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1 Introduction

The capacity of economic growth to eradicate poverty is at the heart of ongoing debates

over inclusive growth and equitable development. Okun’s famous equality-efficiency

trade-off dominated the discussion until the turn of the 21st century and often meant

that equity was sacrificed in favor of ‘efficiency’. It has since been replaced by a renewed

focus on ‘pro-poor growth’ (World Bank, 2005) and ‘shared prosperity’ (World Bank,

2015). The shift in the policy discussion is underscored by an increasingly large empirical

literature that analyzes the impact of changes in incomes and inequality on poverty, or

their respective contributions towards poverty reduction (see e.g. Ravallion and Chen,

1997; Dollar and Kraay, 2002; Besley and Burgess, 2003; Kraay, 2006; Kalwij and

Verschoor, 2007; Dollar et al., 2016). Collectively, these studies established not only

that income growth is crucial to achieving sustained decreases in poverty, but also that

the benefits of income growth strongly depend on initial levels of income and inequality.

In fact, this dependence arises mechanically, since poverty is functionally linked to average

incomes and inequality (Datt and Ravallion, 1992; Kakwani, 1993; Bourguignon, 2003).

In this paper we present a new unified framework for a set of empirical exercises we

collectively refer to as ‘poverty accounting’. Analogous with growth and development

accounting, poverty accounting is the decomposition of (changes in or levels of) poverty

into its proximate sources. It is concerned with answering several important and related

questions, such as: What is the impact of a one percent change in income growth or in

inequality on poverty rates? How much of the historical variation in poverty is due to

economic growth? How much is due to redistribution? Just as in the decomposition of

growth, there is some uncertainty concerning the correct functional form of the underlying

relationship. Yet, unlike the case of economic growth, there is no ambiguity about the

fact that, at the proximate level, the poverty rate in any country or region is entirely

determined by the average income level and the income distribution.

The key insight we build on in this paper is that the poverty headcount ratio is

a fraction. This fact alone allows us to derive a very natural model of the expected

poverty rate, E[H], given a fixed (absolute) poverty line. The model incorporates two

crucial features: first, E[H] is bounded on the unit interval; and second, E[H] converges

to unity (zero) if mean income becomes arbitrarily small (large) relative to the poverty

line. It is immediately clear that elasticities or semi-elasticities of poverty with respect

to income or inequality must be non-linear. So far, the literature has tried to address

this inherent non-linearity within log-linear models, leading to specifications which are

poor approximations and tend to produce unstable or implausible estimates for anything

but overall mean effects. To policy makers though, cross-country averages of elasticities

are of limited interest. Even within countries, evidence points towards substantially

different impacts of growth on poverty across regions or ethnic groups (Aaron, 1967;
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Hoover et al., 2008). In other words, when it comes to models of poverty rates, one of

the main virtues of linear regression – its ability to consistently identify average effects –

leads to disappointingly few insights.

We propose a fractional response approach to deal with the inherent non-linearity

of the poverty decomposition (Papke and Wooldridge, 1996, 2008). This approach

dispenses with the constant or linear elasticities assumed by much of the empirical cross-

country literature. It allows us to (i) estimate elasticities and semi-elasticities of poverty

with respect to income or inequality with great precision over the entire range of the

observed data, (ii) recover the conditional expectation of the poverty headcount ratio,

and (iii) estimate the counterfactual quantities needed for computing the contribution

of either factor to overall poverty reduction. Nonetheless, estimation of these quantities

based on household surveys typically entails a number of problems. Hence, we present

extensions of the fractional response framework that deal with unobserved heterogeneity

due to persistent measurement differences between surveys, endogeneity due to time-

varying measurement errors in incomes, and unbalanced panel data due to infrequently

undertaken surveys. While our application focuses on the cross-country distribution of

poverty rates, our framework can also be used to decompose poverty rates across regions

of any country with a fixed poverty line (e.g. the United States, India or China).

A powerful side effect of focusing directly on E[H] is that we can estimate the impact

of changes in the average level or the distribution of income, use in-sample predictions to

estimate their respective historical contributions, and engage in out-of-sample forecasting,

all within a single framework. Note that ‘impact’ refers to the response of poverty to

shifts in its proximate determinants, whereas ‘contribution’ refers to what part of the

historically observed variation in poverty is due to each factor. As a consequence of

Jensen’s inequality, log-linearized models of the poverty headcount ratio (whether in levels

or in differences) cannot recover the conditional expectation of the poverty rate without

imposing strong or implausible assumptions. As a result, impacts and contributions of

the proximate sources of poverty are usually not estimated within the same model. Log-

linearized models also imply the loss of all poverty spells starting or ending with a poverty

rate of zero and extreme sensitivity to small variations in poverty rates near zero.1 Our

approach avoids these shortcomings.

We apply this empirical framework to a new data set of 809 nationally representative

surveys covering 124 countries in the period 1981–2010. In their most basic form, the

data only contain three variables per country-survey-year: the poverty headcount ratio

at a fixed international poverty line, average income, and a measure of dispersion such as

the Gini coefficient. This is the typical data faced by a researcher who lacks a worldwide

1See Santos Silva and Tenreyro (2006) on the pitfalls of log-linear estimation of gravity models. Here
too, the presence of heteroskedasticity implies that parameter estimates from log-linearized models are
not just inefficient but are also likely to be biased.
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household (panel) survey. At the micro level, it would be possible to directly estimate

the Lorenz curve, take the corresponding derivatives for the elasticities, and calculate

the relevant counterfactual quantities to estimate the contributions (see e.g. Datt and

Ravallion, 1992). Hence, a viable alternative to our method is to apply the micro-level

approach to all countries by creating synthetic data as in Kraay (2006), but Lorenz curve

estimation based on grouped data has its own problems (see e.g. Chotikapanich et al.,

2007; Bresson, 2009; Krause, 2014, on the characteristics of the implied density functions).

Our approach, in contrast, can closely approximate the shape of the Lorenz curve near

the poverty line using only very limited information.

Our main findings are as follows. Regarding the average impact of growth or

distributional change on poverty, we find that a one percent increase in mean income

or consumption expenditures reduces the proportion of people living below the poverty

line by about two percentage points, while a similar increase in inequality raises the

poverty rate by one and a half percentage points. Both of these average effects are at the

lower end of those typically found in the literature. The upshot is, our approach provides

differentiated and considerably more precise regional and temporal estimates, often at

odds with earlier studies. For example, we find universally higher income elasticities

in Latin America or Eastern Europe and Central Asia but lower income elasticities in

South Asia or Sub-Saharan Africa than reported earlier (Kalwij and Verschoor, 2007).

Since elasticities are concepts of relative change they may give the misleading impression

that richer countries (with fewer poor) are becoming ever better at reducing poverty,

even though the underlying absolute changes are very small. Hence, we also focus on

semi-elasticities which measure the response of poverty in terms of the percentage point

change in the population that is poor (see also Klasen and Misselhorn, 2008). Not only

are these quantities much less sensitive to small variations in the data, they are much

more relevant for policy makers who presumably think about poverty reduction in terms

of people, not relative changes in poverty rates. The choice of elasticities versus semi-

elasticities also matters conceptually. We show that a proportional decomposition (which

implicitly uses elasticities) understates the contribution of growth to poverty reduction

in poorer countries and overstates it in richer countries.2

Regarding historical contributions, we provide new evidence that there has been a shift

in the poverty reducing pattern of growth around the turn of the millennium. Before 2000

about 90% of poverty reduction was due to income growth, and inequality tended to rise

with higher growth rates. Since 2000, changes in inequality are responsible for almost a

third of all poverty reduction. Recent growth has also been substantially more pro-poor,

both in the absolute sense of reducing poverty more often than not, and in the relative

sense of coinciding with reductions in inequality more often. The results are similar at

2See Cuaresma et al. (2016), who highlight that semi-elasticity specifications resolve the puzzle
presented by Ravallion (2012) and recover cross-country convergence in poverty rates.
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the $2 a day and $1.25 a day poverty lines. This is good news for the prospects of global

poverty reduction. Many countries in Sub-Saharan Africa are in a situation where the

bulk of the distribution is still below the extreme poverty line. As they grow richer,

reductions in inequality could contribute considerably more to poverty reduction than

they have in the past because inequality semi-elasticities are bound to increase.

Finally, we present projections of the poverty headcount ratio for the $2 a day and

$1.25 a day poverty lines until 2030 in 2005 PPPs. We find that absolute poverty in

Sub-Saharan Africa and, as a not too distant second, South Asia remains the primary

development challenge of the twenty-first century. Although economic growth has

accelerated significantly since 2000, poverty reduction in the developing world outside

China has been slow. Most of the poverty reduction potential coming from China is now

exhausted. Nevertheless, we show that the $2 a day poverty rate may halve from about

40% in 2010 to below 20% in 2030. This implies another billion people could be lifted

out of poverty in the meantime. The bad news is that the pace of poverty reduction

at $1.25 a day is bound to slow down significantly in the near future. Extreme poverty

barely falls below 8% of the developing world population in the most optimistic scenario.

These results differ from Ravallion (2013), who first proposed the new 3% target, because

population growth tends to be faster and consumption growth slower in countries with

high poverty rates. Our growth scenarios are based on each country’s own growth record,

not the average experience of the entire developing world. None of our scenarios predicts

a poverty rate near 3% once country-specific trends from 2000 to 2010 are used. Hence,

reaching the first of the new sustainable development goals (SDGs) requires both another

acceleration of growth and significant reductions in interpersonal inequality in the poorer

parts of the developing world.

The remainder of this paper is organized as follows. Section 2 reviews how the existing

literature decomposes poverty rates and estimates poverty elasticities. Section 3 explains

our approach and discusses the econometrics of fractional response models. Section 4

briefly outlines the data used in this paper. Section 5 presents the estimation results,

elasticities, contributions, and poverty projections until 2030. Section 6 concludes.

2 Poverty decompositions and elasticities

With micro-level data it is straightforward to decompose changes in poverty into changes

in the average level and the distribution of income (Datt and Ravallion, 1992; Kakwani,

1993). A key problem for cross-country studies of poverty is that we typically do not have

access to micro-data of incomes or consumption expenditures for all countries but have

to estimate poverty using only grouped data.3 To overcome this limitation, Bourguignon

3There have been some attempts either to collect all the available primary data or to repair gaps
in survey coverage with the help of national accounts. Milanovic (2002) compiles a global data set of
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(2003) suggests approximating the entire income distribution of each country using a two-

parameter log-normal distribution – an approach that is theoretically grounded4, simple

and popular but not without its critics (e.g. Bresson, 2009).

Bourguignon (2003) assumes that income, yt, is a log-normal random variable, such

that ln yt ∼ N (µt, σ
2
t ), and mean income can be written as ȳt = E[yt] = exp(µt + σ2

t /2).

Then the poverty headcount ratio (henceforth, poverty headcount) at time t may be

defined as

Ht = H(ȳt/z, σt) = Φ

(− ln(ȳt/z)

σt
+

1

2
σt

)
≡ Pr{yt ≤ z} (1)

where Φ(·) denotes the standard normal cdf, inequality is measured as the standard

deviation (σt) of log-income, and ȳt/z is the (relative) distance of mean income (ȳt) to

the fixed poverty line (z). We may speak of a ‘shortfall’ of income when ȳt < z and of

‘affluence’ when ȳt ≥ z.

Eq. (1) represents the probability that, at a particular time t, an individual randomly

drawn from the population is poor. This formulation gave rise to a large literature

deriving the income and inequality elasticities of poverty analytically and estimating

econometric models inspired by their analytic counterparts (e.g. Bourguignon, 2003;

Kalwij and Verschoor, 2007; Klasen and Misselhorn, 2008). To summarize, from eq. (1)

we can derive the income elasticity (εHȳt = ∂Ht

∂ȳt

ȳt

Ht
) and inequality elasticity (εHσt = ∂Ht

∂σt

σt

Ht
)

of the poverty headcount as

εHȳt = − 1

σt
λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(2)

and

εHσt =

(
ln(ȳt/z)

σt
+

1

2
σt

)
λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(3)

where we define the inverse Mills ratio (λ(x) ≡ φ(x)/Φ(x)) as the ratio of the standard

normal pdf to the standard normal cdf, and we require Ht > 0.

household level data to study the evolution of inequality, Sala-i-Martin (2006) estimates a ‘world income
distribution’ via kernel density approximations based on grouped data, and Kraay (2006) fits three-
parameter Lorenz curves to grouped data in order to estimate the entire income distribution for the
country-poverty spells in his sample.

4Gibrat’s law, for example, illustrates how the log-normal distribution can arise from a sequence of
stochastic income shocks, as in ln yt = ln yt−1 + et, where et is a random transitory shock in log-income
ln yt, and as t grows the distribution of et determines the distribution of ln yt. Battistin, Blundell, and
Lewbel (2009) recently argued that this process is better thought of in terms of permanent income and
suggest that consumption is closer than income to a log-normal distribution.
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The decomposition of the poverty rate is often written in proportional terms:

dHt

Ht

≈ εHȳt
dȳt
ȳt

+ εHσt
dσt
σt

(4)

where dHt/Ht is a small relative change in the poverty headcount, dȳt/ȳt is a small

relative change in mean incomes, and dσt/σt is a small relative change in the standard

deviation of log-incomes. This approximation follows from a Taylor linearization of Ht

and is derived in Appendix A.5

Given log-normality, the standard deviation is a monotone transformation of the Gini

inequality coefficient, denoted Gt, and can be obtained via σt =
√

2Φ−1(Gt/2 + 1/2). So

eqs. (2) and (3) can be used to predict the elasticities directly using observed values of

income and the Gini coefficient. With a little algebra, we can also derive an expression

for the Gini elasticity and rewrite eq. (4) accordingly – see eq. (A-6) in Appendix A.

However, the assumption of log-normality is only an approximation and unlikely

to hold exactly. The key observation motivating the econometric models is that both

elasticities depend only on the initial levels of mean income and inequality (keeping the

poverty line fixed). In order to allow for misspecification of the functional form, the

literature relies on a linear approximation of these intrinsically non-linear functions. It

captures the dependence on initial levels by interacting both mean income and inequality

with the ratio of initial mean income to the poverty line and with initial inequality. This

model is sometimes called the ‘improved standard model’ (Bourguignon, 2003) and it is

usually formulated in (annualized) differences:

∆ lnHit = α + β1∆ ln ȳit + β2∆ ln ȳit × ln(ȳi,t−1/z) + β3∆ ln ȳit × lnGi,t−1

+ γ1∆ lnGit + γ2∆ lnGit × ln(ȳi,t−1/z) + γ3∆ lnGit × lnGi,t−1 + εit
(5)

where ∆ is the first-difference operator, α is a linear time trend and εit is an error term.

We also inserted the country subscript i.

Suppose eq. (5) is estimated via Ordinary Least Squares (OLS), Instrumental

Variables (IV) or the Generalized Methods of Moments (GMM); then the implied

elasticities will approximate eqs. (2) and (3). The estimated income elasticity is

ε̂Hȳit = β̂1 + β̂2 ln(ȳi,t−1/z) + β̂3 lnGi,t−1 and the estimated inequality elasticity is ε̂HGit =

γ̂1 + γ̂2 ln(ȳi,t−1/z) + γ̂3 lnGi,t−1; clearly, both depend on the initial levels of income and

inequality. These two elasticities are sometimes referred to as the ‘distribution-neutral’

income elasticity and the ‘growth-neutral’ inequality elasticity. They identify the partial

effect of changing only income or inequality, contrary to simple elasticities that confound

the two effects. The linear approximation has the virtue of simplicity, yet it is extremely

coarse and does not place any meaningful restrictions on the parameter space. Moreover,

5Also see Datt and Ravallion (1992), Kakwani (1993), and Bourguignon (2003).
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it is unclear which level relationship eq. (5) derives from.

Specifications like eq. (5) allow for linear variation in the elasticities through the

interaction terms. In fact, the shape of the elasticities (or semi-elasticities) is very

predictably non-linear; the non-linearity arises from the bounded nature of the dependent

variable (Hit ∈ [0, 1]). As a result, any linear approximation is likely to be poor

away from the center, and will take on implausible values (e.g., ε̂Hȳit > 0) for certain

combinations of income and inequality.6 Yet for the estimates to be policy-relevant,

we are precisely interested in temporal and/or regional elasticities and not just overall

cross-country averages. Additionally, logs or log-differences on the left-hand side make it

impossible to recover the conditional expectation of the poverty rate without imposing

strong independence assumptions. This means that models like eq. (5) are not generally

suitable for the purpose of estimating the contributions of growth and redistribution to

poverty reduction, even though this is straightforward in theory.

On the one hand, there are advantages to relying on a linear framework other than

mere simplicity, such as the well-known robustness properties of popular estimators. On

the other hand, a specification like eq. (5) suffers from several econometric problems:

it completely disregards the information contained in poverty levels ; it most likely

introduces negative serial correlation; and it compounds pre-existing measurement error.7

Further, losing all poverty spells ending or starting with a zero, or ‘winsorizing’ the

estimates by slightly incrementing zero poverty rates, induces sample selection or

inconsistency. More subtly, whereas differencing removes time-constant unobserved

effects, the inserted interaction terms reintroduce the unobserved effects present in the

lagged levels. As a result, if there are systematic measurement differences between

countries, the coefficients will be biased whether the model is estimated by OLS, IV

or GMM methods.8 Finally, as Santos Silva and Tenreyro (2006) pointed out for the case

of gravity equations, heteroskedasticity in the level equation also introduces bias in the

parameter estimates after taking logs. Only the parameters of E[lnH] or E[∆ lnH] may

be consistently estimated, not those of our object of interest, E[H].

In general, poverty elasticities can paint a distorted picture of poverty dynamics. The

income elasticity, for example, gives the impression that richer countries become ever

better at poverty reduction because a drop in the poverty headcount from 2% to 1% is

6Some weaknesses of the linear specifications have been highlighted before. Chambers and Dhongde
(2011) estimate non-parametric models of the conditional mean of the headcount (Hit = m(ȳit, Git)+εit)
and obtain average elasticities. We fully agree about the importance of non-linear estimation, but the
comparative inefficiency and difficulty of the non-parametric approach make it in our view unattractive.

7Let the original data generating process be represented by yit = α + β(xit + νit) + εit, where
νit is uncorrelated with xit, and εit is serially uncorrelated. The first-difference transformation induces
negative serial correlation, since E[∆εit∆εi,t−1] = E[−ε2i,t−1] = −σ2

ε ; furthermore, any attenuation bias is
magnified: plim(β̂FD) = βσ2

∆x/(σ
2
∆x +σ2

∆ν) where typically σ2
∆ν = 2σ2

ν but σ2
∆x < 2σ2

x. Autocorrelation
in the mismeasured variables further reduces the signal-to-noise ratio and increases the attenuation bias.

8Cf. Kalwij and Verschoor (2007), who first show a simpler linear model in differences to remove the
unobserved effects, and then estimate interaction models with unobserved effects reintroduced.
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treated just the same as a drop from 50% to 25%. Recognizing this shortcoming, Klasen

and Misselhorn (2008) suggest to focus on absolute poverty changes instead. Removing

the log from the headcount in eq. (5) turns it into a model of semi-elasticities and alters

the interpretation.9 The coefficients now measure the percentage point change in the

population that is below the poverty line, expected for a given rate of change in income

or inequality. Likewise, eqs. (2) and (3) can be written as semi-elasticities by replacing

the inverse Mills ratio with the standard normal pdf. Contrary to elasticities, the semi-

elasticities converge to zero as mean income becomes large. Klasen and Misselhorn (2008)

also report that their models fit the data better and suggest that the specification in

absolute changes captures more of the inherent non-linearity. Even so, the fit is not

impressive (with an R2 up to 73%), considering the model stems from a decomposition

identity which should capture nearly all the variation short of measurement error.

3 Fractional response models of poverty

3.1 GLM estimation

In a seminal paper, Papke and Wooldridge (1996) suggested modeling proportions

using non-linear, parametric, fractional response models, known since as fractional logit,

fractional probit and the like. To the best of our knowledge, such an approach has never

been applied to poverty decompositions. The models are of the form E[yi|xi] = F (x′iβ),

where yi ∈ [0, 1] and F (·) is (most often) the logistic or normal cdf. Applying this idea

to our problem, we may approximate eq. (1) with

E[Hit|ȳit, Git] = Φ(α + β ln ȳit + γ lnGit) for i = 1, . . . , N ; t = 1, . . . , T (6)

where ln z is absorbed into the constant and we also take the logarithm of the Gini

coefficient to ease the interpretation. Naturally, we expect β < 0 and γ > 0. In motivating

this model, we temporarily assume away all econometric complications such as unobserved

heterogeneity, endogeneity and unbalanced data. We will tackle these complications in

the next subsection.

Since F (·) is invertible, it can be used as a ‘link function’ in the spirit of the GLM

literature (e.g. MacCullagh and Nelder, 1989). Thus, we may also write eq. (6) as

Φ−1 (E[Hit|ȳit, Git]) = α + β ln ȳit + γ lnGit. In other words, the inverse normal cdf

linearizes the conditional mean. Figures B-1 and B-2 in Appendix B use this property

to plot Φ−1(Hit) against ln ȳit and lnGit for each region, including a regression line. The

result is striking. This simple transformation is extremely successful in removing the

intrinsic non-linearity of the poverty headcount ratio.

9The term semi-elasticity refers here to the ∂y
∂ ln x = ∂y

∂xx rather than ∂ ln y
∂x = ∂y

∂x
1
y .

9

ECINEQ WP 2016 - 413 October 2016



It is now straightforward to define the estimated income elasticity as

ε̂Hȳit =
∂Ê[Hit|ȳit, Git]

∂ȳit
× ȳit

Ê[Hit|ȳit, Git]
= β̂ × λ

(
α̂ + β̂ ln ȳit + γ̂ lnGit

)
(7)

and the estimated Gini elasticity as

ε̂HGit =
∂Ê[Hit|ȳit, Git]

∂Git

× Git

Ê[Hit|ȳit, Git]
= γ̂ × λ

(
α̂ + β̂ ln ȳit + γ̂ lnGit

)
. (8)

Contrary to log-linear approximations, eqs. (7) and (8) closely mimic the structure and

properties of the analytical elasticities based on the log-normality assumption in eqs. (2)

and (3). The non-linearity arises from the bounded functional form and is not relegated

to interaction terms. This secures a number of advantages: the information contained in

poverty levels is not wasted, the model will predict poverty headcount ratios strictly

within the unit interval, and both elasticities and semi-elasticities can be estimated

consistently within the same model. As a result of respecting the bounded nature of the

headcount, the elasticities will approach zero whenever the inverse Mills ratio does and

stay close to the ‘truth’ even for extreme values of the covariates. Using Ê[Hit|ȳit, Git]

together with counterfactual values for ȳit or Git, we can now estimate the respective

contributions of the two proximate determinants of poverty. Finally, given growth and

inequality scenarios, we may predict the future path of poverty rates.

It is important to note that we do not require log-normality but only assume that an

unspecified two-parameter distribution fits the poverty headcount up to statistical error.

We simply derived a natural model of the poverty headcount as a function of income and

inequality which happens to look a lot like its theoretical counterpart under log-normality.

3.2 Heterogeneity, endogeneity, and unbalanced data

In non-linear models it is generally harder to deal with unobserved heterogeneity,

endogeneity and unbalanced data. Until recently there was relatively little progress on

this issue, but today we can draw on an increasingly well developed framework. Papke and

Wooldridge (2008) extend fractional response models to balanced panels with unobserved

heterogeneity and endogenous explanatory variables of the continuous kind; Wooldridge

(2010a) develops the theory for unbalanced panels; and Wooldridge (2014) proposes an

approach able to deal with endogenous explanatory variables of all kinds. Other notable

contributions are Loudermilk (2007) and Ramalho et al. (2011).

To simplify the exposition, we stack the coefficients β = (β1, β2, . . . , βk)
′ and the time-

varying covariates xit = (xit,1, xit,2, . . . , xit,k)
′. The ideal model we would like to estimate
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is

E[Hit|xi, µi] = E[Hit|xit, µi] = Φ(x′itβ + µi) for i = 1, . . . , N ; t = 1, . . . , T (9)

where xi = (xi1,xi2, . . . ,xiT ) comprises the covariates in all periods. We assume that

the covariates are strictly exogenous conditionally on unobserved country-level effects µi,

and that the panel is balanced. The unobserved effects serve to capture time-persistent

differences in measurement or deviations from a two-parameter distribution, which may

be arbitrarily correlated with the elements in xi.

The key problem with such an approach is that the unobserved effects are not

identified when T is fixed and N → ∞, leading to biased estimates of the parameter

vector – the incidental parameters problem (Neyman and Scott, 1948).10 In addition,

the partial effects needed for calculating the elasticities are not identified either. Papke

and Wooldridge (2008) suggest to solve this problem by imposing some structure on the

correlation between the unobserved effects and the covariates using a device developed by

Mundlak (1978) and Chamberlain (1984). This approach is known as correlated random

effects (CRE). Concretely, we let

µi|(xi1, . . . ,xiT ) ∼ N (ϕ+ x̄′iθ, σ
2
u) (10)

where x̄i = T−1
∑T

t=1 xit is the time average of all the time-varying regressors xit and

ui ≡ µi − ϕ − x̄′iθ obeys ui|(xi1, . . . ,xiT ) ∼ N (0, σ2
u). The covariates are still strictly

exogenous conditionally on the unobserved effects. In linear models, this specification

is practically equivalent to the traditional ‘fixed effects’ model and thus, in terms of

accounting for unobserved effects, achieves the same aim as a within transformation.

Plugging eq. (10) into eq. (9), we can rewrite our model of interest as

E[Hit|xi, µi] = Φ(ϕ+ x′itβ + x̄′iθ + ui) (11)

E[Hit|xi] = E[Φ(ϕ+ x′itβ + x̄′iθ + ui)|xi] = Φ (ϕu + x′itβu + x̄′iθu) (12)

where the subscript u denotes scaling of the coefficients by the factor (1 + σ2
u)
−1/2. The

step from eq. (11) to eq. (12) is iterated expectations and the last equality follows from

mixing (compounding) independent mean-zero normal distributions.

If the assumptions hold, then the scaled coefficients and average partial effects (APEs)

of all time-varying covariates are identified. However, survey-specific (non-classical)

measurement error in income is likely to lead to overestimating the income elasticity

in absolute value (Ravallion and Chen, 1997). In addition, classical measurement error

10The bias tends to become small as T gets large, but there are no benchmark simulations for the
fractional probit case that we know of and in our case the sample sizes are small. Papke and Wooldridge
(2008) explain why replacing the standard normal cdf by the logistic cdf would not resolve the problem.
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may attenuate the income coefficient and thus work in the opposite direction. Suppose we

do not observe true income but ln ȳit = ln ȳ∗it+υit, where ln ȳ∗it is the true value of log-mean

income and υit is a composite error process with a classical and a non-classical component.

In the absence of associated measurement error in inequality, we may view this as an

omitted variable problem. Going back to the simplest model, we have E[Hit|x1it, ȳ
∗
it, µi] 6=

E[Hit|x1it, ȳit, µi] = Φ (x′1itβ + ψ(ln ȳ∗it + υit) + µi) = Φ(x′1itβ +ψ ln ȳit+ψυit+µi), where

x1it is xit without the mismeasured ln ȳit, and υit is also potentially correlated with the

time-constant unobserved effects (cov(υit, µi) 6= 0). Inference using observed income may

lead to underestimating or overestimating the effect depending on which type of error is

stronger and how this spills over into other variables.11

Building on Rivers and Vuong (1988) and the general result from Blundell and Powell

(2004), Papke and Wooldridge (2008) suggest a two-step control function estimator for

such endogeneity problems. For this solution, we require m ≥ 1 time-varying instruments,

relevant but not correlated with υit, which we arrange in a vector zit. The first step

is to estimate a log-linear model ln ȳit = π0 + x′1itπ1 + z′itπ2 + x̄′1iπ3 + z̄′iπ4 + νit,

and obtain the residuals ν̂it. For the second step, we specify the residual-augmented

model E[Hit|x1it, ȳit, zit, νit] = Φ (ϕr + x′1itβr + ψr ln ȳit + x̄′iθr + z̄′iζr + ρrν̂it). Note that

in both steps, the Mundlak-Chamberlain device involves both the strictly exogenous

regressors and the instruments. The subscript r denotes a new scale factor (1 + σ2
r)
−1/2.

The control function solution is to condition on an estimate of the omitted variable (ν̂it).

A test of ρr = 0 corresponds to a test of exogeneity and does not depend on the first step

under the null (see Hausman, 1978). The asymptotic standard errors must be adjusted

for estimation uncertainty in the first step and can be derived via the delta method or

approximated with the panel bootstrap.

Accounting for unbalanced data adds another layer of complication. Contrary to linear

models with CRE, where most estimators need only practical adjustments to work with

unbalanced panels, estimates from non-linear CRE models are inconsistent if applied to

unbalanced panel data. The main problem is that both the estimates and the variances

of the correlated random effects can differ depending on the sample size. Wooldridge

(2010a) proposes to also directly model this dependence. Let Ti denote the sample size for

country i, with T = maxi Ti; and assume that the selection of observations, as recorded by

a selection indicator sit, is conditionally independent. We can extend our model by letting

the unobserved effects depend on sample size: E[µi|wi] =
∑T

n=1 δTi,n(ϕrn+ x̄′iθrn+ z̄′iζrn),

where wi is a vector of functions of the conditioning variables sufficient to represent the

distribution D[µi|(sit, sitx1it, sit ln ȳit, sitzit)] = D[µi|wi]; further, δTi,n is the Kronecker

delta which is equal to unity if Ti = n and zero otherwise. The coefficients are still

11Classical error in incomes induces upward measurement error in the (level of the) Gini coefficient
(Chesher and Schluter, 2002). Non-classical error will also affect the Gini. The analysis does not lead to
simple conclusions about the direction of biases. However, the correlation between the Gini coefficient
and average incomes in our sample is practically zero.
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scaled by (1 + σ2
r)
−1/2. Without further assumptions, this implies that we cannot

use the observations where Ti = 1 as these have no separately identifiable panel

dimension; hence, they drop out of the estimating equation. Additionally, we also let the

conditional variance depend on sample size such that var[µi|wi] = σ2
µ exp(

∑T−1
n=2 δTi,nωn),

where the ωn represent unknown variance parameters and σ2
µ is the variance of the

unobserved heterogeneity when Ti = T .12,13 The result is a variable scale factor:(
1 + σ2

µ exp(
∑T−1

n=2 δTi,nωn)
)−1/2

.

A convenient reparameterization arises when we treat the overall variance as

heteroskedastic and assume that D[µi|wi] is normal (see Wooldridge, 2010a). Dividing the

conditional expectation by exp(
∑T−1

n=2 δTi,nω̃n), where ω̃n denotes a new set of unknown

parameters for the overall variance, we again obtain a constant scale factor. Then, the

two-step unbalanced CRE model is

E[Hit|xi, νit,wi] =

Φ


x′1itβh + ψh ln ȳit + ρhν̂it +

∑T
n=2 δTi,n (ϕhn + δTi,nx̄

′
iθhn + δTi,nz̄

′
iζhn)

exp
(∑T−1

n=2 δTi,nω̃n

)1/2




(13)

where the explanatory variables at t are (1,x′1it, ln ȳit, ν̂it, δTi,2x̄
′
i, . . . , δTi,T x̄

′
i), and the

variance depends on a set of dummy variables shifting from Ti = 2 to Ti = T − 1 with

Ti = T as the base. The subscript h denotes the new scale factor. The specification

nests the balanced case. If the panel is balanced, the numerator has only one set of time

averages and a constant in addition to the time-varying covariates, while the denominator

is unity. The first-stage estimation is augmented in the same way to accommodate

the varying sample sizes. We obtain the residuals via ν̂it = ln ȳit − x′1itπ̂1 − z′itπ̂2 −∑T
r=2 δTi,r(π̂0r − x̄′iπ̂3r − z̄′iπ̂4r), where x′1it includes time dummies and x̄′i their time

averages. The heterogeneity related to the time averages (x̄i and z̄i) is interacted with

the sample size dummies and thus enters the first stage flexibly. This, too, simplifies

back to the earlier result in the balanced case if we remove the redundant variables (i.e.,

averages of the time effects).

Since this is a quasi maximum likelihood estimator (QMLE), the standard errors

based on the inverse information matrix will be too conservative and need to be adjusted

for clustering at the country level (for details see Papke and Wooldridge, 1996; 2008;

Wooldridge, 2010b). Apart from the assumptions made to restrict the unobserved

12As Wooldridge (2010a) points out, it is possible to model the conditional expectation and variance
even more flexibly by allowing for additional intercepts, trends, variances and covariances to approximate
the non-parametric relationship from Altonji and Matzkin (2005).

13We can also let the conditional variance depend on inequality (which can be motivated by assuming
log-normality of income). This relaxes an implicit assumption, namely that the marginal proportional
rate of substitution (MPRSt = −ε̂Hȳt /ε̂HGt ) is constant. The models fit marginally better but the
substantive implications change very little. Additional results are available on request.
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heterogeneity and endogeneity, fractional probit only requires correct specification of

the conditional mean, irrespective of the true distribution of the dependent variable

(Gourieroux, Monfort, and Trognon, 1984). Hence, it is as robust as non-linear least

squares but potentially more efficient.14

We still need to define the average partial effects (APEs) and the relevant elasticities.

Both can be derived from the average structural function (ASF) computed over the

selected sample (see Blundell and Powell, 2004; Wooldridge, 2010a), which highlights that

in fact only the APEs of time-varying covariates are identified. Let the linear predictors

inside the cumulative normal be m′it1ξ̂1 for the main equation and m′it2ξ̂2 for the variance

equation. Then, ÂSF(x1t, . . . ,xNt) = N−1
∑N

i=1 Φ
(
m′it1ξ̂1/exp(m′it2ξ̂2)1/2

)
, where xit

refers to all time-varying covariates including mismeasured income, and the ξ̂ coefficients

are the scaled QMLE estimates. We need to average over the cross-sectional dimension

in order to get rid of the unobserved effects, varying panel sizes, and endogeneity due to

measurement error. The APE at time t of a particular continuous variable is simply the

derivative of the ASF with respect to that variable. We later plug in interesting values

for the xit and obtain the corresponding APEs.

By analogy, the (average) elasticity with respect to an element xk of xit, assuming xk

is in logs and does not show up in the variance equation, is found to be

ε̂Hxk
t = β̂k ×N−1

N∑

i=1

exp
(
−m′it2ξ̂2/2

)
λ
(
m′it1ξ̂1/exp(m′it2ξ̂2)1/2

)
(14)

and the semi-elasticity (η̂Hxk
t ) is the derivative of the ASF with respect to xk; that is,

the average partial effect (APE). It can be obtained by simply replacing λ(·) with φ(·) in

eq. (14) above. Since the surveys are irregularly spaced and often cover only parts of a

given year, it is not straightforward to obtain and describe the evolution of the ASF over

time. Hence, we usually also average over time in order to obtain a single scale factor

and a single APE for each variable of interest.

The basic structure is exactly the same as in the simpler versions derived in the

previous section with the addition of a variance equation adjusting for the degree of

unbalancedness. If the panel is balanced, the non-redundant sums inside the linear

predictors simplify and we again obtain the CRE analogues of eqs. (7) and (8).

14This is a complicated model to fit but it can be estimated by any software that has a heteroskedastic
probit implementation without any restrictions on the dependent variable (Wooldridge, 2010a). However,
most implementations (e.g. Stata’s hetprob) only allow binary dependent variables. We implement
the estimator in a new module called fhetprob with analytic first and second derivatives, see www.
richard-bluhm.com/data/. Since the arrival of Stata 14, end users may also use the built-in command
fracreg probit with properly defined heteroskedastic terms to estimate our models.
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4 Data

Based on the World Bank’s PovcalNet database15, we compile a new and comprehensive

data set consisting of 809 nationally-representative surveys spanning 124 countries from

1981 to 2010.16 Smaller panels of this data have been used in previous studies (e.g.

Chambers and Dhongde, 2011; Kalwij and Verschoor, 2007; Adams, 2004) and the World

Bank’s methodology is described in more detail in Chen and Ravallion (2010). Here we

only briefly summarize the main features.

All data originate from household surveys. We consider poverty headcount ratios (Hit)

under two different poverty lines (z) widely used for international comparisons: $2 a day

($60.80 a month) and $1.25 a day ($38 a month). The latter is typically used to assess

extreme poverty. In addition to these poverty rates, the data contain monthly per capita

household income or consumption expenditures (ȳit)
17, the Gini coefficient of inequality

(Git) for income or consumption expenditures, and the size of the surveyed population

(popit). We generate two dummy variables indicating whether welfare is measured by

income or consumption, and whether it is reported at the level of units (households)

or groups (deciles or finer quantiles). Reported poverty is typically lower in income

surveys than consumption surveys, and the availability of grouped versus unit-level data

in PovcalNet may proxy for other systematic survey differences. About 63% of the data

come from expenditure surveys and about 74% are estimated from grouped data. All

monetary quantities are in constant international dollars at 2005 PPP-adjusted prices.

Three large countries, China, India and Indonesia, do not conduct nationally

representative surveys, but instead report urban and rural data separately. To construct

national series we simply weigh the poverty and income data using the relative

urban/rural population shares. As to the Gini coefficient, since it is not subgroup-

decomposable, we estimate a national Gini coefficient via an approximation due to Young

(2011), based on a mixture of two log-normal distributions.18 If only one urban or rural

survey is available in any given year, we usually drop the survey, except in the case of

Argentina where urbanization is near or above 90% for most of the sampled period and

we thus consider the urban series nationally representative. The result is an unbalanced

panel of 124 countries spanning 30 years, with an average time series length (T̄ ) of about

6.5 surveys for a total of 809 observations. Table 1 provides summary statistics for

15The data is publicly available at http://iresearch.worldbank.org/PovcalNet (we use the 2005
PPP version).

16Supporting materials and the panel data set are available at www.richard-bluhm.com/data/.
17Computed as a simple per capita average without equivalence scaling.
18PovcalNet omits weighting some recent data. To use a single consistent method, we apply Young’s

formula in all cases where separate urban and rural surveys are combined. The approximation is very

accurate. The formula is G =
∑K
i=1

∑K
j=1

sisj ȳi

Ȳ

(
2K

[
ln ȳi−ln ȳj+ 1

2σ
2
i + 1

2σ
2
j

(σ2
i +σ2

j )1/2

]
− 1
)

where K is the total

number of subgroups, si is the population share of the i-th subgroup, ȳi is mean income, σ2
i is the

variance, and Ȳ is the population-weighted mean income across all subgroups.
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the entire panel. In Appendix B, Table B-1 presents summary statistics by region, and

List B-1 lists the countries and the corresponding numbers of surveys in the sample.

Table 1 – Summary statistics

Mean Std. Deviation Min Max N
Main variables
Hit – Headcount ($2) 0.303 0.286 .0002 .9845 809
Hit – Headcount ($1.25) 0.182 0.219 .0002 .9255 789
Git – Gini coefficient 0.424 0.102 .2096 .7433 809
ȳit – Mean income or expenditure in $ per month 194.59 125.90 14.93 766.78 809
PCEPit – Consumption (PWT) in $ per month 338.64 234.59 14.39 1231.21 795
Survey type dummies
Consumption (Grouped) 0.611 0.488 0 1 809
Consumption (Unit) 0.015 0.121 0 1 809
Income (Grouped) 0.132 0.339 0 1 809
Income (Unit) 0.242 0.429 0 1 809

For estimating the benchmark linear models and for the contributions, we need data

in differences or log-differences at the country level. We take differences only within

runs or spells of comparable surveys, i.e., between survey data of the same type: income

or expenditure based, and available at the unit level or grouped. Thus we avoid using

spurious differences due to switches from an income to an expenditure survey or vice versa,

or due to changes in the level of aggregation. We also annualize all differences to mitigate

any biases arising from estimating elasticities over time periods of different lengths. Since

differencing requires Ti ≥ 2 and we take differences only between comparable surveys,

we end up with a smaller data set of 648 observations from 104 countries. To estimate

the contributions, this data set is reduced further to include only the longest consecutive

spells of the same survey type (yielding 123 observations), and for reasons that will

become clear later on we also take sub-samples of the data before and after the year 2000

(yielding 87 observations in both cases). Observations where the poverty headcount is

exactly zero at the beginning or end of a spell do not occur in our data.

To the survey-based panel, we add per capita consumption data from national

accounts, which will later serve both as instruments for survey income and as a basis for

the poverty projections. Personal consumption expenditures are retrieved from the World

Development Indicators (WDI) and Penn World Table 7.1 (PWT), denoted PCEW
it and

PCEP
it respectively.19 The PWT version is preferred in the estimations; for the poverty

projections a ‘merged’ series (PCEit) is constructed using the WDI series as a benchmark

but replacing it with PWT data if coverage over 1981-2010 is better. Both series are in

constant 2005 prices, but the PWT adjusts the original 2005 ICP data and interpolates

differently between benchmark years (Deaton and Heston, 2010). For the projections,

19Monthly PCEPit is computed as (kcit/100 × rgdplit/12), where kcit is the consumption share and
rgdplit is GDP per capita (Laspeyres) in 2005 constant prices. Similarly, PCEWit is household final
consumption expenditure in 2005 prices divided by the population and converted to monthly figures.
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we also use population estimates covering the period 2010-2030 from the World Bank’s

Health, Nutrition and Population Statistics database.

5 Results

5.1 Regressions

Table 2 presents our main results, with each specification progressively addressing more

estimation issues: unobserved effects, unbalancedness and measurement error, in that

order. All specifications include time averages à la Mundlak to proxy for measurement

differences across countries (unobserved effects), and survey type dummies (consumption

or income, grouped or unit data) to control for measurement differences across surveys.

In addition, a full set of year dummies allows for unspecified common time effects.

Column (1) includes correlated random effects but ignores unbalancedness. As

expected, the coefficient on average income is negative and the coefficient on inequality

is positive. Since the estimated coefficients are arbitrarily scaled, the adjacent column

reports average partial effects (APEs); the scale factor is reported separately in the

bottom panel. The APEs in column (1) are interpreted as average semi-elasticities :

income growth of one percent results in a reduction in the number of poor by 0.284

percentage points ; and a Gini increase of one percent corresponds to an increase in

the number of poor by 0.232 percentage points. As for elasticities, the average income

elasticity across the entire estimation sample is about −1.83 (SE = 0.084) and the average

Gini elasticity is about 1.5 (SE = 0.167). For instance, one percent income growth would

lead to about a 1.83 percent reduction in poverty. These two estimates are located near

the lower end of the figures typically found in the literature.20

Our first specification could be biased due to the strong unbalancedness of the panel

and the presence of time-varying measurement error in income and inequality. Column

(2) addresses unbalancedness by including panel size dummies, interactions of the time

averages with the panel size dummies, and a separate variance equation. We consider

this our best specification without correcting for measurement error. The substantive

conclusions change very little. The APE of income is virtually unchanged and the APE

of inequality increases by less than one standard error. Tentatively, we conclude that

varying sample sizes introduce little bias on average. Nonetheless, they may still have

non-negligible effects on the (semi-)elasticities at particular points in time.

Our preferred specification, column (3), is the empirical counterpart of the two-

20The typical range for the income elasticity in earlier studies is from about -2 to -5, while the range
for the Gini elasticity is much wider. Newer studies suggest the income elasticity is closer to -2. This is
largely owed to parameter instability in linear approximations and changing data coverage. However, as
Chambers and Dhongde (2011) report, estimates of the income elasticity using the 2005 PPPs are also
universally lower (in absolute value) than estimates based on the earlier 1993 PPPs.

17

ECINEQ WP 2016 - 413 October 2016



Table 2 – Fractional probit models (QMLE) – Dependent variable: Hit, $2 a day

(1) (2) (3)
Regular Unbalanced Unbalanced + Two-Step

Hit APEs Hit APEs Hit APEs

ln ȳit -1.263 -0.284 -0.880 -0.281 -1.049 -0.339
(0.054) (0.012) (0.048) (0.011) (0.198) (0.035)

lnGit 1.032 0.232 0.786 0.251 0.775 0.251
(0.114) (0.026) (0.098) (0.026) (0.163) (0.032)

ν̂it 0.133
(0.113)

CRE (Corr. Rand. Effects) Yes Yes Yes
Survey type dummies Yes Yes Yes
Time dummies Yes Yes Yes
Panel size dummies No Yes Yes
Panel size dummies × CRE No Yes Yes
Variance equation No Yes Yes

Scale factor 0.225 0.319 0.323
N × T̄ 789 789 775
N 104 104 103
pseudo R2 0.984 0.993 0.993
lnL -219.3 -315.6 -313.4√
MSE 0.0355 0.0238 0.0235

Notes: The table reports fractional response QMLE estimates. The dependent variable is the poverty
rate at $2 a day (in 2005 PPPs). 20 observations with Ti = 1 are not used during estimation. The
panel structure is country-survey-year. In models (1) and (2), the standard errors of the coefficients
are robust to clustering at the country level and the standard errors of the APEs are computed
via the delta method. We include the time averages of the survey type and time dummies in (2)
and (3), but constrain their coefficients to be equal across the panel sizes. The standard errors of
the coefficients and the APEs in model (3) account for the first stage estimation step with a panel
bootstrap using 999 bootstrap replications. The linear projection in the first stage uses lnPCEPit
as an instrument for ln ȳit. The first-stage cluster-robust F-statistic in (3) is 28.05. Model (3) also
excludes West Bank and Gaza entirely (2 observations) and 12 observations from ECA countries
pre-1990 for lack of PCE data.

step estimator presented in eq. (13). To account for measurement error in income, we

instrument survey mean incomes or expenditures with per capita consumption from the

national accounts (PCEP
it ). The main identifying assumption is that any measurement

error in per capita consumption from the national accounts is orthogonal to survey-

based measurement error in income or expenditures. As both measures are constructed

very differently in practice, this is a common identification strategy (Ravallion, 2001).

Figure B-3 in Appendix B highlights the strength of the first stage relationship. It shows

a partial regression plot of mean incomes or expenditures from the surveys against per

capita consumption from the National Accounts, after taking out the variation in the

Gini, the time averages of the Gini and PCEP
it , sample size dummies, survey dummies

and time dummies.

The evidence of measurement error in income in column (3) is weak (panel bootstrap
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t-stat ≈ 1.18). If we ignore first-stage sampling error, the evidence is stronger (cluster-

robust t-stat ≈ 1.69).21 The APE of income is considerably larger in absolute value than

in the previous two specifications, though the APE of inequality is not. We tentatively

conclude that the coefficient of income in models (1) and (2) is moderately attenuated.

This would suggest that classical attenuation bias is more of a problem than systematic

survey bias, but we cannot rule out that more complex error structures are at play.

Like the APE, the average income elasticity of poverty in model (3) is larger in

absolute value (¯̂εHȳ ≈ −2.21, SE = 0.156). Income growth of one percent leads to a

0.339 percentage point or 2.21 percent reduction in the number of poor, on average. The

inequality APE and elasticity remain about the same (¯̂εHG ≈ 1.64, SE = 0.188). Actually,

there may also be non-negligible measurement error in observed inequality as measured

by the Gini coefficient. However, since inequality is estimated from household surveys

and estimates based on alternative sources such as tax records are not available on a

cross-country basis, we are lacking a corresponding instrument for the Gini coefficient.

At first sight, all three models may suggest that the effect of income growth is only

moderately stronger than the effect of inequality when the other variable is held constant.

This does not imply that both variables have the same scope for change, or have to change

independently for that matter. For now, we only estimate the impact of each component

and not its contribution to overall poverty reduction. While there is substantial variation

in inequality, it shows no systematic trend over the sample period from 1981 to 2010.22

In contrast, incomes and expenditures have increased substantially in all regions over

the same time span (see Table B-3 in Appendix B). Yet, the effect of income growth

is not constant. In these models, it depends strongly on the levels of inequality and

income. There is a ‘double dividend’ to improvements in distribution (Bourguignon,

2003) and substantial heterogeneity in the estimated poverty (semi-)elasticities across

time and space – an issue to which we return shortly.

Perhaps the most striking fact about all three specifications is how well they fit.23

The last row of Table 2 shows the square root of the mean squared residual for each

column. We predict the observed poverty headcount for each country-year with about

three and a half percentage points accuracy in the first model, and with better than two

and a half percentage points accuracy in the next two. This is what one would expect

from a well-defined decomposition. A simple pseudo-R2 measure, the squared correlation

between the observed and fitted values, suggests near perfect fit (R2 > 0.98). Figure 1

21As mentioned earlier, the Hausman (1978) test does not depend on the first stage under the null.
22In a simple regression of the Gini coefficient on time, we fail to reject the null hypothesis that the

time trend is zero (cluster-robust t-stat ≈ 0.07 and p > 0.94).
23To examine if there is evidence of omitted non-linearity, we add squares (m′it1ξ̂1)2 and cubes

(m′it1ξ̂1)3 of the linear predictors in columns (1) and (2) for a RESET-type test as suggested by Papke
and Wooldridge (1996). In column (1), this yields a robust χ2

2-statistic of 4.65 (p = 0.098), giving no
reason for concern; in column (2), the statistic is χ2

2 = 9.15 (p = 0.010), signaling missing non-linearity.
We see no theoretical rationale, though, to enter additional powers or interactions into the model.
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illustrates this point and shows the shape of the estimated effects. Using our preferred

specification, we plot both the observed headcount and the predicted headcount over the

range of observed mean income or expenditures (left panel) and inequality (right panel).

The quality of the non-linear approach is apparent. The fit is very close at either bound

(near unity or near zero) and the model predicts no nonsensical values. Furthermore, the

entire range of variation of the observed values is covered by the model predictions.

Figure 1 – Data versus fitted values, preferred specification, $2 a day
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Notes: Illustration of the model fit from the estimates presented in column (3) of Table 2. The left
panel shows the observed poverty rates (actual) and predicted poverty rates (Ê[H|X]) over mean
incomes; the right panel plots both over the Gini coefficient.

For comparison, Table B-2 in Appendix B reproduces the linear approach so common

in the literature. As is typical for such comparisons, linearly and non-linearly estimated

elasticities are very similar on average. Yet the various linear estimates suffer from

the expected problems (see Section 2). First, the step from within-transformed data

in column (1) to annualized differences in the following columns seems to worsen the

impact of measurement error and attenuate the income effect. Second, the models with

interaction terms do not fit nearly as well as the fractional probit models and many

coefficients are insignificant. Third, the two-step GMM estimates of the interaction

models are unstable and unable to convincingly reverse the attenuation effect. The

last model, which mimics the preferred specification of Kalwij and Verschoor (2007),

even implies a negative Gini elasticity, and all coefficients are estimated with great

imprecision. In sum, these models perform poorly in comparison to the fractional

response counterparts and are unlikely to produce reliable estimates over a wide range of

circumstances.
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5.2 Impacts

The strength of the fractional response approach lies in its ability to deliver precise

and unbiased estimates of effects other than the overall mean response. Table 3 and

Table 4 illustrate this point by estimating income and Gini elasticities (Panel a)) and

semi-elasticities (Panel b)) over different time periods for six large geographic regions.

The elasticities are computed according to eq. (14) by plugging in time-period and region-

specific averages of mean income (ln ȳit) and inequality (lnGit), and then averaging over

the entire sample; the semi-elasticities are computed analogously. Standard errors are

computed via a panel bootstrap and thus take into account the sampling uncertainty of

the first stage.

Table 3 – Income elasticities and semi-elasticities, $2 a day, by region

Time period

1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

Panel a) Regional income elasticities
East Asia and Pacific -0.991 -1.029 -1.237 -1.139 -1.578

(0.030) (0.033) (0.055) (0.043) (0.101)
Eastern Europe and Central Asia -4.358 -2.892 -2.700 -2.846 -3.304

(0.555) (0.309) (0.277) (0.304) (0.384)
Latin America and Caribbean -2.284 -2.374 -2.425 -2.349 -2.985

(0.243) (0.257) (0.271) (0.258) (0.366)
Middle East and North Africa -2.176 -2.116 -2.024 -1.966 -2.501

(0.203) (0.188) (0.168) (0.161) (0.246)
South Asia -0.548 -0.629 -0.810 -1.024 -1.192

(0.053) (0.048) (0.030) (0.032) (0.046)
Sub-Saharan Africa -0.831 -0.437 -0.436 -0.592 -0.632

(0.027) (0.039) (0.040) (0.035) (0.033)
Panel b) Regional income semi-elasticities

East Asia and Pacific -0.568 -0.573 -0.585 -0.583 -0.552
(0.034) (0.036) (0.046) (0.042) (0.051)

Eastern Europe and Central Asia -0.031 -0.214 -0.260 -0.225 -0.134
(0.008) (0.015) (0.020) (0.015) (0.010)

Latin America and Caribbean -0.374 -0.348 -0.334 -0.355 -0.194
(0.028) (0.025) (0.024) (0.026) (0.013)

Middle East and North Africa -0.405 -0.422 -0.447 -0.463 -0.313
(0.034) (0.037) (0.042) (0.043) (0.024)

South Asia -0.418 -0.458 -0.526 -0.572 -0.585
(0.023) (0.019) (0.022) (0.036) (0.044)

Sub-Saharan Africa -0.532 -0.354 -0.353 -0.440 -0.459
(0.024) (0.020) (0.020) (0.015) (0.015)

Notes: The table reports regional income elasticities in panel a) and regional income semi-elasticities
in panel b). The estimates are computed by plugging period and region-specific averages of mean
income and inequality into eq. (14) or its semi-elasticity counterpart and then averaging over the
entire sample. Standard errors are obtained via a panel bootstrap using 999 replications.

There are considerable regional and temporal differences in the estimated income

elasticities. As the theoretical derivations in Section 2 show, the origin of the
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heterogeneity of elasticities is essentially mechanical: it is a consequence of heterogeneity

in incomes and inequality. More affluent regions (Eastern Europe and Central Asia,

Latin America and the Caribbean, and the Middle East and North Africa) have higher

income elasticities than poorer regions (East Asia and Pacific, South Asia, and Sub-

Saharan Africa). Income dynamics over time are also clearly visible. In Eastern Europe

and Central Asia, for example, income is comparatively high before the post-communist

transition, sharply collapses through the 1990s, and recovers during the 2000s. Compared

to earlier results (e.g. Kalwij and Verschoor, 2007), we find markedly higher average

income elasticities in more affluent regions and lower elasticities in poorer regions. All

standard errors in Table 3 are small compared to the point estimates and remain small

for regions with extreme values (like Sub-Saharan Africa, with its very low incomes and

above average inequalities in the 1980s).

Panel b) presents the region and time specific income semi-elasticities of poverty.

There the picture is reversed. Comparatively affluent regions have fewer people near the

poverty line, and thus the poverty reduction potential from a one percent increase in

incomes is much smaller in terms of the numbers lifted out of poverty. This pattern is

(again) best visible in Eastern Europe and Central Asia, where absolute poverty at the

$2 a day poverty line is almost non-existent just before the post-communist transition,

but rises sharply in the 1990s as incomes decline. Correspondingly, the semi-elasticity is

close to zero in the 1980s but then increases as more people fall into poverty. Likewise,

the biggest poverty reduction potential in 2005-2010 was in East Asia, South Asia, and

Sub-Saharan Africa. This highlights an important point. For development policy, what

we really care about is the percent of the population lifted out of poverty rather than the

percentage reduction in the poverty rate.

The region and time specific Gini elasticities in Panel a) of Table 4 show where the

potential of redistributive policies in terms of proportionate reductions in the poverty

headcount was largest over the last three decades. Unsurprisingly, these regions are

Eastern Europe and Central Asia, Latin America and the Caribbean, and the Middle East

and North Africa – all of which have above average inequality. Sub-Saharan Africa starts

out with high inequality in the 1980s24 but incomes are very low relative to the poverty

line, so that the Gini elasticity is small. This is the flip side of the dependency on initial

levels: countries can be so poor and unequal that the immediate effects of equalization

and income growth on relative changes in the poverty headcount are relatively small.

Again, though, the semi-elasticities presented in Panel b) overhaul the picture. There

the relative position of poorer and richer countries is reversed. The potential for reducing

poverty through redistribution in terms of percent of the population that is poor was

larger in poorer regions throughout the entire period from 1981 to 2010.

The ‘double dividend’ of reductions in inequality is illustrated in Figure 2 by graphing

24The population-weighted mean Gini in the 1980s is 0.4608.
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Table 4 – Inequality elasticities and semi-elasticities, $2 a day, by region

Time period

1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

Panel a) Regional inequality elasticities
East Asia and Pacific 0.732 0.760 0.914 0.841 1.165

(0.105) (0.101) (0.113) (0.108) (0.144)
Eastern Europe and Central Asia 3.219 2.136 1.994 2.102 2.440

(0.510) (0.307) (0.283) (0.296) (0.353)
Latin America and Caribbean 1.687 1.753 1.791 1.735 2.205

(0.186) (0.198) (0.199) (0.189) (0.269)
Middle East and North Africa 1.607 1.563 1.495 1.452 1.847

(0.197) (0.198) (0.196) (0.185) (0.253)
South Asia 0.405 0.464 0.598 0.756 0.880

(0.093) (0.097) (0.095) (0.107) (0.127)
Sub-Saharan Africa 0.614 0.322 0.322 0.437 0.467

(0.087) (0.055) (0.060) (0.066) (0.069)
Panel b) Regional inequality semi-elasticities

East Asia and Pacific 0.419 0.423 0.432 0.431 0.408
(0.053) (0.053) (0.055) (0.054) (0.053)

Eastern Europe and Central Asia 0.023 0.158 0.192 0.166 0.099
(0.007) (0.015) (0.019) (0.017) (0.012)

Latin America and Caribbean 0.276 0.257 0.247 0.262 0.143
(0.046) (0.043) (0.043) (0.045) (0.029)

Middle East and North Africa 0.299 0.311 0.330 0.342 0.231
(0.041) (0.040) (0.041) (0.044) (0.025)

South Asia 0.309 0.338 0.389 0.423 0.432
(0.056) (0.055) (0.052) (0.054) (0.055)

Sub-Saharan Africa 0.393 0.261 0.261 0.325 0.339
(0.050) (0.037) (0.040) (0.042) (0.043)

Notes: The table reports regional inequality elasticities in panel a) and regional inequality semi-
elasticities in panel b). The estimates are computed by plugging period and region-specific averages
of mean income and inequality into eq. (14) or its semi-elasticity counterpart and then averaging
over the entire sample. Standard errors are obtained via a panel bootstrap using 999 replications.

the estimated poverty elasticities and semi-elasticities over different combinations of

income and inequality. We compute these functions according to eq. (14) by plugging in

the different values for per capita income or expenditures (ln ȳit) and inequality (lnGit),

and then averaging over the entire sample. As Figure 2a illustrates, on top of the direct

poverty alleviating effect of income redistribution towards the poor, a lower level of

inequality also raises the income elasticity in absolute value at every point. However,

the magnitude of both elasticities is steeply increasing in the level of income; that is, the

returns to either income growth or equalization are bigger, the higher the income level.

Moreover, the gap between the functions evaluated at different inequality levels is first

narrow and then widening. This may invite the conclusion that redistribution is only

really helpful in more affluent societies with high levels of inequality. That, precisely, is

the misleading feature of relative changes.

Figure 2b shows the predicted income and Gini semi-elasticities of poverty. The
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Figure 2 – Predicted income and Gini elasticities and semi-elasticities of poverty, $2 a day
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Notes: Illustration of non-linear nature of the poverty-growth-inequality relationship based on the
estimates presented in column (3) of Table 2. Panel a) shows the estimated income elasticities of
poverty (on the left) and estimated inequality elasticities of poverty (on the right) plotted over the
ratio of average incomes to the poverty line. Panel b) shows the estimated income semi-elasticities
of poverty (on the left) and estimated inequality semi-elasticities of poverty (on the right) plotted
over the ratio of average incomes to the poverty line. The various curves correspond to estimates
based on different Gini coefficients.

picture is very different and in many ways more intuitive. If the shortfall is too large –

the mass of the income distribution is too far to the left of the poverty line – then both the

income and the Gini semi-elasticities approach zero. However, if the country is affluent

– the mass of the income distribution is far to the right of the poverty line – then both
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semi-elasticities also approach zero. In between those two extremes, improvements in the

income distribution can make a very large difference in terms of percent of the population

lifted out of poverty, both directly through redistribution and indirectly through growth.

When mean income is at the poverty line (ȳt/z = 1), for example, a Gini of 0.25 implies

that one percent income growth leads to a 0.584 percentage point reduction in the poverty

headcount; and a Gini of 0.55 implies that one percent income growth leads to a 0.378

percentage point reduction in the poverty headcount. Especially at very low average

income levels the initial income distribution is decisive; it practically determines whether

there is potential for poverty alleviation through income growth at all (in terms of the

proportion of poor). Moreover, improvements in the income distribution will have a larger

poverty reducing effect at lower (initial) levels of inequality. Contrary to elasticities,

semi-elasticities suggest that poverty reduction strategies should focus both on income

growth and equalization, especially in low-income countries where the total returns to

redistribution are large. Again, for policy purposes, these relationships are much more

pertinent than relative changes in the poverty headcount.25

Could the decomposition be improved by allowing for other, ‘more ultimate’

determinants of poverty? If the assumption of log-normality is justified, mean income and

the Gini fully describe the distribution of incomes and expenditures, and there is no scope

for additional determinants. Yet log-normality is restrictive and we deliberately do not

rely on it; in fact, we expect it to be violated at least in some cases (see, e.g., the host of

alternative distributions analyzed by Bresson, 2009). More realistic distributions usually

have more than one shape parameter in order to better capture skewness, a long tail, or

the existence of multiple modes. ‘Ultimate factors’ could thus be proxies for systematic

deviations from equiproportional shifts in the distribution of incomes and expenditures.

Weak institutions, for example, might explain the fact that the rich capture more of the

gains of growth. Table B-4 in Appendix B extends the heteroskedastic fractional probit

models with data on institutions, human capital, access to credit and trade openness.

The APEs of income and inequality are not affected by the inclusion of the additional

covariates and the APEs of the latter are virtually zero. Thus we conclude that with

only two variables, some dummies and correlated random effects, these specifications

are essentially saturated. Contrary to linear approximations, the fractional response

approach leaves little room for underspecification of the decomposition.

While the literature on poverty reduction has produced mixed results so far, it is

largely consistent with this view. Prominent examples are two studies by Dollar and

Kraay (2002, 2004). These authors find that trade, inflation and other factors influence

the incomes of the poorest quintile, while several other variables do not. However, they

25This finding should stand with the new 2011 PPPs as well. Different PPPs would shift incomes,
the poverty line and the poverty rates, and so countries would be located differently on the graph; but
the position of the curves in terms of relative incomes, ȳt/z, would be comparable.
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emphasize that the effects run predominantly through growth of GDP per capita. The

relevant link is not between some factor X and a measure of poverty, but between X

and income or inequality; those are the relationships deserving a theoretical basis with

attention for causality issues. Thus if one is interested in the effects of, say, institutions

on poverty, our recommendation is to investigate the effects of institutions on income (cf.

Acemoglu et al., 2001) and inequality (cf. Easterly, 2007). Distinguishing this layer of

relationships is important, as the impacts of income and distributional changes themselves

depend on the initial levels of income and inequality.

5.3 Contributions

We now turn to the contributions of growth and redistribution to poverty reduction

since the early 1980s. We are going to show that there has been a marked shift in

the distributional pattern of growth towards pro-poor growth around the turn of the

millennium.

The contribution of growth or redistribution to poverty changes in some predefined

period is the product of their impact (partial effect, semi-elasticity) and their actual

variation, usually expressed as a proportion of the total change in the poverty rate over

the same period. Together with the stylized fact, illustrated in Figure B-4, that growth

tends to be distribution-neutral, the relative contributions of growth and redistribution

have been used to highlight the primacy of growth for poverty reduction (see e.g. Dollar

and Kraay, 2002; Kraay, 2006; Kraay et al., 2014; Dollar et al., 2016). Kraay (2006), for

example, concludes that long-run differences in poverty reduction can largely be explained

by growth in average incomes, as opposed to changes in inequality, which seem to matter

only in the short run. A good deal of the primacy of growth is due to the fact that there is

a lot more long-run variation in growth than in inequality. Even so, the poverty reducing

quality of growth is of legitimate concern. While the cross-country correlation between

growth and changes in inequality is near zero, this correlation varies across countries,

regions, and time periods (see also Ravallion and Chen, 2003). In fact, the variability of

the (semi-)elasticities emphasized above, together with the variability of average incomes

and inequality, can give rise to all sorts of relative contributions.

Some additional notation will prove useful. Following Datt and Ravallion (1992), a

discrete-time, non-logarithmic version of the decomposition of poverty changes is

∆Ht ≈
[
H(ȳt/z, Lt−1)−H(ȳt−1/z, Lt−1)

]
+
[
H(ȳt−1/z, Lt)−H(ȳt−1/z, Lt−1)

]
(15)

where Lt is the Lorenz curve which, given micro-data, can be estimated non-

parametrically. The first brackets on the right-hand side contain the ‘growth component’,

the second the ‘distributional component’ of poverty reduction; we will refer to them as

Y and D respectively. Two of the four terms inside the brackets are unobservable:
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H(ȳt/z, Lt−1) is the poverty rate when average income has evolved but the Lorenz curve

is kept unchanged; H(ȳt−1/z, Lt) is the poverty rate when the distribution has shifted but

average income is kept constant. The decomposition is approximate and ‘path dependent’,

generating a residual.26

In the present, cross-country context, the fractional response model estimated

above suggests a simple approach: we approximate H(ȳt/z, Lt) by our earlier function

H(ȳt/z,Gt), and replace the unknown quantities by predicted counterparts Ĥ(ȳt/z,Gt−1)

and Ĥ(ȳt−1/z,Gt).

Eq. (15) is deliberately written in absolute differences, even though the decomposition

is often carried out in relative terms (using logarithmic differences). This is in line

with the fractional response approach, where poverty levels are the natural metric. Two

other considerations motivate this choice. First, proportional decompositions are very

sensitive to levels approaching zero. Second, they overstate the growth component in

relatively rich regions and understate it in relatively poor regions, due to the mechanical

rise of the income elasticity over the development process. As a result, decompositions in

relative terms affect our ability to assess the contributions correctly and to detect poverty

convergence (Ravallion, 2012; Cuaresma et al., 2016).

It is interesting to carry out the decomposition over different time periods. We

construct three data sets for this purpose: one using the longest possible spells of surveys

of the same type between 1981 and 2010; and two for the sub-periods 1981-2000 and 2000-

2010. Since the availability of surveys before 2000 is more limited, the average spell length

in the two sub-periods is comparable: both have a mean and median duration between the

initial and final surveys of about seven years. The break point is not chosen by accident.

The turn of the millennium marked a qualitative change in the growth performance

of developing countries, who collectively grew faster than the developed world for the

subsequent decade. What we are interested in here is whether this development might

have coincided with a shift in the quality of growth.

We borrow from the growth accounting literature to define the shares of growth and

inequality (see e.g. Klenow and Rodriguez-Clare, 1997; Caselli, 2005). Table 5 shows

the results of a regional variance-covariance decomposition of all spells occurring within

a particular region and period using the $2.00 a day poverty line. Within each of

the three periods we compute the variance of the growth component, VAR(Y ), the

variance of the distribution component, VAR(D), and their covariance, COV(Y,D).

From these we obtain the cross-country share of the growth component as sY =

[VAR(Y ) + COV(Y,D)]/[VAR(Y ) + VAR(D) + 2COV(Y,D)], and the share of the

26To get rid of the path dependency we may average eq. (15) with a second decomposition swapping
t and t − 1 in eq. (15); this delivers what Shorrocks (2013) calls the ‘Shapley decomposition’. In our
case, the decomposition residual also includes prediction errors which should probably not be distributed
across the two input factors.
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Table 5 – Decomposition at $2 a day poverty line, by region

VAR(Y ) VAR(D) COV(Y,D) sY sD
√
MSE N

Panel a) Spells from 1981 to 2010
East Asia and Pacific 1.166 0.385 0.001 75.16 24.84 1.01 12
Europe and Central Asia 3.429 0.414 0.164 86.14 13.86 0.57 39
Latin America and Caribbean 3.073 0.666 -0.619 98.12 1.88 0.79 28
Middle East and North Africa 0.425 0.452 0.304 49.10 50.90 1.38 8
South Asia 0.659 2.743 0.191 22.46 77.54 0.36 7
Sub-Saharan Africa 1.482 0.134 -0.196 105.08 -5.08 0.48 29
All developing 2.576 0.579 0.002 81.61 18.39 0.73 123

Panel b) Spells from 1981 to 1999
East Asia and Pacific 0.951 0.151 0.017 85.23 14.77 0.86 9
Europe and Central Asia 14.568 1.912 -0.706 91.99 8.01 0.92 25
Latin America and Caribbean 3.750 1.229 -0.633 83.94 16.06 0.89 26
Middle East and North Africa 0.372 0.365 0.207 50.31 49.69 0.78 6
South Asia 0.244 0.021 0.004 91.11 8.89 0.33 4
Sub-Saharan Africa 2.217 0.702 -0.309 82.89 17.11 0.92 17
All developing 6.852 1.073 -0.368 90.19 9.81 0.87 87

Panel c) Spells from 2000 to 2010
East Asia and Pacific 1.579 1.143 -0.134 58.89 41.11 1.18 10
Europe and Central Asia 3.544 0.498 0.826 76.75 23.25 0.57 26
Latin America and Caribbean 0.365 0.150 0.010 70.10 29.90 0.35 19
Middle East and North Africa 0.780 0.741 0.629 50.69 49.31 1.76 5
South Asia 0.642 1.122 0.731 42.57 57.43 0.40 6
Sub-Saharan Africa 2.051 0.560 0.188 74.97 25.03 0.87 21
All developing 2.049 0.559 0.365 72.31 27.69 0.81 87

Notes: The table reports the results of the decomposition of the observed changes in the poverty
rate at $2 a day into its growth and distribution components at the regional level. Panels a) to c) run
this decomposition over different sub-samples as denoted in the table. We predict the counterfactual
quantities using the first and last available data for the longest runs of survey of the same type within
the sample period.

distribution component as sD = 1 − sY .27 We also report the root mean squared error

(
√
MSE) of the observed versus the predicted values to assess the importance of the

residual including model error. Last but not least, we report the number of spells for

each region and period. Table B-6 in Appendix B reports comparable results calculated

at the $1.25 a day poverty line.

Our results for all developing countries over the entire 1981-2010 period compare well

with the stylized facts from the literature. Overall, the share of growth is about 82%,

that of distributional change about 18% only. The variance of changes in the poverty

rate due to changes in average income is much greater than the variance due to changes

in inequality, and the covariance between the two components is virtually zero, consistent

with distribution-neutral growth. The residual is less than three quarters of a percentage

point, indicating that even with added model error the decomposition works well. The

27Note that the share of one factor can exceed one, but both always add up to one. Caselli (2005)
discusses a set of alternative measures, but they do not change the qualitative implications of our results.

28

ECINEQ WP 2016 - 413 October 2016



results for the $1.25 a day poverty line (Table B-6) are qualitatively similar and broadly

match those reported in Kraay (2006).

The breakdown of the results by region also tells a familiar story. Growth dominated

poverty reduction in Sub-Saharan Africa (where incomes first declined, then stagnated

and then recovered again), in Latin America (where inequality was persistently high

for most of the period in question), and in Europe and Central Asia (where the

post-communist transition was accompanied by rapid movements in average incomes).

Distributional change played a larger role in East Asia and Pacific, Middle East and

North Africa, and South Asia, where it was responsible for about one, two and three

quarters of the poverty evolution, respectively. Some of these results come with a caveat,

though. In South Asia, although we have all but one countries represented, the sample

size is very small.28 In the Middle East and North Africa, survey coverage is notoriously

bad, we have less than half of all countries in the sample, and the residual is more than

twice the average.

So what’s new? A very different picture emerges once we split the sample at the

turn of the millennium. The corresponding results are reported in Panel b) and Panel

c) of Table 5. Growth was responsible for nearly all of the changes in the poverty rate

before 2000, but its share fell to 72% in the following decade. Since the mean spell

lengths are about the same, this is not due to a long run vs. short run difference.

Instead, this development seems to be the result of a shift in the poverty reducing quality

of growth. Panel b) shows that before 2000 the correlation between the growth and

distribution component was negative for all developing countries as a whole and for half

of the regions. Panel c) demonstrates that after 2000 the correlation between the two

components turned positive for the sample as a whole and in all regions apart from East

Asia. Positive growth coincided with reductions in inequality more often. Table B-6 in

Appendix B confirms that this pattern also holds at the $1.25 a day poverty line.

Figure 3 helps to make this point more tangible. The upper panel shows how the

correlation between the estimated growth and distribution components changed over the

turn of the millennium. Before 2000, reductions in poverty through growth often coincided

with adverse distributional change (the lower right quadrant), while negative economic

growth often coincided with pro-poor distributional change (the upper left quadrant).

Since 2000, the situation is very different. In the great majority of cases, poverty reduction

through growth was aided by pro-poor distributional change (the lower left quadrant).

In fact, only in a few cases, distributional change did not occur in tandem with growth

(the lower right quadrant). Growth itself only contributed to rising poverty in a handful

of cases (both upper quadrants). The lower panel also shows that our estimated growth

components closely track the observed change in the poverty rate in both samples. Here

28The large share of the distribution component is driven by the Maldives and Bhutan, where nearly
all or about half of poverty reduction can be attributed to changes in distribution.
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Figure 3 – Estimated components from poverty accounting, $2 a day

(a) Growth versus distribution component, pre and post 2000
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(b) Observed change versus growth component, pre and post 2000
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Notes: Illustration of the results from the poverty decomposition. Panel a) plots the growth
component against the distribution component for the pre-2000 sample (on the left) and for the post-
2000 sample (on the right). Panel b) plots the change in the poverty rate against the distribution
component for the pre-2000 sample (on the left) and for the post-2000 sample (on the right). The
number of dots in a graph may exceed the number of countries, since some countries have both a
consumption and an income survey spell.

we observe that, after 2000, growth itself became a much bigger net contributor to poverty

reduction, as opposed to any type of change. One important country is bucking the trend.

While income growth in China has reduced poverty at a breakneck pace of more than

two percentage points per annum over the entire sample period (and both sub-samples),
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rising inequality has worked in the opposite direction. China’s share of world poverty is

falling rapidly, but this trend may pose challenges of its own farther down the road.

Overall, our interpretation of these results challenges the conventional wisdom

that growth is distribution-neutral. The evidence suggests that growth has become

substantially more pro-poor since the turn of the millennium, in two ways: (i) in the

relative sense, that is, it benefits the poor disproportionately, and (ii) in the absolute

sense, that is, it reduces poverty more often than not. If this trend can be maintained

this is good news for the goal of ending absolute poverty within a few decades.

5.4 Projections

So what can we say about the prospects of poverty reduction? In 2015, all member states

of the United Nations agreed to ‘eradicate extreme poverty for all people everywhere,

currently measured as people living on less than $1.25 a day’ by 2030. The key question

we ask now is whether this new goal is attainable, or if the global goalpost has been set

so high, that it may fail to promote a sensible allocation of development assistance.

We begin with comparing the in-sample predictions of our model for 2010 to the

official World Bank data to show that they match up well. Then, we extrapolate poverty

until 2030. Clearly, this is a hypothetical exercise and is not intended to replace any

official estimates by the World Bank or national authorities. Rather, it allows us to make

somewhat more sophisticated predictions than back-of-the-envelope trend extrapolations

and can provide a useful benchmark for setting global poverty reduction goals. Using our

models for this purpose has the added advantage that we can predict poverty responses

to any combination of shifts in mean income and inequality.

The official World Bank regional poverty figures involve a considerable amount

of interpolation and extrapolation, since most household surveys are not undertaken

annually (for details see Chen and Ravallion, 2004). The basic steps are as follows. Lorenz

curves are fitted to either unit-level or group-level data in the actual survey years. Next,

average real household incomes are lined up to a reference year by interpolating between

surveys or extrapolating with the growth rate of personal consumption expenditures per

capita (PCEit). The poverty headcount for the reference year is then calculated using the

new income level and the Lorenz curve from the nearest earlier year; or, if two surveys are

available, one before and one after the reference year, the poverty headcount is calculated

with both Lorenz curves and then averaged.

Our method is similar in spirit. It involves four steps. First, we extrapolate the

last available survey income to 2010 using actually observed country growth rates in

PCEit from the national accounts.29 Second, we project mean income into the future,

29The term ‘national accounts’ refers to data from the World Development Indicators or the Penn
World Table 7.1, whichever has more data over the 30 year horizon.
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using one of three constant-growth scenarios and one of three distributional scenarios.

Third, we predict each country’s poverty rate in 5-year intervals from 2010 to 2030 using

the estimates from column (2) in Table 2.30 We may neglect measurement errors in

income or inequality for forecasting purposes, implicitly assuming that their influence

remains stable over time. Fourth and finally, regional aggregates and the world total are

calculated as population-weighted averages of the country estimates, using World Bank

population projections. No standard errors are provided for the projections in view of

the fundamental uncertainty in the assumed growth rates and distributional patterns of

growth.

We base our three different constant-growth scenarios on the historical PCEit growth

rates from the national accounts in three predefined periods. An ‘optimistic’ scenario uses

the average PCEit growth rate of each country over 2000-2010, a decade characterized

by fast growth. A ‘moderate’ growth scenario uses the average PCEit growth rate of

each country from 1980 to 2010 – the long run average over the entire sample period.

Finally, a ‘pessimistic’ growth scenario uses the 1980-2000 growth rates. The latter

scenario is hopefully unlikely; it implies that mean consumption in Sub-Saharan Africa,

in particular, is shrinking at a rate of about 0.82% per year.31 Table B-3 in the appendix

reports population-weighted regional growth rates over these periods to illustrate the

implied regional income dynamics.32

For each growth scenario, we also simulate three different inequality patterns. ‘Pro-

poor growth’ implies an annual decline in the Gini coefficient of approximately -0.5%;

‘distribution-neutral growth’ keeps inequality constant at the level prevailing in 2010, in

line with the observed zero correlation between changes in inequality and income growth

over the entire sample; and ‘pro-rich growth’ implies an annual increase in the Gini

coefficient of approximately 0.5%. For illustration consider the following example. If a

country’s Gini coefficient is 0.40 in 2010 and we apply the pro-poor pattern, then by 2030

we project a Gini coefficient of about 0.36; if we apply the pro-rich pattern, then the

Gini coefficient is about 0.44 in 2030. Changes of this magnitude are in line with the

population-weighted regional trends obtained from the surveys.

Our in-sample estimates for 2010 compare well with the ‘official’ World Bank figures.

We can almost perfectly match the World Bank’s results for the world total. We estimate

a poverty rate of 40.37% in 2010 at the $2 a day poverty line, whereas the World Bank

reports 40.67%.33 Using the same population data, our estimates imply about 2.378

30Although this specification is only estimated on the sub-sample where Ti ≥ 2, we can use the
estimates to predict poverty for the entire sample (Ti ≥ 1). We only lack estimates of the panel size
effects for Ti = 1, so we assign these observations to the adjacent group (Ti = 2).

31Owing to the post-communist transition, consumption and incomes in Europe and Central Asia
were shrinking over the same period. However, given the small number of poor in 2010, the influence of
that region on the global poverty headcount in 2030 is minimal.

32All reported growth rates are computed as log-differences unless noted otherwise.
33This was the official number until the Oct. 9, 2014 update of PovcalNet.
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billion people under the $2 line versus 2.395 billion as reported by the World Bank. For

three regions, our estimates are within one percentage point of the official figures; for the

other three, they are within 3 percentage points.34 The performance of our predictions

at the $1.25 a day line is comparable. We estimate a poverty rate of 20.41% in 2010 and

the World Bank reports 20.63%. In absolute numbers, this means that about 1.2 billion

people on the planet were extremely poor in 2010. Note that in 2010 the composition of

countries (or people) near the $2 a day poverty line is reminiscent of its $1.25 counterpart

in the early 2000s. Fast growing East Asia and moderately fast growing South Asia still

make up more than half of global poverty, implying that progress in these two regions

will have a large effect on the overall poverty headcount.

Table 6 shows our projections for 2030 under the $2 poverty line. Our moderate

growth scenario predicts that about 1.87 billion people (26%) live on less than $2 a day

in 2030, vs. 2.4 billion (40.37%) in 2010. However, much greater gains are possible.

Global poverty under the $2 line falls by half to less than 20% of the developing world’s

population in the optimistic growth scenario with distribution-neutral or pro-poor growth.

If this happens by 2030, then more than one billion people will have left poverty at the

$2 line – undeniably a remarkable achievement.

Examining the regional distribution, we find that $2 poverty in East Asia is likely

to fall to around 5% by 2030, down from 29.7% in 2010. Nearly everyone in East Asia

will have entered the middle class by developing country standards. This forecast largely

hinges on fast growth in China.35 Progress in South Asia is also likely to be rapid.

According to our moderate growth estimate the expected poverty rate is 35.9% in 2030,

meaning about 716 million poor, down from 66.7% or 1.1 billion poor in 2010. In the

optimistic pro-poor growth case, the headcount ratio falls further to less than 20% and

the number of poor to less than 400 million. In stark contrast, the $2 a day poverty

rate in Sub-Saharan Africa is expected to remain very high. Our moderate growth

scenario predicts a poverty rate of about 66%, down from 69.9% in 2010, which at current

population projections implies almost one billion poor in Sub-Saharan Africa alone. Even

in the optimistic and pro-poor growth scenario, we project a poverty rate of over 50%

and more than 700 million poor. The bulk of the consumption distribution is too far to

the left of the $2 a day poverty line in 2010 for most of the subcontinent. Hence, poverty

alleviation in Sub-Saharan Africa remains the primary development challenge of the first

half of the 21st century.

These observations can in part be explained by a process of ‘bunching up above $1.25

34For Sub-Saharan Africa, for instance, we estimate a poverty rate of 69.36% and the World Bank
reports 69.87%. For East Asia, we estimate 26.78%, whereas the World Bank figure is 29.73%.

35However, some observers suggest that China runs a non-negligible risk of falling into a ‘middle-
income trap’ (Eichengreen, Park, and Shin, 2013) which might make East Asian poverty stick around
10%. Our estimates suggest that this would require a very severe slowdown. For poverty in East Asia
to remain above 10% at $2 a day, growth needs to be less than half of the 2000-2010 trend.
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a day and just below $2 a day’ occurring in East Asia and, to a lesser extent, in South

Asia over the last two decades (Chen and Ravallion, 2010). These two regions have a

relatively large population near the poverty line and hence most of the advances are

projected to occur there. Latin America and the Caribbean, as well as the Middle East

and North Africa, are richer and require stronger income growth to continuously reduce

poverty. Sub-Saharan Africa, on the other hand, has a considerable proportion of poor

far below the $2 a day line in 2010 (with almost half the population below $1.25 a day).

It is facing a lower income elasticity and an income semi-elasticity that is below its peak.

Hence, the subcontinent needs exceptionally strong income growth to make significant

strides against poverty.

We repeat this exercise using the $1.25 a day poverty line. Table B-7 in Appendix B

shows the results based on the estimates of Table B-5. Under moderate growth we project

a global poverty rate of 13.2% in 2030, meaning about 950 million extremely poor people

versus 1.2 billion in 2010. The pace of poverty reduction will have slowed significantly

both in terms of relative changes and in terms of numbers of poor people. About 70% of

the world’s poor will live in Sub-Saharan Africa and about 23% in South Asia by 2030.

Under optimistic, distribution-neutral growth, we find a global poverty rate of 9.11% in

2030, with about 655 million people remaining extremely poor. About 76% of those live

in Sub-Saharan Africa and about 17% in South Asia. Under a pessimistic, distribution-

neutral growth scenario, there is almost no progress at all. The global poverty headcount

is estimated at 16.82% and the world is still home to 1.2 billion extremely poor people.

What do these results imply for the post-2015 development agenda? In a nutshell,

2030 is unlikely to mark the end of extreme poverty, even under very optimistic

assumptions. Figure 4 plots the historical evolution of world poverty from 1981 to 2010,

a trend fitted through the observed data and extrapolated until 2030, and our different

scenarios. The linear trend serves as a reference for the non-linear projections. The

distribution-neutral scenarios are the solid lines, with the moderate growth case in solid

black and the other two cases in gray. The dotted lines are the pro-rich and pro-poor

cases. The left panel shows the results at the $1.25 a day poverty line, the right panel at

the $2 a day poverty line.

Several points are worth noting. First, only the linear extrapolation predicts an

extreme poverty rate in the vicinity of zero by 2030. Regressing the global $1.25 a day

poverty rate on time yields a downward slope of about one percentage point per year (as

in Ravallion, 2013). Starting from a global poverty rate of 20.6% in 2010, the linear trend

predicts that extreme poverty will be vanquished around 2030. Second, at the $1.25 a

day line, all projections show a decelerating trend in of poverty reduction. Even in the

optimistic scenarios, the pace of poverty reduction slows down, though the slowdown

becomes noticeable later. Third, most scenarios suggest a $1.25 poverty rate higher

than 10% in 2030; the optimistic pro-poor and distribution-neutral scenarios project
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Figure 4 – Global poverty: observed data, trends and projections, $1.25 and $2 a day
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Notes: Illustration of the projections. The left panel shows the projections at the $1.25 a day poverty
line; the right panel shows the projections at $2 a day poverty line. The dashed line is a linear trend
based on the data until 2010. The black line after 2010 displays the moderate growth scenario,
the two gray lines above and below stand for the pessimistic and optimistic growth scenarios with
distribution-neutral growth, respectively. Small dashed curves above and below each growth scenario
are the associated pro-rich and pro-poor scenarios.

7.9% and 9.1% respectively. Fourth, most scenarios also exhibit a decelerating pace of

poverty reduction at the $2 a day line, but the slowdown tends to occur relatively late

in the forecasting period. In the most optimistic scenario, the rate of poverty reduction

actually accelerates for a time to 1.16 percentage points per year; in the moderate growth

scenario, the trend over the projection period is -0.73 percentage point per year.

The changing composition of global poverty has profound implications for the medium-

term future. Going forward, fast growing East Asia will contribute less and less to global

poverty reduction, especially at the $1.25 a day line, while the share of the global poor

residing in Sub-Saharan Africa and South Asia will continue to rise. None of our nine

scenarios predict an extreme poverty rate near zero by 2030. This stands in stark contrast

to earlier studies and the ‘3% by 2030’ target of the World Bank which became enshrined

in the new SDGs. This goal can only be reached if we make the unrealistic assumption of

equally rapid growth in all developing countries, or assume an implausible acceleration of

growth in some of the poorest countries in the world. Even if growth rates in Sub-Saharan

Africa were to double relative to the post-2000 trend, the global extreme poverty rate in

2030 is still projected to be 6.5% with pro-poor growth, 7.67% with distribution-neutral

growth, and 8.81% with pro-rich growth. Once historical country-specific growth rates

are used in the projections, even our most optimistic scenarios suggest a poverty rate
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of between 7.9% and 10.5%, depending on the evolution of inequality. However, at $2

a day, the slowdown will occur much later and bigger gains are possible, mirroring the

achievements of the last two decades.

Two caveats are in order when it comes to comparing our estimates to recent figures

from the World Bank. First, the World Bank switched from reporting global poverty

in percent of the developing world population to percent of the global population.

This shaves a few percentage points off their estimates and makes the goal seem more

attainable. Second, although the recently released 2011 PPPs suggest that the poorest

regions are a little less poor and middle-income regions a little poorer, the global poverty

rate in 2010 only changed by about one tenth of a percentage point. This is a trivial

difference in comparison with the fundamental uncertainties involved in estimating such

a global number.36

6 Concluding remarks

The impact of income growth and changes in inequality on poverty, and their contribution

to poverty reduction, have attracted considerable attention among policy makers and the

academic literature in recent decades. In this paper we develop a new approach to

estimating these quantities within a unified poverty accounting framework, apply this

approach to a large cross-country data set, and show that it generates interesting and

new findings. Our starting point is that the well-established non-linearity of the income

and inequality elasticities of poverty arises primarily from the bounded nature of the

poverty headcount ratio. Once this inherent non-linearity is taken into account, we can

derive an empirical approximation of the poverty decomposition that implies income and

inequality (semi-)elasticities with desirable properties.

We use our approach to estimate income and inequality (semi-)elasticities of poverty

based on a large new data set of 809 surveys from 124 developing countries over the

period 1981-2010. Our model fits the data extremely well. We provide evidence that

the average income elasticity is around minus two and the average inequality elasticity

is about one and a half. However, since these two averages are not very informative, we

show that differences in income and inequality levels create strong regional heterogeneity

in the estimated elasticities and semi-elasticities. We also highlight that the semi-

elasticities which we argue policy makers should care about are distinctly non-linear.

Studies based on linear approximations do not capture this heterogeneity and non-

linearity. Compared to earlier results, our approach provides estimates that are often

substantially different, very stable and considerably more accurate. This holds for a wide

range of different combinations of income and inequality. While we restrict the nature

36See Ravallion (2016) for an up-to-date discussion of these challenges.
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of the unobserved heterogeneity (measurement differences), we require no distributional

assumptions other than a correctly specified conditional mean. In other words, our models

closely approximate the shape of the Lorenz curve near the poverty line using only two

summary measures of the distribution: the mean and the Gini coefficient.

Another advantage of the proposed approach is that it allows us to recover the

conditional expectation of the poverty rate. We use this property to predict the

counterfactual terms needed to identify the historical contribution of income growth

and distributional change on poverty reduction. We then show that growth was chiefly

responsible for poverty reduction in the pre-2000 period, but that changes in inequality

play a much larger role since the turn of the millennium. Hence, inequality matters, not

just in the short run.

To further illustrate the usefulness of our framework, we project global and regional

poverty rates from 2010 until 2030 based on several scenarios about how historical

consumption growth and patterns of inequality extend into the medium-term future.

We show that the regional landscape of poverty is likely to change dramatically over

the next two decades. Two findings stand out in particular. First, with strong growth

and moderate pro-poor distributional change another billion people may be lifted out of

poverty at the $2 a day poverty line. Second, poverty reduction at the $1.25 a day poverty

line is likely to slow down towards the end of the projection period. As a result, the goal

of ending extreme poverty within a generation is unlikely to be achieved. Our optimistic

forecasts hinge on very favorable assumptions about the future growth trajectories of

some of the world’s poorest economies. This, coupled with strong expected population

growth in those countries, implies that at least half a billion people are still likely to be

extremely poor by 2030.

Our results should not be very sensitive to the use of 2005 rather than the recently

released 2011 PPPs, provided we shift the international poverty line accordingly to $1.90

or $2.65 a day. Although the relative incomes of some regions changed with the new 2011

PPPs and price levels in many developing countries were revised downwards, the new

poverty lines were re-drawn with the explicit aim of keeping the global yardstick constant

(see Ferreira et al., 2015).

Finally, it may be tempting to interpret some of our findings as confirming the primacy

of growth. Yet, we are promoting a rather different view. There is a potentially large

‘double dividend’ to be reaped if growth can be achieved in combination with simultaneous

reductions in inequality. It is also important to emphasize that the causal effect of

any particular policy on aggregate household income and the relative distribution of

income cannot be discerned from a decomposition exercise such as ours. Hence, the

importance of institutions, trade and a host of other factors for poverty alleviation remains

undiminished. What we do identify is how a given change in average incomes or the

distribution of incomes translates into poverty outcomes.
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For Online Publication: Appendix A

Let the poverty line (z) be fixed and assume the poverty headcount is described by a

two-parameter distribution, so that H(ȳt/z, σt) = H(ȳt, σt) = Ht. A Taylor linearization

of H(·) about (ȳt, σt) gives

H(ȳt + dȳt, σt + dσt) = H(ȳt, σt) +
∂Ht

∂ȳt
dȳt +

∂Ht

∂σt
dσt + ξt (A-1)

where dx denotes a differential of x, and ξt is a second-order remainder. This can be

easily extended to allow for a vector of Lorenz curve parameters as in Kakwani (1993).

Subtracting H(ȳt, σt) from both sides, dropping the remainder by approximation,

dividing through by Ht (provided Ht > 0), and multiplying the first (second) term by

ȳt/ȳt (σt/σt), we arrive at eq. (4) from the main text:

dHt

Ht

≈
(
∂Ht

∂ȳt

ȳt
Ht

)
dȳt
ȳt

+

(
∂Ht

∂σt

σt
Ht

)
dσt
σt

= εHȳt
dȳt
ȳt

+ εHσt
dσt
σt
. (A-2)

If we do not divide by Ht, we get a decomposition of the (non-relative) change of poverty

in terms of income and inequality semi-elasticities.

Similar steps starting from H(ȳt, Gt) lead to a decomposition in terms of mean income

and Gini. Using the chain rule for elasticities, an expression for the Gini elasticity is

εHGt = εHσt

(
dGt

dσt

σt
Gt

)−1

(A-3)

enabling us to write

dHt

Ht

≈ εHȳt
dȳt
ȳt

+ εHGt
dGt

Gt

= εHȳt
dȳt
ȳt

+ εHσt

(
dGt

dσt

σt
Gt

)−1
dGt

Gt

(A-4)

where eqs. (2) and (3) give εHȳt and εHσt under log-normality, but we still need an

expression for dGt/dσt to get an explicit formula for εHGt .

Even though we restricted our attention to one inequality parameter, the results thus

far are quite general. Now if we also assume log-normality, we arrive at an explicit form

for the Gini elasticity. Using σt =
√

2Φ−1(Gt/2 + 1/2), we have

dGt

dσt
=

d[2Φ
(
σt/
√

2
)
− 1]

dσt
=
√

2φ

(
σt√

2

)
. (A-5)

Inverting and substituting eq. (A-5) together with eq. (3) from the main text into

42

ECINEQ WP 2016 - 413 October 2016



eq. (A-3) gives the Gini elasticity

εHGt =

(
ln(ȳt/z)

σt
+

1

2
σt

)(
σt
Gt

√
2φ

(
σt√

2

))−1

λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(A-6)

where σt =
√

2Φ−1(Gt/2 + 1/2). This result corrects for the missing σt/Gt in Kalwij

and Verschoor (2007, p. 824). The Gini semi-elasticity (ηHGt ) is just eq. (A-6) with φ(·)
replacing λ(·). Clearly, both the Gini elasticity and the Gini semi-elasticity are highly

non-linear functions, as illustrated in Figure 2.
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For Online Publication: Appendix B

Figure B-1 – Transformed headcount ($2 a day) and log-mean income, by region
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Figure B-2 – Transformed headcount ($2 a day) and log-Gini, by region
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Table B-1 – Summary statistics by region (unweighted)

Variable Mean Standard Deviation Min Max
East Asia and Pacific (N=80)

Hit – Headcount ($2) 0.502 0.267 0.023 0.978
Git – Gini coefficient 0.392 0.058 0.275 0.509
ȳit – Mean income or expenditure 107.86 78.39 25.02 399.76

Eastern Europe and Central Asia (N=254)
Hit – Headcount ($2) 0.110 0.169 0.000 0.857
Git – Gini coefficient 0.330 0.056 0.210 0.537
ȳit – Mean income or expenditure 251.99 136.11 37.66 766.78

Latin America and Caribbean (N=274)
Hit – Headcount ($2) 0.204 0.122 0.002 0.775
Git – Gini coefficient 0.523 0.054 0.344 0.633
ȳit – Mean income or expenditure 246.63 90.55 55.53 671.04

Middle East and North Africa (N=37)
Hit – Headcount ($2) 0.166 0.111 0.003 0.466
Git – Gini coefficient 0.380 0.042 0.301 0.474
ȳit – Mean income or expenditure 165.26 56.59 84.02 306.33

South Asia (N=35)
Hit – Headcount ($2) 0.672 0.226 0.122 0.936
Git – Gini coefficient 0.343 0.067 0.259 0.627
ȳit – Mean income or expenditure 67.78 39.20 30.71 204.98

Sub-Saharan Africa (N=129)
Hit – Headcount ($2) 0.708 0.202 0.018 0.985
Git – Gini coefficient 0.453 0.087 0.289 0.743
ȳit – Mean income or expenditure 67.62 54.04 14.93 465.80

Notes: The table reports regional summary statistics. Mean income or expenditure is reported in
2005 PPP international dollars per month. 809 observations, 124 countries in total, unbalanced
sample from 1981 to 2010.

List B-1 – Included countries (number of surveys)

Albania (5), Algeria (2), Angola (2), Argentina (21), Armenia (11), Azerbaijan (3), Bangladesh (8),
Belarus (14), Belize (7), Benin (1), Bhutan (2), Bolivia, Plurinational State of (11), Bosnia and
Herzegovina (3), Botswana (2), Brazil (26), Bulgaria (7), Burkina Faso (4), Burundi (3), Cambodia (5),
Cameroon (3), Cape Verde (1), Central African Rep. (3), Chad (1), Chile (10), China (16), Colombia
(14), Comoros (1), Congo, Dem. Rep. of (1), Congo, Rep. of (1), Costa Rica (23), Cote D’Ivoire
(9), Croatia (7), Czech Rep. (2), Djibouti (1), Dominican Rep. (16), Ecuador (12), Egypt (5), El
Salvador (14), Estonia (9), Ethiopia (4), Fiji (2), Gabon (1), Gambia (2), Georgia (14), Ghana (5),
Guatemala (8), Guinea (4), Guinea-Bissau (2), Guyana (2), Haiti (1), Honduras (20), Hungary (10),
India (5), Indonesia (13), Iran, Islamic Rep. of (5), Iraq (1), Jamaica (7), Jordan (7), Kazakhstan
(11), Kenya (4), Kyrgyzstan (10), Lao People’s Dem. Rep. (4), Latvia (11), Lesotho (4), Liberia
(1), Lithuania (9), Macedonia, Rep. of (10), Madagascar (6), Malawi (3), Malaysia (9), Maldives
(2), Mali (4), Mauritania (6), Mexico (11), Micronesia, Federated States of (1), Moldova, Rep. of
(15), Montenegro (4), Morocco (5), Mozambique (3), Namibia (2), Nepal (4), Nicaragua (4), Niger
(4), Nigeria (5), Pakistan (8), Palestinian Territory, Occupied (2), Panama (13), Papua New Guinea
(1), Paraguay (14), Peru (16), Philippines (9), Poland (18), Romania (15), Russian Federation (13),
Rwanda (3), Saint Lucia (1), Sao Tome and Principe (1), Senegal (4), Serbia (9), Seychelles (1),
Sierra Leone (1), Slovakia (7), Slovenia (6), South Africa (5), Sri Lanka (6), Sudan (1), Suriname (1),
Swaziland (3), Syrian Arab Rep. (1), Tajikistan (5), Tanzania, United Rep. of (3), Thailand (14),
Timor-Leste (2), Togo (1), Trinidad and Tobago (2), Tunisia (6), Turkey (11), Turkmenistan (3), Uganda
(7), Ukraine (13), Uruguay (7), Venezuela, Bolivarian Rep. of (13), Vietnam (6), Yemen (2), Zambia (7).
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Figure B-3 – Partial regression plot – first stage
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Notes: The figure plots two residual series, so that the plotted slope is identical to the slope of

lnPCEPit in the first stage of the results presented in Table 2. On the x-axis: ˜lnPCEPit = lnPCEPit−
x′1itβ̂1 −

∑T
r=1 δTi,rϕ̂1r −

∑T
r=1 δTi,rx̄

′
iθ̂1r. On the y-axis: l̃n ȳit = ln ȳit − x′1itβ̂1 −

∑T
r=1 δTi,rϕ̂1r −∑T

r=1 δTi,rx̄
′
iθ̂1r. In both cases, x′1it includes only the log of Gini but x̄′i contains the time averages

of lnGit and lnPCEPit . Both regressions also contain survey type and time dummies, as well as
their time averages.

Figure B-4 – Inequality changes and income growth, 1981–2010
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Table B-2 – Linear models – Dependent variable: lnHit, $2 a day

OLS Two-Step GMM
(1) (2) (3) (4) (5) (6)

Within Differences Differences Differences Differences Differences
R+C ’97 R+C ’97 Bourg. ’03 R+C ’97 Bourg. ’03 K+V ’07

∆ ln ȳit -1.895 -0.268 -2.028 2.046 -0.362
(0.170) (0.617) (0.271) (1.043) (3.216)

∆ ln ȳit × ln(ȳi,t−1/z) -0.552 -0.995 -0.517
(0.179) (0.258) (0.785)

∆ ln ȳit × lnGi,t−1 1.108 3.445 2.097
(0.671) (1.192) (2.315)

∆ lnGit 2.336 -0.527 1.664 1.257 -8.222
(0.311) (1.449) (1.008) (4.127) (11.185)

∆ lnGit×ln(ȳi,t−1/z) 1.261 -0.315 -1.382
(0.427) (1.172) (1.996)

∆ lnGit × lnGi,t−1 -1.769 -1.416 -8.164
(1.586) (3.929) (8.296)

ln(ȳit/z) -2.114
(0.204)

lnGit 3.024
(0.409)

ln(ȳi,t−1/z) -0.023
(0.037)

lnGi,t−1 -0.129
(0.134)

¯̂εHȳ -2.114 -1.895 -1.755 -2.028 -1.905 -2.684
¯̂εHG 3.024 2.336 2.201 1.664 2.206 -2.345

N × T̄ 648 648 648 641 641 641
N 104 104 104 102 102 102
Hansen’s J (p-val.) – – – 0.0418 0.579 0.639

Notes: The table reports OLS and GMM estimates of the model suggested in the previous literature.
The dependent variable is the log (difference) of the poverty rate at $2 a day (in 2005 PPPs). The
panel structure is country-survey-year. All standard errors are robust to clustering at the country-
level. The GMM results are estimated using two-step efficient GMM. Column (4) uses as instruments
∆PCEit, PCEi,t−1, ln ȳi,t−1 and lnGi,t−1. Column (5) uses as instruments ∆PCEit, PCEi,t−1,
∆PCEit × lnGi,t−1, ∆PCEit × ln(ȳi,t−1/z), ln ȳi,t−1, ln ȳi,t−1 × lnGi,t−1, ln ȳi,t−1 × ln(ȳi,t−1/z),
lnGi,t−1 and lnGi,t−1× lnGi,t−1. Column (6) uses the same instruments as column (5) but ln ȳi,t−1

and lnGi,t−1 instrument for themselves. All models include a constant (not shown) and column (1)
includes a time trend (not shown). Columns (2) and (4) are similar to Ravallion and Chen (1997)
(R+C ’97) but we update their approach by also including the Gini as in Adams (2004); columns
(3) and (5) are similar to the ‘improved standard model 2’ in Bourguignon (2003) (Bourg. ’03); and
column (6) is in the spirit of the preferred specification in Kalwij and Verschoor (2007) (K+V ’07).
The latter also use the annualized log difference of the population size (∆ ln popit) as an instrument
and rely on real GDP per capita instead of real per capita consumption. A first-stage F -test shows
that ∆ ln popit is an extremely weak instrument. Kalwij and Verschoor (2007) also use interactions
of lagged inequality and lagged income with regional dummies as instruments. However, first stage
diagnostics suggest a weak IV problem (the F -stat with regional dummy interactions is always lower
than without) and thus we opt for a simpler instrument set. Further, in column (5) and equation
(5) we do not include the lagged levels of income and inequality. Column (6) includes them for
comparison with Kalwij and Verschoor (2007).
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Table B-3 – Growth in personal consumption expenditures per capita (in %), by region

Time Period

2000-2010 1990-2010 1980-2010 1990-2000 1980-2000

East Asia and Pacific 5.906 5.772 5.598 5.608 5.377
(0.813) (0.653) (0.725) (0.508) (0.677)

Europe and Central Asia 6.085 2.755 2.558 -1.225 -0.769
(0.989) (0.412) (0.411) (1.027) (0.916)

Latin America and the Caribbean 2.444 2.219 1.445 1.931 0.677
(0.239) (0.140) (0.098) (0.337) (0.171)

Middle East and North Africa 3.495 2.532 1.851 1.253 0.495
(0.443) (0.440) (0.293) (0.648) (0.545)

South Asia 4.448 3.612 3.179 2.511 2.173
(0.489) (0.388) (0.351) (0.294) (0.284)

Sub-Saharan Africa 2.382 1.419 0.698 0.016 -0.818
(0.689) (0.470) (0.472) (0.688) (0.540)

N 123 123 123 122 122
T̄ 10.99 20.64 27.16 9.730 16.30
N × T̄ 1352 2539 3341 1187 1989

Notes: The table reports population-weighted estimates of regional PCE growth. Cluster robust
standard errors are in parentheses.
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Table B-4 – Fractional probit models (QMLE) – Dependent variable: Hit, $2 a day

(1) (2) (3) (4)
Institutions Human Capital Credit Trade
Hit APEs Hit APEs Hit APEs Hit APEs

ln ȳit -0.888 -0.285 -0.878 -0.284 -0.950 -0.289 -0.708 -0.302
(0.050) (0.012) (0.060) (0.011) (0.036) (0.009) (0.032) (0.012)

lnGit 0.779 0.250 0.805 0.261 0.765 0.233 0.581 0.248
(0.107) (0.028) (0.104) (0.027) (0.102) (0.027) (0.097) (0.033)

Executive Constraints 0.005 0.001
(0.005) (0.001)

Years of Schooling -0.002 -0.001
(0.017) (0.006)

Private Credit / GDP -0.007 -0.002
(0.040) (0.012)

Trade Openness 0.005 0.002
(0.017) (0.007)

Scale factor 0.321 0.324 0.304 0.426
N × T̄ 678 705 697 385
N 85 87 93 81
AIC 894.8 914.1 887.6 552.5
lnL -276.4 -286.1 -282.8 -163.2√
MSE 0.0203 0.0211 0.0201 0.0233

Notes: The table reports fractional response QMLE estimates. The dependent variable is the poverty
rate at $2 a day (in 2005 PPPs). The panel structure is country-survey-year. The estimation samples
are reduced due to less data coverage of the covariates. Observations with Ti = 1 are not used in
estimation. All models include time averages (CRE), time dummies, survey dummies, panel size
dummies and interactions between the panel size dummies and the time averages (CRE). The time
averages are recomputed for each sample size. The coefficients of the time average of the survey
dummies and time effects are constrained to be equal across the panel sample sizes. The variance
equation depends on the sample size. The standard errors of the coefficients are robust to clustering
at the country level and the standard errors of the APEs are computed via the delta method. Data
on Executive Constraints is from the Polity IV database. Human capital is measured as Total Years
of Schooling from Barro and Lee (2013). We linearly interpolate the five-yearly data to an annual
series. Private Credit / GDP measures financial development and is from Beck, Demirgüç-Kunt,
and Levine (2010). Trade Openness is the de jure binary measure developed by Sachs and Warner
(1995) and extended by Wacziarg and Welch (2008).
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Table B-5 – Fractional probit models (QMLE) – Dependent variable: Hit, $1.25 a day

(1) (2) (3)
Regular Unbalanced Unbalanced + Two-Step

Hit APEs Hit APEs Hit APEs

ln ȳit -1.212 -0.216 -0.668 -0.218 -0.800 -0.263
(0.056) (0.010) (0.038) (0.008) (0.180) (0.034)

lnGit 1.238 0.221 0.726 0.237 0.714 0.235
(0.121) (0.022) (0.074) (0.020) (0.180) (0.032)

ν̂it 0.104
(0.104)

CRE (Corr. Rand. Effects) Yes Yes Yes
Survey type dummies Yes Yes Yes
Time dummies Yes Yes Yes
Panel size dummies No Yes Yes
Panel size dummies × CRE No Yes Yes
Variance equation No Yes Yes

Scale factor 0.179 0.326 0.329
N × T̄ 768 768 754
N 103 103 102
pseudo R2 0.975 0.990 0.990
lnL -172.4 -244.7 -243.7√
MSE 0.0339 0.0214 0.0220

Notes: The table reports fractional response QMLE estimates. The dependent variable is the poverty
rate at $1.25 a day (in 2005 PPPs). 21 observations with Ti = 1 are not used during estimation.
The panel structure is country-survey-year. The $1.25 a day sample is smaller as for 20 observation
we only have data at the $2 a day line. In columns (1) and (2), the standard errors of the coefficients
are robust to clustering at the country level and the standard errors of the APEs are computed via
the delta method. We include the time averages of the survey type and time dummies in columns
(2) and (3), but constrain their coefficients to be equal across the panel sizes. The standard errors
of the coefficients and the APEs in model (3) account for the first stage estimation step with a panel
bootstrap using 999 bootstrap replications. The linear projection in the first stage uses lnPCEPit as
an instrument for ln ȳit. The first-stage cluster-robust F-statistic in column (3) is 24.40. Column (3)
also excludes West Bank and Gaza entirely (2 observations) and 12 observations from ECA countries
pre-1990 for lack of PCE data.
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Table B-6 – Decomposition at $1.25 a day poverty line, by region

VAR(Y ) VAR(D) COV(Y,D) sY sD
√
MSE N

Panel a) Spells from 1981 to 2010
East Asia and Pacific 2.145 0.716 0.260 71.12 28.88 0.88 12
Europe and Central Asia 1.856 0.677 0.438 67.30 32.70 0.31 39
Latin America and Caribbean 1.905 0.642 -0.787 114.89 -14.89 0.78 28
Middle East and North Africa 0.074 0.045 0.024 58.50 41.50 0.32 8
South Asia 0.683 2.594 -0.023 20.42 79.58 0.45 7
Sub-Saharan Africa 2.021 0.394 -0.271 93.45 6.55 0.47 29
All developing 2.140 0.704 0.075 73.99 26.01 0.56 123

Panel c) Spells from 2000 to 2010
East Asia and Pacific 2.821 0.399 0.270 82.21 17.79 1.00 9
Europe and Central Asia 8.059 1.468 -0.215 86.22 13.78 0.46 25
Latin America and Caribbean 2.267 1.040 -0.794 85.67 14.33 0.92 26
Middle East and North Africa 0.124 0.014 0.001 89.29 10.71 0.34 6
South Asia 0.865 0.223 0.102 74.89 25.11 0.46 4
Sub-Saharan Africa 4.770 1.826 -0.736 78.73 21.27 1.26 17
All developing 5.138 1.120 -0.268 85.11 14.89 0.86 87

Panel c) Spells from 2000 to 2010
East Asia and Pacific 1.410 1.261 0.314 52.26 47.74 0.76 10
Europe and Central Asia 1.405 0.213 0.373 75.20 24.80 0.41 26
Latin America and Caribbean 0.243 0.104 0.090 63.19 36.81 0.47 19
Middle East and North Africa 0.058 0.026 0.022 62.31 37.69 0.38 5
South Asia 0.239 1.146 0.340 28.05 71.95 0.43 6
Sub-Saharan Africa 2.978 1.690 0.706 60.59 39.41 1.02 21
All developing 1.664 0.728 0.454 64.17 35.83 0.66 87

Notes: The table reports the results of the decomposition of the observed changes in the poverty
rate at $1.25 a day into its growth and distribution components at the regional level. Panels a)
to c) run this decomposition over different sub-samples as denoted in the table. We predict the
counterfactual quantities using the first and last available data for the longest runs of survey of the
same type within the sample period.
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