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Abstract

Relative bipolarisation indices are usually constructed making sure that they achieve their
minimum value of bipolarisation if and only if distributions are perfectly egalitarian. How-
ever, the literature has neglected discussing the existence of a benchmark of maximum relative
bipolarisation. Consequently there is no discussion as to the implications of maximum bipo-
larisation for the optimal normalisation of relative bipolarisation indices either. In this note
we characterize the situation of maximum relative bipolarisation as the only one consistent
with the key axioms of relative bipolarisation. We illustrate the usefulness of incorporating
the concept of maximum relative bipolarisation in the design of bipolarisation indices by iden-
tifying, among the family of rank-dependent Wang-Tsui indices, the only subclass fulfilling
a normalisation axiom that takes into account both benchmarks of minimum and maximum
relative bipolarisation.
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1 Introduction

Since the seminal contributions of Foster and Wolfson (Foster and Wolfson (2010); based on
a 1992 working paper) and Wolfson (1994), proposals to measure bipolarisation have pro-
liferated. All bipolarisation indices share in common that they take their minimum value
when distributions are perfectly egalitarian; yet they all claim to depart from traditional
inequality measurement in their treatment of progressive transfers. When these transfers
involve one member from the bottom half of the population coupled with a member from
the top half, then bipolarisation indices decrease, just as inequality indices do, thereby
signalling a reduction in the spread between the two halves. Otherwise, if the transfer
involves people on the same side of the median, then bipolarisation indices, unlike their
inequality counterparts, increase, signalling clustering away from the median.

By contrast bipolarisation indices differ in numerous ways and can be classified ac-
cordingly. Akin to inequality indices, there are relative bipolarisation indices satisfying
a property of scale invariance whereby their value remains unaltered when the unit of
measurement of the continuous variable changes (e.g. pounds versus dollars). Examples
of relative bipolarisation indices include those proposed by Foster and Wolfson (2010) and
Wang and Tsui (2000). A less stringent property, that of unit consistency, requires only
the relative ranking of distributions by a given index, not its value, to be insensitive to the
unit of measurement. Lasso de la Vega, Urrutia, and Diez (2010) have proposed indices
fulfilling this property. There are also absolute indices which are sensitive to the unit of
measurement, but satisfy a property of translation invariance whereby their values re-
main unaffected if the same amount is added to all incomes. Examples of these indices
include those by Wang and Tsui (2000), Deutsch, Silber, and Hanoka (2007), and the gen-
eral class of Bossert and Schworm (2008). Finally, there are intermediate indices which are
hybrids of relative and absolute measures. Examples include the family by Chakravarty
and D’Ambrosio (2010).

In this paper we focus on relative, scale-invariant bipolarisation indices. Within this
group there are further distinctions to be made in terms of how the indices are constructed
and their satisfaction of desirable properties, or lack thereof. One distinction of interest is
whether the indices are normalised or not. Most indices in the literature are constructed
so that they achieve their minimum value of 0 if and only if distributions are perfectly
egalitarian. However, the literature does not discuss the existence of a benchmark of max-
imum relative bipolarisation, with the exception of Yalonetzky (2014), who does it only in
the context of quasi-orderings. Moreover, while Yalonetzky (2014) correctly identifies the
benchmark of maximum relative bipolarisation, he does not formally show that, indeed,
relative bipolarisation cannot be increased any further from that benchmark distribution.

By and large, there is no discussion in the literature as to the implications of max-
imum relative bipolarisation for the optimal normalisation of relative bipolarisation in-
dices. Accordingly, the subsets of existing classes of indices that fulfill good normalisation
properties have not yet been identified. Worse still, some otherwise appealing and popular
indices, like the Foster-Wolfson (Foster and Wolfson, 2010) or the Deutsch-Silber-Hanoka
(Deutsch et al., 2007), are not well normalised in the sense that they will not exclusively
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achieve their highest possible value in a situation of maximum relative bipolarisation.
Therefore, performing relative bipolarisation comparisons with indices that are not prop-
erly normalised may be problematic if there is no connection between the maximum value
they can attain and the benchmark of maximum relative bipolarisation. In this note we
characterize the situation of maximum relative bipolarisation as the only one consistent
with the axioms of relative bipolarisation, and we illustrate how to normalise existing
(non-normalised) indices by identifying, among the family of rank-dependent Wang-Tsui
indices (PN1 (X) from Wang and Tsui (2000)), the only subclass fulfilling a normalisation
axiom that takes into account both benchmarks of minimum and maximum relative bipo-
larisation.

The rest of the note proceeds as follows. Section 2 provides the notation and the def-
inition of the main relative bipolarisation axioms. Then section 3 compares the existing
normalisation property which only takes into account the benchmark of minimum rela-
tive bipolarisation against an alternative normalisation property which accounts for both
benchmarks of minimum and maximum relative bipolarisation. Section 4 provides the
justification for preferring the latter normalisation axiom by characterizing the bench-
marks of minimum and maximum relative bipolarisation. Then section 5 illustrates the
usefulness of considering maximum relative bipolarisation in normalisation axioms, by
identifying the only subclass from a family of rank-dependent Wang-Tsui indices that ful-
fills the normalisation axiom incorporating benchmarks of both minimum and maximum
relative bipolarisation. Section 6 offers some concluding remarks.

2 Preliminaries

2.1 Notation

Let yi ⩾ 0 denote the income of individual i. Y is the income distribution with mean µY > 0,
median mY > 0, and size N ⩾ 4.1 We divide Y into two equally sized halves, each with a size
n = N

2 .2 Individuals are ranked in ascending order within each half so that, for example,
yL1 is the poorest individual in the lower-half set L and yHn is the richest individual in the
higher-half set H. The means of the lower and higher half are µLY are µHY , respectively.

We further define a bipolarisation index I ∶ Y → R+. It will also be useful to define a
rank-preserving Pigou-Dalton transfer, involving incomes yi < yj and a positive amount
δ > 0 such that: yi + δ ⩽ yj − δ. We also define a regressive transfer in the opposite direction,
i.e. with yi − δ and yj + δ.

Finally we should also define two sets of distributions which are necessary for the
discussions of minimum and maximum relative bipolarisation. The first set, E , is made of
distributions exhibiting equal non-negative incomes. That is:

E = {Y ∈RN++ ∶ yL1 = yL2 = ... = yLn = yH1 = ... = yHn = y > 0}. (1)
1For the measurement of bipolarisation, ideally we would like to have at least two people on each half of

the distribution
2For the sake of simplicity we assume that N is even, but results can be easily adapted for the case of N

being odd.
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This is the set of all perfectly egalitarian distributions, which the literature also iden-
tifies with the benchmark of minimum relative bipolarisation. The second set, B, is made
of a bottom half of null incomes and a top half of egalitarian incomes. That is:

B = {Y ∈RN+ ∶ yL1 = yL2 = ... = yLn = 0 ∧ yH1 = yH2 = ... = yHn = y > 0}. (2)

This is the set that we will characterize below as the benchmark of maximum relative
bipolarisation.

2.2 Desirable properties for a relative bipolarization index

Now we define the desirable axioms that a measure of relative bipolarisation should fulfil:

Axiom 1. Symmetry (SY): I(X) = I(Y ) if X = BY where B is an N ×N permutation matrix.

Axiom 2. Population principle (PP): I(X) = I(Y ) if X ∈ RλN+ is obtained from Y ∈ RN+
through an equal replication of each individual income, λ times.

Axiom 3. Scale invariance (SC): I(X) = I(Y ) if X = λY , with λ > 0.

(SC) is, of course, the key axiom defining the relative approach to measuring bipolari-
sation. Now we mention the two key transfer axioms common, in one form or another, to
all measurement proposals. Some versions require the medians of the distributions un-
dergoing the transfer to remain unchanged (e.g. Wang and Tsui, 2000, p. 356). Here we
follow Bossert and Schworm (2008) and do not impose such requirement:

Axiom 4. Spread-increasing transfer (SI): I(X) > I(Y ) if X is obtained from Y through a
regressive transfer involving yLi and yHj .

In other words, the transfer in (SI) involves pairs of incomes from different halves. The
next axiom involves pairs of income from the same half:

Axiom 5. Clustering-increasing transfer (CI): I(X) > I(Y ) if X is obtained from Y by a
Pigou-Dalton transfer, involving either the pair yLi and yLj , or the pair yHi and yHj .

3 Normalisation properties

Many indices in distributional analysis are also commonly expected to fulfill some kind of
normalisation axioms, whereby the indices adopt a particular value if (or only if) the distri-
bution represents some extreme situation (e.g. a perfectly egalitarian income distribution,
an income distribution without any people below a poverty line, etc.).

As discussed by Yalonetzky (2014), the set of perfectly egalitarian distributions, i.e.E , is widely deemed the benchmark of minimum relative bipolarisation in the literature.
Accordingly, all relative bipolarisation indices proposed to date take their minimum value
(usually 0) when, or only when, the distribution is perfectly egalitarian. By contrast, ex-
cept for some intuitive comments by Yalonetzky (2014), there is no formal discussion of a
benchmark of maximum relative bipolarisation in the literature. Hence, unsurprisingly,
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not all indices proposed in the literature are explicitly, or readily, normalised so that they
take a maximum value (e.g. 1) when, or only when, the distribution matches the bench-
mark of maximum relative bipolarisation. In the next section we prove that the benchmark
of maximum relative bipolarisation is, essentially, the set B.

The universally accepted axiom of normalisation in the relative bipolarisation litera-
ture only requires that the index takes its minimum value (usually 0) only in the presence
of perfectly egalitarian distributions (e.g. Chakravarty, 2009, p. 108). We call it minimum
normalisation:

Axiom 6. Minimum normalisation (MN): I(X) = 0 if and only if X ∈ E .

However, the next section shows that there exists a benchmark of maximum relative
bipolarisation which is the only one consistent with the axioms of the previous section.
Therefore, for the sake of improved comparability, we claim that relative bipolarisation
indices should fulfill the following complete normalisation axiom, which we call normali-
sation:

Axiom 7. Complete normalisation (CN): (a) I(Y ) > I(X) = 0 if and only if X ∈ E and Y ∉ E ;
and (b): I(Y ) < I(X) = 1 if and only if X ∈ B and Y ∉ B.

The next section justifies the preferability of fulfilling axiom (CN) over just (MN). Then
the subsequent section illustrates this point with an application to the class of rank-
depedent Wang-Tsui indices.

4 Characterization of the benchmarks of extreme relative
bipolarisation

The literature has usually emphasized part (a) of axiom (CN) (i.e. axiom (MN)), but not
part (b), with the exception of Yalonetzky (2014) in the context of pre-orders for relative
bipolarisation measurement. Now we highlight the importance of adopting axiom (CN) by
characterizing these two relative bipolarisation benchmarks (minimum and maximum) as
the only ones consistent with the other desirable axioms, in particular (SC), (SI), and (CI)
(but also POP and SYM). We do this with the following two propositions:

Proposition 1. Let v be the minimum value that I can take. Then, if I satisfies (SC), (SI),
(CI), (POP) and (SYM), I(X) = v if and only if X ∈ E .

Proof. Consider the non-continuous version of the relative bipolarisation Lorenz curve
introduced by Yalonetzky (2014):

ψY (k) ≡ ∑ki=1[yHi − yLn−i+1]
NY µY

; k = 1,2, ..., n. (3)

We know from Yalonetzky (2014, Theorem 1) that I(X) > I(Y ) for all I satisfying (SC),
(SI), (CI), (POP) and (SYM), if and only if ψX(k) ⩾ ψY (k) for all k = 1,2, ..., n, with at least
one strict inequality. Now, it is easy to show that ψY (k) = 0 ∀k = 1,2, ..., n if and only if
Y ∈ E . Hence, it must be the case that I(Y ) = v if and only if Y ∈ E . ∎
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Proposition 2. Let v be the maximum value that I can take. Then, if I satisfies (SC), (SI),
(CI), (POP) and (SYM), I(X) = v if and only if X ∈ B.

Proof. Consider distributions X ∈ B and Y ∉ B, each respectively with means µX and µY ,
and population sizes NX and NY . We need to prove that any distribution X ∈ B can be
obtained from any other distribution Y ∉ B through a sequence of operations such that
the relative bipolarisation index I either increases or yields the same value through every
intermediate step of the transformation.

Firstly, note that, as a corollary to Muirhead’s theorem (Marshall, Olkin, and Arnold,
2011, p. 7-8), we can obtain any perfectly egalitarian distribution with µY and NY from
a non-egalitarian distribution with the same mean and size through a sequence of Pigou-
Dalton transfers. Hence we perform such sequence of transfers, independently and in
parallel, on each half of distribution Y . Call this ensuing perfectly bimodal distribution
T1. Then clearly I(T1) > I(Y ) for any I satisfying (CI).

Then generate distribution T2 from T1 by performing a sequence of n regressive trans-
fers across the median, each involving a pair of incomes yLi = µ and yHj = µ; where µ and µ
are, respectively, the mean of the bottom half and the mean of the top half. In each case
a transfer of µ is performed, thereby rendering yLi = 0 ∀i and yHj = µ + µ ∀j. Then clearly
I(T2) > I(T1) for any I satisfying (SI).

Then obtain distribution T3 from T2, firstly by multiplying every income by µX

µY
, and

then by replicating every income λ = NX

NY
times. Thus, I(T3) = I(T2) for any I satisfying

(SC) and (POP). Finally, obtain distribution X by multiplying T3 by a permutation matrix.
Then: I(X) = I(T3) for any I satisfying (SYM). We conclude that I(X) > I(Y ) for any pair
of distributions X ∈ B and Y ∉ B. Since I is supposed to fulfill (SC), (SYM), and (POP), then
it should also be the case that: I(X) = I(Y ) for any pair of distributions {X,Y } ∈ B. Hence
if I satisfies (SC), (SI), (CI), (POP) and (SYM), I(X) = v if and only if X ∈ B. ∎
5 Illustration: Identifying the subclass of normalised, rank-

dependent Wang-Tsui indices

Now we illustrate the relevance of taking into account both benchmarks of extreme rela-
tive bipolarisation, by identifying, among the broadest class of rank-dependent Wang-Tsui
indices, i.e. PN1 (Y ) from Wang and Tsui (2000, p. 356), the only subclass fulfilling the
normalisation axiom (CN), in addition to scale invariance (SC). We focus on the median-
independent, rank-dependent, PN1 (Y ) class, since median-dependent indices are not guar-
anteed to satisfy the transfer axioms when the median is altered. Precisely because we use
median-independent indices, we aim to identify a subclass of PN1 (X) indices which fulfill
both (CN) and (SC).

In our notation, the class PN1 (Y ) is defined by:

PN1 (Y ) ≡ n∑
i=1aiy

L
i + n∑

j=1 bjy
H
j (4)
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Following Wang and Tsui (2000, Proposition 3) it is easy to show that the only subclass
of PN1 (Y ) satisfying (SI) and (CI) is defined by the following parametric constraint:3

an < an−1 < ... < a1 < 0 < bn < bn−1 < ... < b1 (5)

Now proposition 3 identifies the subclass from PN1 (Y ) fulfilling both the normalisation
axiom (N) and scale invariance (SC). We call it the subclassWT :

Proposition 3. WT fulfills axioms (CN) and (SC) if and only if: (a) ∑ni=1 ai +∑nj=1 bj = 0;
(b) ∑nj=1 bj = 1

2µY
; (c) the coefficients bj and ai are ratios featuring in the denominator an

homogeneous function which is linear on an embedded linear function of a subset of Y .

Proof. Consider I ∈ WT . (CN) requires that I = 0 if and only if ∀i, j ∶ yLi = yHj = y, which
can only be ensured if ∑ni=1 ai +∑nj=1 bj = 0. On the other extreme, (CN) requires that I = 1
if and only if ∀i ∶ yLi = 0 ∧ ∀j ∶ yHj = y > 0, which can only be ensured if ∑nj=1 bj = 1

2µY
.

As for fulfilment of (SC), the axiom requires that if we multiply every income by λ > 0,
then we should get: ∑ni=1 aiyLi + ∑nj=1 bjyHj = ∑ni=1 aiλyLi + ∑nj=1 bjλyHj , i.e. no change what-
soever. That can only take place if all the bj and ai are in the form of ratios and their
respective denominators are equally multiplied by λ. For that to happen, the denomina-
tors must be a linear function of an embedded linear function of a subset of Y , and so they
will grow by the same factor λ in order to compensate (for instance, they could be a linear
function of the mean). ∎

Based on proposition 3, the constraints characterizing I ∈WT can be met with different
choices for bj and ai. Perhaps the most straightforward choice is coefficients which are
linear functions of the rank, like the following:

bj = [n + 1 − j]
µn[n + 1] = −an+1−j (6)

6 Conclusion

This note demonstrated that the relative approach to bipolarisation measurement features
not only a set of distributions characterized by minimum bipolarisation, but also a set
of distributions characterized by maximum bipolarisation. The latter set comprises all
situations of perfect bimodality with a bottom half of zero incomes and a top half of equal
positive incomes. Moreover, the note showed the logical consistency of maximum relative
bipolarisation with the key axioms defining the relative approach.

In the face of these benchmarks, it is only natural to advocate that indices of relative
bipolarisation should fulfill a complete normalisation axiom whereby they attain their
minimum and maximum values only in the presence of minimum and maximum relative
bipolarisation, respectively. Such complete normalisation axiom effectively improves the

3Wang and Tsui (2000) consider a restricted version of (SI) and (CI) in which the medians do not change
across distributions and derive their Proposition 3 for a median-dependent class P N

2 (Y ). However it is
straightforward to show that their Proposition 3 also applies to P N

1 (Y ) when we work with the more gen-
eral axioms (SI) and (CI).
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usefulness of relative bipolarisation indices for distributional comparisons. In practice,
some classes of indices, like the class proposed by Kosny and Yalonetzky (2016), already
fulfill this complete normalisation axiom. By contrast, as shown in the illustration with the
median-independent Wang-Tsui indices, some classes of indices require further parametric
constraints in order to comply with the complete normalisation axiom.

Whether maximum bipolarisation benchmarks likewise exist in alternative bipolarisa-
tion measurement approaches, and whether corresponding normalisation axioms may be
warranted in turn, is left for future inquiry.
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