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Abstract

We focus on a question that has been long addressed in economics, namely, of one distribu-
tion being better than another according to a normative criterion. Our criterion distinguishes
between interdependence and behaviour in the margins. Many economics contexts concern in-
terdependence only e.g. complementarities in production function, intergenerational mobility,
social gradient in health. We compare bivariate discrete distributions and measure interdepen-
dence via a most general measure, namely, a copula (Schweizer and Wolff 1981). For discrete
distributions we need to overcome a problem of many copulas associated with a given distri-
bution. Drawing on a copula theory (Carley 2002, Genest and Neslehova 2007) we solve this
problem, chose a method to compare copulas which together with first-order stochastic domi-
nance of marginal distributions gives the ordering to compare distributions. We provide a type
of Hardy-Littlewood-Pólya result (Hardy et al. 1934), that is, we give implementable charac-
terizations of this ordering (Theorems 1 - 3). As an application, we show how this ordering
can be used to measure several phenomena that use either ordinal data (e.g. education-health
gradient, bidimensional welfare) or simply discrete distributions (e.g. percentile income dis-
tributions of fathers and sons for intergenerational mobility). Welfare measures are easily
decomposable into attributes and interdependence.
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Introduction

Many economics phenomena and concepts are formally equivalent to measuring
interdependence in random variables. This is obviously true in finance and insur-
ance, where the value of the portfolio or insurance policy depends on the degree of
interdependence of asset returns or insurance claims. The same applies to macroe-
conomics i.e. the presence of common shocks among firms/sectors, or to matching
markets where the efficiency of matching mechanisms depends on the degree of in-
terdependence between matched dimensions (Fernandez and Gali 1999, Lindenlaub
2017). Also, complementarity of the production function (Milgrom and Roberts 1995)
is related to measuring interdependence between inputs and so is the measurement
of multidimensional welfare and inequality (Atkinson and Bourguignon 1982) i.e. in-
terdependence of well-being dimensions must be taken into account. In program
evaluation literature, the estimation of distributional treatment effects concerns the
dependence structure between the real and counterfactual distribution of outcomes.
This dependence is not observed but can be studied via its bounds (Heckman et al.
1997, Fan and Park 2006).3 As highlighted recently by Chetty et al. (2014) relative
intergenerational mobility is in fact interdependence of fathers’ and sons’ income dis-
tribution i.e. rank dependence. Furthermore, the study of the so called income-health
gradients, education-health gradients, or more generally the gradient between socioe-
conomic status and health is the study of interdependence. The measurement of such
gradients is an extensive research topic encompassing economics, medical sociology,
social epidemiology, medicine and health psychology (see Smith 1999, Evans et al.
2012 for reviews). Other occurrences of interdependence in economics include, for
example, preference alignment in coalition formation (Pycia 2012), ex-ante/ex-post
reward schemes in groups (Ben-Porath et al. 1997), or the analysis of economics and
social networks.

Typically used measures of interdependence, or association, or concordance,4 are
based on correlation. Correlation is well-suited to capture interdependence in Gaus-
sian settings, but beyond them it has many drawbacks. It picks up only linear associ-
ation, its value depends on the marginal distributions, and it can be close to zero even
in cases of strong dependence. Moreover, it is not scale free so it changes depending
on how the data are aggregated. The latter makes it useless for ordinal data for which
the only relevant information is the ordering and any monotone transformation of a
given scale is equally good. It is easy to construct examples of the reversals of rank-
ings based on correlation for such data (Allison and Foster 2004, Kobus 2015). Most
flexible way to study non-Gaussian dependence structures is via a copula (Embrechts
2009).

A copula is a bivariate probability distribution function with uniform marginals.
Copulas are well-known in mathematics and statistics due to the celebrated Sklar’s
theorem (Sklar, 1959) which states that a copula and marginal distributions char-

3Specifying the bounds of the treatment effects distribution is related to a copula theory (Frank et
al. 1987). In particular, for discrete distributions of outcomes (e.g. life satisfaction and psychological
indicators in assessing Moving to Opportunity (Ludwig et al. 2013)) these bounds can be improved
using the results of Carley (2002) which we use a lot in the paper.

4We use dependence/association/concordance interchangeably, although they are all different
concepts (Nelsen 2006); in our setting, however, we do not need a detailed differentiation.
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acterise the joint distribution fully. Thus copula can be thought of as a method to
construct joint distributions from marginal distributions. The advantage of using
copulas is that one can separate the behaviour in the margins from pure association
of random variables, which leads to more flexible modelling and more efficient estima-
tion.5 Furthermore, copulas are scale-invariant, as Schweizer and Wolff (1981) note,
“it is precisely the copula which captures those properties of the joint distribution
which are invariant under (...) strictly increasing transformations.” This property
is particularly useful for ordinal variables, that is, association does not depend on
the way in which the variable is scaled, or in general, it does not depend on the
coarsening of the support i.e. whether it is 1000 or 2000 income brackets. Given
these favourable properties of copulas, it is not surprising that copulas are increas-
ingly popular in economics. Fan and Patton (2014) reviews growing literature on the
use of copula theory in econometric research, in particular in the area of multivariate
modelling (e.g. earnings data (Bonhomme and Robin 2009), auction design (Hubbard
et al. 2012) and partial identification (Fan et al. 2014)). Decancq (2012, 2014) is
the first to introduce copulas into welfare-economic contexts to measure dependence
between dimensions of well-being via measures based solely on copulas.6

In this paper we define an ordering to compare bivariate discrete distributions
in terms of their interdependence and marginal distributions.7 This ordering is es-
sentially bivariate first-order stochastic dominance (Atkinson and Bourguignon 1982),
but presented as a collection of marginals and a copula and therefore called increasing
concordance. Thus, one distribution dominates the other if it is more interdependent
and its marginals first-order stochastically dominate the marginals of the other dis-
tribution. We provide the Hardy-Littlewood-Pólya (Hardy et al. 1934) type of result,
namely, we prove the equivalence between three notions: (i) increasing concordance
ordering (ii) regularity assumptions on the preferences i.e. the unanimity of utili-
tarian decision makers (social planners), and (iii) elementary transformations that
reflect the reduction of interdependence and welfare. Ordinal data, that is data for
which we only have the information of the ordering of categories (e.g. self-reported
health status, self-declared life satisfaction, educational attainment) typically have
discrete distributions.8 Such data appear a lot in various branches of economics (i.e.
health economics, educational economics, happiness research) and we are mostly in-
terested in comparing their distributions, although the results apply to any discrete

5In contrast, more traditional approaches to measuring dependence, use classical families of bi-
variate parametric distributions (normal, log-normal etc.), but this often has a lot of restrictions e.g.
univariate distributions have to belong to the same parametric family, or only positive dependence
can be modelled (Joe 2014).

6This is, however, for continuous distributions and does not apply to our setting.
7Going to more than two dimensions is not straightforward and merits a separate contribution.

In two dimensions variables are positively associated (or concordant) if their values are all large
together or small together; otherwise, we say, they are discordant or negatively concordant. In
three and more dimensions equivalence between discordance and negative concordance breaks down;
positive association is no longer minus negative association. The literature on measuring multivariate
association is, however, well-established (Joe 1990, Nelsen 2006), and can be used to extend our
setting.

8There are widely used ordinal indicators with continuous distributions e.g. test scores (Bond
and Lang 2013), BMI index.
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distributions e.g. to measuring mobility when only percentile income distributions are
available. With respect to ordinal data this concerns applications such as measuring
the relationship between socioeconomic status (SES) and health when, as is often the
case, both SES and health are proxied by an ordinal indicator, or the measurement
of welfare for multidimensional ordinal data. The latter is of particular interest be-
cause of the recent initiatives of governments (e.g. in UK, France, Germany, Italy,
Korea, Spain, Mexico) and international organizations (e.g. OECD) to incorporate
non-income dimensions in measuring well-being and progress. Many such dimensions
are ordinal.

More specifically, we consider random vectors distributed on I := I1 ⇥ I2 =
{0, . . . , i, . . . , n} ⇥ {0, . . . , j, . . . , m}, where numbers i, j are arbitrary and we only
require that the support preserves the ordering. To measure dependence in such a
setting we need to solve the problem of unidentifiability because for discrete distri-
butions copulas are only unique in the values of marginal distributions. Therefore,
given two distributions one cannot compare them directly in terms of dependence
because their copulas may be defined at different points. More precisely, there is a
whole set of copulas associated with a given distribution. The bounds of this set were
specified by Carley (2002), that is, each copula associated with a given distribution
is between the so called minimum extension copula (i.e. the highest possible negative
dependence) and the maximum extension copula (i.e. the highest possible positive de-
pendence). We use this result to construct a so called concordance ordering. Namely,
comparing to the standard notion of concordance (Joe 1990), here the whole set of
copulas is compared through Carley’s bounds. We combine concordance with first
order stochastic dominance on marginals to define increasing concordance ordering,
which is our main criterion for comparing distributions. It expresses both increasing
interdependence and welfare in each dimension. Interdependence can be further sum-
marised by utilising the bounds of well-known dependence measures (e.g. Kendall’s
tau, Spearman’s rho) on the Carley’s set (Genest and Neslehova 2007). This allows
us to give an interval for the value of intergenerational mobility or education-health
gradient, which may be easier to interpret than dominance itself. We show how our
dominance criterion can be implemented (Theorem 1) i.e. if the dominance holds
then a dominated distribution can be transformed into a dominant distribution via
a sequence of probability mass transfers described in the theorem. These elemen-
tary transformations are essentially of two types, namely, transformations that affect
marginal distributions, that is upward shifts, and transformations that affect only a
copula, that is association-increasing switches (Epstein and Tanny 1980, Tchen 1980)
but working on a copula distribution. These transformations have their matrix rep-
resentation (Theorem 2). Increasing concordance is equivalent to the unanimity of
welfare functions which are first order dominance - increasing and submodular (The-
orem 3). Altogether, Theorems 1 - 3 provide a characterization of the increasing
concordance ordering. Main technical difficulty is to show that upward shifts gener-
ate a set of copulas that are increasing in the sense of concordance ordering and not
every algorithm of transforming marginal distributions possess this property.

We show how the obtained results can be applied to the measurement of education-
health gradient, bidimensional welfare and intergenerational mobility. In other words,
in all three cases we check what can be said about distributions comparisons when
minimal structure is imposed on the data. Education-health gradient is the relation-

4

ECINEQ WP 2017 - 431 March 2017



ship between education and health. Generally, the higher the education attainment
the better the health status (Adler et al. 1994). Such socioeconomic gradients in
health are observed in many industrialised countries (Marmot 2006). There is ev-
idence for developing countries as well (Strauss and Thomas 1998). In empirical
applications the socioeconomic status is often proxied by income, education, social or
occupational class. The relationship between SES and health is typically studied via
a concentration curve (van Doorslaer et al. 1997, van Doorslaer and Koolman 2004),
however concentration curve is developed for ratio-scale variables and its use for other
type of data is inappropriate (Makdisi and Yazbeck 2014). Zheng (2011) measures
socioeconomic inequalities in health using bivariate health-income transition matrix,
however, the distribution of income is fixed between groups that are compared, which
makes this approach in fact unidimensional. Duclos and Echevin (2012) propose a
robust method for measuring health-income gradient based on dominance conditions,
but it does not separate interdependence and the gradient concerns interdependence
only. Based on the National Health Interview Survey 2014 we calculate Kendall’s
tau lower and upper bound for bivariate distributions of educational attainment and
several mental health indicators in four US regions. These bounds are wide, but we
can declare West region as unambiguously better in almost all comparisons. There
seems to be a steeper education gradient in depression than anxiety.

We then apply our results to the measurement of welfare in bivariate mental health
distribution (the feeling of hopelessness and the feeling that everything is an effort in
the past 30 days). To the best of our knowledge this is one of the first attempts to do
this.9 We obtain welfare measures which are inevitably attribute decomposable (Abul
Naga and Geoffard 2006), that is, we can decompose a given measure as a function of
welfare in each margin and a measure of association and calculate the contributions
of all three elements to overall welfare. Attribute decomposability reveals the detail
needed to devise and implement policy i.e. think of two regions that have similar
overall welfare score but very different contributions structure. They require different
policy responses. We find that Midwest is the region with the highest welfare and West
is the region with the lowest welfare. The differences between regions, when measured
by a welfare index we construct, are small and the contributions of dimensions and
association are similar.

As to intergenerational mobility we have a 100 ⇥ 100 centile transition matrix
for the U.S. 1980-82 birth cohorts taken from Chetty et al. (2014).10 Here marginal
distributions are the same (i.e. percentile distribution) and we only study interde-
pendence i.e. what is the probability that a child is in a given percentile of his income
distribution given that a father was in a given percentile of his income distribution?
Interdependence is thus relative mobility and we calculate that it ranges between 0.21
and 0.25, as measured by Kendall’s tau coefficient. Overall, the relation is positive
although not very strong. Typically, one regresses ranks of children on the ranks of
parents, but here we do not impose any restrictions on the shape of dependence. The
value 0.21 can be thought of as a lower bound of relative mobility and the value of
0.25 as its upper bound. Furthermore, we analyse the geography of intergenerational

9Arndt et al. (2012) study first order stochastic dominance in multiple binary indicators.
10Available at www.equality-of-opportunity.org.
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mobility based on the same dataset. We consider 50 largest community zones and we
find that often they can be ranked unambiguously based on Kendall’s tau bounds.

The paper is organised as follows. In Section 1 notation and definitions are in-
troduced. In Section 2 we give a brief overview of the relevant parts of a copula
theory. We then define an increasing concordance ordering. In Section 3 we prove
Theorems 1-3 which provide characterisations of this ordering. Section 4 is devoted
to applications. We conclude by pointing to future work.

1. Basic definitions and notation

We define a numerical representation of categories of ordinal variables I := I1 ⇥
I2 = {0, . . . , n} ⇥ {0, . . . , m} which is arbitrary as long as it preserves the ordering.
I1, I2 are totally ordered sets and I is endowed with the usual partial order: (i, j) 
(i0, j0) if and only if i  i0 and j  j0 for all i and j. Throughout the article I, n, m
are fixed.

Now let f be a probability distribution on the set I. By defining probability distri-
bution f on I we make it independent of scale; that is, if there are two different scales
with the same number of categories on each dimension, then I does not change and
a given probability distribution can be related to both scales. Obviously we requirePn

i=0

Pm
j=0 fij = 1 and for all (i, j) 2 I, fij � 0. We define marginal distributions by

f 1
i :=

mX

j=0

fij f 2
j :=

nX

i=0

fij (1)

and cumulative distributions by

F 1
i :=

iX

k=0

f 1
k F 2

j :=

jX

l=0

f 2
l (2)

A multidimensional cumulative distribution function F at (i, j) equals

Fij :=
iX

k=0

jX

l=0

fkl (3)

Furthermore, we define survival function of distribution f by

Sij :=
nX

k=i+1

mX

l=j+1

fkl (4)

and marginal survival functions by

S1
i :=

nX

k=i+1

f 1
k S2

j :=
mX

l=j+1

f 2
l (5)

Let ⇤ denote a set of probability distributions with given marginals on all dimen-
sions.

6

ECINEQ WP 2017 - 431 March 2017



2. Increasing concordance ordering

The increasing concordance ordering we propose combines first order stochastic
dominance for marginal distributions and association ordering for copulas. We start
with association.

As mentioned in the Introduction, the concept of increasing interdependence is
well-captured by an ordering on copulas. Copulas were popularised by Sklar (1959)
to study the dependence structure between random variables. From Sklar’s theorem
the copula of a distribution F is the only information necessary to recover F from its
marginal distributions F 1, F 2. Formally, a bi-dimensional copula C : [0, 1]2 7! [0, 1]
is a function such that

Fij = C
�
F 1

i , F 2
j

�
. (6)

Given (6) and utilising probability integral transform, one can think of a copula
as a bivariate distribution with uniform marginals. An interesting fact about copulas
which is often exploited in econometrics literature (Manski 1988, 1997; Heckman
1997; Hoderlein and Stoye 2014) is Fréchet-Hoeffding inequality which states that for
every (u, v) 2 [0, 1]2 we have

max (u + v � 1, 0)  C  min (u, v)

Thus, M(u, v) = min (u, v) and W (u, v) = max (u + v � 1, 0) are known as, respec-
tively, Fréchet-Hoeffding upper and lower bound.

Let us consider an example which shows the difference between copulas and cu-
mulative distributions. We assume for a moment that F is a probability distribution
on a given scale. There are two dimensions, health status and educational attain-
ment, each with two categories, to which apply scales (1, 2) and (2, 5), respectively
(distribution (a) in Figure 1). The value of the copula at, for example, (0.5, 0.5) is the
value of F at (1, 2). Because F 1(1) = 0.5, F 2(2) = 0.5 we get C(0.5, 0.5) = 0.5. Now
if we change the scale in which we measure health from 1 and 2 into, respectively,
10 and 20 (distribution (b)) the cdf changes from F (1, 2) = 0.5 into F (1, 2) = 0,
whereas the copula does not change, namely, the copula is still evaluated at (0.5, 0.5)
and still equals 0.5. This is what is meant by saying that the copula is invariant to
increasing transformations of variables. That the cdf is not is even more clear when
looking at Figure 2. The monotone transformation (ln) completely changes the de-
pendence structure. Copula is “designed” exactly for situations when such re-labelling
(re-scaling) should not change the underlying distribution. Therefore, it is a particu-
larly useful concept to measure association between variables for which only ordering
matters.

For discrete distributions we run into problems of unidentifiability of a copula of
a given distribution. This is because Sklar’s theorem ensures the uniqueness of a
copula only for RanF 1 ⇥ RanF 2, which in case of ordinal data is a proper subset of
[0, 1]2. Formally, copulas for discrete variables are subcopulas i.e. C 0 : S1 ⇥ S2 7! S3,
where S1, S2, S3 are all subsets of [0, 1] containing 0 and 1. Therefore, there are many
functions C that fulfil equation (6). Any subcopula, however, can be extended to
a copula, which is a key step in the proof of Sklar’s theorem (Nelsen 2006). Given
a bivariate distribution F let F be a set of copulas for which equation (6) holds,
namely, it is a set of possible extension copulas. Its lower and upper bounds were
specified by Carley (2002).
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Figure 1: The difference between copula and cdf: an example.

(a) Distribution (a)
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formed health categories
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Figure 2: A scatter plot of (xi, yi) sampled randomly from {0, 1, . . . , n} ⇥ {0, 1, . . . , n} (a) and
(ln (xi), ln (yi)) (b).

(a) (b)

Proposition 1. Upper and lower bound on F (Carley 2002)
Let F be the set of copulas which fulfil equation (6) for a given distribution F on I.
The upper Carley bound11 for the set F is given by

C+
F (u, v) =

1X

i=0

1X

j=0

max (0, min (u� ↵ij, v � �ij, fij)) =
1X

i=0

1X

j=0

minx(u� ↵ij, v � �ij, fij)

and the lower Carley bound is equal to

C�
F (u, v) =

1X

i=0

1X

j=0

max (0,�fij + min (u� �ij, fij) + min (v � �ij, fij))

where

↵ij =
i�1X

k=0

f 1
k +

j�1X

l=0

fil, �ij =

j�1X

l=0

f 2
l +

i�1X

k=0

fkj

11Formally, both upper bounds and lower bounds are shuffles of min denoted by minx (Mikusiński
et al. 1992).
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�ij =
i�1X

k=0

f 1
k +

1X

l=j+1

fil, �ij =

j�1X

l=0

f 2
l +

1X

k=i+1

fkj

and by convention, an empty sum is equal to zero.

Remark. ↵(i+1)0 = �(i+1)m = F 1
i and �0(j+1) = �n(j+1) = F 2

j

The interpretation of ↵ij, �ij, �ij and �ij is the following. The values of marginal
distributions divide [0, 1]2 into blocks Bij := [i�1, i]⇥ [j�1, j]. If we order them from
bottom to top, left to right, ↵ij is the amount of mass in the blocks up to block Bij;
similarly for �ij if we order them left to right, bottom to top. Analogously, if we order
them from top to bottom, left to right, �ij is the amount of mass in the blocks before
Bij; similarly for �ij if we order them right to left, bottom to top. The upper (lower)
Fréchet-Hoeffding bound (copula M) is generated by spreading the mass uniformly
along the diagonal (counter-diagonal). Here, for example, for the maximum extension
copula, the mass concentrated in each block is spread uniformly along the diagonal
as close as to the origin as possible to get the fastest growth of the copula. The
diagonals along which the mass is distributed cannot overlap, because projected on
the marginals they have to be uniform. Thus for a given distribution the set of its
extension copulas might be a proper subset of the set of copulas bounded by Fréchet-
Hoeffding bounds. Fréchet-Hoeffding bounds belong to the set of extension copulas for
a given distribution only if at the points of uniqueness (values of subcopula) the value
of the subcopula agrees with copula M or W e.g. C 0(0.2, 0.3) = 0.2 = min (0.2, 0.3) =
M(0.2, 0.3). Figure 3 shows a typical distribution of mass for C+

F and Figure 4 shows
a maximum extension copula in three dimensions.

Figure 3: A typical distribution of mass (support) for Carley upper bound C+
F

Let association be captured by ⌧ which denotes a concordance ordering on the
set of copulas. It is a point-wise partial ordering (Nelsen 2006 Definition 2.8.1) such
that one copula has higher values than the other for all (u, v) 2 [0, 1]2. To make
this definition meaningful in a discrete setting we focus on the Carley’s set. We first
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Figure 4: Maximum extension copula C+
F

define a rotation operation which will be useful in drawing links between maximum
and minimum extension copulas.

Definition 1. Rotation operator, distribution version
Let R : ⇤! ⇤ be the following rotation operator

R(f)(i, j) = fj(n�i).

Operator R rotates distribution matrix of f by 90 degrees clockwise. We will write
Rf instead of R(f) and R2f instead of R(R(f)).

Definition 2. Rotation operator (on the support)
Let R : S ! S be the following rotation operator

R(s)(u, v) = s(v, 1� u)

where S is set of mass distributions (supports) of C+
F and C�

F .

It follows from Lemma 1 that S is a well-defined codomain of R. Operator R
rotates support of C+

F (C�
F ) by 90 degrees clockwise.

Lemma 1. Let s(C+
F )(s(C�

F )) be mass distribution (support) of C+
F (C�

F ), then

1. Rs(C+
f ) = s(C�

Rf )

2. Rs(C�
f ) = s(C+

Rf )

Proof. Slightly abusing notation (C+
f instead of C+

F ), let us take f̃ = Rf . We have

↵ij = ⌃i�1
k=0f

1
k + ⌃j�1

l=0 fil = ⌃i�1
k=0f̃

2
n�k + ⌃j�1

l=0 f̃l(n�i) = ⌃n
k=n�i+1f̃

2
k + ⌃j�1

l=0 f̃l(n�i) =

=1� ⌃n�i�1
k=0 f̃ 2

k � ⌃m
l=j f̃l(n�i) = 1� �̃j(n�i) � f̃j(n�i)

�ij = ⌃j�1
l=0 f 2

l + ⌃i�1
k=0fkj = ⌃j�1

l=0 f̃ 1
l + ⌃i�1

k=0f̃j(n�k) = ⌃j�1
l=0 f̃ 1

l + ⌃n
k=n�i+1f̃jk = �̃j(n�i)
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It is easy to see that each part of the support of C+
f , namely line from (↵ij, �ij) to

(↵ij+fij, �ij+fij) = (↵i(j+1), �(i+1)j) is transformed into the line from (�̃j(n�i), �̃j(n�i)+

f̃j(n�i)) to (�̃j(n�i�1), �̃(j+1)(n�i) + f̃(j+1)(n�i)) = (�̃j(n�i) + f̃j(n�i), �̃j(n�i)), which is part
of the support of C�

f̃
. Since R is a linear operator and s is the sum of indicators of

its parts, statement 1 holds. Statement 2 can be proven similarly.

We can use the rotation operator twice to define survival function.

Definition 3. We will call a following function C̃ the survival copula

C̃(u, v) = u + v � 1 + C(1� u, 1� v)

and we have
Sij = C̃(S1

i , S
2
j )

Definition 3 is motivated by the following relation

Sij = ⌃n
k=i+1⌃

m
l=j+1fkl = 1� ⌃i

k=0f
1
k � ⌃j

l=0f
2
l + ⌃i

k=0⌃
j
l=0fkl =

=1� F 1
i � F 2

j + Fij = 1� (1� S1
i )� (1� S2

j ) + Fij =

=S1
i + S2

j � 1 + C(F 1
i , F 2

j ) = S1
i + S2

j � 1 + C(1� S1
i , 1� S2

j ).

We have the following remark.

Remark 1. Survival function is a distribution function of R2f . Hence we have the
following results

• fC+
f = C+

R2f

• fC�
f = C�

R2f

• fC+
F = ⌃1i=0⌃

1
j=0 max (0, min (↵i(j+1) � u, �(i+1)j � v, fij))

• fC�
F = ⌃1i=0⌃

1
j=0 max (0,�fij + min (�i(j�1) � u, fij) + min (�(i�1)j � v, fij))

using convention that ↵i(m+1) = ↵(i+1)0, �(n+1)j = �0(j+1), ↵n(m+1) = �(n+1)m = 1,
�i(�1) = �(i+1)m, �(�1)j = �n(j+1) and �n(�1) = �(�1)m = 1.

We are now ready to define an ordering on copulas of discrete distributions.

Definition 4. Concordance
Let C 0

F be a unique subcopula of F and let C 0
G be a unique subcopula of G. We say

that C 0
G is more max-concordant/min-concordant/concordant than C 0

F i.e. C 0
F ⌧ C 0

G,
if and only if:

1. max-concordant
C+

F (u, v)  C+
G(u, v) for all (u, v) 2 [0, 1]2

2. min-concordant
C�

F (u, v) � C�
G(u, v) for all (u, v) 2 [0, 1]2

3. concordant - both 1. and 2. hold
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4. survival-max-concordant
fC+

F (u, v) � fC+
G(u, v) for all (u, v) 2 [0, 1]2

5. survival-min-concordant
fC�

F (u, v)  fC�
G(u, v) for all (u, v) 2 [0, 1]2

6. survival-concordant - both 4. and 5. hold

The specific⌧ we focus on is induced by a well-known rank correlation coefficient
Kendall’s ⌧ . Its bounds were specified by Genest and Neslehova (2007) so that for a
given distribution its degree of interdependence can be summarised in an interval.

Proposition 2. Upper and lower bounds for Kendall’s ⌧ (Genest and Nesle-
hova 2007)

⌧(C+
F ) = 1� 4

1X

i=0

1X

j=0

i�1X

k=0

1X

l=j+1

fijfkl (7)

⌧(C�
F ) = �1 + 4

1X

i=0

1X

j=0

i�1X

k=0

j�1X

l=0

fijfkl (8)

⌧( fC+
F ) = 1� 4

1X

i=0

1X

j=0

1X

k=i+1

j�1X

l=0

fijfkl (9)

⌧( fC�
F ) = �1 + 4

1X

i=0

1X

j=0

1X

k=i+1

1X

l=j+1

fijfkl (10)

Lemma 2. ⌧(C+
F ) = ⌧( fC+

F ) and ⌧(C�
F ) = ⌧( fC�

F )

Proof.
1X

i=0

1X

k=i+1

=
X

k>i

=
X

i<k

=
1X

k=0

k�1X

i=0

1X

j=0

j�1X

l=0

=
X

l<j

=
X

j>l

=
1X

l=0

1X

j=l+1

⌧( fC+
F ) = 1� 4

1X

i=0

1X

j=0

1X

k=i+1

j�1X

l=0

fijfkl = 1� 4
1X

k=0

1X

l=0

k�1X

i=0

1X

j=l+1

fijfkl = ⌧(C+
F )

⌧( fC�
F ) = �1 + 4

1X

i=0

1X

j=0

1X

k=i+1

1X

l=j+1

fijfkl = �1 + 4
1X

k=0

1X

l=0

k�1X

i=0

l�1X

j=0

fijfkl = ⌧(C�
F )

So far we considered interdependence only. To complete the definition of the or-
dering that enables us to compare whole distributions we require first-order stochastic
dominance to hold on each marginal distribution.

Definition 5. First order stochastic dominance
Fixing n � 1 and allowing f j, gj to be two probability distributions on Ij.

f j 6FSD gj , F j
i  Gj

i for any i
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We combine FSD and association measured by the ordering on copulas and define
the relation -CFSD as follows

Definition 6. Increasing concordance (CFSD)

1. g -C+FSD f () f 1 6FSD g1, f 2 6FSD g2 and C 0
G is more max-concordant

than C 0
F

2. g -C�FSD f () f j 6FSD gj , f 2 6FSD g2 and C 0
G is more min-concordant

than C 0
F

3. g -CFSD f () f j 6FSD gj , f 2 6FSD g2 and C 0
G is more concordant than

C 0
F

4. g -gC+FSD
f () f 1 6FSD g1, f 2 6FSD g2 and C 0

G is more survival-max-
concordant than C 0

F

5. g -gC�FSD
f () f j 6FSD gj , f 2 6FSD g2 and C 0

G is more survival-min-
concordant than C 0

F

6. g - eCFSD f () f j 6FSD gj , f 2 6FSD g2 and C 0
G is more survival-concordant

than C 0
F

Distribution g is more interdependent than f in the sense of -CFSD when g is
dominated by f according to FSD on marginals and has higher association than
f . Relation -CFSD is reflexive because of reflexivity of FSD relation and it is also
transitive, thus it is a quasi-ordering.

3. Characterisation theorems

The following two definitions describe elementary transfers of probability mass
that transform a dominated distribution into a dominant distribution. First is an
upward shift, well-known to characterise first-order stochastic dominance, and second
is an association-increasing transformation introduced independently by Epstein and
Tanny (1980) and Tchen (1980). The latter is defined on a copula density, that is,

c(i, j) = C(i, j)� C(i� 1, j)� C(i, j � 1) + C(i� 1, j � 1). (11)

Definition 7. Upward shift
We say that F k differs from Gk by an elementary shift if there exist i1 < i2, such that

fk
i � gk

i =

8
><
>:

✏ if i = i1

�✏ if i = i2

0 otherwise

Definition 8. Association-increasing transformation
We say that CG differs from CF by an association-increasing transformation if there
exist i1 < i2 and j1 < j2 such that

cF (i, j)� cG(i, j) =

8
><
>:

✏, if (i, j) = (i1, j1) or (i2, j2)

�✏, if (i, j) = (i1, j2) or (i1, j2)

0, otherwise
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Please note that association switches do not change the marginal distributions.

We are now ready to prove our main result.

Theorem 1. Let F, G be a distribution with marginals F 1, F 2 and G1, G2, respec-
tively. Further, let C+

F , C+
G (C�

F , C�
G) be their maximal (minimal) extension copulas.

F -CFSD G is equivalent to the following condition:
F can be transformed into G via a finite sequence of elementary shifts and cor-

relation switching transformations i.e. a single step k in the sequence generates a
distribution F̃k such that it dominates distribution F̃k�1 according to -CFSD .

Instead of -CFSD one can also put -C+FSD, -C�FSD, - eCFSD, -gC+FSD
, or -gC�FSD

.

A priori upward shifts that are defined for univariate distributions can be dis-
tributed along the other marginal in an arbitrary manner and can produce distribu-
tions whose copulas will not be in relation⌧ with the copula of the initial distribution
e.g. adding �i = F 1

i �G1
i to points (F 1

i , 1) for every i will produce distributions that
are not more concordant. Therefore, the main difficulty in the proof is to construct
an algorithm such that each upward shift generates a distribution whose maximal ex-
tension copula is more concordant. We utilise greedy algorithm. Let us consider the
first marginal and let i0 be the lowest category for which F 1

i0
< G1

i0
. Let us consider

the maximal extension copula of F . It is well-defined in all points of [0, 1]2, in partic-
ular in G1

i0
. This copula determines a discrete distribution F̃ 1 with the first marginal

such that F 1
i0

is replaced by F̃ 1
i0

= G1
i0

i.e. following un upward shift.12 In particular,
the maximal extension copula determines how upward shift is distributed along the
second dimension. Upward shift involves a move from left to right adding the mass
concentrated in-between, which given the distribution of mass in C+

F̃
means adding

the mass from the bottom (up to category l for the second dimension). This generates
a new distribution with a maximal extension copula that is more concordant.

As an example let us consider the following distribution f

f Category 1 Category 2 Category 3 Category 4
Category D 20 5 0 0
Category C 5 10 5 10
Category B 10 0 10 5
Category A 0 5 10 5

We consider the transfers of 5 from third to the second column, starting from
category A. We get extension copulas with supports shown in Figure 5.

Similarly for C� we consider a distribution f̃ which is a rotated distribution f

f̃ Category A Category B Category C Category D
Category 1 0 10 5 20
Category 2 5 0 10 5
Category 3 10 10 5 0
Category 4 5 10 5 0

Then, by doing transfers of 5 from third column to the second, starting from
category A, we get extension copulas with supports shown in Figure 6.

Elementary transformations have matrix representation.

12For simplicity we assume for now that there is enough mass in i0 + 1 to equalise F̃ 1
i0

with G1
i0

.
In general, mass may have to be transferred from more than one category.
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Figure 5: An example of a sequence of upward shifts distributed according to C+
F

Figure 6: An example of a sequence of upward shifts distributed according to C�
F

Theorem 2. Let F, G be a distribution with marginals F 1, F 2 and G1, G2, respec-
tively. Further, let C+

F , C+
G (C�

F , C�
G) be their maximal(minimal) extension copulas.
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F -CFSD G is equivalent to the following condition.
There exist n⇥m matrices � and � such that f + � + � = g, where � is a matrix

of elementary shifts and � is a matrix of association-increasing transformations.

Similarly to standard results in welfare measurement literature we can relate
CFSD relation to a class of welfare functions. Let W denote the class of functions
defined on I, w 2 W denote its element and

(w|f) :=
X

i,j

w(i, j)fij

denote the expected value of w given distribution f .

Theorem 3. Let F, G be a distribution with marginals F 1, F 2 and G1, G2, respec-
tively. Let W�

1 and W+
1 denote functions which are submodular and supermodular,

respectively. Let W2 be a class of nondecreasing functions with respect to both coordi-
nates.

F -CFSD G is equivalent to

(w|f)  (w|g) for all w 2W�
1 \W2.

F - eCFSD G is equivalent to

(w|f)  (w|g) for all w 2W+
1 \W2.

Sklar’s theorem allows us to characterise functions which are monotone with re-
spect to -CFSD i.e. so called Schur-convex functions.

Theorem 4. Order-preserving functions P : ⇤ 7! R is a function that preserves
-CFSD i.e.

(f -CFSD g)) (P (f)  P (g)). (12)

if and only if
P (f) = h(C+

f ,p1,p2), (13)

where h is an increasing function. Along the first coordinate it increases with respect
to concordance ordering ⌧ and on the coordinates 2, 3 with respect to first-order
stochastic dominance.

4. Applications

4.1. Education and health
Below we analyse the relationship between educational attainment and five men-

tal health indicators based on the National Health Interview Survey from year 2014.
NHIS is an annual cross-section health survey in the US. The indicators are respon-
dents’ 4-category answers to the following questions: During the past 30 days how
often did you feel (1) nervous (2) that everything was an effort (3) hopeless (4) restless
or fidgety (5) worthless? Typically such relationship is analysed using probit regres-
sion, however, Bong and Lang (2014) point out that such cardinalizations are often
not justified and lead to conclusions which are easy to reverse. Without going into
much detail of their critique, here we check what is the minimum that can be said
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about the relationship between education and health when no structure is imposed
on the data. We simply calculate Kendall’s tau for the Carley’s set and compare US
regions. For 4-category ordinal variables, these bounds are wide, however, this does
not prevents us from declaring West as the region with the lowest education-health
gradients in all comparisons and South as the region that dominates in most com-
parisons (Table 1). It is interesting to notice that association differs substantially for
different indicators, that is, for the feelings of nervousness and restlessness it is much
lower than for the feelings of hopelessness and worthlessness (|0.5| vs. |0.8|). The
former feelings are more characteristic of anxiety, whereas the latter are more char-
acteristic of depression. There seems to be a steeper education gradient in depression
than anxiety.

Table 1: Kendall’s tau bounds for Education-Health distributions
Region nervous-edu effort-edu hopeless-edu restless-edu worthless-edu

Northwest 0,5533 0,6761 0,8383 0,5939 0,8845
-0,5577 -0,5985 -0,7621 -0,5439 -0,8186

Midwest 0,5504 0,6684 0,8372 0,5740 0,8657
-0,5683 -0,6086 -0,7782 -0,5572 -0,8164

South 0,5943 0,6875 0,8497 0,6212 0,8911
-0,5968 -0,6030 -0,7648 -0,5626 -0,8199

West 0,5466 0,6329 0,8251 0,5673 0,8506
-0,5610 -0,5932 -0,7374 -0,5420 -0,7924

All 0,5625 0,6655 0,8378 0,5900 0,8728
-0,5740 -0,5998 -0,7592 -0,5519 -0,8110

4.2. Welfare measurement for ordinal data
CFSD relation can be used to rank bivariate distributions of ordinal data ac-

cording to welfare. As an example of how this works, we consider bivariate health
distribution where two dimensions are the feeling of hopelessness and the feeling that
everything is an effort in the past 30 days based on the NHIS 2014. We find that
Midwest dominates West and that West is dominated by the general population dis-
tribution (Table 2). There are in fact a lot of cases of copula dominance but CFSD
collapses because of lack of dominance on marginal distributions. However, when it
comes to the degree of interdependence between two health indicators West exhibits
less and South exhibits more association than other regions.

Table 2: Bivariate health distribution and CFSD dominance.
Region Northwest Midwest South West All

Northwest ⌧ ⌧ � �
<FSD1 <FSD1

>FSD2

Midwest � ⌧C+ �CFSD �
�C�

<FSD1

<FSD2 <FSD2 <FSD2

South � �C+ � �
⌧C�
>FSD2 <FSD2

West ⌧ ⌧ ⌧ ⌧
>FSD1 >FSD1 >FSD1

>FSD2 >FSD2 >FSD2

All ⌧ ⌧ ⌧ �
>FSD1 >FSD1 <FSD1

>FSD2 <FSD1

Apart from dominance comparisons, it is standard in welfare and inequality mea-
surement literature to use measures. Here, measures have the advantage of being
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attribute decomposable, whereas a priori it is difficult to show whether a given mea-
sure has this property. Decomposability (Shorrocks 1984) is a desired property of
welfare, inequality and poverty measures as it allows for a disaggregated analysis.
For an additive function h, Theorem 4 states that functions preserving -CAF are
necessarily a special case of attribute decomposable functions (Naga and Geoffard
2006).

Definition 9. Attribute decomposability (Naga and Geoffard 2006)
Function P : ⇤ 7! R is attribute decomposable if and only if there exist univariate in-
equality indices P1, P2, a measure of association via copula  and increasing functions
g1, g2, g3 such that

P (f) = g1(P1(f
1)) + g2(P2(f

2)) + g3((CF )) (14)

Putting g̃1 = g1 �P1, g̃2 = g2 �P2, and g̃3 = g3 � we obtain decomposition (13) for
an additive function h, and g̃1, g̃2, g̃3 behave like h with respect to coordinates. With
an additive attribute decomposable index, one can evaluate the contributions of both
dimensions and association to overall welfare i.e. taking g1(P1(f1))

P (f)
. An example of an

attribute decomposable welfare measure is the following.

Definition 10. Attribute decomposable welfare measure for ordinal data

P (f) =
1

3

✓
E(w̃|f 1)

n
+

E(w̄|f 2)

m
+

⌧(CF ) + 1

2

◆
, (15)

where we put P1(f
1) := E(w̃|f 1), w̃(i, j) = i, P2(f

2) := E(w̄|f 2), w̄(i, j) = j and
(C+

F ) = ⌧(C+
F ), (C�

F ) = �⌧(C�
F ) is given by (7).13

According to index (15) Midwest has the highest welfare, then its South, Northwest
and West, which is the only region for which welfare is lower than welfare in the general
population. The differences between regions are small. The values of marginal indices
and association are similar, therefore their contributions are roughly equal.

Region P1(f1) P2(f2) (C+
F ) (C�

F ) h(C+
F , f1, f2) h(C�

F , f1, f2)
Northwest 0.8974 0.9518 0.9659 0.6381 0.9440 0.8894

Midwest 0.8996 0.9558 0.9669 0.6493 0.9463 0.8934
South 0.8962 0.9533 0.9678 0.6408 0.9445 0.8900
West 0.8904 0.9485 0.9605 0.6008 0.9397 0.8798

All 0.8955 0.9523 0.9653 0.6308 0.9435 0.8877

4.3. Intergenerational mobility
In this section we analyse the 100⇥100 centile transition matrix for the U.S. 1980-

82 birth cohorts taken from Chetty et al. (2014).14 Here marginal distributions are
the same (i.e. percentile distribution) and we only study interdependence i.e. what is
the probability that a child is in a given percentile of his income distribution given that
a father was in a given percentile of his income distribution? Interdependence is thus
relative mobility and we calculate that it ranges between 0.21 and 0.25, as measured

13We put �⌧(C�
F ) because the ordering of minimum extension copulas is reversed comparing to

FSD.
14Available at www.equality-of-opportunity.org.
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by Kendall’s tau coefficient on the Carley’s set. Overall, the relation is positive
although not very strong. Typically, one regresses ranks on children on the ranks of
parents, but here we check what can be said without imposing any restrictions on the
shape of dependence. We obtain narrow interval because of a very dense partition
of the grid. The value 0.21 can be thought of as a lower bound of relative mobility
and the value of 0.25 as its upper bound. Based on the same dataset, we also analyse
the geography of intergenerational mobility. We consider 50 largest community zones
and we find a lot of comparability between, marked as dark places in Figure 7. These
regions can be ranked based on Kendall’s tau intervals (which do not cross) in terms
of intergenerational mobility. For other types of mobility (e.g. educational mobility,
occupational status mobility), where marginal distributions are different, (15) can be
used to evaluate the relative importance of welfare in each generation’s distribution
and of mobility.

Figure 7: Comparability between 50 largest community zones in the US

Concluding remarks

For the case of bivariate discrete distribution we formulate a standard result which
characterizes first order stochastic dominance in terms of elementary transformations
and a class of welfare functions. The novelty comes from the fact that we explic-
itly treat interdependence separately from the marginal distributions. Such a setting
captures well some problems that appear mostly for ordinal data. We find a method
to deal with technical difficulties imposed by a discrete model. There is an inherent
uncertainty about the value of dependence for discrete distributions. Other (i.e. than
first order stochastic dominance) dominance relations on marginals can be combined
with copulas and our proof and description of copulas for discrete distributions makes
it easier to study such new relations. Also more work is needed to construct mul-
tidimensional measures of inequality based on multivariate concordance literature.
Furthermore, there may be alternative definitions of multidimensional welfare order-
ing, and dependence does not have to be explicit. Nevertheless this may compromise
attribute decomposability.
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Appendix

Theorem 1

Proof. We will start by proving the following lemma.15

Lemma 3. Let i0 be the lowest category for which F 1
i0
6= G1

i0
i.e. F 1

i0
< G1

i0
, and let

i1 be the lowest category such that Fi1 > Fi0. Consider a distribution F̃ such that
F̃ij = Fij for all i 6= i0, F̃ 2 = F 2, F̃ 1

i0
= min{F 1

i1
, G1

i0
}, F̃ 1

i = F 1
i elsewhere and

f̃i0j � fi0j. Then, C+

F̃
(F 1

i0
, F 2) � C+

F (F 1
i0
, F 2).

Proof. Our goal is to show that the following inequality holds

C+

F̃
(F 1

i0
, F 2

k ) � C+
F (F 1

i0
, F 2

k )

C+

F̃
(F 1

i0
, F 2

k )� C+
F (F 1

i0
, F 2

k ) =

=⌃i,jminx(F 1
i0
� ↵̃ij, F

2
k � �̃ij, f̃ij)�minx(F 1

i0
� ↵ij, F

2
k � �ij, fij) = 16

=⌃i0
i=0⌃

k
j=0minx(F 1

i0
� ↵̃ij, F

2
k � �̃ij, f̃ij)�minx(F 1

i0
� ↵ij, F

2
k � �ij, fij) = 17

=⌃i0
i=0⌃

k
j=0minx(F 1

i0
� ↵̃ij, f̃ij)�minx(F 1

i0
� ↵ij, fij) = 18

=⌃i0
i=0⌃

k
j=0minx(F 1

i0
� ↵̃ij, f̃ij)� fij =

=⌃i0�1
i=0 ⌃k

j=0(f̃ij � fij) + ⌃k
j=0

h
minx(F 1

i0
� ↵̃i0j, f̃i0j)� fi0j

i
=

=F̃(i0�1)k � F(i0�1)k + ⌃k
j=0

h
minx(F 1

i0
� ↵̃i0j, f̃i0j)� fi0j

i
=

=⌃k
j=0

h
minx(F 1

i0
� ↵̃i0j, f̃i0j)� fi0j

i

Let r = sup{r0 : F 1
i0
� ↵̃i0r0 � f̃i0r0}. Let �F = F 1

i0
� F 1

i0�1. Since F 1
i0
� ↵̃i0r =

�F + F̃ 1
i0�1 � ↵̃i0r = �F � ⌃r�1

l=0 f̃i0l, then if �F � ⌃r�1
l=0 f̃i0l � f̃i0r then it is true for

any r0 < r. For r0 > r + 1 we have F 1
i0
� ↵̃i0r0 < 0.18 Finally we obtain:

⌃k
j=0minx(F 1

i0
� ↵̃i0j, f̃i0j) =

⇢
⌃k

j=0f̃i0j if k  r

⌃r
j=0f̃i0j + max(0, F 1

i0
� ↵̃i0(r+1)) if k � r + 1

15We study elementary shifts on distribution F 1, but it can be as well F 2.
16Let us keep in mind that ↵(i0+1)0 = F 1

i0
, �0(k+1) = F 2

k and ↵ij , �ij are nondecreasing, and that
Fi0 < Gi0 = ↵̃(i0+1)0

17F 2
k � �ij = ⌃k

l=0f
2
l � ⌃j�1

l=0 f2
l � ⌃i�1

t=0ftj = ⌃k
l=j+1f

2
l + ⌃n

t=iftj > fij , and we get the same if we
replace F with F̃ .

18It is so, because F 1
i0
� ↵̃i0(r+1) < f̃i0(r+1) and ↵̃i0r0 = ↵̃i0(r0�1) + f̃i0(r0�1).
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If k  r then obviously ⌃k
j=0minx(F 1

i0
� ↵̃i0j, f̃i0j) = ⌃k

j=0f̃i0j � ⌃k
j=0fi0j.

Let k � r+1. We want to show that ⌃r
j=0f̃i0j +max(0, F 1

i0
�↵̃i0(r+1)) � ⌃k

j=0fi0j, but it
is sufficient to show it for k = m. We have F 1

i0
� ↵̃i0(r+1) � 0 because F 1

i0
� ↵̃i0r � f̃i0r.

We have ⌃r
j=0f̃i0j + F 1

i0
� ↵̃i0(r+1) = ⌃r

j=0f̃i0j + F 1
i0�1 + ⌃m

j=0fi0j � F̃ 1
i0�1 � ⌃r

j=0f̃i0j =
⌃m

j=0fi0j which concludes the proof of the lemma.

Now we will prove similar lemma for C�
F .

Lemma 4. Let i0 be the lowest category for which F 1
i0
6= G1

i0
i.e. F 1

i0
< G1

i0
, and let

i1 be the lowest category such that Fi1 > Fi0. Consider a distribution F̃ such that
F̃ij = Fij for all i 6= i0, F̃ 2 = F 2, F̃ 1

i0
= min{F 1

i1
, G1

i0
}, F̃ 1

i = F 1
i elsewhere and

f̃i0j � fi0j. Then, C�
F̃

(F 1
i0
, F 2)  C�

F (F 1
i0
, F 2).

Proof. Our goal is to show that the following inequality holds

C�
F̃

(F 1
i0
, F 2

k )  C�
F (F 1

i0
, F 2

k )

C�
F̃

(F 1
i0
, F 2

k )� C�
F (F 1

i0
, F 2

k ) =

=⌃i,j[max (0,�f̃ij + min (F 1
i0
� �̃ij, f̃ij) + min (F 2

k � �̃ij, f̃ij))+

�max (0,�fij + min (F 1
i0
� �ij, fij) + min (F 2

k � �ij, fij))] = 19

=⌃i0
i=0⌃

k
j=0[max (0,�f̃ij + min (F 1

i0
� �̃ij, f̃ij) + min (F 2

k � �̃ij, f̃ij))� fij]+

+⌃n
i=i0+1⌃

k
j=0 max (0,�f̃ij + min (F 1

i0
� �̃ij, f̃ij) + min (F 2

k � �̃ij, f̃ij))+

+⌃i0
i=0⌃

m
j=k+1 max (0,�f̃ij + min (F 1

i0
� �̃ij, f̃ij) + min (F 2

k � �̃ij, f̃ij))+

+⌃n
i=i0+1⌃

m
j=k+1 max (0,�f̃ij + min (F 1

i0
� �̃ij, f̃ij) + min (F 2

k � �̃ij, f̃ij)) = 20

=⌃i0�1
i=0 ⌃k

j=0(f̃ij � fij) + ⌃i0�1
i=0 ⌃m

j=k+1 max (0, F 2
k � �̃ij)+

+⌃k
j=0[max (0, min (F 1

i0
� �̃i0j, f̃i0j))� fi0j]+

+⌃m
j=k+1 max (0,�f̃i0j + min (F 1

i0
� �̃i0j, f̃i0j) + F 2

k � �̃i0j) =

=F̃(i0�1)k � F(i0�1)k + ⌃k
j=0[max (0, min (F 1

i0
� �̃i0j, f̃i0j))� fi0j]+

+⌃m
j=k+1 max (0,�f̃i0j + min (F 1

i0
� �̃i0j, f̃i0j) + F 2

k � �̃i0j) =

=⌃k
j=0[max (0, min (F 1

i0
� �̃i0j, f̃i0j))� fi0j]+

+⌃m
j=k+1 max (0,�f̃i0j + min (F 1

i0
� �̃i0j, f̃i0j) + F 2

k � �̃i0j)

Let r = inf{r0 : F 1
i0
� �̃i0r0 � f̃i0r0}. Let �F = F 1

i0
� F 1

i0�1. Since F 1
i0
� �̃i0r =

�F + F̃ 1
i0�1� �̃i0r = �F �⌃m

l=r+1f̃i0l, then if �F �⌃m
l=r+1f̃i0l � f̃i0r, then it is true for

any r0 > r. For r0 < r� 1 we have F 1
i0
� �̃i0r0 < 0. 21 Finally we obtain the following.

If k < r � 1 we have

19Let us keep in mind that �(i0+1)m = F 1
i0

, �n(k+1) = F 2
k , �ij is nondecreasing and nonincreasing

with respect to i and j, respectively, and �ij is nondecreasing and nonincreasing with respect to j
and i, respectively.

20Recall that F̃ 2 = F 2 and F̃ 1
i0

> F 1
i0

= F 1
i0�1 + f1

i0
= F̃ 1

i0�1 + f1
i0

.
21It is so, because F 1

i0
� �̃i0(r�1) < f̃i0(r�1) and �̃i0(r0�1) = �̃i0r0) + f̃i0r0 .
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C�
F̃

(F 1
i0
, F 2

k )� C�
F (F 1

i0
, F 2

k ) = �(⌃k
j=0fi0j) + max (0,�f̃i0(r�1) + F 1

i0
� �̃i0(r�1) + F 2

k � �̃i0(r�1))+

+⌃m
j=r max (0, F 2

k � �̃i0j) = �⌃k
j=0fi0j  0

and if k � r � 1 we get

C�
F̃

(F 1
i0
, F 2

k )� C�
F (F 1

i0
, F 2

k ) = max (0, F 1
i0
� �̃i0(r�1))+

+⌃k
j=rf̃i0j � ⌃k

j=1fi0j + ⌃m
j=k+1 max (0, F 2

k � �̃i0j) =

= max (0, F 1
i0
� �̃i0(r�1)) + ⌃k

j=rf̃i0j � ⌃k
j=1fi0j+

We have F 1
i0
� �̃i0r � f̃i0r so F 1

i0
� �̃i0(r�1) � 0 and we obtain

C�
F̃

(F 1
i0
, F 2

k )� C�
F (F 1

i0
, F 2

k ) = F 1
i0
� �̃i0(r�1) + ⌃k

j=rf̃i0j � ⌃k
j=1fi0j =

=f 1
i0
� ⌃m

j=rf̃i0j + ⌃k
j=rf̃i0j � ⌃k

j=1fi0j = ⌃m
j=k+1fi0j � ⌃m

j=k+1f̃i0j  0

If k  r, then obviously ⌃k
j=0minx(F 1

i0
� ↵̃i0j, f̃i0j) = ⌃k

j=0f̃i0j � ⌃k
j=0fi0j. Let

k � r+1. We want to show that ⌃r
j=0f̃i0j +max(0, F 1

i0
� ↵̃i0(r+1)) � ⌃k

j=0fi0j, but it is
sufficient to show it for k = m. We have F 1

i0
�↵̃i0(r+1) � 0 because F 1

i0
�↵̃i0r � f̃i0r. We

have ⌃r
j=0f̃i0j +F 1

i0
�↵̃i0(r+1) = ⌃r

j=0f̃i0j +F 1
i0�1+⌃m

j=0fi0j�F̃ 1
i0�1�⌃r

j=0f̃i0j = ⌃m
j=0fi0j

which concludes the proof of the lemma.

Thus, after an elementary shift on F 1 which is distributed along F 2 according to
a maximum (minimum) extension copula we obtain a copula C+

F̃1
(C�

F̃1
) which is more

concordant than the initial copula C+
F (C�

F ).
In each step the marginal of F is transformed to equalize the marginal of G. Con-

tinuing this procedure we arrive at a marginal G1 (and analogously at a marginal G2)
obtaining in each step i a more concordant copula C+

F̃i
i.e. C+

F̃i�1
-C+FSD C+

F̃i
-C+FSD

C+
G (C�

F̃i�1
%C�FSD C�

F̃i
%C�FSD C�

G). The final distribution obtained after all ele-
mentary shifts has the same marginals as G, therefore it can be transformed into a
distribution G via association-increasing transformations according to the procedure
described in Epstein and Tanny (1980) and Tchen (1980).

Theorem 2

Proof. It is clear from the form of association-increasing transformation that we can
express them in the form of n ⇥m matrices and we have � = �0 + �1 + �2 + . . . .
Let us focus on upward shifts’ matrices.

In step t let it be the lowest number for which F 1
it < G1

it and let it̃ > it be the
lowest number such that f 1

it̃
> 0.

�ij :=

8
>><
>>:

min
⇣
G1

it � F 1
it �

Pj�1
k=1 �itk, fit̃j

⌘
i = it

��itj i = it̃
0 elsewhere

(16)
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Similarly for F 2

�ij :=

8
>><
>>:

min
⇣
G2

jt
� F 2

jt
�Pi�1

k=1 �kjt , fijt̃

⌘
j = jt

��ijt j = jt̃

0 elsewhere

(17)

A matrix of an upward shift along first marginal in step t is �1
t = (�ij) while a

matrix of an upward shift along second diagonal is �2
t = (�ij).

Assuming that f 1
it̃
� Git̃

� Fit̃
we get

F̃ 1
it̃

= F 1
it̃

+ ⌃n
j=0�it̃j

= F 1
it̃

+ ⌃n
j=0 min

⇣
G1

it̃
� F 1

it̃
� ⌃j�1

k=1�it̃k
, fit̃j

⌘
=

=F 1
it̃

+ fit̃1
+ fit̃2

+ · · · + fit̃(r�1) + G1
it̃
� F 1

it̃
� ⌃r�1

k=1�it̃k
+

+⌃n
j=r+1 min

⇣
G1

it̃
� F 1

it̃
� ⌃j�1

k=1�it̃k
, fit̃j

⌘
=

=G1
it̃

+ ⌃r�1
k=1(fit̃k

� �it̃k
) + ⌃n

j=r+1 min(0, fit̃j
) = G1

it̃

We finish our proof by inductive argument. If f 1
iT

< Git � Fit we need to transfer
from higher category, so in at most (n�1)(n�2)

2
steps we have F̃ 1

i0+1 � G1
i0
.

After a finite number of steps we obtain a matrix � = �1
0+�2

0+�1
1+�2

1+�1
2+�2

2+....
Adding F + � we obtain a distribution which has the same marginal as G. We can
obtain F̃ 1 = G1 in at most cubic time - this algorithm is by no means optimal but it
shows the general idea of how to proceed from one distribution to the other.

Theorem 3

Proof. Let us rewrite (w|f):

(w|f) = ⌃i,jw(i, j)fij =

=⌃n
i=1⌃

m
j=1w(i, j)

h
Fij � F(i�1)j � Fi(j�1) + F (i� 1)(j � 1)

i
+

+⌃n
i=1w(i, j)

h
Fi0 � F(i�1)0

i
+ ⌃m

j=1w(i, j)
h
F0j � F0(j�1)

i
+ w(0, 0)F00 =

=⌃n�1
i=0 ⌃m�1

j=0

⇥
w(i, j)� w(i, j + 1)� w(i + 1, j) + w(i + 1, j + 1)

⇤
Fij+

+⌃m�1
j=0

⇥
w(n, j)� w(n, j + 1)

⇤
F 2

j + ⌃n�1
i=0

⇥
w(i, m)� w(i + 1, m)

⇤
F 1

i +

+w(n, m)Fnm

It is straightforward to see that if F -CFSD G then we get:

(w|f)� (w|g) = ⌃n�1
i=0 ⌃m�1

j=0

⇥
w(i, j)� w(i, j + 1)� w(i + 1, j)+

+w(i + 1, j + 1)
⇤
(Fij �Gij) + ⌃m�1

j=0

⇥
w(n, j)� w(n, j + 1)

⇤
(F 2

j �G2
j)+

+⌃n�1
i=0

⇥
w(i, m)� w(i + 1, m)

⇤
(F 1

i �G1
i ) � 0

for all w 2 W1 \ W2. Now we only need to show that F -CFSD G is neces-
sary condition. Let us assume that Fkl � Gkl for some k < n, l < m. We
prove by contradiction. Let w(i, j) = 0 for i  k ^ j  l and w(i, j) = 1 else-
where. Then w(i, j) � w(i, j + 1) � w(i + 1, j) + w(i + 1, j + 1) = 0 for all (i, j) 6=
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(k, l), w(k, l) � w(k, l + 1) � w(k + 1, l) + w(k + 1, l + 1) = �1 and we have also
w(i, m) � w(i + 1, m) = w(n, j) � w(n, j + 1) = 0 for all (i, j) (in the case where
k = n or l = m one of w(i, m)� w(i + 1, m) or w(n, j)� w(n, j + 1) would be equal
�1 and the rest of the terms would be equal to 0). Now it is easy to see that

(w|f)� (w|g) = �(Fkl �Gkl)  0

The case of survival concordance and supermodular functions is similar.

Theorem 4

Proof. Let us first observe that if P is of the form (13) axioms are obviously satisfied.
We assume now that the axioms are satisfied. Let

D = {(C+
F , F 1, F 2)|F 2 ⇤}.

Further, we define u : D 7! ⇤ as u(d) := C+
F (F 1, F 2) where D 3 d = (C+

F , F 1, F 2).
Sklar’s theorem ensures that u is an injection. Less formally, u produces a distribu-
tion F such that C+

F is its maximal extension copula and F 1, F 2 are its marginal
distributions. Thus h = h̄ � u gives us the required representation. We will now show
that h increases with respect to its coordinates. Let F, G be such that C+

F ⌧ C+
G

and F 1 = G1 and F 2 = G2. Then from (12) it follows that P (F )  P (G) and
h(C+

F , F 1, F 2)  h(C+
G , G1, G2), that is, h increases with respect to the ordering on

copulas. Similarly one can show that h increases with respect to FSD relation along
second and third coordinate.
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