝜽𝜽(𝐱𝐱𝑖𝑖)}
𝑖𝑖

, 
(12) 

where 𝑓𝑓  denotes the pdf of the LN or dPLN distribution in (1) and (5); 𝑦𝑦𝑖𝑖  denotes 

earnings of individual 𝑖𝑖; 𝐱𝐱𝑖𝑖
𝜇𝜇, 𝐱𝐱𝑖𝑖𝛼𝛼 and 𝐱𝐱𝑖𝑖

𝛽𝛽 denote values of regressors (only 𝐱𝐱𝑖𝑖
𝜇𝜇 for the 

LN-reg.) taken by individual 𝑖𝑖 on which their respective parameters or reciprocals are 
regressed; and 𝑤𝑤𝑖𝑖 denotes a weight for tabulation assigned to individual 𝑖𝑖. The weights 
are assumed to be normalized to make the total weights equal to the sample size 𝑛𝑛, i.e., 
∑ 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑛𝑛. In the reg. models for the heterogeneous error term applied in the next section, 
the logarithm of 𝜎𝜎 is also regressed. In addition, the alternative link function (the logarithm 
of the reciprocal) is also considered for 𝛼𝛼 and 𝛽𝛽 in the next section. Notation 𝜽𝜽(𝐱𝐱) is 
used as the general abbreviated notation of the reg. functions for all parameters, regardless 
of the link functions used. 

To perform the maximum likelihood (ML) estimation, the Newton-Raphson (NR) 

                                                   
4 Estimation bias can also be a major cause of the discrepancy when the sample size is small. 
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iterative algorithm is applied using the score function vector, denoted as ℓ′  and the 
observed Fisher information matrix (FIM)5 presented in Appendix 2. Beginning with an 
initial value vector 𝒄𝒄0 given appropriately, the NR algorithm iteratively updates the reg. 
coeffs. until convergence occurs as follows: 

𝒄𝒄𝑘𝑘 = 𝒄𝒄𝑘𝑘−1 − 𝜌𝜌 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹(𝒄𝒄𝑘𝑘−1)−1ℓ′(𝒄𝒄𝑘𝑘−1)  for 𝑘𝑘 = 1,2,⋯, (13) 
where 𝐹𝐹𝐹𝐹𝐹𝐹−1 denotes the inverse matrix of the FIM, 𝒄𝒄𝑘𝑘 denotes the tentative reg. coeff. 
vector at step 𝑘𝑘, and 𝜌𝜌 represents for the adjustment multiplier, which is usually fixed to 
unity but reduced to less than unity in some cases to avoid convergence failure. In the case 
of reg. model (11), 𝒄𝒄𝑘𝑘 consists of the tentative values of the following reg. coeffs. and 
parameter 𝜎𝜎: 

𝒄𝒄 = �𝑐𝑐0
𝜇𝜇, 𝑐𝑐1

𝜇𝜇 , 𝑐𝑐2
𝜇𝜇, 𝑐𝑐3

𝜇𝜇;  𝜎𝜎;  𝑐𝑐0𝛼𝛼 , 𝑐𝑐1𝛼𝛼 , 𝑐𝑐2𝛼𝛼 , 𝑐𝑐3𝛼𝛼;  𝑐𝑐0
𝛽𝛽 , 𝑐𝑐1

𝛽𝛽 , 𝑐𝑐2
𝛽𝛽 , 𝑐𝑐3

𝛽𝛽�. 

Ways to create an initial value vector are crucial for the NR algorithm. In the empirical 
example of this study, the ML parameters/reg. coeffs. for a simpler model were used as part 
of an initial value vector for a more complex model and iterative partial maximization 
techniques were employed, which are described in Appendix 3. As for the reg. eq. of 𝜎𝜎, the 
procedure in this study relied on the Nelder-Mead simplex algorithm (Nelder and Mead 
1965) to obtain an initial value vector sufficiently close to the ML estimates due to the 
difficulty of finding an appropriate initial value vector for the NR algorithm.6,7 
 
2.3 Evaluation measures for the goodness-of-fit 
 
Two types of measures are employed to evaluate the goodness-of-fit of the reg. models. The 
first type of measures evaluate the suitability of the model for representing the relation 
between 𝐱𝐱 and 𝑦𝑦. The AIC and BIC, which are the log-likelihood penalized based on the 
number of parameters/reg. coeffs. (denoted as ‘#𝜽𝜽’), are used here. 

𝐴𝐴𝐴𝐴𝐴𝐴 = −2ℓ + 2 ∙ #𝜽𝜽, 
𝐵𝐵𝐵𝐵𝐵𝐵 = −2ℓ + log𝑛𝑛 ∙ #𝜽𝜽. 

Another type of measures evaluate the proximity between the actual overall size distribution 
of 𝑦𝑦 and that predicted by a reg. model. The relation between 𝐱𝐱 and 𝑦𝑦 does not matter 
explicitly for the second type of measures. The predicted size distribution of 𝑦𝑦 is a mixture 
of 𝐿𝐿𝐿𝐿{𝜽𝜽(𝐱𝐱𝑖𝑖)}  or 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝜽𝜽(𝐱𝐱𝑖𝑖)}  distributions with weights 𝑤𝑤𝑖𝑖 s. Its pdf and cdf are 

                                                   
5 To the author’s best knowledge, the FIM formula of the dPLN has not been shown in the prior literature. 
6 The Nelder-Mead algorithm was performed using the ‘optim’ function implemented in the statistical 
analysis system R. Although no particular problem arises in the empirical example of this study, the Nelder-
Mead algorithm becomes time-consuming with an increase of the number of regressors. This issue needs to 
be addressed in the future. 
7 A sample R-script for the ML estimation procedure and calculation of the evaluation measures, which is 
prepared for the empirical example in the next section, is available on the author’s personal website 
(http://www.geocities.jp/stat_okamoto/). 
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expressed as follows: 

𝑓𝑓𝑀𝑀(𝑦𝑦) =
1

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
� 𝑤𝑤𝑖𝑖𝑓𝑓{𝑦𝑦;𝜽𝜽(𝐱𝐱𝑖𝑖)}

𝑖𝑖
, (14) 

𝐹𝐹𝑀𝑀(𝑦𝑦) =
1

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
� 𝑤𝑤𝑖𝑖𝐹𝐹{𝑦𝑦;𝜽𝜽(𝐱𝐱𝑖𝑖)}

𝑖𝑖
. (15) 

The log-likelihood of this mixture distribution, ℓ𝑀𝑀 (shown below), is employed as one of 
the second type of measures. 

ℓ𝑀𝑀 = �𝑤𝑤𝑖𝑖 log 𝑓𝑓𝑀𝑀(𝑦𝑦𝑖𝑖)
𝑖𝑖

. (16) 

Another of the second type of measures is the square root of the squared sum of errors 
between the empirical Lorenz curve of the overall earnings distribution and that predicted 
by the reg. model, denoted as ‘L-RSSE’. Those additions are made because the predicted 
overall distribution, particularly with respect to its dispersion, is not necessarily accurate 
relative to those predicted by other reg. models and/or single statistical distribution models 
without reg. on 𝐱𝐱 even when the first type of measures indicate its superiority to others. 
Let sequences �𝑦𝑦[𝑖𝑖]� and �𝑤𝑤[𝑖𝑖]� denote {𝑦𝑦𝑖𝑖} and {𝑤𝑤𝑖𝑖} arranged in ascending order of 
{𝑦𝑦𝑖𝑖}, then, the L-RSSE is expressed as follows: 

L-RSSE = �∑ �𝐿𝐿[𝑖𝑖] − 𝐿𝐿𝑀𝑀�𝑐𝑐[𝑖𝑖]��
2

𝑖𝑖 , (17) 

where �𝑐𝑐[𝑖𝑖] = ∑ 𝑤𝑤[𝑘𝑘]
𝑖𝑖
𝑘𝑘=1 ∑ 𝑤𝑤[𝑘𝑘]

𝑛𝑛
𝑘𝑘=1� � denotes the cumulative population share and �𝐿𝐿[𝑖𝑖] =

∑ 𝑤𝑤[𝑘𝑘]𝑦𝑦[𝑘𝑘]
𝑖𝑖
𝑘𝑘=1 ∑ 𝑤𝑤[𝑘𝑘]𝑦𝑦[𝑘𝑘]

𝑛𝑛
𝑘𝑘=1� � denotes the cumulative share of earnings, i.e., �𝑐𝑐[𝑖𝑖], 𝐿𝐿[𝑖𝑖]� 

corresponds to the (𝑥𝑥,𝑦𝑦) coordinate of the empirical Lorenz curve. The Lorenz curve of 
the predicted mixture distribution 𝐿𝐿𝑀𝑀 is implicitly expressed as follows: 

𝐿𝐿𝑀𝑀(𝑐𝑐) = 𝐹𝐹𝑀𝑀
(1)(𝑧𝑧) =

1
∑ 𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖

� 𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖𝐹𝐹(1){𝑧𝑧;𝜽𝜽(𝐱𝐱𝑖𝑖)}
𝑖𝑖

 and 

𝑐𝑐 = 𝐹𝐹𝑀𝑀(𝑧𝑧), 
where 𝑚𝑚𝑖𝑖 s denote the expectations of the LN or dPLN distributions comprising the 
predicted mixture distribution, i.e., the first moments in (2) or (7); 𝐹𝐹(1)�𝑧𝑧;𝜽𝜽(𝐱𝐱𝑖𝑖)� denotes 
the cdf of the first moment distribution of each component, expressed as follows for the LN 
distribution (cf. Kleiber and Kotz 2003): 

𝐹𝐹𝐿𝐿𝐿𝐿
(1)(𝑦𝑦; 𝜇𝜇,𝜎𝜎) = Φ�

log 𝑦𝑦 − 𝜇𝜇 − 𝜎𝜎2

𝜎𝜎
�. (18) 

For the dPLN distribution, 𝐹𝐹(1)(𝑧𝑧) is expressed as follows (Okamoto 2012 and 2013): 

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(1) (𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛼𝛼,𝛽𝛽) = 𝛼𝛼−1

𝛼𝛼+𝛽𝛽
𝑦𝑦𝛽𝛽+1𝑒𝑒−(𝛽𝛽+1)𝜇𝜇+12�𝛽𝛽

2−1�𝜎𝜎2Φ𝑐𝑐 �log𝑦𝑦−𝜇𝜇+𝛽𝛽𝜎𝜎
2

𝜎𝜎
� −

𝛽𝛽+1
𝛼𝛼+𝛽𝛽

𝑦𝑦−𝛼𝛼+1𝑒𝑒(𝛼𝛼−1)𝜇𝜇+12�𝛼𝛼
2−1�𝜎𝜎2Φ �log𝑦𝑦−𝜇𝜇−𝛼𝛼𝜎𝜎

2

𝜎𝜎
� + Φ�log𝑦𝑦−𝜇𝜇−𝜎𝜎

2

𝜎𝜎
�. 

(19) 

Although the inverse cdf 𝐹𝐹𝑀𝑀−1 cannot be expressed explicitly, the univariate NR algorithm 
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enables the calculation of 𝐹𝐹𝑀𝑀−1�𝑐𝑐[𝑖𝑖]�. 
The second type of measures, ℓ𝑀𝑀 and L-RSSE, can be regarded as variants of measures 

employed by Okamoto (2012) to evaluate the goodness-of-fit of the overall income 
distributions expressed as a mixture distribution consisting of income distributions by age 
groups. Penalty for the number of parameters/reg. coeffs. is not imposed on either measure 
because, according to the simulation, the appropriate penalty on ℓ𝑀𝑀 is likely to be very 
small even when really required (Okamoto 2012), and the L-RSSE is unlikely to require the 
penalty (Okamoto 2014). 

Specific major inequality indices, i.e., the Gini index, second Theil index or equivalently 
mean log deviation (MLD), Theil index (T1) and squared coefficient of variation (SCV), 
are also calculated to examine the goodness-of-fit of the predicted overall distribution. The 
MLD and T1 of the LN distribution is equal to 𝜎𝜎2 2⁄ . The analytic formulas of those indices 
for the dPLN distribution were given by Okamoto (2012). The formulas of the SCV are 
derived from the first and second order moments in (2) and (7). Those indices of the LN 
and dPLN mixture distributions can be calculated using the well-known subgroup 
decomposition formula for the family of generalized entropy measures (Shorrocks 1980) as 
the build-up formula. The within-group and between-group inequality components in this 
formula represent inequalities within and between groups in which individuals have the 
same values for regressors 𝐱𝐱. The derived two components of the inequality measures, 
including the Gini index, are also compared with those from the raw data. 
 
 
3 Empirical example 
 
3.1 Data 
 
The LN- and dPLN-reg. models are fitted to public use microdata from the 2008, 2010, 
2012 and 2014 Survey on Household Income and Wealth (SHIW), conducted by the Bank 
of Italy biennially, to analyze relations of payroll income (including fringe benefits) to the 
years of potential work experience and education of male employees under 55 years old. 
The reasons for using the SHIW data are that the microdata are publicly released without 
top-coding (i.e., high incomes are not replaced by artificial values) and are provided with 
replicate weights for estimating the sample variances consistently with the survey design. 
Only a few microdata satisfy those requirements.8 
                                                   
8 The standard deviations (SDs) of data from ordinary (stratified) multistage sampling design are more than 
1.5 times larger than those from the simple random sampling (SRS) in many cases (the SDs of the 
parameters/reg. coeffs. for the SRS are estimable using the FIM). To address this issue, 300–400 sets of 
replicate weights are provided to perform the Jackknife resampling procedure consistently with the SHIW 
survey design (Faiella 2008). As the replicate weights for the most recent 2014 SHIW have not been released, 
the statistical inference is omitted for 2014. 
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The sample size is approximately 2,500 for each year. Years of education is regarded as 
3 for employees without educational qualification; 5, 8, 11, and 13 for those who have 
graduated from primary, lower secondary, vocational secondary, and upper secondary 
school, respectively; and 16, 18, 21 for those qualified with 3-year university, 5-year 
university, and postgraduate degrees, respectively. Years of potential work experience is 
calculated as age – (years of education + 6). 
 
3.2 Variants of the earnings regression models applied 
 
Two LN- and four dPLN-reg. models are fitted to the data. The LN-reg. model I, denoted 
as ‘MLN I’ by identifying it with the predicted LN mixture model, corresponds to the 
standard Mincer eq. (3). MLN II incorporates the heteroskedasticity in the error term by 
regressing the logarithm of 𝜎𝜎 using the same reg. function as 𝜇𝜇(𝐱𝐱) as follows: 

log 𝜎𝜎(𝐱𝐱) = ς(𝐱𝐱) = 𝑏𝑏0𝜎𝜎 + 𝑏𝑏1𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑏𝑏2𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑏𝑏3𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. (20) 
MdPLN I and II replace the LN model in MLN I and II with the dPLN model, respectively. 
In MdPLN II, 𝜎𝜎 is heterogeneous, whereas 𝛼𝛼 and 𝛽𝛽 are assumed to be homogeneous. 
MdPLN III fully incorporates the heterogeneity in the error term by regressing the 
reciprocals of 𝛼𝛼 and 𝛽𝛽 as well as log 𝜎𝜎 as follows: 

log 𝜎𝜎(𝐱𝐱𝝈𝝈) = ς(𝐱𝐱𝝈𝝈) = 𝑐𝑐0𝜎𝜎 + 𝑐𝑐1𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐3𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 
𝛼𝛼−1(𝐱𝐱) = 𝑐𝑐0𝛼𝛼 + 𝑐𝑐1𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐2𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑐𝑐3𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

𝛽𝛽−1(𝐱𝐱) = 𝑐𝑐0
𝛽𝛽 + 𝑐𝑐1

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐2
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑐𝑐3

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 
(21) 

MdPLN III′ replaces the link functions of 𝛼𝛼 and 𝛽𝛽 in MdPLN III with the logarithm of 
the reciprocals as follows: 

− log𝛼𝛼(𝐱𝐱) = 𝜏𝜏(𝐱𝐱) = 𝑐𝑐0𝛼𝛼 + 𝑐𝑐1𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐2𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑐𝑐3𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

− log𝛽𝛽(𝐱𝐱) = 𝜐𝜐(𝐱𝐱) = 𝑐𝑐0
𝛽𝛽 + 𝑐𝑐1

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐2
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑐𝑐3

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 
(22) 

In both models, the square of potential work experience years is excluded from the 
regressors in the reg. eq. of log𝜎𝜎 = ς(𝐱𝐱) to avoid instability of the model fitting. MdPLN 
III can produces the primary eq. in the same form as 𝜇𝜇(𝐱𝐱) in MLN I and II, as explained 
in Section 2. 
 
3.3 Comparisons of estimated regression models and goodness-of-fit of the models 
 

Table 1 shows the results for the six reg. models fitted to the Italian male wage data. 
Significance tests of the reg. coeffs. were performed using the Jackknife replicate weights. 
In comparing the primary eq. of MdPLN III, 𝜇𝜇(𝐱𝐱) + 𝛼𝛼−1(𝐱𝐱) − 𝛽𝛽−1(𝐱𝐱), with 𝜇𝜇(𝐱𝐱)s of 
MLN I and II, there exist significant differences between the corresponding coeffs. at the 
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5% level for 2008 and 2010. Thus, the equivalence of the primary eqs. appears not to hold 
completely, but the differences remain small. If comparing 𝜇𝜇(𝐱𝐱)s alone in the four MdPLN 
models with 𝜇𝜇(𝐱𝐱)s in MLN I and II, the differences of the corresponding coeffs. are 
significant in most cases except for those of the squared terms of ‘potential experience 
years’. However, the signs of all the coeffs. coincide with those in other models. By contrast, 
the MdPLN models clearly differ from MLN II as for the reg. eqs. of 𝜎𝜎, such that the coeffs. 
for ‘potential work experience years’ are negative in MLN II, whereas they are positive in 
MdPLN II, III and III′, although the significance levels vary among the survey years; 
moreover, the coeffs. for ‘education years’ are insignificant in MLN II, whereas those are 
positive and in most cases significant at the 1% level in MdPLN II, III and III′. In the 
estimation results for the reg. eqs. of 𝛼𝛼  and 𝛽𝛽  in MdPLN III and III′, the coeffs. for 
‘education years’ are positive in 𝛼𝛼 ’s eq. and negative in 𝛽𝛽 ’s eq. Those results are 
significant at the 5% level except for those in MdPLN III′ for 2012. As the squared term is 
also a regressor, a visible number of the coeffs. for ‘potential work experience years’ are 
insignificant at the 5% level, particularly in 𝛼𝛼’s eq.; nevertheless, those are positive in 𝛼𝛼’s 
and negative in 𝛽𝛽’s eqs. for all survey years. In summary, the fitting results of the MdPLN 
models are by and large stable. From analytic formulas of inequality measures such as the 
MLD and T1 (Okamoto 2012), it can be posited that the coeffs. in 𝛼𝛼’s and 𝛽𝛽’s eqs. – with 
the opposite signs in MdPLN III and III′ – realize the complex relations between the 
regressors and wage dispersion, which are unable to be mimicked by the LN-reg. models, 
such that a value change of the same regressor in 𝛼𝛼’s and 𝛽𝛽’s eqs. contributes an increase 
of the (within-group) wage dispersion via one parameter, and simultaneously a decrease via 
another parameter. 

In comparing the goodness-of-fit among the models, the MdPLN models substantially 
improve from the MLN models in terms of all four criteria, i.e., the AIC, BIC, ℓ𝑀𝑀 and L-
RSSE. Figure 1 illustrates that the pdfs of the MdPLN models closely resemble the density 
distribution of the original data relative to those of the MLN models.9 Note that the pdf of 
MdPLN III′ is omitted from Figure 1 because the curve drawn by the pdf appears completely 
overlapped with that of MdPLN III. In comparing the four MdPLN models, model II, which 
incorporates the heterogeneity only in 𝜎𝜎, outperforms model I in all four criteria. Models 
III and III′, which incorporate the heterogeneity in 𝛼𝛼  and 𝛽𝛽  in addition to that in 𝜎𝜎, 
outperform model II in terms of the AIC, BIC and ℓ𝑀𝑀. As for the L-RSSE, model III attains 
smaller errors than model II for 2008, 2012 and 2014, whereas the converse holds for 2010. 
Thus, model III is also unlikely to be inferior to model II in terms of the L-RSSE. By 
contrast, model III′ attains a smaller error than model II only for 2008. Although model III′ 
tends to be even slightly better than model III in terms of the AIC, BIC and ℓ𝑀𝑀, the converse 
                                                   
9 Using function ‘density’ implemented into the statistical analysis system R with the default options, the 
density distribution of the raw data was estimated by the kernel density estimation (KDE) method. The 
mode of the raw data in Table 2 and 3 derives from the estimated density distribution. 
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holds in terms of the L-RSSE except for 2010. Thus, model III′ is unlikely to be superior to 
models II and III in terms of the accuracy of the inequality estimation despite the superiority 
in terms of the three frequency-based evaluation measures. 

Table 2 shows the mean, mode and major inequality indices estimated from the MLN and 
MdPLN models. MdPLN III′ predicts that the SCV is infinite for 2012 and 2014. The MLN 
models substantially underestimate the mode and overestimate other statistics, whereas the 
MdPLN models estimate them much more accurately; in particular, the errors of the Gini 
indices reduce to less than one-tenth. In comparing the MdPLN models, models III and III′ 
estimate the mean and MLD more accurately than models I and II, whereas the converse is 
true with respect to the mode. As for the accuracy of the Gini index and T1, similar 
tendencies are observed as with the L-RSSE; thus, a clear judgment of superiority or 
inferiority is hard to make regarding the estimation of the two indices. 

In comparison with the MLN models, the MdPLN models also predict the ratios of the 
within-group inequality to the overall inequality closer to those in the original data. In 
particular, models III and III′, which fully incorporate the heterogeneity in the error term, 
tend to predict best among the MdPLN models. 

The adjusted Gini index in Table 2 is defined as the Gini index after adjusting the mean 
in each group 𝑚𝑚𝑖𝑖 to the overall mean 𝑚𝑚𝑀𝑀 by uniformly multiplying all wages within the 
group by a constant value and by changing the population share of the group 𝑝𝑝𝑖𝑖 to maintain 
the wage amount share 𝑝𝑝𝑖𝑖 𝑚𝑚𝑖𝑖 𝑚𝑚𝑀𝑀⁄ ; here, the groups are minutely classified according to 
the values of the regressors. Consider the following subgroup decomposition of the Gini 
index (Okamoto 2009): 

𝐺𝐺𝑀𝑀 = � 𝑝𝑝𝑖𝑖
𝑚𝑚𝑖𝑖

𝑚𝑚𝑀𝑀
𝐺𝐺𝑖𝑖

𝑖𝑖
+

1
𝑚𝑚𝑀𝑀

� 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗 ��𝐹𝐹𝑖𝑖(𝑦𝑦) − 𝐹𝐹𝑗𝑗(𝑦𝑦)�2𝑑𝑑𝑑𝑑
𝑖𝑖<𝑗𝑗

, (23) 

where 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖⁄  is the population share of group 𝑖𝑖 ; 𝑚𝑚𝑖𝑖 ,𝐺𝐺𝑖𝑖 ,𝐹𝐹𝑖𝑖(𝑦𝑦)  represent the 
mean, Gini index and cdf in group 𝑖𝑖; and 𝑚𝑚𝑀𝑀 represents the overall mean.10 Then, the 
adjusted Gini index is decomposed as follows: 

𝐺𝐺𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎 = � 𝑝𝑝𝑖𝑖

𝑚𝑚𝑖𝑖

𝑚𝑚𝑀𝑀
𝐺𝐺𝑖𝑖

𝑖𝑖
+

1
𝑚𝑚𝑀𝑀

� 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
𝑚𝑚𝑖𝑖

𝑚𝑚𝑀𝑀

𝑚𝑚𝑗𝑗

𝑚𝑚𝑀𝑀
� �𝐹𝐹𝑖𝑖 �

𝑚𝑚𝑖𝑖

𝑚𝑚𝑀𝑀
𝑦𝑦� − 𝐹𝐹𝑗𝑗 �

𝑚𝑚𝑗𝑗

𝑚𝑚𝑀𝑀
𝑦𝑦��

2
𝑑𝑑𝑑𝑑

𝑖𝑖<𝑗𝑗
 (24) 

The first term in (24), which correspond to the within-group component, is identical to that 
in (23). The second term in (24), which correspond to the between-group component, is 
non-negative; thus, the adjusted Gini index is equal to or larger than the within-group 
component. Provided that the cdfs in all groups become identical to one another by 
equalizing the means, then, the between-group component vanishes and the adjusted Gini 
index is equal to the within-group component. The MdPLN models come under this case 

                                                   
10 The Gini index is also decomposable as 𝐺𝐺𝑀𝑀 = ∑ 𝑝𝑝𝑖𝑖

𝑚𝑚𝑖𝑖
𝑚𝑚𝑀𝑀

𝐺𝐺𝑖𝑖𝑖𝑖 + 1
𝑚𝑚𝑀𝑀

∑ 𝑝𝑝𝑖𝑖 ∫{𝐹𝐹𝑖𝑖(𝑦𝑦)− 𝐹𝐹𝑀𝑀(𝑦𝑦)}2𝑑𝑑𝑑𝑑𝑖𝑖 . The 
within-group component is equivalent to that in the Gini stratification formula of Yitzhaki and Lerman 
(1991). 
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when wage distributions in all groups follow the dPLN distributions with common values 
for parameters 𝜎𝜎,𝛼𝛼 , and 𝛽𝛽 . As the between-group component in (24) measures the 
magnitude of differences of cdfs between groups in the form of a squared sum after 
equalizing the means, the component can be regarded as a measure for the magnitude of the 
heterogeneity in the error term predicted by the reg. models. Table 2 lists the ratios of the 
within-group components to the adjusted Gini indices (= 100% – the ratios of the between-
group components) predicted by the reg. models. The ratios predicted by MdPLN III and 
III′ are smaller than those predicted by the other models; in other words, the models that 
fully incorporate the heterogeneity in the error term estimate that the magnitude of the 
heterogeneity is larger. Nonetheless, the ratios approximately 99% appear to underestimate 
the magnitude relative to the ratios approximately 98% that is estimated from the raw data. 
On this point, however, attention should be paid to the tendencies in the calculation when 
using a finite sample. 11  In practice, a simulation, conducted in accordance with the 
procedure for the calculation from the raw data, computes a 95% confidence interval 
ranging from 98.0 to 99.0% for the MdPLN III estimate. Thus, the difference is not 
statistically significant. 

Finally, compared with the goodness-of-fit of major statistical size distributions (single 
distribution models without reg.) in Table 3, the four dPLN-reg. models are superior to the 
dPLN, GB2 and other single distribution models in terms of the AIC and BIC. As for the 
goodness-of-fit of the overall wage distribution predicted by the dPLN-reg. models, the log-
likelihood values ℓ𝑀𝑀s of MdPLN III and III′ are slightly larger than the maximum log-
likelihood values of the single dPLN and GB2 except for 2010. Model III is also unlikely 
to be inferior to the single dPLN and GB2 in terms of the L-RSSE, whereas the converse 
holds for model III′. In comparing the pdfs between the single dPLN and MdPLN III in 
Figure 2, the density of the former is closer to that of the original data around the peak, 
whereas the peak location of the latter’s is closer to that of the original density distribution. 
Note that the pdf of the single GB2 is omitted from Figure 2 because the curve drawn by 
the pdf looks completely overlapped with that of the single dPLN. 
 
3.4 Quantile regression results when applied to wage distributions predicted by the 
regression models 
 

                                                   
11  The within-group component and adjusted Gini indices of the raw data were approximated by the 
calculation for a subgrouping made by cross-classifying Italian male employees according to five grades of 
their educational qualification (i.e., no school or primary school; lower secondary; vocational secondary; 
upper secondary school; and university or higher degree) and four groups of the duration of the potential 
work experience, i.e., less than 10, 10-19, 20-29 and longer than or equal to 30 years. Three groups 
corresponding to less than 30 years of potential work experience and the lowest educational grade were 
collapsed into one group due to the small sample sizes. Thus, the entire sample was divided into 18 
subsamples for the calculation. 
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The reg. eq. in the standard earnings reg. model (3) is fitted to wage distributions predicted 
by the reg. models using the quantile reg. method (Koenker and Bassett 1978) at quantiles 
0.1, 0.5 and 0.9 in addition to the ordinary least square (LS) reg. method.12 The LS reg. of 
the predicted wage distributions results in the primary eq., i.e., the coeffs. are identical to 
those of 𝜇𝜇(𝐱𝐱) in the cases of the MLN models and equal to those of 𝜇𝜇(𝐱𝐱) + 𝛼𝛼−1(𝐱𝐱) +
𝛽𝛽−1(𝐱𝐱) in the cases of MdPLN I, II and III. As for MdPLN III′, the LS reg. is equivalent 
to the LS reg. of the expectations of log wage 𝜇𝜇(𝐱𝐱𝑖𝑖) + 𝑒𝑒𝜏𝜏(𝐱𝐱𝐢𝐢) − 𝑒𝑒𝜐𝜐(𝐱𝐱𝐢𝐢)s on 𝐱𝐱𝑖𝑖s. The derived 
eq. corresponds to the primary eq. of the other models. The quantile reg. of the predicted 
wage distributions at quantile q is equivalent to the following minimization problem: 

argmin
𝒃𝒃

� 𝑤𝑤𝑖𝑖𝐸𝐸 �𝜓𝜓𝑞𝑞 �log𝑌𝑌𝑖𝑖 −� 𝑏𝑏𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗

��
𝑖𝑖

, (25) 

where 𝑌𝑌𝑖𝑖~𝐿𝐿𝐿𝐿{𝜽𝜽(𝐱𝐱𝑖𝑖)} or 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝜽𝜽(𝐱𝐱𝑖𝑖)}; 𝜓𝜓𝑞𝑞(𝑟𝑟) is defined as follows: 

𝜓𝜓𝑞𝑞(𝑟𝑟) ≔ �(𝑞𝑞 − 1)𝑟𝑟
𝑞𝑞𝑞𝑞

   if 𝑟𝑟 ≤ 0
   if 𝑟𝑟 > 0. (26) 

The minimization problem (25) results in the following simultaneous eqs. for 𝒃𝒃 =
{𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3}, to which the NR algorithm is applicable using the LS estimates as initial 
values: 

0 = � 𝑤𝑤𝑖𝑖𝑥𝑥𝑘𝑘,𝑖𝑖 �𝑞𝑞 − 𝐹𝐹𝑖𝑖 �� 𝑏𝑏𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗

;𝜽𝜽(𝐱𝐱𝑖𝑖)��
𝑖𝑖

, 𝑘𝑘 = 0,1,2,3 (27) 

where 𝑥𝑥𝑘𝑘,𝑖𝑖 represents the value of regressor 𝑘𝑘 taken by individual 𝑖𝑖 and 𝐹𝐹𝑖𝑖(𝑦𝑦) stands 
for the cdf of the normal or NL distribution with parameters 𝜽𝜽(𝐱𝐱𝑖𝑖). The cdf of the NL 
distribution is expressed as 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑒𝑒𝑦𝑦;𝜽𝜽(𝐱𝐱𝑖𝑖)} using the cdf of the dPLN. Tables 4 presents 
the results for each year and the average of 2008, 2010 and 2012.13 

In the results for the quantile regs. applied to the original data, the reg. coeff. at quantile 
0.1 is larger than that at 0.5, and the coeff. at 0.9 is approximately equal to that at 0.5 in 
terms of ‘potential work experience years.’ The coeffs. at quantile 0.1 and 0.9 are larger 
than that at 0.5 in terms of ‘education years.’ The quantile regs. applied to MLN I and 
MdPLN I, which are reg. models formulated on the assumption of the homogeneous error 
term, produce equal coeffs. at all quantile points except those of the intercepts. Thus, both 
models fail to reproduce the results of the original data. The quantile regs. applied to MLN 
II and MdPLN II (i.e., the reg. model incorporating the heterogeneity in 𝜎𝜎) also produce 
different results from those in the original data, such that, in the former case, the coeff. at 
quantile 0.9 is smaller than that at 0.5 as to ‘potential work experience years’ and, in the 
                                                   
12 The quantile reg. was applied to the original data using function ‘rq’ implemented into package ‘quantreg’ 
of the statistical analysis system R. The significance tests are based on the standard deviations estimated by 
the Jackknife resampling procedure using the replicate weights. 
13 The quantile regression in (25)–(27) differs from ‘parametric quantile regressions’ including the method 
studied by Noufaily and Jones (2013). Their regression’s outcomes are conditional quantile functions 
directly derived from fitted regression models. 
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latter case, the coeff. at quantile 0.1 is smaller than that at 0.5 in terms of both ‘potential 
work experience years’ and ‘education years.’ Furthermore, as MdPLN II does not address 
heterogeneity in either 𝛼𝛼 or 𝛽𝛽, the LS method also produces biased coeffs. By contrast, 
MdPLN III and III′ faithfully reproduce the quantile reg. results of the original data. The 
coeffs. including those of the intercepts at all quantile points and their differences between 
the quantile points do not differ significantly from those in the original data. Although the 
gaps in some coeffs. between the quantile and LS reg. differ from those in the original data 
significantly at the 5–10% level for 2010, all the differences are insignificant for 2008, 2012 
and the average of 2008, 2010 and 2012. 

The quantile reg. is applied on the assumption that the reg. coeffs. are heterogeneous such 
that the coeff. varies according to quantile point as follows: 

log 𝑦𝑦~𝑏𝑏0(𝑞𝑞) + 𝑏𝑏1(𝑞𝑞) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑏𝑏2(𝑞𝑞) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑏𝑏3(𝑞𝑞) ∙ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜀𝜀. 
However, the results of MdPLN III demonstrate that the heterogeneity in the error term may 
make the reg. coeffs. look as if varying along with the quantile point, suggesting that this 
phenomenon actually arises in the application of quantile reg. to the real wage data. If that 
is the case, the interpretation of the results of the quantile reg. may differ depending on the 
cause of heterogeneity in the error term (see the last paragraph in section 2.1). 
 
3.5 The effects of uniform change of wage determinants on wage dispersion estimated 
from the reg. models with heterogeneous error terms 
 
The marginal change ratio of the mean or inequality index relative to the uniform 
infinitesimal change of a wage determinant factor shall be referred to as the ‘effect’ of the 
respective determinant factor x on the respective statistic 𝐼𝐼: 

Effect of x on 𝐼𝐼 ≔
∆ log 𝐼𝐼
∆x

=
∆𝐼𝐼 𝐼𝐼⁄
∆x

. (28) 

For example, provided that the number of years of education for each individual increases 
uniformly by ∆x year, then the marginal change ratio of the Gini index relative to ∆x is 
called the effect of education years on the Gini index. The effect of education years on any 
relative invariant inequality index is null in the case of the Mincer eq. model under the 
assumption of the homogeneous error term. Notably, the same is not the case with potential 
work experience years because its squared term is also a regressor in the model. Here, the 
four reg. models incorporating heterogeneity in the error term, out of the six reg. models, 
are compared with respect to the effects of the wage determinant factors because the 
aforementioned results indicate the existence of heterogeneity in the error term and this 
empirical study aims mainly at estimating the effects on the inequality indices. 

Table 5 lists the effects of potential work experience and education years on Italian male 
wages estimated from MLN II, MdPLN II, III and III′. The table also includes each 
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parameter’s contribution to the effects, estimated by giving the infinitesimal uniform change 
of the respective factor only to the reg. eq. of the respective parameter. The effects on the 
mean wage are estimated as +1.5 - 2% for potential work experience years and +6 - 7% for 
education years. Although MdPLN III and III′, fully incorporating the heterogeneity in the 
error term, estimate the effects larger than MdPLN II, the estimates do not widely vary 
among MLN II and three MdPLN models. By contrast, the predicted effects on inequality 
indices exhibit sharp differences between MLN and MdPLNs. MLN II estimates that the 
effects of potential work experience years on inequality indices are negative. The effects on 
the MLD, Gini index and T1 are significant at the 5% level and that on the SCV is significant 
at the 10% level for the averages of 2008, 2010 and 2012. By contrast, the MdPLN models 
estimate that the effects on all inequality indices are insignificant at the 5% level. Although 
MdPLN II estimates that the effects on the T1 and SCV are significant at the 10% level, the 
estimates are positive. As for the effects of education years on inequality indices, MLN II 
estimates that those are negative but insignificant even at the 10% level, whereas the 
MdPLN models estimate that the effects are positive in most cases. For the averages of 2008, 
2010 and 2012, MdPLN II estimates that the effects on all indices are significant at the 1% 
level. The significance level falls in the case of MdPLN III and III′; nonetheless, MdPLN 
III makes estimates the significant effects on the Gini index and T1 at 1% and those on the 
MLD and SCV at the 10% level; MdPLN III′ produces the significant effects on the Gini 
index and T1 at the 5% level and those on the MLD at the 10% level. The expanding effects 
of longer education years on inequality indices tend to be larger for indices sensitive to 
distributional changes in higher wage classes, such that, whereas the effects on the Gini 
index are equal to or less than +3%, those on the T1 are equal to or more than +6% (equal 
to or above the effects on the mean wage) and those on the SCV are more than +10% 
(substantially above the effects on the mean wage). Thus, the estimation from the MdPLN 
models imply that an increase in highly educated workers, such as university graduates, 
may contribute to increasing the wage dispersion. 

MLN II estimates that both 𝜇𝜇 and 𝜎𝜎 contribute to the reducing effects of longer years 
of potential work experience on inequality indices (although the contributions of 𝜎𝜎 are 
evaluated as insignificant), whereas three MdPLN models estimate the reducing effects via 
𝜇𝜇 are nullified by the expanding effects via 𝜎𝜎. Furthermore, MdPLN III and III′ estimate 
that the expanding effects via 𝛼𝛼 are cancelled out by the reducing effects via 𝛽𝛽. As for the 
effects of longer years of education on inequality indices, the MLN II estimates that the 
contributions of 𝜎𝜎 are negative but insignificant, whereas three MdPLN models estimate 
that the contributions of 𝜎𝜎 are positive and significant. MdPLN III and III′ estimate that 
the expanding effects via 𝛼𝛼  are weakened by the reducing effects via 𝛽𝛽 . The net 
contributions of the two parameters are insignificant or significant at loose statistical levels; 
nonetheless, the magnitudes of the net contributions are possibly non-ignorably large 
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relative to those of the contributions via 𝜎𝜎  as to inequality indices sensitive to 
distributional changes in higher wage classes. 

The results of MdPLN II are notable from the perspective of the reg. modeling for the 
following reasons: MdPLN II incorporates only the heterogeneity in 𝜎𝜎. In this respect, the 
model resembles MLN II, whereas the estimated effects of the wage determinant factors on 
inequality indices show sharp differences from MLN II; instead, the estimates are similar 
to those of MdPLN III and III′, which fully incorporate the heterogeneity in the error term. 
 
 
4 Discussion and concluding remarks 
 
In this study, the traditional reg. eq. in the form of the LN model is generalized into that in 
the form of the dPLN model. The generalization substantially improves the goodness-of-fit 
of the Mincer reg. eq. to Italian male wage data. The primary eq. for the conditional mean 
of log-wage predicted by the dPLN-reg. is close to that predicted by the LN-reg. By contrast, 
sharp differences are observed between the two types of reg. models regarding the predicted 
relationships other than the conditional mean, such that the wage distributions predicted by 
the dPLN-reg. models incorporating the heterogeneity in the error term faithfully reproduce 
the log-wage quantile reg. results of the original data, whereas those predicted by the LN-
reg. models fail the reproduction even when incorporating the heteroskedasticity in the error 
term. Furthermore, the two types of reg. models predict the relations of the wage dispersion 
to the wage determinant factors strikingly differently. Thus, the new model is expected to 
be useful, for example, for estimating contributions of wage determinants to wage 
dispersions and the shares of low-wage workers accurately. Furthermore, as the mean wage 
is determined by not only the mean of log-wage but also the dispersion (see (2), (7) and 
differences in the predicted overall means in Table 2), the new model has possibility to 
improve the existing analysis methods using earnings eqs. such as the Oaxaca-Blinder 
decomposition and return of education by utilizing the dispersion reg. eqs. 

The author believes that the dPLN-reg. makes the Mincer equation closer to reality as 
never before; nonetheless, it should be listed as one of the future tasks to investigate reg. 
models based on the generalized models of the dPLN (Reed and Wu 2008; Okamoto 2014) 
or other appropriate statistical size distribution models (although the model fitting method 
is likely to become an issue due to the model complexity) because Figure 1 appears to show 
that there is room for further improvement of the reg. models. 

To distinguish the genuine returns of wage determinant factors in the primary eq. from 
possible effects of the population heterogeneity, it is also a future task to incorporate panel 
data analysis methods into the dPLN-reg. model. 
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Appendix 1 Score function and observed Fisher information matrix for the dPLN 
 
For presenting the formula of the score function and observed FIM of the dPLN, the pdfs 
of the left and right Pareto-lognormal distributions, 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑅𝑅, are introduced: 

𝑓𝑓𝐿𝐿 = 𝑓𝑓𝐿𝐿(𝑦𝑦;𝜇𝜇,𝜎𝜎,𝛽𝛽) ≔ 𝛽𝛽𝑦𝑦𝛽𝛽−1𝑒𝑒−𝛽𝛽𝛽𝛽+
1
2𝛽𝛽

2𝜎𝜎2Φ𝑐𝑐 �
log𝑦𝑦 − 𝜇𝜇 + 𝛽𝛽𝜎𝜎2

𝜎𝜎
�  and 

𝑓𝑓𝑅𝑅 = 𝑓𝑓𝑅𝑅(𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛼𝛼) ≔ 𝛼𝛼𝑦𝑦−𝛼𝛼−1𝑒𝑒𝛼𝛼𝛼𝛼+
1
2𝛼𝛼

2𝜎𝜎2Φ�
log𝑦𝑦 − 𝜇𝜇 − 𝛼𝛼𝜎𝜎2

𝜎𝜎
�. 

Then, the pdf of the dPLN can be expressed as follows, using 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑅𝑅: 

𝑓𝑓 = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛼𝛼,𝛽𝛽) =
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
𝑓𝑓𝐿𝐿(𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛽𝛽) +

𝛽𝛽
𝛼𝛼 + 𝛽𝛽

𝑓𝑓𝑅𝑅(𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛼𝛼). 

In connection with 𝑓𝑓𝐿𝐿 and 𝑓𝑓𝑅𝑅, six functions are additionally defined as follows: 

𝑔𝑔𝐿𝐿 = 𝑔𝑔𝐿𝐿(𝑦𝑦;𝜇𝜇,𝜎𝜎,𝛽𝛽) ≔ 𝛽𝛽𝑦𝑦𝛽𝛽−1𝑒𝑒−𝛽𝛽𝛽𝛽+
1
2𝛽𝛽

2𝜎𝜎2𝜙𝜙 �
log𝑦𝑦 − 𝜇𝜇 + 𝛽𝛽𝜎𝜎2

𝜎𝜎
�, 

𝑔𝑔𝑅𝑅 = 𝑔𝑔𝑅𝑅(𝑦𝑦; 𝜇𝜇,𝜎𝜎,𝛼𝛼) ≔ 𝛼𝛼𝑦𝑦−𝛼𝛼−1𝑒𝑒𝛼𝛼𝛼𝛼+
1
2𝛼𝛼

2𝜎𝜎2𝜙𝜙 �
log𝑦𝑦 − 𝜇𝜇 − 𝛼𝛼𝜎𝜎2

𝜎𝜎
�, 

𝑚𝑚𝛼𝛼+ = 𝑚𝑚𝛼𝛼+(𝑦𝑦;𝜇𝜇,𝜎𝜎,𝛼𝛼) ≔ log𝑦𝑦 − 𝜇𝜇 + 𝛼𝛼𝜎𝜎2, 

𝑚𝑚𝛼𝛼− = 𝑚𝑚𝛼𝛼−(𝑦𝑦;𝜇𝜇,𝜎𝜎,𝛼𝛼) ≔ log𝑦𝑦 − 𝜇𝜇 − 𝛼𝛼𝜎𝜎2, 
𝑚𝑚𝛽𝛽+ = 𝑚𝑚𝛽𝛽+(𝑦𝑦;𝜇𝜇,𝜎𝜎,𝛽𝛽) ≔ log𝑦𝑦 − 𝜇𝜇 + 𝛽𝛽𝜎𝜎2 and 

𝑚𝑚𝛽𝛽− = 𝑚𝑚𝛽𝛽−(𝑦𝑦;𝜇𝜇,𝜎𝜎,𝛽𝛽) ≔ log𝑦𝑦 − 𝜇𝜇 − 𝛽𝛽𝜎𝜎2. 

In the case in which the logarithm of 𝜎𝜎, ς = log 𝜎𝜎, and the reciprocals of 𝛼𝛼 and 𝛽𝛽 are 
used as the parameters instead of 𝜎𝜎, 𝛼𝛼 and 𝛽𝛽 for the dPLN, the score function, i.e. the 
vector of the first-order partial derivatives of the log-likelihood with respect to the 
parameters, is expressed as follows, using the first-order partial derivatives of 𝑓𝑓  with 
respect to the parameters, denoted as 𝑓𝑓𝜇𝜇, 𝑓𝑓𝜎𝜎, 𝑓𝑓𝛼𝛼−1 and 𝑓𝑓𝛽𝛽−1, respectively: 

ℓ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑′ = �𝑤𝑤𝑖𝑖𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦𝑖𝑖;𝜇𝜇, 𝜍𝜍,𝛼𝛼−1,𝛽𝛽−1)
𝑖𝑖

= �𝑤𝑤𝑖𝑖𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦𝑖𝑖;𝜽𝜽)
𝑖𝑖

, 

𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦;𝜽𝜽) = �𝑑𝑑𝜇𝜇,𝑑𝑑𝜍𝜍 ,𝑑𝑑𝛼𝛼−1 ,𝑑𝑑𝛽𝛽−1�
𝑇𝑇 = 1

𝑓𝑓
𝑓𝑓𝜽𝜽, where 𝑓𝑓𝜽𝜽 = �𝑓𝑓𝜇𝜇,𝑓𝑓𝜍𝜍 ,𝑓𝑓𝛼𝛼−1 ,𝑓𝑓𝛽𝛽−1�

𝑇𝑇. 

The observed FIM is expressed as follows, using the first- and second-order partial 
derivatives of 𝑓𝑓 with respect to the parameters, denoted such as 𝑓𝑓𝜇𝜇, 𝑓𝑓𝛼𝛼−1, 𝑓𝑓𝜇𝜇𝜇𝜇 and 𝑓𝑓𝜍𝜍𝛽𝛽−1: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝑤𝑤𝑖𝑖𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦𝑖𝑖;𝜇𝜇, 𝜍𝜍,𝛼𝛼−1,𝛽𝛽−1)
𝑖𝑖

= �𝑤𝑤𝑖𝑖𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦𝑖𝑖;𝜽𝜽)
𝑖𝑖

, 

𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦;𝜽𝜽) = −

⎣
⎢
⎢
⎢
⎡
𝑙𝑙𝜇𝜇𝜇𝜇 𝑙𝑙𝜇𝜇𝜇𝜇 𝑙𝑙𝜇𝜇𝛼𝛼−1 𝑙𝑙𝜇𝜇𝛽𝛽−1
𝑙𝑙𝜇𝜇𝜇𝜇 𝑙𝑙𝜍𝜍𝜍𝜍 𝑙𝑙𝜍𝜍𝛼𝛼−1 𝑙𝑙𝜍𝜍𝛽𝛽−1
𝑙𝑙𝜇𝜇𝛼𝛼−1 𝑙𝑙𝜍𝜍𝛼𝛼−1 𝑙𝑙𝛼𝛼−1𝛼𝛼−1 𝑙𝑙𝛼𝛼−1𝛽𝛽−1
𝑙𝑙𝜇𝜇𝛽𝛽−1 𝑙𝑙𝜍𝜍𝛽𝛽−1 𝑙𝑙𝛼𝛼−1𝛽𝛽−1 𝑙𝑙𝛽𝛽−1𝛽𝛽−1⎦

⎥
⎥
⎥
⎤

= −
1
𝑓𝑓
𝑓𝑓𝜽𝜽𝜽𝜽 +

1
𝑓𝑓2
𝑓𝑓𝜽𝜽 ∙ 𝑓𝑓𝜽𝜽

𝑇𝑇 , 

ECINEQ WP 2016 - 407 August 2016



19 
 

 where 𝑓𝑓𝜽𝜽𝜽𝜽 =

⎣
⎢
⎢
⎢
⎡
𝑓𝑓𝜇𝜇𝜇𝜇 𝑓𝑓𝜇𝜇𝜇𝜇 𝑓𝑓𝜇𝜇𝛼𝛼−1 𝑓𝑓𝜇𝜇𝛽𝛽−1
𝑓𝑓𝜇𝜇𝜇𝜇 𝑓𝑓𝜍𝜍𝜍𝜍 𝑓𝑓𝜍𝜍𝛼𝛼−1 𝑓𝑓𝜍𝜍𝛽𝛽−1
𝑓𝑓𝜇𝜇𝛼𝛼−1 𝑓𝑓𝜍𝜍𝛼𝛼−1 𝑓𝑓𝛼𝛼−1𝛼𝛼−1 𝑓𝑓𝛼𝛼−1𝛽𝛽−1
𝑓𝑓𝜇𝜇𝛽𝛽−1 𝑓𝑓𝜍𝜍𝛽𝛽−1 𝑓𝑓𝛼𝛼−1𝛽𝛽−1 𝑓𝑓𝛽𝛽−1𝛽𝛽−1⎦

⎥
⎥
⎥
⎤
. 

In the above formulas, 𝑣𝑣𝑇𝑇 represents the transpose vector of 𝑣𝑣. The first- and second-
order partial derivatives of 𝑓𝑓 are expressed as follows, using the functions introduced 
above: 

𝑓𝑓𝜇𝜇 = 𝛼𝛼𝛼𝛼
𝛼𝛼+𝛽𝛽

(−𝑓𝑓𝐿𝐿 + 𝑓𝑓𝑅𝑅) + 1
𝛼𝛼+𝛽𝛽

1
𝜎𝜎

(𝛼𝛼𝑔𝑔𝐿𝐿 − 𝛽𝛽𝑔𝑔𝑅𝑅),  

𝑓𝑓𝜍𝜍 = 𝛼𝛼𝛼𝛼
𝛼𝛼+𝛽𝛽

𝜎𝜎2(𝛽𝛽𝑓𝑓𝐿𝐿 + 𝛼𝛼𝑓𝑓𝑅𝑅) + 1
𝛼𝛼+𝛽𝛽

1
𝜎𝜎
�𝛼𝛼𝑚𝑚𝛽𝛽−𝑔𝑔𝐿𝐿 − 𝛽𝛽𝑚𝑚𝛼𝛼+𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝛼𝛼−1 = − 𝛼𝛼2𝛽𝛽
(𝛼𝛼+𝛽𝛽)2 �𝑓𝑓

𝐿𝐿 + �𝛽𝛽
𝛼𝛼
− (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−�𝑓𝑓𝑅𝑅�+ 𝛼𝛼2𝛽𝛽

𝛼𝛼+𝛽𝛽
𝜎𝜎𝑔𝑔𝑅𝑅,  

𝑓𝑓𝛽𝛽−1 = − 𝛼𝛼𝛽𝛽2

(𝛼𝛼+𝛽𝛽)2 ��
𝛼𝛼
𝛽𝛽

+ (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 + 𝑓𝑓𝑅𝑅�+ 𝛼𝛼𝛽𝛽2

𝛼𝛼+𝛽𝛽
𝜎𝜎𝑔𝑔𝐿𝐿,  

𝑓𝑓𝜇𝜇𝜇𝜇 = 𝛼𝛼𝛼𝛼
𝛼𝛼+𝛽𝛽

(𝛽𝛽𝑓𝑓𝐿𝐿 + 𝛼𝛼𝑓𝑓𝑅𝑅) + 1
𝛼𝛼+𝛽𝛽

1
𝜎𝜎3
�𝛼𝛼�−2𝛽𝛽𝜎𝜎2 +𝑚𝑚𝛽𝛽+�𝑔𝑔𝐿𝐿 − 𝛽𝛽(2𝛼𝛼𝜎𝜎2 +𝑚𝑚𝛼𝛼−)𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜇𝜇𝜇𝜇 = 𝛼𝛼𝛼𝛼
𝛼𝛼+𝛽𝛽

𝜎𝜎2(−𝛽𝛽2𝑓𝑓𝐿𝐿 + 𝛼𝛼2𝑓𝑓𝑅𝑅) + 1
𝛼𝛼+𝛽𝛽

1
𝜎𝜎
�𝛼𝛼 �𝑚𝑚𝛽𝛽+𝑚𝑚𝛽𝛽−

𝜎𝜎2
− 𝛽𝛽𝑚𝑚𝛽𝛽− + 𝛽𝛽2𝜎𝜎2 − 1� 𝑔𝑔𝐿𝐿 − 𝛽𝛽 �𝑚𝑚𝛼𝛼+𝑚𝑚𝛼𝛼−

𝜎𝜎2
+

𝛼𝛼𝑚𝑚𝛼𝛼+ + 𝛼𝛼2𝜎𝜎2 − 1� 𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜇𝜇𝛼𝛼−1 = 𝛼𝛼2𝛽𝛽
(𝛼𝛼+𝛽𝛽)2

[𝛽𝛽𝑓𝑓𝐿𝐿 − {𝛼𝛼 + 2𝛽𝛽 − 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−}𝑓𝑓𝑅𝑅]− 𝛼𝛼2𝛽𝛽
(𝛼𝛼+𝛽𝛽)2

1
𝜎𝜎
�𝑔𝑔𝐿𝐿 − �𝛽𝛽

𝛼𝛼
+ 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝜎𝜎2�𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜇𝜇𝛽𝛽−1 = 𝛼𝛼𝛽𝛽2

(𝛼𝛼+𝛽𝛽)2 ��2𝛼𝛼 + 𝛽𝛽 + 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 − 𝛼𝛼𝑓𝑓𝑅𝑅� − 𝛼𝛼𝛽𝛽2

(𝛼𝛼+𝛽𝛽)2
1
𝜎𝜎
��𝛼𝛼
𝛽𝛽

+ 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝜎𝜎2�𝑔𝑔𝐿𝐿 − 𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜍𝜍𝜍𝜍 = 𝛼𝛼𝛼𝛼
𝛼𝛼+𝛽𝛽

𝜎𝜎2{𝛽𝛽(2 + 𝛽𝛽2𝜎𝜎2)𝑓𝑓𝐿𝐿 + 𝛼𝛼(2 + 𝛼𝛼2𝜎𝜎2)𝑓𝑓𝑅𝑅} + 1
𝛼𝛼+𝛽𝛽

1
𝜎𝜎3
�𝛼𝛼�2𝛽𝛽2𝜎𝜎4𝑚𝑚𝛽𝛽− − 𝜎𝜎2𝑚𝑚𝛽𝛽+ +

𝑚𝑚𝛽𝛽−
2 𝑚𝑚𝛽𝛽+�𝑔𝑔𝐿𝐿 + 𝛽𝛽{−2𝛼𝛼2𝜎𝜎4𝑚𝑚𝛼𝛼+ + 𝜎𝜎2𝑚𝑚𝛼𝛼− −𝑚𝑚𝛼𝛼+

2 𝑚𝑚𝛼𝛼−}𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜍𝜍𝛼𝛼−1 = − 𝛼𝛼2𝛽𝛽
(𝛼𝛼+𝛽𝛽)2 𝜎𝜎

2[𝛽𝛽2𝑓𝑓𝐿𝐿 + 𝛼𝛼{2𝛼𝛼 + 3𝛽𝛽 − 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−}𝑓𝑓𝑅𝑅]− 𝛼𝛼2𝛽𝛽
(𝛼𝛼+𝛽𝛽)2

1
𝜎𝜎
�𝑚𝑚𝛽𝛽−𝑔𝑔𝐿𝐿 − �(𝛼𝛼 +

𝛽𝛽)(𝛼𝛼2𝜎𝜎2 + 1)𝜎𝜎2 + 𝛽𝛽
𝛼𝛼
𝑚𝑚𝛼𝛼+�𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜍𝜍𝛽𝛽−1 = − 𝛼𝛼𝛽𝛽2

(𝛼𝛼+𝛽𝛽)2 𝜎𝜎
2�𝛽𝛽�3𝛼𝛼 + 2𝛽𝛽 + 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 + 𝛼𝛼2𝑓𝑓𝑅𝑅�+ 𝛼𝛼𝛽𝛽2

(𝛼𝛼+𝛽𝛽)2
1
𝜎𝜎
��(𝛼𝛼 + 𝛽𝛽)(𝛽𝛽2𝜎𝜎2 + 1)𝜎𝜎2 −

𝛼𝛼
𝛽𝛽
𝑚𝑚𝛽𝛽−�𝑔𝑔𝐿𝐿 + 𝑚𝑚𝛼𝛼+𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝛼𝛼−1𝛼𝛼−1 = 𝛼𝛼4𝛽𝛽
(𝛼𝛼+𝛽𝛽)3 �2

𝛽𝛽
𝛼𝛼
𝑓𝑓𝐿𝐿 + �2 𝛽𝛽2

𝛼𝛼2
+ (𝛼𝛼 + 𝛽𝛽)2𝜎𝜎2 − 𝛼𝛼+𝛽𝛽

𝛼𝛼
(2𝛼𝛼 + 4𝛽𝛽)𝑚𝑚𝛼𝛼− + (𝛼𝛼 + 𝛽𝛽)2𝑚𝑚𝛼𝛼−

2 � 𝑓𝑓𝑅𝑅� −
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𝛼𝛼4𝛽𝛽
(𝛼𝛼+𝛽𝛽)2 𝜎𝜎 �

2𝛼𝛼+4𝛽𝛽
𝛼𝛼

− (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−�𝑔𝑔𝑅𝑅,  

𝑓𝑓𝛼𝛼−1𝛽𝛽−1 = 𝛼𝛼2𝛽𝛽2

(𝛼𝛼+𝛽𝛽)3 ��2𝛼𝛼 + 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 + {2𝛽𝛽 − 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−}𝑓𝑓𝑅𝑅� − 𝛼𝛼2𝛽𝛽2

(𝛼𝛼+𝛽𝛽)2 𝜎𝜎(𝛽𝛽𝑔𝑔𝐿𝐿 + 𝛼𝛼𝑔𝑔𝑅𝑅) and  

𝑓𝑓𝛽𝛽−1𝛽𝛽−1 = 𝛼𝛼𝛽𝛽4

(𝛼𝛼+𝛽𝛽)3 ��2
𝛼𝛼2

𝛽𝛽2
+ (𝛼𝛼 + 𝛽𝛽)2𝜎𝜎2 + 𝛼𝛼+𝛽𝛽

𝛽𝛽
(4𝛼𝛼 + 2𝛽𝛽)𝑚𝑚𝛽𝛽++(𝛼𝛼 + 𝛽𝛽)2𝑚𝑚𝛽𝛽+

2 �𝑓𝑓𝐿𝐿 + 2 𝛼𝛼
𝛽𝛽
𝑓𝑓𝑅𝑅� −

𝛼𝛼𝛽𝛽4

(𝛼𝛼+𝛽𝛽)2 𝜎𝜎 �
4𝛼𝛼+2𝛽𝛽

𝛽𝛽
+ (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑔𝑔𝐿𝐿.  

In the case in which 𝜏𝜏 = − log𝛼𝛼  and 𝜐𝜐 = − log𝛽𝛽  are used instead of 𝛼𝛼  and 𝛽𝛽 , the 
respective partial derivatives of 𝑓𝑓 are replaced as follows: 

𝑓𝑓𝜏𝜏 = − 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2 �𝑓𝑓

𝐿𝐿 + �𝛽𝛽
𝛼𝛼
− (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−�𝑓𝑓𝑅𝑅�+ 𝛼𝛼𝛼𝛼

𝛼𝛼+𝛽𝛽
𝜎𝜎𝑔𝑔𝑅𝑅,  

𝑓𝑓𝜐𝜐 = − 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2 ��

𝛼𝛼
𝛽𝛽

+ (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 + 𝑓𝑓𝑅𝑅�+ 𝛼𝛼𝛼𝛼
𝛼𝛼+𝛽𝛽

𝜎𝜎𝑔𝑔𝐿𝐿,  

𝑓𝑓𝜇𝜇𝜇𝜇 = 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2

[𝛽𝛽𝑓𝑓𝐿𝐿 − {𝛼𝛼 + 2𝛽𝛽 − 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−}𝑓𝑓𝑅𝑅]− 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2

1
𝜎𝜎
�𝑔𝑔𝐿𝐿 − �𝛽𝛽

𝛼𝛼
+ 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝜎𝜎2�𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜇𝜇𝜇𝜇 = 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2 ��2𝛼𝛼 + 𝛽𝛽 + 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 − 𝛼𝛼𝑓𝑓𝑅𝑅� − 𝛼𝛼𝛼𝛼

(𝛼𝛼+𝛽𝛽)2
1
𝜎𝜎
��𝛼𝛼
𝛽𝛽

+ 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝜎𝜎2�𝑔𝑔𝐿𝐿 − 𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜍𝜍𝜍𝜍 = − 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2 𝜎𝜎

2[𝛽𝛽2𝑓𝑓𝐿𝐿 + 𝛼𝛼{2𝛼𝛼 + 3𝛽𝛽 − 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−}𝑓𝑓𝑅𝑅]− 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2

1
𝜎𝜎
�𝑚𝑚𝛽𝛽−𝑔𝑔𝐿𝐿 − �(𝛼𝛼 + 𝛽𝛽)(𝛼𝛼2𝜎𝜎2 +

1)𝜎𝜎2 + 𝛽𝛽
𝛼𝛼
𝑚𝑚𝛼𝛼+�𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜍𝜍𝜍𝜍 = − 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2 𝜎𝜎

2�𝛽𝛽�3𝛼𝛼 + 2𝛽𝛽 + 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 + 𝛼𝛼2𝑓𝑓𝑅𝑅� + 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)2

1
𝜎𝜎
��(𝛼𝛼 + 𝛽𝛽)(𝛽𝛽2𝜎𝜎2 + 1)𝜎𝜎2 −

𝛼𝛼
𝛽𝛽
𝑚𝑚𝛽𝛽−�𝑔𝑔𝐿𝐿 + 𝑚𝑚𝛼𝛼+𝑔𝑔𝑅𝑅�,  

𝑓𝑓𝜏𝜏𝜏𝜏 = 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)3 �−(𝛼𝛼 − 𝛽𝛽)𝑓𝑓𝐿𝐿 + �− 𝛽𝛽

𝛼𝛼
(𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)2𝜎𝜎2 − (𝛼𝛼 + 𝛽𝛽)(𝛼𝛼 + 3𝛽𝛽)𝑚𝑚𝛼𝛼− + 𝛼𝛼(𝛼𝛼 +

𝛽𝛽)2𝑚𝑚𝛼𝛼−
2 � 𝑓𝑓𝑅𝑅� − 𝛼𝛼2𝛽𝛽

(𝛼𝛼+𝛽𝛽)2 𝜎𝜎 �
𝛼𝛼+3𝛽𝛽
𝛼𝛼

− (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−�𝑔𝑔𝑅𝑅  

𝑓𝑓𝜏𝜏𝜏𝜏 = 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)3 ��2𝛼𝛼 + 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑓𝑓𝐿𝐿 + {2𝛽𝛽 − 𝛼𝛼(𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛼𝛼−}𝑓𝑓𝑅𝑅� − 𝛼𝛼𝛼𝛼

(𝛼𝛼+𝛽𝛽)2 𝜎𝜎(𝛽𝛽𝑔𝑔𝐿𝐿 + 𝛼𝛼𝑔𝑔𝑅𝑅) and  

𝑓𝑓𝜐𝜐𝜐𝜐 = 𝛼𝛼𝛼𝛼
(𝛼𝛼+𝛽𝛽)3 ��

𝛼𝛼
𝛽𝛽

(𝛼𝛼 − 𝛽𝛽) + 𝛽𝛽(𝛼𝛼 + 𝛽𝛽)2𝜎𝜎2 + (𝛼𝛼 + 𝛽𝛽)(3𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽++𝛽𝛽(𝛼𝛼 + 𝛽𝛽)2𝑚𝑚𝛽𝛽+
2 � 𝑓𝑓𝐿𝐿 + (𝛼𝛼 −

𝛽𝛽)𝑓𝑓𝑅𝑅� − 𝛼𝛼𝛽𝛽2

(𝛼𝛼+𝛽𝛽)2 𝜎𝜎 �
3𝛼𝛼+𝛽𝛽
𝛽𝛽

+ (𝛼𝛼 + 𝛽𝛽)𝑚𝑚𝛽𝛽+�𝑔𝑔𝐿𝐿.  
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Appendix 2 Score functions and observed Fisher information matrices for the dPLN-
regression models 
 
In model MdPLN III in which 𝜇𝜇，ς = log 𝜎𝜎，𝛼𝛼−1 and 𝛽𝛽−1 are linearly regressed on 
𝐱𝐱𝜇𝜇 , 𝐱𝐱𝜎𝜎 , 𝐱𝐱𝛼𝛼  and 𝐱𝐱𝛽𝛽 , respectively, the score function is expressed as follows, using the 
elements in 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in Appendix 1: 

ℓ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀′ = � 𝑤𝑤𝑖𝑖𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑦𝑦𝑖𝑖; 𝐱𝐱𝑖𝑖
𝜇𝜇 ,𝐱𝐱𝑖𝑖𝜎𝜎 , 𝐱𝐱𝑖𝑖𝛼𝛼 , 𝐱𝐱𝑖𝑖

𝛽𝛽�
𝑖𝑖

= �𝑤𝑤𝑖𝑖𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦𝑖𝑖;𝐱𝐱𝑖𝑖)
𝑖𝑖

, 

𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑦𝑦𝑖𝑖;𝐱𝐱𝑖𝑖
𝜇𝜇 , 𝐱𝐱𝑖𝑖𝜎𝜎 , 𝐱𝐱𝑖𝑖𝛼𝛼 , 𝐱𝐱𝑖𝑖

𝛽𝛽� = �𝑑𝑑𝜇𝜇{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖
𝜇𝜇 ,𝑑𝑑𝜍𝜍{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝜎𝜎 ,𝑑𝑑𝛼𝛼−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝛼𝛼 ,𝑑𝑑𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖

𝛽𝛽�
𝑇𝑇
. 

The observed FIM is expressed as follows, using the elements in 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in Appendix 1: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑤𝑤𝑖𝑖𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑦𝑦𝑖𝑖; 𝐱𝐱𝑖𝑖
𝜇𝜇 ,𝐱𝐱𝑖𝑖𝜎𝜎 , 𝐱𝐱𝑖𝑖𝛼𝛼 , 𝐱𝐱𝑖𝑖

𝛽𝛽�
𝑖𝑖

, 

𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑦𝑦𝑖𝑖; 𝐱𝐱𝑖𝑖
𝜇𝜇 ,𝐱𝐱𝑖𝑖𝜎𝜎 , 𝐱𝐱𝑖𝑖𝛼𝛼 , 𝐱𝐱𝑖𝑖

𝛽𝛽� =

−

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑙𝑙𝜇𝜇𝜇𝜇{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖

𝜇𝜇𝐱𝐱𝑖𝑖
𝜇𝜇𝑇𝑇 𝑙𝑙𝜇𝜇𝜇𝜇{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖

𝜇𝜇𝐱𝐱𝑖𝑖𝜎𝜎
𝑇𝑇 𝑙𝑙𝜇𝜇𝛼𝛼−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖

𝜇𝜇𝐱𝐱𝑖𝑖𝛼𝛼
𝑇𝑇 𝑙𝑙𝜇𝜇𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖

𝜇𝜇𝐱𝐱𝑖𝑖
𝛽𝛽𝑇𝑇

𝑙𝑙𝜇𝜇𝜇𝜇{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖
𝜇𝜇𝐱𝐱𝑖𝑖𝜎𝜎

𝑇𝑇 𝑙𝑙𝜍𝜍𝜍𝜍{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝜎𝜎𝐱𝐱𝑖𝑖𝜎𝜎
𝑇𝑇 𝑙𝑙𝜍𝜍𝛼𝛼−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝜎𝜎𝐱𝐱𝑖𝑖𝛼𝛼

𝑇𝑇 𝑙𝑙𝜍𝜍𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝜎𝜎𝐱𝐱𝑖𝑖
𝛽𝛽𝑇𝑇

𝑙𝑙𝜇𝜇𝛼𝛼−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖
𝜇𝜇𝐱𝐱𝑖𝑖𝛼𝛼

𝑇𝑇 𝑙𝑙𝜍𝜍𝛼𝛼−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝜎𝜎𝐱𝐱𝑖𝑖𝛼𝛼
𝑇𝑇 𝑙𝑙𝛼𝛼−1𝛼𝛼−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝛼𝛼𝐱𝐱𝑖𝑖𝛼𝛼

𝑇𝑇 𝑙𝑙𝛼𝛼−1𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝛼𝛼𝐱𝐱𝑖𝑖
𝛽𝛽𝑇𝑇

𝑙𝑙𝜇𝜇𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖
𝜇𝜇𝐱𝐱𝑖𝑖

𝛽𝛽𝑇𝑇 𝑙𝑙𝜍𝜍𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝜎𝜎𝐱𝐱𝑖𝑖
𝛽𝛽𝑇𝑇 𝑙𝑙𝛼𝛼−1𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖𝛼𝛼𝐱𝐱𝑖𝑖

𝛽𝛽𝑇𝑇 𝑙𝑙𝛽𝛽−1𝛽𝛽−1{𝜽𝜽(𝐱𝐱𝑖𝑖)}𝐱𝐱𝑖𝑖
𝜷𝜷𝐱𝐱𝑖𝑖

𝛽𝛽𝑇𝑇
⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

In the above formulas, 𝐱𝐱𝑖𝑖
𝜇𝜇 , 𝐱𝐱𝑖𝑖𝜎𝜎 , 𝐱𝐱𝑖𝑖𝛼𝛼  and 𝐱𝐱𝑖𝑖

𝛽𝛽  represent the vectors of the respective 
regressors’ values taken by individual 𝑖𝑖. The intercepts are regarded to be regressors which 
always take a value of unity. 𝑑𝑑𝜇𝜇{𝜃𝜃(𝐱𝐱𝑖𝑖)},𝑑𝑑𝜍𝜍{𝜃𝜃(𝐱𝐱𝑖𝑖)},⋯ and 𝑙𝑙𝜇𝜇𝜇𝜇{𝜃𝜃(𝐱𝐱𝑖𝑖)}, 𝑙𝑙𝜇𝜇𝜇𝜇{𝜃𝜃(𝐱𝐱𝑖𝑖)},⋯ represent 
values of the elements in 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑦𝑦;𝜽𝜽(𝐱𝐱)} and 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑦𝑦;𝜽𝜽(𝐱𝐱)} when the regressors take the 

values �𝐱𝐱𝑖𝑖
𝜇𝜇 , 𝐱𝐱𝑖𝑖𝜎𝜎 , 𝐱𝐱𝑖𝑖𝛼𝛼 , 𝐱𝐱𝑖𝑖

𝛽𝛽�. 

In MdPLN III′ in which 𝜇𝜇，ς = log𝜎𝜎，𝜏𝜏 = − log𝛼𝛼  and 𝜐𝜐 = − log𝛽𝛽  are linearly 
regressed on 𝐱𝐱𝜇𝜇 ,𝐱𝐱𝜎𝜎 , 𝐱𝐱𝛼𝛼 and 𝐱𝐱𝛽𝛽, respectively, subscripts 𝛼𝛼−1 and 𝛽𝛽−1 of 𝑑𝑑∙s and 𝑙𝑙∙∙s in 
the above formulas should be replaced with 𝜏𝜏 and 𝜐𝜐, respectively. 
 
 
Appendix 3 Procedure for fitting the dPLN-regression models 
 
The procedure is described below, assuming 𝜇𝜇，ς = log 𝜎𝜎，𝛼𝛼−1 and 𝛽𝛽−1 are linearly 
regressed on the respective regressors. The procedure is essentially the same in the case in 
which 𝜇𝜇，ς = log 𝜎𝜎, 𝜏𝜏 = − log𝛼𝛼 and 𝜐𝜐 = − log𝛽𝛽 are linearly regressed. 
 
Step 1 Fitting of the (single) dPLN model 
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In principle, the initial parameter values �𝜇𝜇(0);𝜎𝜎(0);𝛼𝛼(0);𝛽𝛽(0)� are calculated by applying the 
method of moment estimation (MME) devised by Reed and Jorgensen (2004), and the ML 
parameters �𝜇𝜇(1);𝜎𝜎(1);𝛼𝛼(1);𝛽𝛽(1)�  are then found by the Nelder-Mead simplex algorithm. 
However, it should be noted that the MME sometimes computes a negative 𝜎𝜎(0)

2 . As that is 
the case in the example in this study, an exceptional rule is introduced, such that 𝜇𝜇(0),𝛼𝛼(0) 
and 𝛽𝛽(0) are computed by the MME and 𝜎𝜎(0) is set to 0.1. The NR procedure is not applied 
in this first step because there are cases of convergence failure. 
 
Step 2 Fitting of the standard wage regression model using the least square method 
 
The reg. coeffs. 𝑏𝑏0,𝑏𝑏1,𝑏𝑏2 and 𝑏𝑏3 in (3) shall be estimated using the least square method. 
 
Step 3 Fitting of MdPLN I - regression of only parameter 𝝁𝝁  
 
Step 3.1 Under constraints that 𝜍𝜍,𝛼𝛼−1 and 𝛽𝛽−1 are fixed to 𝜍𝜍(1),𝛼𝛼(1)

−1, and 𝛽𝛽(1)
−1, 

respectively, beginning with the initial values �𝑏𝑏0 − 𝛼𝛼(1)
−1 + 𝛽𝛽(1)

−1,𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3�, the tentative reg. 

coeffs. of 𝜇𝜇, �𝑐𝑐0,(3.1)
𝜇𝜇 , 𝑐𝑐1,(3.1)

𝜇𝜇 , 𝑐𝑐2,(3.1)
𝜇𝜇 , 𝑐𝑐3,(3.1)

𝜇𝜇 �, are determined to maximize the likelihood (i.e., 

partial maximization) using the Newton-Raphson (NR) algorithm. 

Step 3.2 Under constraints that the reg. coeffs. of 𝜇𝜇 are fixed to 

�𝑐𝑐0,(3.1)
𝜇𝜇 , 𝑐𝑐1,(3.1)

𝜇𝜇 , 𝑐𝑐2,(3.1)
𝜇𝜇 , 𝑐𝑐3,(3.1)

𝜇𝜇 �, beginning with the initial values �𝜍𝜍(1);𝛼𝛼(1)
−1;𝛽𝛽(1)

−1�, the tentative 

parameter values �𝜍𝜍(3.2);𝛼𝛼(3.2)
−1 ;𝛽𝛽(3.2)

−1 � are determined to maximize the likelihood using the 
NR algorithm with the adjustment multiplier 𝜌𝜌 = 0.8 (see (13)). The adjustment factor is 
set to less than unity only in this step. 

Step 3.3 beginning from the initial values �𝑐𝑐0,(3.1)
𝜇𝜇 , 𝑐𝑐1,(3.1)

𝜇𝜇 , 𝑐𝑐2,(3.1)
𝜇𝜇 , 𝑐𝑐3,(3.1)

𝜇𝜇 ; 𝜍𝜍(3.2);𝛼𝛼(3.2)
−1 ;𝛽𝛽(3.2)

−1 �, the 

ML parameters/reg. coeffs. of MdPLN I, �𝑐𝑐0,(3.3)
𝜇𝜇 , 𝑐𝑐1,(3.3)

𝜇𝜇 , 𝑐𝑐2,(3.3)
𝜇𝜇 , 𝑐𝑐3,(3.3)

𝜇𝜇 ; 𝜍𝜍(3.3);𝛼𝛼(3.3)
−1 ;𝛽𝛽(3.3)

−1 �, are 

found using the NR algorithm. 
 
Step 4 Fitting of the model with regression equations of 𝝁𝝁 and 𝐥𝐥𝐥𝐥𝐥𝐥𝝈𝝈 
 
Step 4.1 Under constraints that the reg. coeffs. of 𝜇𝜇 are fixed to 

�𝑐𝑐0,(3.3)
𝜇𝜇 , 𝑐𝑐1,(3.3)

𝜇𝜇 , 𝑐𝑐2,(3.3)
𝜇𝜇 , 𝑐𝑐3,(3.3)

𝜇𝜇 � and parameters 𝛼𝛼−1 and 𝛽𝛽−1 are fixed to 𝛼𝛼(3.3)
−1  and 𝛽𝛽(3.3)

−1 , 
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respectively, beginning with the initial values �𝜍𝜍(3.3), 0,0�, the tentative reg. coeffs. of 𝜍𝜍 =

log𝜎𝜎, �𝑐𝑐0,(4.1)
𝜎𝜎 , 𝑐𝑐1,(4.1)

𝜎𝜎 , 𝑐𝑐2,(4.1)
𝜎𝜎 �, are determined to maximize the likelihood using the Nelder-

Mead simplex algorithm. (Initial values are set to �𝜍𝜍(3.3), 0,0,0� and the reg. coeffs. are 
replaced relevantly, hereafter in the case of MdPLN II.) 

Step 4.2 Under constraints that the reg. coeffs. of log𝜎𝜎 are fixed to �𝑐𝑐0,(4.1)
𝜎𝜎 , 𝑐𝑐1,(4.1)

𝜎𝜎 , 𝑐𝑐2,(4.1)
𝜎𝜎 �, 

beginning from the initial values of the reg. coeffs.  �𝑐𝑐0,(3.3)
𝜇𝜇 , 𝑐𝑐1,(3.3)

𝜇𝜇 , 𝑐𝑐2,(3.3)
𝜇𝜇 , 𝑐𝑐3,(3.3)

𝜇𝜇 � and 

parameter values �𝛼𝛼(3.3)
−1 ;𝛽𝛽(3.3)

−1 �, the tentative reg. coeffs. of 𝜇𝜇, �𝑐𝑐0,(4.2)
𝜇𝜇 , 𝑐𝑐1,(4.2)

𝜇𝜇 , 𝑐𝑐2,(4.2)
𝜇𝜇 , 𝑐𝑐3,(4.2)

𝜇𝜇 �, 

and parameters �𝛼𝛼(4.2)
−1 ;𝛽𝛽(4.2)

−1 � are determined to maximize the likelihood using the Nelder-
Mead simplex algorithm. 

Iterations of Steps 4.1 and 4.2 Step 4.1 is performed again after replacing the constraints 

with the respective reg. coeffs./parameters being fixed to �𝑐𝑐0,(4.2)
𝜇𝜇 , 𝑐𝑐1,(4.2)

𝜇𝜇 , 𝑐𝑐2,(4.2)
𝜇𝜇 , 𝑐𝑐3,(4.2)

𝜇𝜇 �, 𝛼𝛼(4.2)
−1  

and 𝛽𝛽(4.2)
−1  and replacing the initial values with �𝑐𝑐0,(4.1)

𝜎𝜎 , 𝑐𝑐1,(4.1)
𝜎𝜎 , 𝑐𝑐2,(4.1)

𝜎𝜎 �; then, Step 4.2 is again 

performed after replacing the initial values with �𝑐𝑐0,(4.2)
𝜇𝜇 , 𝑐𝑐1,(4.2)

𝜇𝜇 , 𝑐𝑐2,(4.2)
𝜇𝜇 , 𝑐𝑐3,(4.2)

𝜇𝜇 � and 

�𝛼𝛼(4.2)
−1 ;𝛽𝛽(4.2)

−1 �. 

Step 4.3 Beginning from the initial values �
𝑐𝑐0,(4.2)
𝜇𝜇 , 𝑐𝑐1,(4.2)

𝜇𝜇 , 𝑐𝑐2,(4.2)
𝜇𝜇 , 𝑐𝑐3,(4.2)

𝜇𝜇 ;
𝑐𝑐0,(4.1)
𝜎𝜎 , 𝑐𝑐1,(4.1)

𝜎𝜎 , 𝑐𝑐2,(4.1)
𝜎𝜎 ;𝛼𝛼(4.2)

−1 ;𝛽𝛽(4.2)
−1 �, the ML reg. 

coeffs./parameters �𝑐𝑐0,(4.3)
𝜇𝜇 , 𝑐𝑐1,(4.3)

𝜇𝜇 , 𝑐𝑐2,(4.3)
𝜇𝜇 , 𝑐𝑐3,(4.3)

𝜇𝜇 ; 𝑐𝑐0,(4.3)
𝜎𝜎 , 𝑐𝑐1,(4.3)

𝜎𝜎 , 𝑐𝑐2,(4.3)
𝜎𝜎 ;𝛼𝛼(4.3)

−1 ;𝛽𝛽(4.3)
−1 � are found 

using the NR algorithm. 
 
Step 5 Fitting of the model with regression equations of 𝝁𝝁, 𝐥𝐥𝐥𝐥𝐥𝐥𝝈𝝈 and 𝜷𝜷−𝟏𝟏 
 
Step 5.1 Under constraints that the reg. coeffs. of 𝜇𝜇 and log𝜎𝜎 are fixed to 

�𝑐𝑐0,(4.3)
𝜇𝜇 , 𝑐𝑐1,(4.3)

𝜇𝜇 , 𝑐𝑐2,(4.3)
𝜇𝜇 , 𝑐𝑐3,(4.3)

𝜇𝜇 � and �𝑐𝑐0,(4.3)
𝜎𝜎 , 𝑐𝑐1,(4.3)

𝜎𝜎 , 𝑐𝑐2,(4.3)
𝜎𝜎 �, respectively and parameter 𝛼𝛼−1 is 

fixed to 𝛼𝛼(4.3)
−1 , beginning with the initial values of the reg. coeffs. �𝛽𝛽(4.3)

−1 , 0,0,0�, the 

tentative reg. coeffs. of 𝛽𝛽−1, �𝑐𝑐0,(5.1)
𝛽𝛽 , 𝑐𝑐1,(5.1)

𝛽𝛽 , 𝑐𝑐2,(5.1)
𝛽𝛽 , 𝑐𝑐3,(5.1)

𝛽𝛽 �, are determined to maximize the 

likelihood using the NR algorithm. 

Step 5.2 Beginning from the initial values 

�𝑐𝑐0,(4.3)
𝜇𝜇 , 𝑐𝑐1,(4.3)

𝜇𝜇 , 𝑐𝑐2,(4.3)
𝜇𝜇 , 𝑐𝑐3,(4.3)

𝜇𝜇 ; 𝑐𝑐0,(4.3)
𝜎𝜎 , 𝑐𝑐1,(4.3)

𝜎𝜎 , 𝑐𝑐2,(4.3)
𝜎𝜎 ;𝛼𝛼(4.3)

−1 ; 𝑐𝑐0,(5.1)
𝛽𝛽 , 𝑐𝑐1,(5.1)

𝛽𝛽 , 𝑐𝑐2,(5.1)
𝛽𝛽 , 𝑐𝑐3,(5.1)

𝛽𝛽 �, the ML reg. 
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coeffs./parameter 

�𝑐𝑐0,(5.2)
𝜇𝜇 , 𝑐𝑐1,(5.2)

𝜇𝜇 , 𝑐𝑐2,(5.2)
𝜇𝜇 , 𝑐𝑐3,(5.2)

𝜇𝜇 ; 𝑐𝑐0,(5.2)
𝜎𝜎 , 𝑐𝑐1,(5.2)

𝜎𝜎 , 𝑐𝑐2,(5.2)
𝜎𝜎 ;𝛼𝛼(5.2)

−1 ; 𝑐𝑐0,(5.2)
𝛽𝛽 , 𝑐𝑐1,(5.2)

𝛽𝛽 , 𝑐𝑐2,(5.2)
𝛽𝛽 , 𝑐𝑐3,(5.2)

𝛽𝛽 � are found 

using the NR algorithm. 
 
Step 6 Fitting of MdPLN III – regression of all four parameters 
 
Step 6.1 Under constraints that the reg. coeffs. of 𝜇𝜇, log𝜎𝜎 and 𝛽𝛽−1 are fixed to 

�𝑐𝑐0,(5.2)
𝜇𝜇 , 𝑐𝑐1,(5.2)

𝜇𝜇 , 𝑐𝑐2,(5.2)
𝜇𝜇 , 𝑐𝑐3,(5.2)

𝜇𝜇 �, �𝑐𝑐0,(5.2)
𝜎𝜎 , 𝑐𝑐1,(5.2)

𝜎𝜎 , 𝑐𝑐2,(5.2)
𝜎𝜎 � and �𝑐𝑐0,(5.2)

𝛽𝛽 , 𝑐𝑐1,(5.2)
𝛽𝛽 , 𝑐𝑐2,(5.2)

𝛽𝛽 , 𝑐𝑐3,(5.2)
𝛽𝛽 �, 

respectively, beginning with the initial values �𝛼𝛼(5.2)
−1 , 0,0,0�, the tentative reg. coeffs. of 

𝛼𝛼−1, �𝑐𝑐0,(6.1)
𝛼𝛼 , 𝑐𝑐1,(6.1)

𝛼𝛼 , 𝑐𝑐2,(6.1)
𝛼𝛼 , 𝑐𝑐3,(6.1)

𝛼𝛼 �, are determined to maximize the likelihood using the NR 
algorithm. 

Step 6.2 Under constraints that the reg. coeffs. of 𝛼𝛼−1 are fixed to 

�𝑐𝑐0,(6.1)
𝛼𝛼 , 𝑐𝑐1,(6.1)

𝛼𝛼 , 𝑐𝑐2,(6.1)
𝛼𝛼 , 𝑐𝑐3,(6.1)

𝛼𝛼 �, beginning with the initial values �𝑐𝑐0,(5.2)
𝜇𝜇 , 𝑐𝑐1,(5.2)

𝜇𝜇 , 𝑐𝑐2,(5.2)
𝜇𝜇 , 𝑐𝑐3,(5.2)

𝜇𝜇 �, 

�𝑐𝑐0,(5.2)
𝜎𝜎 , 𝑐𝑐1,(5.2)

𝜎𝜎 , 𝑐𝑐2,(5.2)
𝜎𝜎 � and �𝑐𝑐0,(5.2)

𝛽𝛽 , 𝑐𝑐1,(5.2)
𝛽𝛽 , 𝑐𝑐2,(5.2)

𝛽𝛽 , 𝑐𝑐3,(5.2)
𝛽𝛽 �, respectively, the tentative reg. coeffs. 

of 𝜇𝜇, log 𝜎𝜎 and 𝛽𝛽−1, �𝑐𝑐0,(6.2)
𝜇𝜇 , 𝑐𝑐1,(6.2)

𝜇𝜇 , 𝑐𝑐2,(6.2)
𝜇𝜇 , 𝑐𝑐3,(6.2)

𝜇𝜇 �, �𝑐𝑐0,(6.2)
𝜎𝜎 , 𝑐𝑐1,(6.2)

𝜎𝜎 , 𝑐𝑐2,(6.2)
𝜎𝜎 � and 

�𝑐𝑐0,(6.2)
𝛽𝛽 , 𝑐𝑐1,(6.2)

𝛽𝛽 , 𝑐𝑐2,(6.2)
𝛽𝛽 , 𝑐𝑐3,(6.2)

𝛽𝛽 �, are determined to maximize the likelihood using the NR 

algorithm. 

Iterations of Steps 6.1 and 6.2 Steps 6.1 and 6.2 are iterated by replacing the constraints 
and initial values relevantly until the time when the tentative reg. coeffs. change only 
slightly. Both steps were iterated 12 times for the empirical example in this study. 

Step 6.3 (Final step) Beginning with the initial values 

�
𝑐𝑐0,(6.2)
𝜇𝜇 , 𝑐𝑐1,(6.2)

𝜇𝜇 , 𝑐𝑐2,(6.2)
𝜇𝜇 , 𝑐𝑐3,(6.2)

𝜇𝜇 ; 𝑐𝑐0,(6.2)
𝜎𝜎 , 𝑐𝑐1,(6.2)

𝜎𝜎 , 𝑐𝑐2,(6.2)
𝜎𝜎 ;

𝑐𝑐0,(6.1)
𝛼𝛼 , 𝑐𝑐1,(6.1)

𝛼𝛼 , 𝑐𝑐2,(6.1)
𝛼𝛼 , 𝑐𝑐3,(6.1)

𝛼𝛼 ; 𝑐𝑐0,(6.2)
𝛽𝛽 , 𝑐𝑐1,(6.2)

𝛽𝛽 , 𝑐𝑐2,(6.2)
𝛽𝛽 , 𝑐𝑐3,(6.2)

𝛽𝛽 �, the ML reg. coeffs. of MdPLN III are 

found using the NR algorithm.  
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Fig. 1 The pdfs of wage distributions predicted by 
LN- and dPLN-reg. models fitted to Italian male 
wages. Note: KDE overestimates the density of the 
raw data around a null wage 
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Fig. 2 The pdfs of wage distributions predicted by 
the dPLN and dPLN-reg. models fitted to Italian 
male wages. Note: As under Fig. 1 
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Fig. 1 (cont’d) 
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Fig. 2 (cont’d) 
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Table 1 Estimated equations of LN- and dPLN-regression models fitted to Italian male wages 

2008 

Para. Regressor 
MLN   MdPLN 

I II   I II III III′ 

µ intercept 8.35  *** 8.37  ***  8.65  *** 8.72  *** 9.05  *** 9.08  *** 

 exp 4.53  *** 4.39  ***  3.70  *** 3.59  *** 2.66  *** 2.62  *** 

 exp2 -6.16  *** -5.88  ***  -5.00  *** -4.87  *** -4.12  ** -4.05  ** 

 educ 6.24  *** 6.20  ***  5.68  *** 5.31  *** 3.46  *** 3.30  *** 

log σ intercept -0.85  *** -0.77  ***  -2.64  ^ -6.71  *** -6.95  *** -6.78  *** 

 exp   -1.36      15.59   5.51  * 4.92  ^ 

 exp2   1.63      -23.27       

 educ   1.07      18.85  *** 24.92  *** 23.88  *** 

1/α or intercept      0.20  *** 0.18  *** -0.05   -3.11  *** 

-log α exp          0.69  ^ 3.79  ^ 

 exp2          -0.71   -3.50   

 educ          1.21  ** 7.66  *** 

1/β or intercept      0.32  *** 0.32  *** 0.59  *** -0.35   

-log β exp          -0.91  ^ -2.97  ^ 

 exp2          0.83   3.10   

 educ          -1.17  * -3.40  * 

µ+1/α intercept      8.53  *** 8.58  *** 8.42  ***   

  −1/β exp          4.26  ***   

 exp2          -5.66  ***   

  educ                   5.85  ***     

ℓ  -28437   -28412    -27929   -27890   -27855   -27851   

AIC  56884   56840    55872   55799   55739   55733   

BIC  56914   56887    55913   55858   55828   55822   

ℓM  -28823   -28734    -28461   -28430   -28395   -28392   

L-RSSE   1.304    1.235      0.368    0.242    0.122    0.176    

Notes: Reg. coeffs. for years of potential work experience (exp) and education (educ) are multiplied by 102 
and those for the square of potential work experience years (exp2) are multiplied by 104. The coeffs. are 
statistically significant at *** 0.1, ** 1, * 5, and ^ 10% level. 
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Table 1 (cont’d) 

2010 

Para. Regressor 
MLN   MdPLN 

I II   I II III III′ 

µ intercept 8.31  *** 8.33  ***  8.75  *** 8.82  *** 9.16  *** 9.15  *** 

 exp 4.33  *** 4.18  ***  3.40  *** 3.43  *** 2.74  *** 2.66  *** 

 exp2 -5.62  *** -5.30  ***  -4.36  *** -4.53  *** -4.25  *** -4.03  *** 

 educ 6.52  *** 6.46  ***  5.69  *** 5.30  *** 3.14  *** 3.26  *** 

log σ intercept -0.68  *** -0.36  ^  -2.41  *** -5.44  *** -5.81  *** -5.51  *** 

 exp   -0.46      5.96   2.76   2.40   

 exp2   -0.32      -6.73       

 educ   -1.86      18.79  *** 22.65  *** 21.37  *** 

1/α or intercept      0.18  *** 0.16  *** -0.04   -2.85  *** 

-log α exp          0.18   0.99   

 exp2          0.40   2.08   

 educ          1.34  ** 6.58  *** 

1/β or intercept      0.40  *** 0.39  *** 0.79  *** 0.19   

-log β exp          -1.09  ^ -3.36  * 

 exp2          1.01   3.73   

 educ          -2.06  ** -5.97  *** 

µ+1/α intercept      8.53  *** 8.58  *** 8.33  ***   

  −1/β exp          4.00  ***   

 exp2          -4.86  ***   

  educ                   6.53  ***     

ℓ  -26191   -26179    -25599   -25565   -25527   -25527   

AIC  52392   52375    51213   51149   51083   51083   

BIC  52422   52421    51254   51208   51171   51171   

ℓM  -26477   -26381    -26022   -25996   -25965   -25961   

L-RSSE   2.060    1.873      0.296    0.222    0.343    0.305    
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Table 1 (cont’d) 

2012 

Para. Regressor 
MLN   MdPLN 

I  II   I  II  III  III′   

µ intercept 8.00  *** 8.00  ***  8.55  *** 8.67  *** 9.19  *** 9.26  *** 

 exp 5.88  *** 5.79  ***  4.24  *** 4.00  *** 1.82  ^ 1.42   

 exp2 -8.22  *** -8.04  ***  -5.26  *** -4.98  *** -1.45   -0.34   

 educ 6.94  *** 7.03  ***  6.31  *** 5.71  *** 3.45  *** 3.03  ** 

log σ intercept -0.63  *** -0.16    -2.13  *** -4.62  *** -4.45  *** -3.69  *** 

 exp   -3.97  **    1.13   2.38   2.33   

 exp2   7.99  ^    5.08       

 educ   -0.57      15.94  *** 14.87  *** 9.34   

α−1 or intercept      0.16  *** 0.15  *** -0.09   -4.52  *** 

-log α exp          0.74   9.70   

 exp2          -0.91   -17.14   

 educ          1.15  * 11.94  * 

β−1 or intercept      0.45  *** 0.44  *** 1.07  *** 0.44   

-log β exp          -3.15  *** -6.52  *** 

 exp2          5.54  * 11.59  * 

 educ          -2.27  * -4.73  ^ 

µ+α−1 intercept      8.26  *** 8.37  *** 8.03  ***   

  −β−1 exp          5.71  ***   

 exp2          -7.90  ***   

  educ                   6.87  ***     

ℓ  -24830   -24805    -24319   -24294   -24255   -24251   

AIC  49669   49626    48653   48608   48539   48533   

BIC  49698   49672    48693   48665   48626   48619   

ℓM  -25116   -24992    -24757   -24732   -24702   -24703   

L-RSSE  2.041    1.827      0.291    0.190    0.135    0.219    
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Table 1 (cont’d) 

2014 

Para. Regressor 
MLN   MdPLN 

I II   I II III III′ 

µ intercept 8.19   8.19    8.76   8.87   9.48   9.54   

 exp 5.04   4.83    3.31   3.13   1.47   1.08   

 exp2 -6.77   -6.23    -3.90   -3.71   -1.83   -1.28   

 educ 6.55   6.64    5.52   4.98   1.72   1.82   

log σ intercept -0.75   -0.09    -2.40   -5.85   -5.28   -3.36   

 exp   -3.72      0.76   2.37   -1.26   

 exp2   6.76      9.98       

 educ   -2.22      21.93   19.12   12.03   

1/α or intercept      5.90   0.15   -0.12   -5.93   

-log α exp          0.38   13.82   

 exp2          0.13   -15.47   

 educ          1.61   13.51   

1/β or intercept      2.43   0.41   1.14   0.74   

-log β exp          -2.79   -6.32   

 exp2          4.14   9.98   

 educ          -3.26   -7.88   

µ+1/α intercept      12.24   8.61   8.21     

  −1/β exp          4.65     

 exp2          -5.83     

  educ                   6.59        

ℓ  -21328   -21294    -20993   -20965   -20905   -20900   

AIC  42665   42603    41999   41949   41840   41829   

BIC  42693   42648    42039   42006   41925   41914   

ℓM  -21587   -21488    -21318   -21292   -21264   -21268   

L-RSSE   1.536    1.273      0.239    0.159    0.080    0.162    
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Table 2. Central tendency and dispersion statistics estimated from LN- and dPLN-regression models fitted 
to Italian male wages 

2008 

Statistics 
  

Raw data  
MLN   MdPLN 

  I II   I II III III′ 
Mean (€) (a) 17,652  17,892  17,876   17,374  17,308  17,443  17,535  
Mode (€) (b) 15,410  12,375  12,667   15,395  15,498  16,015  16,070  

Gini (c) 0.2332  0.2729  0.2708   0.2291  0.2290  0.2345  0.2381  
Adj. Gini (d) 0.1974* 0.2386  0.2378   0.1935  0.1977  0.2006  0.2040  
Within-Gini (e) 0.1930* 0.2386  0.2372   0.1935  0.1962  0.1984  0.2012  
 (e)/(c) in %  82.7  87.4  87.6   84.4  85.7  84.6  84.5  
 (e)/(d) in %  97.8  100.0  99.8   100.0  99.2  98.9  98.7  
MLD (f) 0.1082  0.1217  0.1207   0.0923  0.0926  0.0999  0.1039  
Within-MLD (g) 0.0766* 0.0922  0.0921   0.0697  0.0686  0.0703  0.0716  
 (g)/(f) in %  70.9  75.7  76.3   75.5  74.1  70.3  68.9  
T1 (h) 0.1047  0.1219  0.1210   0.0890  0.0932  0.1039  0.1123  
Within-T1 (i) 0.0714* 0.0922  0.0920   0.0661  0.0682  0.0731  0.0782  
 (i)/(h) in %  68.2  75.6  76.0   74.2  73.2  70.4  69.6  
SCV (j) 0.1276  0.1384  0.1382   0.0985  0.1128  0.1434  0.2470  
Within-SCV (k) 0.0849* 0.1075  0.1078   0.0746  0.0859  0.1102  0.2093  
 (k)/(j) in %   66.5  77.7  78.0    75.8  76.1  76.8  84.7  

 
2010 

Statistics   Raw data MLN   MdPLN 

      I II   I II III III' 
Mean (€) (a) 17,934  18,569  18,484   17,661  17,652  17,876  17,856  
Mode (€) (b) 16,014  11,472  11,855   16,022  16,367  17,025  17,063  

Gini (c) 0.2409  0.3097  0.3033   0.2429  0.2439  0.2512  0.2500  
Adj. Gini (d) 0.2087* 0.2788  0.2745   0.2099  0.2146  0.2165  0.2153  
Within-Gini (e) 0.2048* 0.2788  0.2741   0.2099  0.2132  0.2141  0.2129  
 (e)/(c) in %  85.0  90.0  90.4   86.4  87.4  85.2  85.2  
 (e)/(d) in %  98.1  100.0  99.9   100.0  99.4  98.9  98.9  
MLD (f) 0.1239  0.1587  0.1539   0.1085  0.1095  0.1189  0.1187  
Within-MLD (g) 0.0952* 0.1274  0.1273   0.0862  0.0857  0.0861  0.0859  
 (g)/(f) in %  76.9  80.3  82.7   79.4  78.3  72.4  72.4  
T1 (h) 0.1066  0.1589  0.1504   0.0988  0.1037  0.1172  0.1158  
Within-T1 (i) 0.0777* 0.1274  0.1236   0.0762  0.0791  0.0828  0.0817  
 (i)/(h) in %  72.9  80.1  82.2   77.1  76.3  70.6  70.6  
SCV (j) 0.1160  0.1874  0.1711   0.1043  0.1184  0.1542  0.1514  
Within-SCV (k) 0.0808* 0.1546  0.1433   0.0808  0.0922  0.1166  0.1144  
 (k)/(j) in %   69.7  82.5  83.7    77.5  77.9  75.6  75.5  
Note: Figures denoted by an asterisk (*) were calculated from the raw data cross-classified by four work 
experience-year groups and five grades of educational qualification 
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Table 2. (cont’d) 

2012 

Statistics  
  

Raw data  
MLN   MdPLN 

  I II   I II III III′ 

Mean (€) (a) 17,438  18,088  18,002   17,167  17,091  17,236  17,373  

Mode (€) (b) 16,070  10,550  11,025   15,182  15,730  16,540  16,330  

Gini (c) 0.2598  0.3283  0.3211   0.2607  0.2583  0.2607  0.2664  
Adj. Gini (d) 0.2210* 0.2931  0.2876   0.2223  0.2255  0.2224  0.2282  
Within-Gini (e) 0.2172* 0.2931  0.2870   0.2223  0.2247  0.2210  0.2258  
 (e)/(c) in %  83.6  89.3  89.4   85.3  87.0  84.8  84.7  
 (e)/(d) in %  98.3  100.0  99.8   100.0  99.7  99.3  98.9  
MLD (f) 0.1432  0.1797  0.1748   0.1275  0.1255  0.1340  0.1398  
Within-MLD (g) 0.1089* 0.1414  0.1415   0.0993  0.0990  0.0996  0.1011  
 (g)/(f) in %  76.0  78.7  80.9   77.9  78.8  74.4  72.3  
T1 (h) 0.1230  0.1795  0.1703   0.1128  0.1134  0.1196  0.1334  
Within-T1 (i) 0.0876* 0.1414  0.1367   0.0844  0.0865  0.0846  0.0928  
 (i)/(h) in %  71.2  78.8  80.3   74.8  76.2  70.8  69.6  
SCV (j) 0.1367  0.2158  0.1983   0.1170  0.1225  0.1346  Inf. 
Within-SCV (k) 0.0920* 0.1763  0.1633   0.0876  0.0943  0.0976  Inf. 
 (k)/(j) in %   67.3  81.7  82.3    74.9  77.0  72.5  n.a. 
 

2014 

Statistics 
  

Raw data  
MLN   MdPLN 

  I II   I II III III' 
Mean (€) (a) 17,809  18,230  18,123   17,598  17,511  17,700  17,799  
Mode (€) (b) 16,949  11,844  12,580   16,330  16,740  17,988  17,750  

Gini (c) 0.2404  0.2943  0.2847   0.2397  0.2381  0.2409  0.2449  

Adj. Gini (d) 0.2080* 0.2607  0.2529   0.2096  0.2127  0.2093  0.2133  
Within-Gini (e) 0.2037* 0.2607  0.2521   0.2096  0.2116  0.2071  0.2102  
 (e)/(c) in %  84.7  88.6  88.5   87.4  88.9  86.0  85.8  
 (e)/(d) in %  97.9  100.0  99.7   100.0  99.5  98.9  98.6  
MLD (f) 0.1194  0.1428  0.1368   0.1075  0.1065  0.1160  0.1195  
Within-MLD (g) 0.0902* 0.1107  0.1103   0.0873  0.0868  0.0876  0.0878  
 (g)/(f) in %  75.6  77.5  80.6   81.3  81.5  75.5  73.5  
T1 (h) 0.1047  0.1426  0.1315   0.0959  0.0977  0.1053  0.1157  
Within-T1 (i) 0.0745* 0.1107  0.1049   0.0757  0.0777  0.0762  0.0822  
 (i)/(h) in %  71.1  77.6  79.7   78.9  79.4  72.3  71.0  
SCV (j) 0.1118  0.1648  0.1448   0.0989  0.1063  0.1222  Inf. 
Within-SCV (k) 0.0747* 0.1320  0.1173   0.0781  0.0853  0.0914  Inf. 
 (k)/(j) in %   66.8  80.1  81.0    79.0  80.2  74.8  n.a. 
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Table 3. Estimation results of parametric size distribution models fitted to Italian male wages 

2008 

  
Raw 

data 

4 para. 
  

3 para. 
  

2 para. 

dPLN GB2 SM Dagum κG GG LN 

Mean (€) 17,652  17,564  17,539   17,519  17,233  17,552  17,650   17,890  

Mode (€) 15,410  16,708  16,493   14,635  15,395  15,248  13,710   12,375  

Gini 0.2332  0.2377  0.2365   0.2312  0.2259  0.2314  0.2525   0.2726  

MLD 0.1082  0.1030  0.1017   0.0906  0.0898  0.0924  0.1080   0.1215  

Theil 0.1047  0.1069  0.1050   0.0901  0.0860  0.0933  0.1019   0.1215  

SCV 0.1276  0.1424  0.1378   0.1019  0.0937  0.1125  0.1068   0.1375  

ℓ  -28398  -28397   -28513  -28473  -28464  -28704   -28821  

AIC  56804  56802   57033  56952  56934  57413   57645  

BIC  56828  56826   57051  56970  56951  57431   57657  

L-RSSE   0.161  0.154    0.329  0.435  0.238  0.845    1.297  

 

2010 

  
Raw 

data 

4 para. 
  

3 para. 
  

2 para. 

dPLN GB2 SM Dagum κG GG LN 

Mean (€) 17,934  17,798  17,802   17,848  17,557  17,865  17,918   18,563  

Mode (€) 16,014  18,314  18,382   15,040  16,353  15,626  14,295   11,472  

Gini 0.2409  0.2465  0.2465   0.2461  0.2397  0.2444  0.2630   0.3094  

MLD 0.1239  0.1163  0.1163   0.1063  0.1068  0.1059  0.1231   0.1584  

Theil 0.1066  0.1101  0.1101   0.0993  0.0962  0.1009  0.1108   0.1584  

SCV 0.1160  0.1316  0.1316   0.1051  0.1002  0.1117  0.1126   0.1864  

ℓ  -25960  -25960   -26093  -26026  -26053  -26192   -26466  

AIC  51928  51929   52191  52057  52112  52391   52936  

BIC  51952  51952   52209  52075  52129  52408   52948  

L-RSSE   0.200  n.a.   0.389  0.305  0.301  0.830    2.050  
Notes: ‘κG’ stands for the κ-generalized distribution (Clementi et al. 2007). ‘GG’ stands for the generalized 
Gamma distribution. For the year 2010, the L-RSSE of the GB2 is unable to be properly computed due to the 
limitations of the computational precision of the statistical analysis system used for this study 
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Table 3. (cont’d) 

2012 

  
Raw 

data 

4 para. 
  

3 para. 
  

2 para. 

dPLN GB2 Singh-
Maddala Dagum κG GG LN 

Mean (€) 17,438  17,331  17,321   17,350  17,093  17,359  17,427   18,090  

Mode (€) 16,070  17,308  17,495   14,175  15,730  14,775  13,100   10,490  

Gini 0.2598  0.2658  0.2659   0.2650  0.2582  0.2633  0.2813   0.3286  

MLD 0.1432  0.1367  0.1369   0.1252  0.1267  0.1248  0.1424   0.1799  

T1 0.1230  0.1273  0.1274   0.1149  0.1118  0.1163  0.1270   0.1799  

SCV 0.1367  0.1542  0.1544   0.1216  0.1169  0.1280  0.1301   0.2165  

ℓ  -24707  -24707   -24806  -24745  -24774  -24890   -25117  

AIC  49421  49422   49618  49496  49555  49786   50238  

BIC  49444  49445   49636  49513  49572  49804   50250  

L-RSSE   0.201  0.203    0.370  0.268  0.269  0.786    2.050  

 

2014 

  
Raw 

data 

4 para. 
  

3 para. 
  

2 para. 

dPLN GB2 SM Dagum κG GG LN 

Mean (€) 17,809  17,704  17,703   17,754  17,491  17,765  17,803   18,238  

Mode (€) 16,949  18,205  18,353   15,050  16,575  15,667  14,284   11,844  

Gini 0.2404  0.2423  0.2423   0.2443  0.2371  0.2419  0.2590   0.2947  

MLD 0.1194  0.1136  0.1136   0.1051  0.1055  0.1042  0.1188   0.1430  

Theil 0.1047  0.1048  0.1048   0.0975  0.0940  0.0981  0.1074   0.1430  

SCV 0.1118  0.1195  0.1194   0.1023  0.0966  0.1065  0.1091   0.1656  

ℓ  -21270  -21270   -21369  -21315  -21339  -21436   -21591  

AIC  42548  42548   42744  42637  42684  42879   43187  

BIC  42570  42571   42761  42654  42700  42896   43198  

L-RSSE   0.113  0.114    0.330  0.242  0.254  0.663    1.547  
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Table 4. Least square and quantile regression results for conditional wage distributions predicted by LN- and 
dPLN-regression models fitted to Italian male wages 

2008, 2010 and 2012 on average 

Model Regressor 

 
LS 

 
 

(a) 

Quantile regression   
Diff. b/w 
quantile 
points 

  Diff. from LS 

10% 
(b) 

50% 
(c) 

90% 
(d) 

  (c)-
(b) 

(d)-
(c)   (b)-

(a) 
(c)-
(a) 

(d)-
(a) 

Raw data intercept 8.22  *** 7.34  *** 8.60  *** 8.70  ***  ***   *** *** *** 

 exp 4.92  *** 7.20  *** 3.85  *** 3.93  ***  *    ** * 

 exp2 -6.67  *** -10.33  ** -5.30  *** -4.58  ***      ^ ^ 

 educ 6.56  *** 7.22  *** 5.27  *** 7.21  ***  ** ***   ***  

MLN I intercept 8.22  *** 7.59  *** 8.22  *** 8.85  ***  *** ***  ***  *** 

 exp 4.92  *** 4.92  *** 4.92  *** 4.92  ***        

 exp2 -6.67  *** -6.67  *** -6.67  *** -6.67  ***        

 educ 6.56  *** 6.56  *** 6.56  *** 6.56  ***        

MLN II intercept 8.23  *** 7.41  *** 8.23  *** 9.06  ***  ** **  **  ** 

 exp 4.79  *** 6.13  *** 4.79  *** 3.45  ***  ^ ^  ^  ^ 

 exp2 -6.41  *** -8.63  *** -6.41  *** -4.18  ***        

 educ 6.56  *** 6.88  *** 6.56  *** 6.24  ***        

MdPLN I intercept 8.44  *** 7.89  *** 8.52  *** 8.89  ***  *** ***     

 exp 3.78  *** 3.78  *** 3.78  *** 3.78  ***        

 exp2 -4.87  *** -4.87  *** -4.87  *** -4.87  ***        

 educ 5.90  *** 5.90  *** 5.90  *** 5.90  ***        

MdPLN II intercept 8.51  *** 8.13  *** 8.64  *** 8.72  ***  *** *  *** *** *** 

 exp 3.67  *** 3.34  *** 3.58  *** 4.10  ***  ** *  ** ^ * 

 exp2 -4.79  *** -4.45  *** -4.71  *** -5.19  ***  ^      

 educ 5.44  *** 4.37  *** 5.12  *** 6.91  ***  *** ***  *** *** *** 

MdPLN III intercept 8.26  *** 7.49  *** 8.57  *** 8.69  ***  *** **  *** *** *** 

 exp 4.66  *** 6.22  *** 3.91  *** 3.93  ***  ***   ** *** * 

 exp2 -6.14  *** -8.72  *** -5.22  *** -4.62  ***  *   * * * 

 educ 6.42  *** 6.65  *** 5.27  *** 7.21  ***  ** ***   *** ** 

MdPLN III′ intercept 8.24  *** 7.47  *** 8.57  *** 8.68  ***  *** **  *** *** *** 

 exp 4.80  *** 6.47  *** 3.94  *** 3.97  ***  ***   *** *** ** 

 exp2 -6.43  *** -9.28  *** -5.27  *** -4.72  ***  **   * ** * 

  educ 6.50  *** 6.68  *** 5.29  *** 7.26  ***   ** ***     *** * 

Notes: As under Table 1 
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Table 4. (cont’d) 

2008 

Model Regressor 

 
LS 

 
 

(a) 

Quantile regression   
Diff. b/w 
quantile 
points 

  Diff. from LS 

10% 
(b) 

50% 
(c) 

90% 
(d) 

  (c)-
(b) 

(d)-
(c)   

(b)-
(a) 

(c)-
(a) 

(d)-
(a) 

Raw data intercept 8.35  *** 7.88  *** 8.66  *** 8.66  ***  **   ^ *** * 

 exp 4.53  *** 6.02  ** 3.49  *** 4.61  ***      *  

 exp2 -6.16  *** -8.79  * -4.79  *** -6.02  *        

 educ 6.24  *** 5.19  *** 5.25  *** 6.98  ***   *   *  

MLN I intercept 8.35  *** 7.80  *** 8.35  *** 8.90  ***  *** ***  ***  *** 

 exp 4.53  *** 4.53  *** 4.53  *** 4.53  ***        

 exp2 -6.16  *** -6.16  *** -6.16  *** -6.16  ***        

 educ 6.24  *** 6.24  *** 6.24  *** 6.24  ***        

MLN II intercept 8.37  *** 7.77  *** 8.37  *** 8.97  ***  *** ***  ***  *** 

 exp 4.39  *** 5.23  *** 4.39  *** 3.56  ***        

 exp2 -5.88  *** -6.97  ** -5.88  *** -4.78  **        

 educ 6.20  *** 5.60  *** 6.20  *** 6.80  ***        

MdPLN I intercept 8.53  *** 8.05  *** 8.58  *** 8.94  ***        

 exp 3.70  *** 3.70  *** 3.70  *** 3.70  ***        

 exp2 -5.00  *** -5.00  *** -5.00  *** -5.00  ***        

 educ 5.68  *** 5.68  *** 5.68  *** 5.68  ***        

MdPLN II intercept 8.58  *** 8.31  *** 8.68  *** 8.73  ***  ***   *** *** * 

 exp 3.59  *** 3.03  *** 3.45  *** 4.28  ***  * *  * * ** 

 exp2 -4.87  *** -4.11  *** -4.67  *** -5.82  ***  ^   ^  ^ 

 educ 5.31  *** 4.11  *** 5.08  *** 6.73  ***  ** ***  ** *** *** 

MdPLN III intercept 8.42  *** 7.92  *** 8.66  *** 8.67  ***  ***   *** *** *** 

 exp 4.26  *** 4.70  *** 3.71  *** 4.39  ***   ^   *  

 exp2 -5.66  *** -6.01  ** -5.18  *** -5.73  ***        

 educ 5.85  *** 5.45  *** 4.94  *** 7.04  ***   ***   *** ** 

MdPLN III′ intercept 8.40  *** 7.89  *** 8.66  *** 8.66  ***  ***   *** *** *** 

 exp 4.38  *** 4.99  *** 3.74  *** 4.32  ***      *  

 exp2 -5.88  *** -6.68  ** -5.26  *** -5.57  ***        

  educ 5.97  *** 5.48  *** 4.94  *** 7.23  ***     ***     *** ** 
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Table 4. (cont’d) 

2010 

Model Regressor 

 
LS 

 
 

(a) 

Quantile regression   
Diff. b/w 
quantile 
points 

  Diff. from LS 

10% 
(b) 

50% 
(c) 

90% 
(d) 

  (c)-
(b) 

(d)-
(c)   (b)-

(a) 
(c)-
(a) 

(d)-
(a) 

Raw data intercept 8.31  *** 7.32  *** 8.73  *** 8.74  ***  ***   ** *** *** 

 exp 4.33  *** 6.52  * 3.12  *** 3.39  ***      * ^ 

 exp2 -5.62  *** -8.32   -4.01  *** -3.80  ***        

 educ 6.52  *** 7.62  *** 5.00  *** 7.59  ***  ** ***   *** * 

MLN I intercept 8.31  *** 7.66  *** 8.31  *** 8.95  ***  *** ***  ***  *** 

 exp 4.33  *** 4.33  *** 4.33  *** 4.33  ***        

 exp2 -5.62  *** -5.62  *** -5.62  *** -5.62  ***        

 educ 6.52  *** 6.52  *** 6.52  *** 6.52  ***        

MLN II intercept 8.33  *** 7.47  *** 8.33  *** 9.18  ***  *** ***  ***  *** 

 exp 4.18  *** 4.49  *** 4.18  *** 3.88  ***        

 exp2 -5.30  *** -5.10  ^ -5.30  *** -5.51  **        

 educ 6.46  *** 7.64  *** 6.46  *** 5.27  ***        

MdPLN I intercept 8.53  *** 7.97  *** 8.61  *** 8.98  ***  *** ***     

 exp 3.40  *** 3.40  *** 3.40  *** 3.40  ***        

 exp2 -4.36  *** -4.36  *** -4.36  *** -4.36  ***        

 educ 5.69  *** 5.69  *** 5.69  *** 5.69  ***        

MdPLN II intercept 8.58  *** 8.19  *** 8.72  *** 8.78  ***  ***   *** *** *** 

 exp 3.43  *** 3.13  *** 3.33  *** 3.82  ***  ^   ^   

 exp2 -4.53  *** -4.22  *** -4.42  *** -4.94  ***        

 educ 5.30  *** 4.14  *** 4.95  *** 6.88  ***  ** ***  *** *** *** 

MdPLN III intercept 8.33  *** 7.62  *** 8.63  *** 8.73  ***  *** ^  *** *** *** 

 exp 4.00  *** 4.93  *** 3.56  *** 3.52  ***  ^    *  

 exp2 -4.86  *** -5.98  * -4.64  *** -3.96  **        

 educ 6.53  *** 6.68  *** 5.27  *** 7.45  ***  ^ ***   *** * 

MdPLN III′ intercept 8.31  *** 7.56  *** 8.62  *** 8.75  ***  *** *  *** *** *** 

 exp 4.18  *** 5.41  *** 3.64  *** 3.49  ***  *   ^ *  

 exp2 -5.23  *** -6.99  ** -4.80  *** -3.95  **        

  educ 6.58  *** 6.82  *** 5.31  *** 7.32  ***   ^ ***     ***   
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Table 4. (cont’d) 

2012 

Model Regressor 

 
LS 

 
 

(a) 

Quantile regression   
Diff. b/w 
quantile 
points 

  Diff. from LS 

10% 
(b) 

50% 
(c) 

90% 
(d) 

  (c)-
(b) 

(d)-
(c)   (b)-

(a) 
(c)-
(a) 

(d)-
(a) 

Raw data intercept 8.00  *** 6.81  *** 8.40  *** 8.69  ***  ***   *** * *** 

 exp 5.88  *** 9.05  ** 4.92  *** 3.79  ***       * 

 exp2 -8.22  *** -13.87  ^ -7.10  *** -3.93  *       * 

 educ 6.94  *** 8.85  *** 5.57  *** 7.06  ***  *   ^   

MLN I intercept 8.00  *** 7.32  *** 8.00  *** 8.68  ***  *** ***  ***  *** 

 exp 5.88  *** 5.88  *** 5.88  *** 5.88  ***        

 exp2 -8.22  *** -8.22  *** -8.22  *** -8.22  ***        

 educ 6.94  *** 6.94  *** 6.94  *** 6.94  ***        

MLN II intercept 8.00  *** 6.98  *** 8.00  *** 9.02  ***  *** ***  ***  *** 

 exp 5.79  *** 8.67  *** 5.79  *** 2.92  ***  ** **  **  ** 

 exp2 -8.04  *** -13.82  ** -8.04  *** -2.26    * *  *  * 

 educ 7.03  *** 7.40  *** 7.03  *** 6.65  ***        

MdPLN I intercept 8.26  *** 7.64  *** 8.36  *** 8.75  ***  * ***     

 exp 4.24  *** 4.24  *** 4.24  *** 4.24  ***        

 exp2 -5.26  *** -5.26  *** -5.26  *** -5.26  ***        

 educ 6.31  *** 6.31  *** 6.31  *** 6.31  ***        

MdPLN II intercept 8.37  *** 7.87  *** 8.52  *** 8.64  ***  *** *  *** *** *** 

 exp 4.00  *** 3.87  *** 3.96  *** 4.18  ***        

 exp2 -4.98  *** -5.01  *** -5.04  *** -4.82  ***        

 educ 5.71  *** 4.87  *** 5.33  *** 7.11  ***  * ***  *** *** *** 

MdPLN III intercept 8.03  *** 6.93  *** 8.43  *** 8.67  ***  *** ***  *** *** *** 

 exp 5.71  *** 9.04  *** 4.46  *** 3.86  ***  **   ** *** ** 

 exp2 -7.90  *** -14.19  *** -5.84  *** -4.17  ***  * ^  * * * 

 educ 6.87  *** 7.84  *** 5.59  *** 7.14  ***  * ***   ***  

MdPLN III′ intercept 8.00  *** 6.95  *** 8.42  *** 8.64  ***  *** **  *** *** *** 

 exp 5.85  *** 9.00  *** 4.44  *** 4.10  ***  **   ** *** * 

 exp2 -8.17  *** -14.16  *** -5.75  *** -4.64  ***  *   * * * 

  educ 6.95  *** 7.75  *** 5.61  *** 7.23  ***   ^ ***     **   
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Table 4. (cont’d) 

2014 

Model Regressor 

 
LS 

 
 

(a) 

Quantile regression   
Diff. b/w 
quantile 
points 

  Diff. from LS 

10% 
(b) 

50% 
(c) 

90% 
(d) 

  (c)-
(b) 

(d)-
(c)   (b)-

(a) 
(c)-
(a) 

(d)-
(a) 

Raw data intercept 8.19   6.90   8.71   8.85          

 exp 5.04   9.57   3.92   3.49          

 exp2 -6.77   -14.94   -5.54   -4.11          

 educ 6.55   8.14   4.32   6.50          

MLN I intercept 8.19   7.58   8.19   8.79          

 exp 5.04   5.04   5.04   5.04          

 exp2 -6.77   -6.77   -6.77   -6.77          

 educ 6.55   6.55   6.55   6.55          

MLN II intercept 8.19   7.18   8.19   9.20          

 exp 4.83   7.19   4.83   2.47          

 exp2 -6.23   -10.55   -6.23   -1.92          

 educ 6.64   7.91   6.64   5.37          

MdPLN I intercept 8.52   7.95   8.61   8.97          

 exp 3.31   3.31   3.31   3.31          

 exp2 -3.90   -3.90   -3.90   -3.90          

 educ 5.52   5.52   5.52   5.52          

MdPLN II intercept 8.61   8.19   8.76   8.83          

 exp 3.13   2.94   3.10   3.34          

 exp2 -3.71   -3.69   -3.79   -3.56          

 educ 4.98   3.97   4.61   6.45          

MdPLN III intercept 8.21   7.12   8.64   8.87          

 exp 4.65   7.47   3.61   2.98          

 exp2 -5.83   -10.46   -4.49   -2.86          

 educ 6.59   8.06   4.95   6.43          

MdPLN III′ intercept 8.20   7.16   8.61   8.88          

 exp 4.87   7.76   3.87   2.91          

 exp2 -6.37   -11.49   -4.99   -2.68          

  educ 6.57    7.79    4.93    6.50                  
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Table 5. Effects of longer work experience and higher education on the mean and dispersion of wages 

estimated from LN- and dPLN-regression models fitted to Italian male wages 

2008, 2010 and 2012 on average 

Para. 
Sta-

tistics 

Potential work experience years   Education years 

MLN   MdPL  MLN   MdPL 

II  II  III  III′   II  II  III  III′  

Total Mean 1.69  ***  1.56  *** 1.81  *** 1.86  ***  6.42  ***  5.93  *** 6.73  *** 6.94  *** 

 Gini -0.63  *  0.12   -0.09   0.01    -0.35    2.47  *** 2.33  *** 3.01  ** 

 MLD -1.56  **  0.25   -0.78   -0.67    -0.75    4.56  *** 2.91  ^ 4.10  ^ 

 T1 -1.28  *  0.70  ^ 0.48   0.94    -0.75    6.63  *** 7.32  ** 10.05  * 

 SCV -1.25  ^  1.67  ^ 2.56   n.a.   -0.88    11.55  ** 16.81  ^ n.a.  

µ Mean 1.81  ***  1.46  *** 0.89  *** 0.94  ***  6.56  ***  5.44  *** 3.35  *** 3.20  *** 

 Gini -0.28  ***  -0.37  *** -0.26  ** -0.22  *  0.00    0.00   0.00   0.00   

 MLD -0.72  ***  -0.66  *** -0.50  ** -0.43  *  0.00    0.00   0.00   0.00   

 T1 -0.53  ***  -0.61  *** -0.42  ** -0.35  *  0.00    0.00   0.00   0.00   

 SCV -0.43  **  -0.58  *** -0.36  ** n.a.   0.00    0.00   0.00   n.a.  

σ Mean -0.12    0.10  *** 0.08  ^ 0.06  ^  -0.14    0.49  *** 0.50  ** 0.38  * 

 Gini -0.36    0.49  *** 0.40  * 0.31  *  -0.35    2.47  *** 2.43  ** 1.86  ** 

 MLD -0.84    0.91  *** 0.72  ^ 0.54  ^  -0.75    4.56  *** 4.35  ** 3.28  * 

 T1 -0.75    1.31  ** 1.11  ^ 0.80    -0.75    6.63  *** 6.68  * 4.93  * 

 SCV -0.82    2.25  * 2.23   n.a.   -0.88    11.55  ** 13.26   n.a.  

α & β Mean      0.84  *** 0.85  ***       2.88  *** 3.36  *** 

 Gini      -0.22   -0.07         -0.10   1.15   

 MLD      -1.00  * -0.78         -1.44   0.82   

 T1      -0.21   0.49         0.64   5.12   

 SCV      0.68   n.a.        3.55  ^ n.a.  

α Mean      0.43  *** 0.48  ***       1.52  *** 2.13  ** 

 Gini      0.38  ** 0.61  **       1.50  *** 2.94  * 

 MLD      0.64  ** 1.11  *       2.55  *** 5.28  * 

 T1      0.89  ** 1.72  *       3.48  *** 8.26  ^ 

 SCV      1.49  ** n.a.        5.70  ** n.a.  

β Mean      0.41  *** 0.37  ***       1.36  *** 1.22  *** 

 Gini      -0.61  *** -0.68  ***       -1.60  *** -1.79  *** 

 MLD      -1.64  *** -1.89  ***       -3.98  *** -4.45  *** 

 T1      -1.10  *** -1.23  ***       -2.84  *** -3.15  *** 

  SCV           -0.80  *** n.a.               -2.15  *** n.a.   

Notes: Estimates are presented in percent. See the footnote under Table 1 for the statistical significance levels  
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Table 5. (cont’d) 

2008 

Para. 
Sta-

tistics 

Potential work experience years   Education years 

MLN   MdPLN  MLN   MdPLN 

II  II  III  III′   II  II  III  III′  

Total Mean 1.62  ***  1.51  *** 1.77  *** 1.84  ***  6.40  ***  5.81  *** 6.38  *** 6.64  *** 

 Gini -0.76  **  0.19   0.04   0.26    0.79    2.77  * 3.12  * 4.04  * 

 MLD -1.79  **  0.45   -0.30   0.12    1.64    5.46  * 5.27  ^ 7.08  ^ 

 Theil -1.51  **  1.05   1.12   1.90    1.64    7.96  ^ 9.68  ^ 12.62  ^ 

 SCV -1.46  *  2.48   4.13   22.45    1.86    14.71   21.62   95.05   

µ Mean 1.75  ***  1.40  *** 0.79  *** 0.78  ***  6.20  ***  5.31  *** 3.46  *** 3.30  *** 

 Gini -0.29  ***  -0.43  *** -0.39  ** -0.38  **  0.00    0.00   0.00   0.00   

 MLD -0.76  ***  -0.78  *** -0.76  * -0.72  *  0.00    0.00   0.00   0.00   

 Theil -0.52  ***  -0.72  *** -0.65  * -0.60  *  0.00    0.00   0.00   0.00   

 SCV -0.35  *  -0.70  *** -0.59  * -0.54    0.00    0.00   0.00   0.00   

σ Mean -0.12    0.11  ^ 0.10   0.07    0.20    0.51  * 0.47   0.34   

 Gini -0.47    0.62  * 0.53   0.36    0.79    2.77  * 2.39  ^ 1.73  ^ 

 MLD -1.02    1.23  ^ 1.03   0.68    1.64    5.46  * 4.65   3.30  ^ 

 Theil -0.99    1.77  ^ 1.60   1.05    1.64    7.96  ^ 7.24   5.08   

 SCV -1.11    3.17   3.53   3.75    1.86    14.71   15.98   18.23   

α & β Mean      0.88  *** 0.99  ***       2.45  *** 2.99  *** 

 Gini      -0.09   0.29         0.73   2.32   

 MLD      -0.57   0.16         0.61   3.78   

 Theil      0.16   1.45         2.44   7.53   

 SCV      1.18   19.24         5.64   76.82   

α Mean      0.47  *** 0.62  **       1.54  ** 2.22  ** 

 Gini      0.47  * 0.90  *       1.84  ** 3.44  * 

 MLD      0.83  * 1.68  *       3.27  ** 6.45  * 

 Theil      1.13  * 2.47  *       4.31  * 9.38  * 

 SCV      1.87  ^ 19.86         6.96  * 77.93   

β Mean      0.41  *** 0.37  ***       0.91  * 0.78  * 

 Gini      -0.56  *** -0.61  ***       -1.11  ** -1.12  * 

 MLD      -1.40  *** -1.52  ***       -2.66  * -2.67  * 

 Theil      -0.97  *** -1.02  **       -1.87  ** -1.84  * 

  SCV           -0.68  ** -0.62                -1.32  * -1.11    
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Table 5. (cont’d) 

2010 

Para. 
Sta-

tistics 

Potential work experience years   Education years 

MLN   MdPLN  MLN   MdPLN 

II  II  III  III′   II  II  III  III′  

Total Mean 1.55  ***  1.40  *** 1.73  *** 1.74  ***  6.00  ***  5.84  *** 6.98  *** 6.95  *** 

 Gini -0.68  *  0.12   -0.02   -0.06    -1.42    2.69  *** 2.84  * 2.43  * 

 MLD -1.51  *  0.25   -0.57   -0.80    -2.99    4.91  ** 3.71   2.51   

 T1 -1.39  *  0.65   0.68   0.62    -2.98    7.24  ** 9.18  ^ 8.27  * 

 SCV -1.50  ^  1.52   2.81   3.07  ^  -3.43    12.62  * 21.10   20.51  * 

µ Mean 1.70  ***  1.32  *** 0.75  *** 0.77  ***  6.46  ***  5.30  *** 3.14  *** 3.26  *** 

 Gini -0.21  ***  -0.30  *** -0.29  *** -0.27  ***  0.00    0.00   0.00   0.00   

 MLD -0.53  ***  -0.51  *** -0.54  *** -0.51  ***  0.00    0.00   0.00   0.00   

 T1 -0.42  **  -0.46  *** -0.42  ** -0.40  **  0.00    0.00   0.00   0.00   

 SCV -0.37  *  -0.40  *** -0.31  * -0.30  *  0.00    0.00   0.00   0.00   

σ Mean -0.15    0.08  ** 0.08   0.07    -0.46    0.54  *** 0.65   0.60  ^ 

 Gini -0.47    0.42  ** 0.37   0.32    -1.42    2.69  *** 3.03  ^ 2.85  ^ 

 MLD -0.98    0.76  * 0.67   0.57    -2.99    4.91  ** 5.48   5.04  ^ 

 T1 -0.98    1.11  * 1.05   0.88    -2.98    7.24  ** 8.60   7.79   

 SCV -1.13    1.91  * 2.10   1.70    -3.43    12.62  * 17.23   15.17   

α & β Mean      0.91  *** 0.89  ***       3.19  *** 3.08  *** 

 Gini      -0.11   -0.11         -0.20   -0.42   

 MLD      -0.70   -0.86         -1.77   -2.54   

 T1      0.05   0.15         0.58   0.48   

 SCV      1.01   1.67         3.87   5.34   

α Mean      0.45  * 0.47  ^       1.66  ** 1.55  ** 

 Gini      0.47  ^ 0.60  ^       1.60  * 1.88  * 

 MLD      0.79  ^ 1.02  ^       2.69  * 3.23  * 

 T1      1.06  ^ 1.45         3.68  * 4.63  ^ 

 SCV      1.71  ^ 2.66         6.09  ^ 8.63   

β Mean      0.46  ** 0.42  ***       1.53  ** 1.54  *** 

 Gini      -0.58  *** -0.71  ***       -1.80  *** -2.31  *** 

 MLD      -1.49  *** -1.88  ***       -4.46  *** -5.77  *** 

 T1      -1.01  *** -1.29  ***       -3.10  *** -4.15  *** 

  SCV           -0.70  *** -0.99  ***             -2.21  *** -3.29  ** 
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Table 5. (cont’d) 

2012 

Para. 
Sta-

tistics 

Potential work experience years   Education years 

MLN   MdPL  MLN   MdPL 

II  II  III  III′   II  II  III  III′  

Total Mean 1.90  ***  1.75  *** 1.93  *** 1.99  ***  6.87  ***  6.13  *** 6.84  *** 7.23  *** 

 Gini -0.46    0.05   -0.29   -0.17    -0.42    1.96  *** 1.05   2.55   

 MLD -1.38    0.06   -1.47  ^ -1.33    -0.90    3.32  *** -0.24   2.72   

 T1 -0.94    0.39   -0.35   0.31    -0.90    4.69  *** 3.10  ^ 9.27   

 SCV -0.80    1.00   0.74   n.a.   -1.06    7.32  ** 7.72  * n.a.  

µ Mean 2.00  ***  1.66  *** 1.14  *** 1.26  ***  7.03  ***  5.71  *** 3.45  *** 3.03  ** 

 Gini -0.33  **  -0.39  *** -0.11   -0.03    0.00    0.00   0.00   0.00   

 MLD -0.86  ***  -0.68  *** -0.21   -0.05    0.00    0.00   0.00   0.00   

 T1 -0.65  *  -0.66  *** -0.19   -0.04    0.00    0.00   0.00   0.00   

 SCV -0.57    -0.65  *** -0.17   n.a.   0.00    0.00   0.00   n.a.  

σ Mean -0.09    0.09  ** 0.06   0.05    -0.16    0.42  *** 0.39  * 0.21   

 Gini -0.13    0.44  ** 0.30   0.25    -0.42    1.96  *** 1.88  * 1.00   

 MLD -0.52    0.74  ** 0.47   0.37    -0.90    3.32  *** 2.91  * 1.50   

 T1 -0.29    1.05  ** 0.67   0.48    -0.90    4.69  *** 4.20  * 1.93   

 SCV -0.22    1.65  * 1.05   n.a.   -1.06    7.32  ** 6.58  ^ n.a.  

α & β Mean      0.73  * 0.68  ^       3.00  *** 3.99  * 

 Gini      -0.48   -0.39         -0.83   1.56   

 MLD      -1.73  ^ -1.66         -3.15   1.22   

 T1      -0.84   -0.14         -1.10   7.34   

 SCV      -0.14   n.a.        1.14   n.a.  

α Mean      0.36  ^ 0.36         1.37  ^ 2.64   

 Gini      0.20   0.34         1.07  ^ 3.49   

 MLD      0.30   0.61         1.68   6.15   

 T1      0.49   1.23         2.45   10.78   

 SCV      0.88   n.a.        4.05   n.a.  

β Mean      0.36   0.33         1.63  * 1.35  ^ 

 Gini      -0.67  ** -0.73  *       -1.90  ** -1.93   

 MLD      -2.02  ** -2.27  *       -4.83  ** -4.93   

 T1      -1.33  ** -1.36  *       -3.55  ** -3.45   

 SCV      -1.03  * n.a.        -2.91  ** n.a.  
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Table 5. (cont’d) 

2014 

Para. 
Sta-

tistics 

Potential work experience years   Education years 

MLN   MdPLN  MLN     MdPLN 

II  II  III  III′   II  II  III  III′  

Total Mean 1.78    1.54   1.83   2.07    6.18    5.49   6.47   6.92   

 Gini -0.69    0.41   -0.29   0.56    -1.62    2.75   1.08   2.56   

 MLD -1.80    0.74   -1.63   0.01    -3.40    4.83   -1.03   1.77   

 Theil -1.44    1.32   -0.15   3.42    -3.38    7.08   3.95   10.72   

 SCV -1.37    2.54   1.60   n.a.   -3.84    11.85   11.35   n.a.  

µ Mean 1.92    1.41   0.62   0.48    6.64    4.98   1.72   1.82   

 Gini -0.30    -0.28   -0.14   -0.11    0.00    0.00   0.00   0.00   

 MLD -0.78    -0.47   -0.26   -0.19    0.00    0.00   0.00   0.00   

 Theil -0.62    -0.46   -0.22   -0.18    0.00    0.00   0.00   0.00   

 SCV -0.56    -0.44   -0.19   n.a.   0.00    0.00   0.00   n.a.  

σ Mean -0.14    0.13   0.05   -0.03    -0.46    0.51   0.38   0.25   

 Gini -0.39    0.69   0.26   -0.15    -1.62    2.75   2.13   1.42   

 MLD -1.02    1.21   0.41   -0.22    -3.40    4.83   3.27   2.13   

 Theil -0.82    1.77   0.60   -0.27    -3.38    7.08   4.85   2.60   

 SCV -0.81    2.98   0.98   n.a.   -3.84    11.85   7.93   n.a.  

α & β Mean      1.16   1.62         4.37   4.85   

 Gini      -0.41   0.81         -1.04   1.15   

 MLD      -1.78   0.43         -4.30   -0.36   

 Theil      -0.53   3.87         -0.90   8.12   

 SCV      0.80   n.a.        3.42   n.a.  

α Mean      0.54   1.17         1.94   2.80   

 Gini      0.53   1.79         1.87   4.51   

 MLD      0.83   3.19         2.91   7.99   

 Theil      1.21   5.67         4.29   14.01   

 SCV      2.04   n.a.        7.28   n.a.  

β Mean      0.62   0.45         2.42   2.05   

 Gini      -0.94   -0.98         -2.91   -3.36   

 MLD      -2.60   -2.77         -7.21   -8.35   

 Theil      -1.74   -1.80         -5.19   -5.89   

  SCV           -1.24    n.a.               -3.86    n.a.   
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