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Abstract

The paper provides insights of significant practical relevance into the nature of empirical income
distri-bution data, provided by World Bank (and by EU-SILC as well). The insight covers
mature states and their economic and societal system. Proceeding from a Gini value .., as
published by the World Bank, it is possible to derive, as close approximation, the actual income
distribution, with standardised total income 1, and a mathematical representation. We call this
the standard Lorenz curve LG. LG is of type LG = 0.6 ·Pareto(ε)+0.4 ·Polynomial(ε), where
Pareto(ε) and Polynomial(ε) are the Pareto and polynomial Lorenz curves for a parameter ε
with ε = 1−G

1+G
and G = 1−ε

1+ε
. If the total income level of the considered distribution is known,

then the distribution of absolute income can also be derived. If, in addition, one knows the
number of income earners, then one also knows the distribution of the absolute income within
a population. All together our summarizing statement is: ”For mature economies, analysing
World Bank and EU-SILC income data, there is essentially a cross-country and cross-year
1-1-1 correspondence between the GINI, the corresponding decile resp. quintile information
and the respective standard Lorenz curve described above.” Some interesting mathematics is
involved to reach the main result. The insights obtained will hopefully enable economists and
social scientists to further develop their work in the field of income inequality and associated
social phenomena.
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Introduction 

The development of income distributions and the "widening gap" over time are important topics of the 

current political-social debate, especially in the light of the Brexit decision in Great Britain and the most 

recent presidential election in the USA. The consequences of these developments threaten the open 

world market and prerequisites for growing prosperity. These developments reflect the fact, that glob-

alisation generates losers as well as winners. A strong negative attitude is building up against the current 

system by considerable parts of the population. It is directed against the economic winners of the status 

quo, and against the political actors viewed as responsible for this development. Either by promoting it 

or by letting it happen. At the World Economic Forum in Davos in early 2017 and 2018, social polari-

sation was identified and articulated as the greatest current threat to the existing international order, 

followed by environmental risks.  

The issue of social polarisation is a difficult one. There is a political, but also scientific debate con-

cerning basic concepts, relevant data and the availability of data. The present paper deals with income 

distributions, Lorenz curves and the so-called Gini value. The main insight consists of the following: 

For all World Bank data concerning empirical income distributions (and for EU-SILC data as well), 

there is, cross-country and cross-year, essentially a 1-1-1 relationship between the respective Gini 

values and the other data. E.g., this concerns the Gini and six quintiles / deciles in the World Bank 

case and the Gini and 9 deciles in the EU-SILC case. It further more concerns a so-called standard Lo-

renz Curve that we discuss below. This is all surprising, as usually quite different income distributions 

may have the same Gini. We analyse the special behaviour observed for the World Bank data (and 

EU-SILC data). We develop mathematical formulas for approximating Lorenz curves (so-called stand-

ard Lorenz curve) of the respective income distributions and point at interesting applications which 

now become tractable while they could not be treated before because of missing data.     

This paper builds upon previous publications on the topic with participation of the authors from the last 

15 years (cf. e.g. Kämpke et al. (2003)). These address, for example, the so-called efficient inequality 

range (Cornia and Court 2001): societies should aspire to have Gini values between 0.25 and 0.35. Gini 
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values ≤ 0.25 and Gini values ≥ 0.35 generally have no positive effect on societies. Too much "equal-

ity" of income apparently hinders social dynamism; too little hinders the full development of the human 

potential of a society.  

The paper gives references to related work but essentially concentrates on establishing the mentioned 

link between the Gini and the World Bank data (and EU-SILC data). This special insight can be under-

stood quite in itself, e.g. it does not need much input from the literature. This may make it easier for 

many readers to understand the observations made.    

The paper is organised as follows. In section 1, we deal with ‘Concepts and data sources’. In Section 

2 ‘From the Gini to the Lorenz curve – the main findings’, we give our main result which com-

bines mathematics with empirical findings. Section 3 ‘Limitations of applicability’ shows where lim-

its of the main empirical insights have to be taken into account. This means that in any case, when go-

ing from a Gini to a Lorenz curve, even in the World Bank (and EU-SILC) case and mature states, one 

has to be careful. Finally, we also refer to a software tool under development for the general public.  

 

1. Concepts and data sources  

Income distributions represent a complex subject area, both in terms of their mathematical description 

and in terms of empiricism. The complexity begins right at the point of definition. As a rule, income 

distributions are derived in a standardised manner from the (adjusted) household incomes collected in 

the context of taxation, or alternatively (or additionally), from consumer surveys. The tax and consump-

tion data are apportioned to the members of households using different methods. 

Details of income distribution are usually not recorded statistically – especially the details on very high 

incomes (1% quantile, 1 ‰ quantile). For a long time, there was a tendency to keep details of top income 

out of the discussion, perhaps so as to avoid a so-called ‘envy debate’. Instead, there was often a broad 
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focus on low income and the subject of ‘poverty’, although only a comparatively small share of the total 

income is allocated there as a whole. 3  

Clarity about the very high income segment, which is important for the coherence of societies, was first 

provided by research papers by Thomas Piketty (2016), Anthony Atkinson (2015), Facundo Alvaredo 

and Emmanuel Saez, together with other researchers (2013). With painstaking detail, and using a variety 

of methodological approaches, they have compiled a corresponding data collection (World Top Incomes 

Database, since 2015 then World Wealth and Income Database, WID, http://wid.world/).  

With regard to the existing standardised information on income distributions in the above sense, there 

are a limited number of data sources, with partially differing values. In Galbraith et al. (2015), 5 such 

important sources are discussed. The World Bank data (WDI) considered here and the European SILC 

data are included. Our main insight considers World Bank data and – to some extent – EU-SILC data. 

Whether similar observations are true for the other data sources looked at in Galbraith et al. (2015) is 

not known to us.  This is a topic for future research.  

We also do not know, whether taking into account average income within quantiles would change the 

picture. Krieger (1984), in a review of the literature on grouped data, demonstrates that grouping leads 

to a major loss of information, which is no surprise. Lyon et al. (2016) demonstrate that having averages 

available increases accuracy for US income data. Our problem is that data on average income within 

quantiles (as e.g. given by the World Bank) is not generally available. Therefore, this is not the focus of 

our research. Our focus is World Bank data and, to some extent, EU-SILC data, as it is. 

                                                           
3 Inequality is dealt with in the sense of social stratification, not inequality between regions of a country. 

In Milanovic (2012), it is shown, that for the USA, the differences in averaged income between the US 

federal states are much smaller than those between the individual EU states. On the other hand, socially 

conditioned differences are significantly higher in each of the US states than in the EU states. The re-

sulting total inequality in the USA and in Europe is similar according to Milanovic (2012), at a Gini 

value of around 0.4 (2007).  
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For that reason, we also did not look into approximations of income data by lognormal distributions. 

More on this can be found in Ultsch and Lösch (2017). There, one can also find a data based standardized 

Gini index. Again, that is not our topic of interest.  

Our interest is the ‘normal’ Gini value. We just deal with the aforementioned data sets (e.g. World Bank 

data and EU-SILC data) and are happy to derive a major observation for this case. The result is of a type 

that other approximations for the same data sets, which of course exist (e.g. in particular the generalized 

Tukey’s lambda distribution, see below), will not add much insight in this special case.  

Why is World Bank data of such high interest from our point of view? When looking back for many 

years or even decades, there is only limited data material available in all the sources – mostly only 

information about quantiles. We think it is fair to say that the most important international reference 

database, with information on states of all five continents, is provided by the World Bank (WDI) 

[http://databank.worldbank.org]. This lists the 10%, 20%, 40%, 60%, 80% and 90% quantiles of income 

distributions for numerous states and years, and in addition (as a quite independent further factor), the 

respective Gini coefficient. The EU-SILC data contains all deciles and the Gini as well. 

The World Bank data combines tax data and data from consumer surveys according to a developed 

methodology. The World Bank has the habit of delivering data on a per capita basis when measuring 

consumption or inequality or poverty. Eurostat distributes survey data within SILC with no adjustment, 

as well. However, when dealing with general income issues and poverty, it uses equivalised income 

according to the new OECD-modified equivalence scale. This can lead to major differences between the 

World Bank data and the EU-SILC data. Equivalising means, that the first adult person is weighted by 

a factor of 1, further adults and children over 14 years by a factor of 0.5, and children under 14 years by 

a factor of 0.3 (Eurostat Statistics Explained 2017). This sometimes makes families significantly ‘richer’ 

than when just dividing by the number of family members. We give hints to the effects of the differences 

between World Bank data and EU-SILC data later. 

The most important groundwork for the present text, that we use, is a monograph (Kämpke and Rader-

macher 2015), which deals in particular with a mathematical foundation of the theory of Lorenz 
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curves on the basis of the theory of measurable functions and probability distributions. There, in line 

with Gastwirth's approach (1971), the Lorenz curve is defined using the generalised inverse of the re-

spective distribution function. The monograph (Kämpke and Radermacher 2015) contains all the math-

ematical foundations required for this text. These are also laid out in shortened form in a recent publi-

cation (Radermacher 2016). For a number of topics addressed, references can be found in (Herlyn 2012). 

Note in particular, that in order to obtain a Lorenz curve from an income distribution (understood as a 

probability distribution, given by its distribution function 𝐹), we perform the following steps. Whether, 

on this way, the Lorenz curve can be obtained in closed form depends on the generalized inverse and 

the integrals over it being explicitly computable.  

 

The aforementioned Gini coefficient 𝐺(𝐹) is the most important and most commonly used single pa-

rameter for describing inequality with regard to an income distribution 𝐹. Its value equates to 2 times 

the size of the differential area between the so-called Lorenz curve 𝐿 = 𝐿(𝐹) (of income distribution 𝐹) 

and the (principle) diagonal of the unit square. The value 𝐿(𝑥) ∈ [0,1] of the Lorenz curve describes for 

all 𝑥 ∈  [0,1] the cumulative share 𝐿(𝑥) of the total income belonging to the 𝑥% of the population with 

the lower incomes. The notation 𝐺(𝐹) = 𝐺(𝐿) is also used for the Gini coefficient. 

Obviously, a Lorenz curve 𝐿 always lies below the (principle) diagonal of the unit square. In the case of 

a uniform distribution (identical income for all), both curves coincide; the Gini value 𝐺(𝐿) is then zero 

(see Appendix).  

At maximum inequality, the Lorenz curve coincides with the x-axis (value 0) and then, at the point 𝑥 =

1, jumps to the value 𝐿(1) = 1. The associated Gini value 𝐺(𝐿) is then one.  
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Lorenz curves have a multitude of interesting mathematical properties (see for instance Sarabia 1997 

as reported in Sarabia (2008)). In Kämpke and Radermacher (2015) some of those properties are listed 

 

Figure 1: Lorenz curve 𝑳 and its associated Gini index. 

 

with reference to the literature. Here, we mention the following: They are monotonically increasing, 

continuous, and convex over [0,1], and both 𝐿(0) = 0 and 𝐿(1) = 1 are true. The inverse is also true, 

i.e., every function with the properties mentioned is the Lorenz curve of a suitable distribution. In addi-

tion, it holds that if distributions have the same Lorenz curve, they are identical except for a multiplica-

tive factor. 

In Kämpke and Radermacher (2015), one can also find that (1) the reflection 𝐿𝑟𝑒𝑓 of a Lorenz curve 𝐿 

on the secondary diagonal of the unit square is also a Lorenz curve. As straightforwardly verified, for 

the case of certain incomes being ‘0’, the Lorenz curve is not everywhere strictly monotonically increas-

ing. The definition of 𝐿𝑟𝑒𝑓 then needs a minor modification. All results mentioned below, remain how-

ever valid. 𝐿𝑟𝑒𝑓(𝑢) = 1 − 𝐿−1(1 − 𝑢) for 𝑢 ∈ [0,1]. One finds (2) that the Gini coefficients of both 
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Lorenz curves are the same (by comparison of the two surfaces or by analysis, see Appendix). Note, that 

Taguchi (1968) deals with reflections as well. He is interested in the case that a Lorenz curve and its 

reflection are identical (he calls this a self-symmetrical Lorenz curve).    

 

Figure 2: Lorenz curve 𝑳 (red) and its the reflection 𝑳∗ (dashed blue). 

 

In our approach, two well-known types of Lorenz curves play a major role, namely the Pareto curves 

and the Polynomial curves which are dealt with in more detail below. Figure 2 shows the Pareto and 

the Polynomial type, respectively. It can be shown that the one type of curve can always be generated 

by reflecting the other type of curve at the secondary diagonal as in Figure 2 (see Appendix). In cases 

of reflection, as mentioned above, the Gini values are identical.  

Using a similar argument, each convex combination of two Lorenz curves 𝐿 and 𝐿∗ of the form 𝛼 ∙ 𝐿 +

(1 − 𝛼) ∙ 𝐿∗, 0 ≤ 𝛼 ≤ 1 proves to be a Lorenz curve. If 𝐿 and 𝐿∗ have the same Gini coefficient, then 

this is true for every convex combination.  
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The insights, reported in this paper, can be embedded into the study of a class of Lorenz curves, defined 

by three parameters as convex combinations of Pareto and Polynomial curves, see below. Doing so, one 

can vary 3 parameters, where eventually one will do. This 3-parametric resulting class of Lorenz curves 

is a subclass of the generalized Tukey’s lambda distribution. More on this is given below. The 3 param-

eters include the ones defining the Pareto- and the Polynomial-type Lorenz curves and a mixture param-

eter is used. More on this is given below.   

Figure 2 shows for 𝐿 and 𝐿∗, as it is well known, that very different Lorenz curves can have the same 

Gini value. Therefore, in principle, it cannot be expected that one Lorenz curve can be unambiguously 

inferred from one Gini value. The question of unambiguousness therefore does not arise for many fields 

of application for Lorenz curves outside the world of income distribution, because it is obvious, that this 

is not the case there. Regarding income distributions, according to the current state of the literature, this 

has likewise not been studied until now. Exactly this is the main issue of this paper. We want to 

understand, whether for income data for mature states, the Gini alone can essentially lead to the infor-

mation, given in the World Bank data base (and EU-SILC data base, as well). This can help in empirical 

work in the fields of social and economic sciences. Because often, one knows one point value (e.g. the 

Gini value of the considered income distribution), but would like to know other details about the income 

distribution as well. The data situation would be substantially improved if, from the value of the Gini 

index, one was able in certain cases of income data to infer an essentially unambiguous Lorenz curve 

(with relative precision). However, to begin with, there has been no such claim up to now. Even if there 

was one, it would not be clear what the corresponding Lorenz curve should look like. In Section 2, we 

are now going to answer the questions posed.    

 

2.  From the Gini to the Lorenz curve – the main finding 

In what follows, we switch to using the World Bank data bank (EU-SILC data works similarly). This is 

data for nation states, i.e., we concentrate on the mature cases. Internationally, the World Bank data base 

is the most comprehensive database in the field, and it is also largely standardised. From corresponding 
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analyses at the Research Institute for Applied Knowledge Processing (FAW/n) in Ulm (Orthen 2017), 

we also know that these data for European states is very similar to those of EU statistics on income and 

living conditions (http://ec.europa.eu/euro-stat/data/database), apart from differences resulting from 

equalisation of income data in the EU-SILC case.   
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The following five examples in Figure 8 deal with 3 states each, having the same Gini values within 

the World Bank data. The examples show the broad empirical fit of income distribution quantiles. In  

  

Figure 3: Five examples of World Bank data for three countries each with the same Gini value. The 

data points show a good fit between the corresponding deciles. 

ECINEQ WP 2018 - 473 July 2018



general, we see that the data points coincide with each other. There are certain derivations for countries 

with high inequality (𝐺 ≥ 0.5), especially in the high-income segment. It seems, that these might be 

linked to issues of data quality. The fit is particularly good in the case of highly developed countries 

(OECD), where good data quality can generally be assumed. This empirical finding motivates the hy-

pothesis of this text that, when taking the World Bank data as a basis, (similar EU-SILC data) there is a 

(universal) unambiguous relationship between Gini value and a standard Lorenz curve, at least, con-

cerning the data points given in the World Bank data base. The same is true for EU-SILC data, with 

somewhat less approximation quality. Note here, that the behaviour for the five examples chosen with 

three different countries, each shows the level of approximation quality that we observe for all states 

(Orthen 2017). The minimized root mean squared error (RMSE) values differ from 0.0014 to 0.014 in 

the examples given. This is the general picture for all states.  

We now ask, what standard Lorenz curve should be associated to a Gini value for a mature state?  

One can approach this issue by considering different combinations of Pareto and Polynomial Lorenz 

curves observing three free parameters. Trying an optimal fit with World Bank and EU-SILC data will 

not give much information (because of overfitting). Similar effects would occur for the more general 

Tukey’s lambda distribution with 4 parameters. So, statistics will not tell us so much. If one, however, 

starts from the right guess, data studies show that the results are good in the sense that they are close to 

the optimal result for all parameters chosen. Our approach was, as often, quite different.  

When starting our work, we tried the assumption that mature societies with market structures exhibit 

certain typical patterns regarding income distribution that differ from arbitrary Lorenz curves and also 

from Lorenz curves for conglomerations of states that are ad hoc combined to form larger units. Assum-

ing there is essentially a one-to-one relationship between the Gini and the Lorenz curve, we need an idea 

of what a standard Lorenz curve could look like for this case. We come close to an answer by looking 

at a certain type of distribution structure within societies that we refer to as self-similar. Note, that self-

similarity is different from self-symmetrical behaviour as discussed by Taguchi (1968).  
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In what follows, we describe the property of self-similarity of an income distribution or Lorenz curve 

going upwards or alternatively going downwards. This property in essence means that the higher 

(lower) income segments (viewed in isolation) behave like the whole society in respect of their distri-

bution. Mathematically, this leads to differential equations that have unique solutions. These solutions 

are the (known) Lorenz curves of the Pareto and polynomial type to a given parameter 𝜀, where for 𝜀, 

the relationship 𝜀 =
1−𝐺

1+𝐺
 applies, if 𝐺 denotes the Gini value of the corresponding distribution.  

The combination of 0.6 ⋅ 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) and 0.4 ⋅ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀) proves to be a suitable candidate for a 

standard Lorenz curve belonging to 𝐺. With this, in the case of income distributions such as the World 

Bank (or EU-SILC) describes them, a good empirical approximation of the given quantiles is reached. 

We will show this as an empirical finding below.   

 

Walkthrough  

Starting from a given Gini value 𝐺 from the World Bank, a standard income Lorenz distribution  𝐿𝐺 

can be derived such that 𝐿𝐺 has the Gini value 𝐺, and (almost) identically reproduces the decile values 

of income distribution of the World Bank database (The same holds for the EU-SILC case). The standard 

Lorenz curve has only one free parameter, the corresponding Gini value. The situation is as follows:  

(1) To 𝐺 belongs the Lorenz curve 𝐿𝐺, with Gini value 𝐺. 

(2) 𝐿𝐺 reproduces 𝐺 identically, and it reproduces the decile values of the World Bank database 

(or the EU-SILC data base) relatively well.  

(3) 𝐿𝐺 can be chosen as 𝐿 = 𝐿 = 0.6 ∙ 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) + 0.4 ∙ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀), where 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) 

and 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀) are special Lorenz curves with special properties (e.g. self-similarity), and 

𝜀 =
1−𝐺

1+𝐺
 and 𝐺 =

1−

1+
 are true.  

(4)  The link between 𝐺 and 𝐿𝐺 is (largely) unambiguous; that is, from 𝐺, one can reliably infer 𝐿𝐺, 

or, at least, the corresponding data points from the World Bank (or EU-SILC) data base. This 
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applies to income distributions of mature countries, in terms of the World Bank (or EU-SILC) 

data, and represents an empirical finding. This is generally not the case for other Lorenz 

curves. 

 

Described in more detail below are the Pareto Lorenz curves appearing in (3) and the polynomial Lorenz 

curves, which are a function of a parameter 𝜀 and are defined as follows (cf. also Kämpke and Rader-

macher (2015)):  

 

Definition: The Pareto Lorenz curves as a function of 𝑥 ∈ [0,1] 

are defined as the class of curves 𝐿(𝑥) = 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀)(𝑥) = 1 − (1 − 𝑥), with 0 ≤

 ≤ 1. 

Note, that in literature often other formulations of the Pareto curves are used (see, e.g. Arnold 2016). 

We use the parametrisation of Pareto curves from Kämpke, Radermacher (2015), which has only one 

parameter. Often, people work with a 2-parametric version of the Pareto curve, using a shape parameter 

𝛼 > 0 and a range parameter 𝑥𝑚 > 0. The Lorenz curve is, however, independent of the range parameter 

𝑥𝑚 > 0 and only depending on the shape parameter. This allows us to make things straighter and also 

helps with proving results on self-similarity. Here, 𝛼 =
1

1−𝜀
 , for 𝜀 = 0.6, 𝛼 =

1

0.4
= 2.5.  

 

Figure 4 shows (for 𝜀 = 0.6) the associated Pareto Lorenz curve (left) and the Pareto Lorenz density 

(right), where the Lorenz density is the first derivative of the Lorenz curve. It can be shown that this 

always exists (almost everywhere). Sometimes this density is called the Pen’s parade. Here the following 

is true: the Lorenz curve depicts the cumulative proportions of income where income is ordered by 

increasing size, while the Lorenz density depicts the relative absolute income level. In the case of the 

Pareto Lorenz density,   is the value of the lowest income, while the highest incomes tend towards 
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infinity. The mathematical formula of the Lorenz density of the Pareto distribution is 𝐿′
𝜀(𝑥) = 𝑓𝜀(𝑥) =

𝜀(1 − 𝑥)𝜀−1. In the case 𝜀 = 0.6, the associated Gini index has the value 𝐺 = 0.25.  

 

Definition: The Polynomial Lorenz curves, as a function of 𝑥 ∈ [0,1], 

are defined as the class of curves 𝐿(𝑥) = 𝑥1/, where 0 ≤ ε ≤ 1. 

Here, 𝜀 now appears as an exponent with the value 1/𝜀. The value 1/𝜀 here corresponds to the highest 

incidence of income, see Lorenz density. In comparison, on the low-income side, the lowest income is 

0.  Figure 5, analogous to Figure 4, shows the polynomial Lorenz curve (left) and its density (right), 

again for the case 𝜀 = 0.6 and 𝐺 = 0.25. The Lorenz density of the polynomial distribution is 𝐿′
𝜀(𝑥) =

𝑓𝜀(𝑥) = (1 𝜀⁄ ) ∙ 𝑥(1 𝜀)⁄ −1. 

Note, that 𝑃𝑜𝑙(𝜀) = 𝑥1/ (Polynomial curve) is the reflection of 𝑃𝑎(𝜀) (Pareto curve), i.e. 𝑃𝑜𝑙(𝜀)(𝑢) =

1 − 𝑃𝑎(𝜀)−1(1 − 𝑢) for all 𝑢 ∈ [0,1]. For this, take 𝑢 = 1 − (1 − (1 − 𝑥)𝜀) = (1 − 𝑥)𝜀. The detailed 

calculation can be found in the appendix. The result also holds the other way around.   

 

Figure 4: Pareto Lorenz curve (left) and corresponding Pareto Lorenz density (right) for 𝑮 =  𝟎. 𝟐𝟓, 

where 𝜺 = 𝟎. 𝟔. 
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Figure 5: Polynomial Lorenz curve (left) and corresponding Lorenz density (right) for 𝑮 =  𝟎. 𝟐𝟓, 

where  𝜺 =  𝟎. 𝟔. 

 

Definition: Self-similarity 

Self-similarity is an interesting property of Lorenz curves. If there is self-similarity, the income distri-

bution in certain income segments corresponds to the distribution for the whole population. This is also 

an interesting property in terms of its practical societal interpretation. Self-similarity with respect to 

income distributions also translates to self-similarity with respect to Gini values or (under additional 

assumptions) to self-similarity with respect to the median values of the income distributions considered 

(Herlyn 2012; Kämpke and Radermacher 2015). Self-similarity is to be distinguished in terms of ‘self-

similarity upwards’ and ‘self-similarity downwards’. Note again, that self-similarity is different from 

‘self-symmetrical’ as discussed in Taguchi (1968). In our example mentioned above the Pareto and 

Polynomial Lorenz are reflections. As a result of reflection, self-similarity upwards changes to self-

similarity downwards. The same is true the other way around. This is given below.  

 

Definition: Self-similarity of Lorenz curves upwards means that the distribution situation among the 

𝛿 percent of individuals with the highest income, when viewed as a whole, is identical to 

the Lorenz curve for the total population and this holds for all 𝛿 ∈ [0,1].  
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Figure 6 illustrates this property. The Lorenz curve is here regarded in the interval [𝛿, 1] (left figure). 

The rectangle [𝛿, 1] × [𝐿(𝛿), 1] is then enlarged onto the unit square [0, 1]2 (right figure). The Lorenz 

curve that arises after stretching corresponds with self-similarity upwards to the total Lorenz curve over 

the interval [0, 1].  

 

Proposition: The Pareto Lorenz curves are exactly the upwardly self-similar Lorenz curves. If, there-

fore, a Lorenz curve is upwardly self-similar, there exists an 𝜀 ∈ [0,1], such that 𝐿 = 𝐿𝜀 =  1 −

 (1 − 𝑥) 𝜀 is true.  

Symmetrical to the self-similarity upwards, one can define self-similarity downwards by considering 

the Lorenz curve in the interval [0, 𝛿], that is, for the 𝛿 percent of the population with the lowest income. 

Correspondingly, the square [0, 𝛿] × [0, 𝐿(𝛿)] is enlarged to the unit square [0, 1]2, and it is claimed 

that for every 𝛿 ∈ [0, 1], the resulting Lorenz curve corresponds to the total Lorenz curve over the in-

terval [0, 1]. As with the Pareto case, a solvable differential equation results from the defining require-

ment. This allows the formulation of the following proposition: 

 

 

 

 

 

 

 

  

Figure 6: Lorenz curve with a cut-off point δ (left) and the cut-out Lorenz curve (right). The rectangle 

[δ, 1] x [L(δ), 1] (left) is stretched to the unit square [0, 1]2 (right). 
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Proposition: The polynomial Lorenz curves are exactly the downwardly self-similar Lorenz curves. If, 

therefore, a Lorenz curve is downwardly self-similar, there is a 𝜀 ∈ [0, 1], such that 𝐿 = 𝐿𝜀 =

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀)(𝑥) =  𝑥1 ⁄  is true.  

 

Proposition: It can thus be shown (Kämpke and Radermacher 2015) that 

1. 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) are the only upwardly self-similar Lorenz curves 

2. 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀) are the only downwardly self-similar Lorenz curves  

3. 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) is the reflection of 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀) at the counter-diagonal, and vice versa (see 

Figure 2 and proof in the Appendix). 

4. As a consequence, 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) and 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀) have the same Gini value 𝐺. This is also 

true for any linear combination of the two in the form 

𝛼 ∙ 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) + (1 − 𝛼) ∙ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀), where 𝛼 ∈ [0,1], 

5. The Gini 𝐺 of the corresponding Lorenz curves has the value 
(1−𝜀)

(1+𝜀)
; 𝜀 has the value 

(1−𝐺)

(1+𝐺)
. 

 

What analytical options do now exist, based on the World Bank data (or the EU-SILC data) that include 

the Gini value 𝐺? One can determine the associated 𝜀 value using 𝜀 =
1−𝐺

1+𝐺
 . Thus, one has at one's 

disposal 𝑃𝑎𝑟𝑒𝑡𝑜 (𝜀), 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀), and any linear combination of these two Lorenz curves. All these 

Lorenz curves reproduce the Gini value identically. 

An alternative approach is, in relation to the three parameters 𝜀1 (Pareto), 𝜀2 (Polynomial) and 𝛼, to 

implement the best alignments to the data material using the least squares method. This approach has 

also been investigated – and for different weights of the Gini value, too (Orthen 2017). It is shown that 

for this approach, too, good alignments to the World Bank data (and the EU-SILC data) are possible for  

𝜀 = 𝜀1 = 𝜀2, and, indeed, in such a way that 𝜀 =
1−𝐺

1+𝐺
 , or equivalently 𝐺 =

1−𝜀

1+𝜀
,  is also true. General 
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alignments using the least squares method with potentially different 𝜀1 and 𝜀2 values and free mixing 

parameter 𝛼 ∈ [0,1] thus result, with good approximation to the respective decile values, in the one-

parametric combination 𝜀1 = 𝜀2 =
1−𝐺

1+𝐺
 and 𝛼 = 0.6. This supports the decision for the standard Lorenz 

curve 𝐿𝐺, pertaining to 𝐺, that we will define next. 

 

Definition: The Standard Lorenz curve pertaining to a Gini 𝐺 is defined as 𝐿𝐺 = 0.6 ∙ 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) +

0.4 ∙ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀).  

Note: The Standard Lorenz curve is not self-similar. Detailed empirical studies show that in the case 

of World Bank data [http://databank.worldbank.org], the standard Lorenz curve represents a good 

approximation to the given data for 156 countries from various years in the period from 1995 to 

2013. The respective Gini value from the World Bank table is reproduced identically. We refer 

to the examples in Figure 8 and Figure 9. A similar empirical finding is true for EU-SILC data 

(Orthen, 2017). 

Finding: In the field of income distributions, there seems to be an (empirically sufficient) 1:1 relation-

ship between the Gini index and the Lorenz curve depicting it. Therefore, if one knows the Gini value, 

one knows (to a very great extent) the associated Lorenz curve, i.e. with the Gini value, a lot more 

information is available with reasonable quality than the pure point information in the form of the Gini 

value.  

 

Derivation 

Definition: Mixed Lorenz curve   

We consider all Lorenz curves of type 𝐿𝜀,𝛼(𝑥) = 𝛼(1 − (1 − 𝑥)𝜀) + (1 − 𝛼)𝑥
1

𝜀⁄ . They are all con-

vex compositions with a parameter 𝛼 ∈ [0, 1] from the two curve types Pareto Lorenz curve 𝐹𝜀(𝑥) =

1 − (1 − 𝑥)𝜀 and polynomial Lorenz curve 𝐹𝜀(𝑥) = 𝑥
1

𝜀⁄ , both with the same 𝜀 and with proportional 
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weighting by the factor 𝛼 ∈ [0, 1]. For an improved alignment to the data compared to the Pareto or 

polynomial curves, which are not satisfactory in their alignment (see below), the additional parameter 

𝛼 is added, as discussed above. Figure 7 first shows the (not satisfactory) approximation of the World 

Bank data for each of Germany, India and the USA, using pure Pareto or pure polynomial Lorenz curves. 
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Figure 7: Approximation of World Bank data for Germany, India and the USA with Pareto (left col-

umn) and polynomial (right column) Lorenz curves, with an identical Gini value taken from the World 

Bank data.   
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Figure 8: Approximation of World Bank data for Germany, India and the USA with mixed Lorenz 

curves with optimal value 𝛼opt (left column), which is different for each country, and the value  

𝛼 = 0.6, the standard value, which is the same for all countries (right column). 

 

ECINEQ WP 2018 - 473 July 2018



Empirical results (extract) 

Approximations of World Bank data for Germany, India and USA for the two distribution types 

considered; namely, Pareto and Polynomial. For the following examples, 𝜀 =
1−𝐺

1+𝐺
 is always chosen.  

 

In addition, we show mixed approximations for the respective 𝜺 values, with optimal4 𝛼opt and 

the selected default value 𝜶 = 𝟎. 𝟔 (Figure 8). This case leads to results that are satisfactory. The re-

sulting minimal root mean squared errors (RMSE) range from 0.0014 to 0.014, given above.   

Note: Error function for the mixed value 𝜶 

As is shown in Herlyn and Radermacher (2017), the influence of the factor 𝛼 when considering the 

quantile values of the World Bank data is comparatively low in the vicinity of the optimum. From this 

basically arises the chance that a fixed value 𝛼 could be sufficiently good for all income distributions. 

This is, however, not true at the boundaries, as e.g. the value of the Lorenz density at point zero is 𝛼 ⋅ 𝜀. 

Obviously, 𝛼 has a significant influence there. 

No question, our claim needs to be empirically proven. Namely, it could also be the case that the optimal 

𝛼 values are obviously correlated with 𝐺. The authors have thus pursued the thesis that a low 𝐺, i.e., a 

high level of balance, tends to also result in a large 𝛼, that is, a large proportion of the Pareto Lorenz 

curve. There were reasons to expect this. The result is that there is no such connection. This is elucidated 

below in Figure 9:  

 

Evidently, there is no link between the form of the optimal 𝛼 and the respective Gini value. The countries 

of the World are sorted in descending order in terms of inequality (i.e., falling Gini values), that is, 

starting with countries of high inequality (large Gini), on the left, to countries with ever increasing bal-

ance (small Gini). Given each time is the optimised 𝛼 (optimized using the least squares method to the 

                                                           
4 Determined by the least squares method.  
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6 quantiles of the World Bank data). As one can see, there is obviously no clear regression relationship 

between falling 𝐺 and the respective 𝛼opt. One can also recognise that with the value = 0.6, one very 

frequently, regardless of how big 𝐺 is, lies relatively close to the respective optimal 𝛼. Even if there is 

a greater distance, this does not translate to huge differences to the World Bank data, as already men-

tioned. Here, differences in the RMSE are measured.  

 

Figure 9: Countries sorted by descending Gini values (blue curve, country index). The red dots show 

the optimal 𝜶. The values for 𝜶 and 𝑮 can be read on the y-axis. 

 

Decision 

At this point, the authors have decided to essentially approximate the empirical income distribution data 

of the World Bank (and similarly EU-SILC data) by means of a Lorenz curve (called the standard 

Lorenz curve) that is a function of 𝜀 only, and therefore of the Gini index, only. The Gini-𝜀-value is 
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𝜀 =
1−𝐺

1+𝐺
. The combination (𝐿𝐺 =) 0.6 ∙ 𝑃𝑎𝑟𝑒𝑡𝑜(𝜀) + 0.4 ∙ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝜀) generally leads to a good 

approximation of the data provided by the World Bank (and the EU-SILC data). 

 

This result has an interesting consequence. In the world of empirical income distribution data (for mature 

states), based on the World Bank (and EU-SILC) data, there is, as previously announced, a relatively 

stable 1:1 relationship between Gini index and income distribution function. Not only is a given 

Gini value associated with a unique Lorenz curve of the mixed type where 𝜀 =
1−𝐺

1+𝐺
. Conversely, a 

standard income distribution with parameter 𝜀 has the (unique) Gini value 𝐺 =
1−𝜀

1+𝜀
. A complete over-

view of the data situation can be found in Herlyn and Radermacher (2017).  

These findings represent a great advancement, because the (surprising) result means that in the income 

case, when one has a Gini value for a country, one is always, and empirically reliably, equipped with 

much more detailed information than the Gini usually represents; namely, the actual income distribution 

(except for a constant factor that characterises the general level of prosperity, e.g. GDP/person). If we 

also know the average income of a country, one can even infer from the Gini value the concrete distri-

bution of the absolute income and much more. 

Reference to literature 

There is a broad literature on approximation of distribution data. The standard Lorenz curve proposed 

here is no reasonable solution in general cases. We deal here only with income data of (mature) national 

states on the basis of the World Bank data (and EU-SILC data). One interesting general class in this 

regard is the generalized Tukey’s Lambda distribution described by Sarabia (1997). It has 4 parameters, 

namely 𝜂1, 𝜂2, 𝛼1 and 𝛼1. Putting 𝜂1 = 0 and 𝛼1 = 1 𝛼2⁄  leads to the class of mixed curves we study. 

In this case, the two parts of the Lorenz curve (Pareto and Polynomial) have the same Gini index equal 

to (1 − 𝛼)/(1 + 𝛼) and the complete Lorenz curve also has the same Gini (which is not the case for 

generalized Turkey’s Lambda distributions in general). Our mixture curves have really nice properties 

and we eventually got even one step further, namely to 𝜶𝟐 = 𝟎. 𝟒, leading to a 1-parameter situation. 
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The Gini may be chosen to be this single parameter. Going beyond nation states, e.g. for Europe as a 

whole or for the world as a whole, the standard Lorenz curve is not sufficient to achieve a good approx-

imation, as shown in Figures 12, 13 and 14. That may also be the case for other income data, that we 

did not investigate. And is obviously true for all kind of other distributional data for which one would 

like to have a Lorenz curve and needs a good approximation. Also, our standard curve is only a special 

case of more general cases discussed in the literature, as was already mentioned. 

3.  Limitations of applicability 

As a general rule, it is not possible to infer an income distribution from a Gini value. This is well-know. 

We give examples for this, that are informative and helpful in our context. Note, that in the case of real 

world data, the examples do not concern mature states but instead conglomeration of states (EU and the 

world as a whole). In these examples we thus look at income distributions of territories, that have not 

long existed as open, economic-political systems. They lack the coherence of mature countries that result 

from long-active common markets, freedom of travel and settlement, freedom of individual economic 

activities, integrated financial markets, etc. This means limited character of self-similarity of structural 

elements. The EU as a whole is a borderline case in this respect.  
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Figure 10: Two very different Lorenz densities having the same Gini value of 0.4.

 

Figure 11: Lorenz curves for the Lorenz densities in Figure 10. 
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Example 1 

We first consider an "artificial example" of two states with the same population size and equally distrib-

uted income (identical income for all individuals) and with the situation where the income of the one 

group is higher than that of the other by a factor of 9. The distribution is therefore completely homoge-

neous within the groups but varies extremely between the groups. In Figure 10, we show the Lorenz 

density, and in Figure 11, the Lorenz curve for this distribution. The Gini value is 𝐺 = 0.4. The standard 

income Lorenz curve developed in this text 𝐿𝐺, with Gini 𝐺 = 0.4 and the associated Lorenz density 

𝐿′𝐺, are also given.  

It can be seen that the distributions are very different, although the Gini value is the same. Note that this 

is not surprising. The literature has many such examples. However, it is the core message of this text, 

that for income distributions of (mature) states using the World Bank data or the EU-SILC data, such 

examples do not exist.  

 

Example 2 

Represented in Figure 12 is the income distribution of the EU as an aggregated system of states: the EU 

in 2002 with 15 member states, and then in 2016, with those same member states. It can be seen that the 

income distribution within the union of the original 15 member states has not changed in the period 

2002-2016 (Figure 13). The Gini value for the EU as a whole stagnated at 0.33; i.e., the inequality may 

have changed in certain states but stayed the same for the whole EU. Also, the case for all present EU 

states (28) on the basis of 2016 World Bank data is shown (Figure 12). For both cases, the associated 

standard Lorenz curves are drawn, which approximate the data points comparatively well but not as 

good as we would like. 
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Figure 12: Income distribution of the EU as an aggregated system of states. 

 

Figure 13: Income distribution of the EU in 2002, with 15 states (yellow) and in 2016, with 27 states  

(blue, Malta is missing because no data is available). 
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Note:  

The selected procedure for determining the EU income distribution based on World Bank data for the 

participating EU countries results in many new data points. An aggregation procedure is necessary, 

because the World Bank does not provide any income distribution data for the European Union as an 

aggregated construct. Further information on the method used can be found in Orthen (2017).  

Note that the alignment of our approximation with the income distribution at an EU level, using the 

standard Lorenz curves, is not good. But we have no claim in this direction. Approximations for the 

individual European states are much better.  

 

The following statements refer to two different stages of the EU's development: a time when it had 15 

states, in 2002, and a time when it had 28 states, in 2016. The Gini coefficient w.r.t. World Bank data 

increased from 0.33 to 0.38, i.e., inequality has increased significantly. The approximation using the 

standard Lorenz curve is less good in 2016 than in 2002, see Figure 12 and Figure 13. The inequality in 

the extended European Union is higher than in the ‘old’ European Union. This should come as no sur-

prise, given the much lower income levels in the new member states. Only a short time has passed since 

2002; this is not much time for the necessary adjustment processes for achieving a typical income dis-

tribution.   

Note: We make no claim concerning the quality of the standard Lorenz curve approximation which is 

obviously not good. The level of inequality may interest readers. As mentioned above, for the EU with 

28 member states in 2016, using EU-SILC data, the Gini value is 0.36. This is lower than for World 

Bank data. Looking into aggregation of EU-SILC data, the Gini index of the original 15 EU member 

states changed from 0.29 to 0.31. That is a slight increase of inequality. This systematic difference be-

tween the data sets is probably a consequence of calculating the equivalised income for families (EU-

SILC) versus the per capita income (World Bank), as mentioned above.  
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As mentioned below, the Lorenz curves of the individual European countries (not of Europe as a whole) 

are nevertheless almost identical for World Bank data and Eurostat (Orthen 2017), while the level of 

inequality is somewhat greater on the World Bank side. The reason for this is probably a relative homo-

geneity of family size in the lower and upper ranges of the income pyramid, with a somewhat smaller 

family size in the middle. The resulting effects more or less seem to cancel out. 

Figure 14 shows the Lorenz curves of world income distribution from 2002 and 2016, derived from 

aggregation. As with the EU, many data points result from this approach. It is clear that inequality has 

declined as a result of increasing global economic cooperation. The Gini coefficient has decreased from 

0.78 to 0.70. Alignment with the standard Lorenz curve has also improved. However, it is of course not 

satisfactory, and we make no claim that the standard Lorenz curve is appropriate to approximate the 

world income distribution. International homogeneity is still very low in comparison to long existing 

nation states. The respective curve pairs show different Lorenz curves and the same Gini value.   

 

Figure 14: Global income distribution according to World Bank data for the years 2002 and 2016. 
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4. Using the new options available 

Knowledge of income distributions in the form of a Lorenz curve in the sense of a closed mathematical 

function has many advantages for applications, even if the quality of the inferred data has always to be 

considered separately. As already mentioned, it is generally possible to show that the derivatives of 

Lorenz curves exist almost everywhere. In the case of the standard Lorenz curve, they are of the form 

𝐿′
𝜀(𝑥) = 𝛼 ⋅ 𝜀(1 − 𝑥)𝜀−1 + (1 − 𝛼) ⋅ (1 𝜀⁄ ) ∙ 𝑥(1 𝜀)⁄ −1. For every income position 𝑥, these Lorenz 

densities give the relative level of income. If one changes the level of balance of a society from a Gini 

value of 𝐺1 to a Gini value of 𝐺2, and thus from an equity value of 𝜀1 to 𝜀2, the relative incomes change. 

Winners and losers (in the sense of social position, not people) can be precisely identified (though in 

reality, this may mean different people), as can be the size of the relative losses and profits. Distribution 

issues can be discussed in a much more nuanced and factual manner than is currently the case where 

corresponding mathematical instruments for analysis are not available. With the approach described, the 

total volume of redistribution can also be determined, and the distribution effects for selected sub-seg-

ments of the population can also be calculated.  

The approach given, provides access to new data material, which can be used for dealing with a multi-

tude of interesting questions, such as for a deepened study of different poverty parameters.  

In this context, it is desirable to develop a software application that provides derivable information from 

a Gini value. Some of this can be found in (Herlyn 2012; Herlyn and Radermacher 2017; Kämpke and 

Radermacher 2015); more will be elaborated in further research at the FAW/n in Ulm, with the support 

of the Vector Foundation. Corresponding publications are in preparation. This includes, in particular, 

an accurate analysis of the effects on winners and losers when changing the Gini value: who wins how 

much and who loses how much if the Gini value of a country changes? These changes, and the winners-

losers effects, of course, have repercussions on democratic processes and possible formations of major-

ities in politics. 
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Final remarks: Making an analytical tool available for public use  

FAW/n will make available the mathematical analysis possibilities that result from the findings pre-

sented here in a wide range of possible applications as open source software for the general public, in 

particular, for the scientific community, and, what’s more, under a "GNU General Public License" 

(GNU GPL). For interested users, this opens up the possibility of individually developing the software 

further. An according system is in preparation. Status updates will be posted at www.faw-neu-ulm.de.  
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Figure legends 

Figure 1: Lorenz curve 𝑳 and its associated Gini index.  

Figure 2: Lorenz curve 𝑳 (red) and its reflection 𝑳∗ (dashed blue). 

Figure 3: Five examples of World Bank data for three countries each with the same Gini value. The 

data points show a good fit between the corresponding deciles. 

Figure 415: Pareto Lorenz curve (left) and corresponding Pareto Lorenz density (right) for 𝑮 =  𝟎. 𝟐𝟓, 

where 𝜺 = 𝟎. 𝟔. 

Figure 5: Polynomial Lorenz curve (left) and corresponding Lorenz density (right) for 𝑮 =  𝟎. 𝟐𝟓, 

where  𝜺 =  𝟎. 𝟔. 

Figure 6: Lorenz curve with a cut-off point δ (left) and the cut-out Lorenz curve (right). The rectangle 

[δ, 1] x [L(δ), 1] (left) is stretched to the unit square [0, 1]2 (right). 

Figure 7: Approximation of World Bank data for Germany, India and the USA with Pareto (left col-

umn) and polynomial (right column) Lorenz curves, with an identical Gini value taken from the World 

Bank data. 

Figure 8: Approximation of World Bank data for Germany, India and the USA with mixed Lorenz 

curves with optimal value 𝛼opt (left column), which is different for each country, and the value  

𝛼 = 0.6, the standard value, which is the same for all countries (right column). 

Figure 9: Countries sorted by descending Gini values (blue curve, country index). The red dots show 

the optimal 𝜶. The values for 𝜶 and 𝑮 can be read on the y-axis. 

Figure 10: Two very different Lorenz densities having the same Gini value of 0.4. 

Figure 11: Lorenz curves for the Lorenz densities in Figure 10. 
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Figure 12: Income distribution of the EU as an aggregated system of states. 

Figure 13: Income distribution of the EU in 2002, with 15 states (blue) and in 2016, with 28 states 

(yellow). 

Figure 14: Global income distribution according to World Bank data for the years 2002 and 2016. 

 

 

 

 

 

 

 

  

ECINEQ WP 2018 - 473 July 2018



Appendix 

1. The Gini is unchanged under reflection. The reflection of a Lorenz curve 𝐿(𝑥), 𝑥 ∈ [0,1], which 

means mirroring at the contra diagonal of the unit square, is 𝐿𝑟𝑒𝑓(𝑢) = 1 − 𝐿−1(1 − 𝑢).  

The Gini 𝐺(𝐿) of 𝐿 is 2 ⋅ ∫ (𝑢 − 𝐿(𝑢))
1

0
𝑑𝑢. The Gini 𝐺∗(𝐿∗) of 𝐿∗ ist thus 

2 ⋅ ∫ (𝑢 − 𝐿∗(𝑢))
1

0

𝑑𝑢 = 2 ⋅ ∫ (𝑢 − (1 − 𝐿−1(1 − 𝑢)))
1

0

𝑑𝑢 

Using the integral formula and observing 𝐿(0) = 0 and 𝐿(1) = 1, we look at 

∫ 𝑓−1(𝑦)𝑑𝑦 = [𝑥𝑓(𝑥)]𝑎
𝑏

𝑓(𝑏)

𝑓(𝑎)

− ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

2 ⋅ ∫ (𝑢 − 1 + 𝐿−1(1 − 𝑢))𝑑𝑢
1

0

 

setting 𝑣 = 1 − 𝑢 leads to    

=  −2 ⋅ ∫ (−𝑣 + 𝐿−1(𝑣))
0

1

𝑑𝑣 = 2 ⋅ ∫ (−𝑣 + 𝐿−1(𝑣))𝑑𝑣
1

0

 

= −1 + 2 ⋅ [𝑣 ⋅ 𝐿(𝑣)]0
1 − 2 ⋅ ∫ 𝐿(𝑣)𝑑𝑣

1

0

= −1 + 2 − 2 ⋅ ∫ 𝐿(𝑥)𝑑𝑥
1

0

 

= 1 − 2 ∫ 𝐿(𝑢)𝑑𝑢
1

0

= 2 ⋅ ∫ (𝑢 − 𝐿(𝑢))𝑑𝑢
1

0

= 𝐺(𝐿) 

 

2. The Reflection of the Pareto Lorenz curve is the Polynomial Lorenz curve 

𝑦 = 𝐿(𝑢) = 1 − (1 − 𝑢)𝜀 (Pareto) 

⇔ 1 − 𝑦 = (1 − 𝑢)𝜀 ⇔ (1 − 𝑦)
1
𝜀 = 1 − 𝑢 ⇔ 𝑢 = 1 − (1 − 𝑦)

1
𝜀 = 𝐿−1(𝑦)  

𝐿−1(1 − 𝑥) = 1 − (1 − (1 − 𝑥))
1
𝜀 = 1 − 𝑥1/𝜀 

𝐿𝑟𝑒𝑓(𝑥) = 1 − 𝐿−1(1 − 𝑥) = 1 − (1 − 𝑥
1
𝜀) = 𝑥1/𝜀 
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3. The Lorenz curve of a single income level, is the main diagonal of the unit square. 

What is the Lorenz density and the Lorenz curve for a one-point distribution with single income level 

𝑥0. The distribution function in this case is  

𝐹(𝑥) = {
0    𝑖𝑓 𝑥 < 𝑥0

1    𝑖𝑓 𝑥0 ≤ 𝑥
   . 

The generalized inverse 𝐹−1 for any increasing and right-continuous function 𝐹: ℝ → [0,1] with 

lim
𝑥→−∞

𝐹(𝑥) = 0 and lim
𝑥→+∞

𝐹(𝑥) = 1 is defined for 𝑥 ∈ [0,1] by 

𝐹−1(𝑢) = inf{𝑥 | 𝐹(𝑥) ≥ 𝑢}. 

Intuitively, the generalized inverse 𝐹−1 thus indicates the minimum income level such that the proba-

bilities of all incomes up to that level accumulate to a given probability value 𝑢, or more. In our case, 

𝐹−1(𝑢) = 𝑥0 for all 𝑢 ∈ (0,1). 𝐹−1(𝑢) is thus the uniform density of value 𝑥0 on the interval (0,1) with 

expectation ∫ 𝐹−1(𝑣)𝑑𝑣
1

0
= 𝑥0. Normalisation by dividing by 𝑥0 gives the uniform density of value 1 

on the interval (0,1). 𝐿(𝑢) then is the main diagonal of the unit square, resulting in the Gini value ′0′.  
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