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been an increasingly important topic in many social sciences but, as of now, there does not seem
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1 Introduction

Resilience has become a highly popular research topic over the last few decades in several
disciplines. As Bonanno, Romero and Klein (2015) report, the frequency with which the
term ‘resilience’ or one of its variants appear in the titles of articles published in social-
sciences journals has quadrupled from 2000 to 2010, jumping to 800 occurrences. A similarly
increasing trend is reported by Hodgson, McDonald and Hosken (2015) for the International
Statistical Institute’s Web of Science (ISI WoS) where its prevalence as a keyword in peer-
reviewed papers in the ecology category has been rising steadily since the early 1970s.
Particularly active contributors are psychologists and ecologists who routinely dedicate the
first few pages of their writings to a discussion of the definition of the term and mention that
it has taken on multiple meanings. The contributions of Ayed, Toner and Priebe (2018),
Fletcher and Sarkar (2013), Bonanno (2012), Bonanno, Romero and Klein (2015), among
others, are examples within the psychology literature; Hodgson, McDonald and Hosken
(2015) or Standish, Hobbs, Mayfield, Bestelmeyer, Suding, Battaglia, Eviner, Hawkes,
Temperton, Cramer, Harris, Funk and Thomas (2014), for example, can be consulted in
the context of ecology.

The etymology of the term ‘resilience’ has its roots in the Latin verb resilire, meaning
‘to jump back’ or ‘to recoil’ and it is defined in the Merriam-Webster dictionary as “the
capability of a strained body to recover its size and shape after deformation caused espe-
cially by compressive stress” or “an ability to recover from or adjust easily to misfortune
or change.” The first definition relates to the use of the term in physics, whereas the
second describes it in relation to the social sciences. Both definitions help in visualizing
the subject matter of our contribution: resilience captures the response in terms of the
functioning of an individual when ‘squeezed’ by the occurrence of an adverse event such
as the death of a spouse, a divorce, a job loss, a terrorist attack, a natural disaster or a
severe injury. A resilient individual, once squeezed, is able to go back to the pre-event
functioning level quickly. The variable that is mostly used in psychology to capture the
functioning of an individual is his or her self-reported health status. Similar observations
apply to macro settings, such as an ecosystem whose equilibrium is perturbed by human
or natural activities.

An additional distinction in the psychological literature exists depending on the level
of functioning reached at the end of the process. Resilience is often associated with a full
recovery from the adverse event; the term thriving is applied when the person is better off
after overcoming adversity as compared to before the event occurred; see, among others,
Carver (1998). The latter phenomenon is also known as growth following adversity (Linley
and Joseph, 2004) or post-traumatic growth (Tedeschi and Calhoun, 2004) which can be at-
tributed to newly developed individual skills and a psychological sense of mastery following
the negative event.

The confusion with the uses (and abuses, as Bonanno, 2012, one of the leading resilience
researchers within psychology, puts it) of the term resilience is rooted in the fact that sev-
eral contributors attempt to capture the characteristics of a resilient individual or system,
rather than focusing on the process described above. In other words, instead of measuring
the functioning process following an event (the ‘squeeze’), they focus on the predictors of
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resilient outcomes affecting the process; these predictors may be personal, social, or a no-
tion of system resources. This duality in the approaches to resilience is documented in the
systematic review of the mental health literature by Ayed, Toner and Priebe (2018). They
identify two broad categories of approaches to resilience, namely, processes and character-
istics. Bonanno, Romero and Klein (2015) offer an integrative framework of this duality by
discussing how the process of response to an event is influenced by characteristics, with the
process being the subject matter of resilience rather than the characteristics of individuals
or societies.

The same duality of approaches to resilience is present in ecology. The term has been
used with different interpretations, leading to the “confusion of resilience” (Hodgson, Mc-
Donald and Hosken, 2015, p. 503). In the ecology literature, the majority of contributors
follow Holling (1973) in defining resilience as a measure of the ability of ecosystems to
absorb disturbances without changing identity. As Scheffer, Carpenter, Foley, Folke and
Walker (2001) put it, resilience “corresponds to the maximum perturbation that can be
taken without causing a shift to an alternative stable state” (p. 591). The alternative-
process approach is proposed by Pimm (1984) according to which resilience indicates “how
fast the variables return towards their equilibrium following a perturbation” (p. 322). The
ecological literature defines Holling’s interpretation of resilience as ecological resilience and
Pimm’s as engineering resilience (Gunderson, Allen and Holling, 2009), and some contrib-
utors (see Standish et al., 2014) propose to relabel Holling’s definition by referring to it as
‘resilience’ and to name Pimm’s definition ‘recovery’ to reduce the confusion about these
two important concepts. We note that, in the field of ecology, there seems to be a preference
for the characteristics approach.

An important first step in the measurement of resilience is to find an answer to the
crucial question “resilient to what?” posed by Bonanno, Romero and Klein (2015) and
the references therein in the context of psychological approaches. Hodgson, McDonald and
Hosken (2015) address this issue in the ecological setting. Adverse events differ in terms of
their intensity and the duration of their impact. Some events may last for a considerable
amount of time, such as poverty, political violence, physical or sexual abuse; some other
events are more transitory in nature, such as an accident, a terrorist attack or the death of
a loved one.

There are numerous contributions by economists that address resilience in ecology by
developing deterministic and stochastic models with regime shifts and estimating the un-
derlying system properties. These models have been used to describe resource-management
problems such as those pertaining to coral reefs, lakes, ocean-climate systems, woodland
preservation, among others. For an excellent review see Li, Crépin and Folke (2018). How-
ever, there does not seem to be much of a literature within economics when it comes to
the measurement of individual resilience. This is somewhat surprising because there ap-
pears to be a clear link between resilience and individual and social well-being—and the
high economic costs associated with mental illness. An exception is the contribution of
Etilé, Frijters, Johnston and Shields (2017) who propose an empirical measure of resilience
estimating a dynamic finite-mixture model for the Australian population. These authors
derive individual-specific values of the parameters that govern individual heterogeneity in
the psychological response to ten major adverse events and identify three classes of indi-
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viduals that differ in their responses to the events. We note that their approach is firmly
based on empirical issues.

Measures of individual resilience have been proposed by psychologists in the form of
measurement scales, such as the Connor-Davidson Resilience Scale (CD-RISC); for detailed
reviews of resilience measurement scales see, for instance, Windle, Bennett and Noyes (2011)
and Salisu and Hashim (2017). The CD-RISC scale is based on 25 items evaluated on a
five-point Likert scale ranging from 0 (never) to 4 (nearly all of the time). These ratings are
added across the 25 categories to arrive at a total score between 0 and 100, and higher scores
indicate higher resilience. The scores themselves are obtained from individual answers to
questions on the ability to adapt to change, the availability of close and secure relationships,
the preference to take the lead in problem solving, and similar attributes.

In this paper, we provide an axiomatic approach to the measurement of resilience,
thereby complementing the empirically oriented contributions alluded to above with a
thorough theoretical analysis. We are not aware of any earlier work that addresses the
theoretical foundations of measuring resilience and we hope that our observations provide
a substantial step towards filling this gap. Thus, our work plays a role similar to that of
Esteban and Ray’s (1994) seminal paper on the measurement of polarization. The notion of
polarization had been discussed in the literature prior to the publication of their article but
Esteban and Ray’s (1994) is the first contribution that provides a systematic theoretical ex-
amination of the phenomenon. Analogously, Bossert and D’Ambrosio (2013) represents the
first axiomatic analysis of economic insecurity, a term that had been used with increasing
frequency in the previous literature but had not been subjected to a thorough theoretical
treatment.

Our starting point is the notion of a health stream, that is, a stream of values of indi-
vidual health variables over time. These streams could be obtained by means of the mental
health component of the Short-Form 12 Health Survey (SF-12), for instance, but our re-
sults are applicable to more general methods. In the illustrations of our measure, the health
streams we use consist of self-assessed health status and satisfaction with own health. The
objective is to establish an ordering defined on these streams that ranks them with respect
to their relative resilience. Thus, we employ an ordinal interpretation of the notion of
resilience. We propose a set of intuitively appealing properties of a resilience ordering and
it turns out that there is a single specific ordering that satisfies all of them. Although our
proposal is ordinal in nature (and, thus, statements regarding arithmetic means or similar
statistics are not well-defined in our setting), there are numerous aggregation methods that
can be employed, including those involving the ranks of individuals or any quantiles that
permit us to draw conclusions regarding aggregate resilience. We note that our ordinal
measure is attractive because it can be applied in empirical studies due to the availability
of numerous datasets that are suited to our approach, such as the German Socio-Economic
Panel Study (SOEP). Ordinal approaches to social index numbers are rather common in
the theory of social index numbers. For instance, an ordinal approach to poverty measure-
ment is presented by Sen (1976), and Blackorby and Donaldson (1984) and Ebert (1987)
discuss ordinal inequality indices.

In the following section, we provide a detailed discussion and several examples that
illustrate the information health streams are intended to convey in the context of assessing

3

ECINEQ WP 2019 - 486 January 2019



individual resilience. We then identify the notion of a down spell in Section 3, interpreted as
a set of time periods during which an adverse event occurs and a subsequent (partial or full)
recovery may or may not occur. These down spells form the foundation of our resilience
measure. The formal definition of resilience orderings in general and of our specific proposal
is given in Section 4. The axioms (properties) that we impose on a resilience measure are
introduced and discussed in Section 5, and Section 6 contains our result—a characterization
of the resilience ordering that possesses all of our properties. We conclude in Section 7 and
establish the independence of our axioms in an appendix.

2 Preliminary observations and examples

As alluded to in the introduction, resilience is a phenomenon that is of increasing impor-
tance in many areas of research. While our approach and our results are applicable to
a variety of settings, we focus on psychological aspects in order to work with a concrete
example.

Our starting point is the choice of a socio-economic variable that we want to assess
with respect to the notion of resilience. We assume that the data for which the requisite
comparisons are to be performed consist of observed health values for a number of consec-
utive time periods. The term resilience is intended to capture the ability of an individual
to recover quickly from adverse events. In order to exclude degenerate cases, we restrict
attention to streams of health variables that cover at least three time periods. The finite
length of a stream (and, thus, the number of observations) is denoted by T so that T ∈ T,
where T = N \ {1, 2} is the set of positive integers excluding the numbers 1 and 2. For
a possible stream length T ∈ T, a health stream x = (x1, . . . , xT ) is composed of T ob-
servations, one for each period from 1 to T . We assume that the observed health values
are non-negative so that x is an element of RT

+, the set of all T -dimensional vectors with
non-negative components. The length of a stream may vary so that the set from which x
is chosen is the union ∪T∈T RT

+. We will introduce some restrictions on the set of possible
streams that are in line with our interpretation and our objective of establishing a resilience
ranking.

An important observation is that the variables we consider have to be interpreted in a
way so that the resilience ordering to be established is invariant with respect to increasing
affine transformations of the health variable but not with respect to arbitrary (not neces-
sarily affine) increasing transformations. This assumption is needed to ensure that some
of our axioms are meaningful. We note that this is a common and largely uncontroversial
requirement that is (at least implicitly) made in most approaches to social index numbers,
such as inequality or poverty orderings that are based on individual incomes.

To illustrate the basic information available, we now provide a few examples. Intuitively,
our central hypothesis is that resilience is captured by assessing how quickly an individual
recovers from an adverse event. In the context of psychological resilience, an adverse event
is represented by a drop in self-reported health and the recovery (if any) is indicated by
examining the extent to which and the speed with which the individual regains the pre-drop
health level. Thus, we will focus on what we refer to as down spells, that is, the behavior
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of a stream x during a phase in which a sustained health level drops to a lower level and
the subsequent (possibly partial) recovery that may or may not occur. (The symbols a(σx)
and b(σx) in the following figures are meant to indicate the amplitude and the recovery
delay in a given down spell but they can be safely ignored for the time being; they will be
introduced and discussed in detail later on.)

Consider a stream of perceived health values as in the example of Figure 1. In the
example, the starting point is a health score of 3, followed by a drop to 1 in the move from
period 1 to period 2. There is a transition without a change from period 2 to period 3, and
finally there is a recovery in the move from period 3 to period 4, at which point we are back
at the initial health level of 3. The drop is interpreted as an adverse event, the return to
the pre-drop level represents the recovery that occurs after remaining at the lower level for
one time period. In this example, the individual recovers from the drop but the recovery
does not occur with the highest possible speed.
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Figure 1: The health stream x = (3, 1, 1, 3).
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In Figure 2, the decline from 3 to 1 is slower. A drop from 3 to 2 occurs in period 1,
followed by a drop from 2 to 1 in period 2. Recovery takes place as in Figure 1.
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Figure 2: The health stream x = (3, 2, 1, 1, 3).
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In Figure 3, the speed of recovery is higher as compared to that in Figures 1 and 2—
we return to the original level of 3 immediately after the completion of the downwards
movement. A natural interpretation is to say that the individual of Figure 3 is more
resilient than that of Figures 1 and 2 because recovery occurs at a higher speed.
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Figure 3: The health stream x = (3, 1, 3, 3).
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In Figure 4, there is an initial partial recovery from 2 to 3 in period 3 after a drop from
4 to 2 in the move from period 1 to period 2. This is followed in period 4 by a drop below
the level of the initial downwards movement, after which a full recovery occurs in period 5.
Because the recovery in the move from period 2 to period 3 is only partial, the down spell
is not considered completed until we return to the pre-drop level of 4 two periods later.
This contrasts with the example of Figure 7 below in which a full recovery occurs before
there is a second down spell.
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Figure 4: The health stream x = (4, 2, 3, 1, 4).
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In Figure 5, there is an excess recovery because the individual ends up at a level that
exceeds the pre-drop level.
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Figure 5: The health stream x = (3, 1, 1, 4).
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In Figure 6, there is no recovery. After the drop from 3 to 1, the score remains at 1
until the final period 4.
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Figure 6: The health stream x = (3, 1, 1, 1).
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Figure 7 illustrates a stream with two down spells. The first spell involves a drop from
3 to 2 in period 1, followed by an immediate recovery. In the second spell, perceived health
drops from 3 to 1 in period 4 and the full recovery occurs in period 8. As mentioned when
discussing Figure 4, we now have a full recovery in period 3 and, therefore, a second down
spell occurs two periods later when there is a drop from 3 to 1.
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Figure 7: The health stream x = (3, 2, 3, 3, 1, 1, 1, 3).
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3 Down spells

Our approach to measuring resilience is ordinal in nature. That is, the resilience values
we assign to the health-variable streams are only meant to make comparative statements
such as ‘stream x reflects more resilience than stream y’ or ‘the resilience of stream x and
the resilience of stream y are equal.’ In particular, the resilience values are not numerically
significant so that statements such as ‘x is associated with twice as much resilience as
stream y’ are not meaningful under such an ordinal interpretation.

As the examples in the previous section establish, health streams can be illustrated in
a plausible and relatively straightforward manner. Although the precise definition of the
down spells that form the foundation of our approach is somewhat more involved, it can
be explained in terms of intuitively appealing concepts.

Consider a stream x of length T . To identify the down spells that are present in the
stream x, we begin by partitioning the full set of time periods {1, . . . , T} into three sets.
These three sets represent (i) the periods associated with sustained health; (ii) the time
periods in which down spells occur; and (iii) the set of time periods in which (possibly
partial) recoveries may or may not occur.

We denote the set of periods in x with sustained health by Sx. The idea is to include,
starting from the first period, all time periods among those in {1, . . . , T} that are associated
with maximal non-decreasing values in the health variable. Hence, if a decrease in the
health level occurs, the individual no longer experiences sustained health. Formally, this
set Sx is defined inductively as follows. The initial period (period 1) always belongs to this
set so that we have 1 ∈ Sx. Now let t ∈ {2, . . . , T} and assume that we have examined
each of periods 1 to t − 1 to determine whether it is a member of Sx. If xt ≥ xτ for all
τ ∈ Sx ∩ {1, . . . , t − 1}, then t ∈ Sx. Thus, if we reach period t and the level of health
does not drop when considering those periods between 1 and t− 1 that are already in the
set Sx, then period t is added to this set of periods with sustained health; if xt is below
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one the values of x1, . . . , xt−1 that have already been added to Sx in a previous step of the
iteration, then t does not belong to the set of periods with sustained health.

To illustrate this construction, consider the health stream x = (3, 2, 1, 1, 3) ∈ R5
+ of

Figure 2. According to the iterative procedure just defined, the initial period 1 is always
in the set of periods with sustained health, that is, we have 1 ∈ Sx. To determine whether
period t = 2 is in Sx, we compare x2 to the values that correspond to the periods that have
already been added to Sx. In this case, the only comparison is that involving x1 because

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1} = {1}.

We have x2 = 2 < 3 = x1 and, therefore, 2 6∈ Sx. The same is true for periods 3 and 4. For
t = 3, we have

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, 2} = {1}
and x3 = 1 < 3 = x1 so that, according to our definition, 3 6∈ Sx. For t = 4, it follows that

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, 2, 3} = {1}

and x4 = 1 < 3 = x1 so that, again, 4 6∈ Sx. The final candidate for membership in Sx is
period t = T = 5. It follows that

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, . . . , 4} = {1}

and x5 = 3 ≥ 3 = x1 so that, by definition, 5 ∈ Sx and hence Sx = {1, 5}.
As another example, consider the stream x = (3, 2, 3, 3, 1, 1, 1, 3) ∈ RT

+; see Figure 7.
Again, the starting point of the inductive procedure is to declare the initial period to be a
member of the set of periods associated with sustained health, that is, 1 ∈ Sx. The only
comparison required to determine whether period t = 2 belongs to Sx is that between x2

and x1 because
Sx ∩ {1, . . . , t− 1} = Sx ∩ {1} = {1}.

We have x2 = 2 < 3 = x1 so that 2 6∈ Sx. For t = 3, we obtain

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, 2} = {1}

and, because x3 = 3 ≥ 3 = x1, it follows that 3 ∈ Sx. Moving on to period t = 4, we have

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, 2, 3} = {1, 3}.

We obtain x4 = 3 ≥ 3 = x1 = x3 and, therefore, period 4 must be added to the set Sx.
Continuing the iteration, we obtain 5 6∈ Sx because x5 = 1 is less than x1 = 3 (and also
less than x3 and x4) and, for the same reason, 6 6∈ Sx and 7 6∈ Sx. Finally, for t = T = 8,
we obtain

Sx ∩ {1, . . . , t− 1} = Sx ∩ {1, . . . , 7} = {1, 3, 4}
and, because x8 = 3 ≥ 3 = x1 = x3 = x4, it follows that x8 ∈ Sx which leads us to the set
Sx = {1, 3, 4, 8} of periods with sustained health in x.
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Next, we define the set Dx of time periods in which down spells occur for a stream x.
The construction of this set is very intuitive: a period t is part of a down spell if there
is an earlier period τ in which there is sustained health such that the value of the health
variable is in decline between τ and t. That is, for any t ∈ {1, . . . , T}, t ∈ Dx if there exists
a period τ ∈ Sx∩{1, . . . , t−1} such that xτ > · · · > xt. It follows by definition that the set
of periods that involve sustained health and the set of periods in which down spells occur
must be disjoint. We use the streams of Figures 2 and 7 again to provide illustrations of
this definition of Dx.

In the stream x = (3, 2, 1, 1, 3) depicted in Figure 2, we have Sx = {1, 5}. Consider first
the period t = 2. Because there exists a period τ ∈ Sx ∩ {1, . . . , t − 1} = {1} (namely,
period τ = 1) such that

xτ = x1 = 3 > 2 = x2,

it follows that period 2 is in Dx. Moreover, because 1 ∈ Sx ∩ {1, 2} and

xτ = x1 = 3 > 2 = x2 > 1 = x3,

period t = 3 must be a member of Dx as well. Because x3 = 1 ≤ 1 = x4, the last inequality
that defines membership in Dx is not satisfied for period 4 and, therefore, 4 6∈ Dx. Thus,
we obtain Dx = {2, 3} for this example.

For the stream x = (3, 2, 3, 3, 1, 1, 1, 3) of Figure 7, we have Sx = {1, 3, 4, 8}. Because

xτ = x1 = 3 > 2 = x2,

it follows that t = 2 belongs to the set Dx. The next possible candidate for membership in
Dx is period t = 5. There exists a period τ ∈ Sx ∩ {1, . . . , 4} = {1, 3, 4} (namely, period
τ = 4) such that

xτ = x4 = 3 > 1 = x5

and it follows that period 5 is in Dx. Because x5 = 1 ≤ 1 = x6 = x7, periods 6 and 7 are
not associated with down spells and, therefore, 6 6∈ Dx and 7 6∈ Dx. Therefore, we obtain
Dx = {2, 5}.

Finally, to complete the description of our partition, the set of periods Ux is defined as
the complement of the union Sx ∪Dx in {1, . . . , T}, that is,

Ux = {1, . . . , T} \ (Sx ∪Dx).

We refer to the set Ux as the recovery phase, that is, the set of time periods during which
recovery occurs. Note that Ux may be empty for some streams x. It is immediate that, in
the example of Figure 2, we obtain

Ux = {1, . . . , T} \ (Sx ∪Dx) = {1, . . . , 5} \ ({1, 5} ∪ {2, 3}) = {4}

and, for the example illustrated in Figure 7, it follows that

Ux = {1, . . . , T} \ (Sx ∪Dx) = {1, . . . , 8} \ ({1, 3, 4, 8} ∪ {2, 5}) = {6, 7}.
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With the partition {Sx,Dx,Ux} of {1, . . . , T} in hand, we can now proceed to a precise
definition of a down spell. As seems natural, a down spell in stream x starts in a period in
the set Sx of sustained health if the following period belongs to the set Dx in which down
spells occur. Clearly, the number of down spells and their exact structure are stream-
dependent. For the time being, we use the notation σx to indicate a generic down spell in
x, without explicitly referring to the number of spells in a stream at this stage.

As hinted at above, a down spell σx in x starts in period s(σx) ∈ Sx if

(s(σx) + 1) ∈ Dx.

For example, if x = (3, 2, 1, 1, 3) as in Figure 2, it follows that s(σx) = 1 for the single spell
σx in x because (s(σx) + 1) = 2 ∈ Dx. Analogously, the stream x = (3, 2, 3, 3, 1, 1, 1, 3) of
Figure 7 has two down spells that start at s(σx

1 ) = 1 and at s(σx
2 ) = 4.

To identify the duration of a down spell σx, we use the following definition. If

{s(σx) + 1, . . . , d(σx)} ⊆ Dx and (d(σx) + 1) 6∈ Dx,

then the down spell σx ends at d(σx). Note that this includes the possibility that d(σx) = T
if σx is the final down spell in the stream x. Thus, the down spell σx consists of the time
periods in the set

D(σx) = {s(σx) + 1, . . . , d(σx)}.
As is straightforward to verify, in the case of x = (3, 2, 1, 1, 3), we obtain d(σx) = 2 and,
for x = (3, 2, 3, 3, 1, 1, 1, 3), it follows that d(σx

1 ) = 2 and d(σx
2 ) = 5.

If there exists u(σx) ∈ {d(σx), . . . , T − 1} such that

Sx ∩ {d(σx) + 1, . . . , u(σx)} = ∅ and (u(σx) + 1) ∈ Sx,

then a full recovery after the down spell σx occurs in time period u(σx)+ 1. The set U(σx)
consists of the time periods after the down spell σx has finished and before a full recovery
(if any) has occurred, that is,

U(σx) = {d(σx) + 1, . . . , u(σx)},

where u(σx) < T if a full recovery occurs and u(σx) = T if a full recovery does not occur.
In particular, U(σx) = ∅ if d(σx) = u(σx) so that recovery is immediate when u(σx) < T
and no recovery is feasible when u(σx) = T owing to the constraint imposed by reaching
the final time period T . In the example of Figure 2, we obtain u(σx) = 4; for Figure 7, the
requisite time periods are u(σx

1 ) = 2 and u(σx
2 ) = 7.

The severity of the down spell σx is measured by

a(σx) = xs(σx) − xd(σx)

where the letter a is associated with the ‘a’ in amplitude of the down spell. Note that the
length of a decline does not matter, only the amplitude. The delay in recovery after the
down spell σx is measured by

b(σx) =
∑

t∈U(σx)

(
xs(σx) − xt

)
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where the letter b represents the ‘b’ in coming back.
We restrict attention to streams with at least one down spell for which (partial) recovery

is not made infeasible by the time constraint—that is, after a drop from a sustained level of
health, there is at least one time period left before the final period T is reached. Let T ∈ T
and x ∈ RT

+, and consider all down spells σx in x for which recovery is not made infeasible
so that d(σx) < T . To exclude trivial cases, we only consider streams that contain at least
one such down spell.

Now denote the number of such down spells by mx and the ith of these spells by σx
i .

Define
Σ(x) = {σx

1 , . . . , σx
mx}

as the set of all down spells for which recovery is not made infeasible by the time constraint.
By assumption, this set is non-empty. To simplify our exposition, we write σx instead of
σx

1 if mx = 1, that is, if there is only one permissible down spell in the stream x; this does
not create any ambiguity. The set HT defined by

HT = {x ∈ RT
+ | Σ(x) 6= ∅}

contains all streams of length T ∈ T for which the notion of resilience is well-defined in the
sense that recovery is not excluded by reaching the end of the sampling period T . Because
T may be any integer greater than or equal to three, the set of such streams of any length
is given by

Ω =
⋃

T∈T

HT .

Thus, the set Ω constitutes the set of streams that we want to be able to compare by means
of what we refer to as a resilience ordering.

4 Resilience orderings

A resilience ordering is a complete and transitive binary relation % defined on Ω with
the interpretation ‘at-least-as-resilient-as.’ Thus, for any two streams x and y in Ω, the
statement ‘x is at least as resilient as y’ is expressed by the relational statement x % y.
The relation % is complete if any two streams x and y in Ω can be compared, that is, if

x % y or y % x

for all x, y ∈ Ω. Transitivity requires that if x % y and y % z for any three streams
x, y, z ∈ Ω, it must also be true that x % z. The relation % can be partitioned into a
‘more-resilient-than’ relation � and an ‘as-resilient-as’ relation ∼, defined by letting, for
all x, y ∈ Ω,

x � y if [x % y and not y % x]

and
x ∼ y if [x % y and y % x] .
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The specific resilience ordering %r that we propose and characterize in this paper is
based on comparing the values of a resilience measure r : Ω → (0, 1] that is defined in terms
of the amplitudes a(σx

i ) and the recovery delays b(σx
i ) associated with the spells that are

present in a stream x ∈ Ω. This resilience measure is defined by letting, for all x ∈ Ω,

r(x) =

∑mx

i=1 a(σx
i )∑mx

i=1 a(σx
i ) +

∑mx

i=1 b(σx
i )

.

The measure reflects how quickly an individual recovers from adverse events. An adverse
occurrence is represented by a drop in the value of the health variable and recovery is
interpreted as a subsequent (not necessarily immediate) return to the pre-drop level. Thus,
r increases with the amplitude of a spell and decreases with the recovery delay: a ceteris-
paribus (partial) recovery from a more severe drop is associated with higher resilience, and
a ceteris-paribus longer recovery delay means that resilience is lower. Clearly, r(x) takes on
values that are greater than zero and smaller than or equal to one because a(σx

i ) is positive
and b(σx

i ) is non-negative. Furthermore, r(x) = 1 if recovery is always immediate, that is,
if u(σx

i ) = d(σx
i ) for all i ∈ {1, . . . ,mx}.

Our resilience ordering %r is now defined by declaring x ∈ Ω to be at least as resilient
as y ∈ Ω if the value of the resilience measure r at x is greater than or equal to the value
of r at y. That is, for all x, y ∈ Ω,

x %r y ⇔ r(x) ≥ r(y).

We reiterate that the resilience measure r does not have any numerical significance—no
comparisons other than relative resilience rankings are permissible in the ordinal setting
considered throughout this paper.

The notion of vulnerability may be defined as the inverse of resilience, that is, as the
value of a function v : Ω → [1,∞) defined by

v(x) =
1

r(x)

for all x ∈ Ω. Thus, for our particular measure, we obtain

v(x) =

∑mx

i=1 a(σx
i ) +

∑mx

i=1 b(σx
i )∑mx

i=1 a(σx
i )

=
mx∑

i=1

(
a(σx

i )∑mx

j=1 a(σx
j )
· a(σx

i ) + b(σx
i )

a(σx
i )

)

for all x ∈ Ω, where a(σx
i )/(

∑mx

j=1a(σx
j )) is the endogenous weight given to down spell σx

i ,
and (a(σx

i ) + b(σx
i ))/a(σx

i ) is the vulnerability exhibited in down spell σx
i . Thus, each spell

is weighted according to its fraction of the total amplitude—the sum of the amplitudes over
all spells. The vulnerability ordering associated with our resilience ordering %r is simply
its reverse ordering, that is, x ∈ Ω is at least as vulnerable as y ∈ Ω if y %r x.

The resilience measure r and its inverse v have an intuitive geometric interpretation in
the case of a single spell σx. The distance a(σx)—the amplitude—is an indicator of the
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severity of the shock represented by the drop, and the area is b(σx) the recovery delay.
Thus, it seems natural to use the expression

a(σx)

a(σx) + b(σx)

as the value of our measure of resilience. Analogously, its inverse

a(σx) + b(σx)

a(σx)

is the associated index of vulnerability.
Now we apply the resilience and vulnerability measures to our examples. Consider first

Figure 1. The stream of health values is given by x = (3, 1, 1, 3). We have Sx = {1, 4},
Dx = {2} and Ux = {3}. There is a singleton set Σ(x) = {σx} of down spells for which
recovery is not made impossible by the end-of-sample constraint, with s(σx) = 1, d(σx) = 2
and u(σx) = 3. Furthermore, we have a(σx) = 2 and b(σx) = 2 so that

r(x) =
2

2 + 2
=

1

2
and v(x) =

1

r(x)
= 2.

In Figure 2, we have x = (3, 2, 1, 1, 3). It follows that Sx = {1, 5}, Dx = {2, 3} and
Ux = {4}. There is a singleton set Σ(x) = {σx} of down spells with s(σx) = 1, d(σx) = 3
and u(σx) = 4. We obtain a(σx) = 2 and b(σx) = 2 so that, as in the example of Figure 1,

r(x) =
2

2 + 2
=

1

2
and v(x) =

1

r(x)
= 2.

In the example of Figure 3, the requisite stream is x = (3, 1, 3, 3). We obtain Sx =
{1, 3, 4}, Dx = {2} and Ux = ∅. There is a singleton set Σ(x) = {σx} of down spells with
s(σx) = 1, d(σx) = 2 and u(σx) = 2. Furthermore, we have a(σx) = 2 and b(σx) = 0 so
that

r(x) =
2

2 + 0
= 1 and v(x) =

1

r(x)
= 1.

In Figure 4, we have x = (4, 2, 3, 1, 4). It follows that Sx = {1, 5}, Dx = {2} and
Ux = {3, 4}. There is a singleton set Σ(x) = {σx} of down spells with s(σx) = 1, d(σx) = 2
and u(σx) = 4. We obtain a(σx) = 2 and b(σx) = 1 + 3 = 4 so that

r(x) =
2

2 + 4
=

1

3
and v(x) =

1

r(x)
= 3.

In the example of Figure 5, the requisite stream is x = (3, 1, 1, 4). We obtain Sx = {1, 4},
Dx = {2} and Ux = {3}. There is a singleton set Σ(x) = {σx} of down spells with
s(σx) = 1, d(σx) = 2 and u(σx) = 3. Furthermore, we have a(σx) = 2 and b(σx) = 2 so
that

r(x) =
2

2 + 2
=

1

2
and v(x) =

1

r(x)
= 2.
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There is no recovery in Figure 6. The stream of health values is x = (3, 1, 1, 1). We have
Sx = {1}, Dx = {2} and Ux = {3, 4}. There is a singleton set Σ(x) = {σx} of down spells
with s(σx) = 1, d(σx) = 2 and u(σx) = 4. It follows that a(σx) = 2 and b(σx) = 2 + 2 = 4
so that

r(x) =
2

2 + 4
=

1

3
and v(x) =

1

r(x)
= 3.

In the case of two down spells as depicted in Figure 7, the stream of health values is
x = (3, 2, 3, 3, 1, 1, 1, 3). We have Sx = {1, 3, 4, 8}, Dx = {2, 5} and Ux = {6, 7}. There is a
set of two down spells Σ(x) = {σx

1 , σx
2}. For the first spell, we obtain s(σx

1 ) = 1, d(σx
1 ) = 2

and u(σx
1 ) = 2. It follows that a(σx

1 ) = 1 and b(σx
1 ) = 0. The requisite numbers for the

second spell are s(σx
2 ) = 4, d(σx

2 ) = 5, u(σx
2 ) = 7, a(σx

2 ) = 2 and b(σx
2 ) = 2 + 2 = 4. Thus,

we obtain

r(x) =
1 + 2

1 + 2 + 0 + 4
=

3

7
and v(x) =

1

r(x)
=

7

3
.

Thus, according to our resilience ordering %r, the most resilient stream is that of Figure 3
(with a resilience value of 1), followed by those in Figures 1,2 and 5 (with a resilience of
1/2). Next, we have Figure 7 with a resilience of 3/7 and, at the bottom, the least resilient
(and thus most vulnerable) ones in Figures 4 and 6 with a resilience level of 1/3.

5 Properties of a resilience ordering

In our characterization, we focus on the restriction of the resilience ordering to streams
with a single down spell. Thus, we define the sets

H1
T = {x ∈ HT | |Σ(x)| = 1}

for all T ∈ T, and the domain considered in our main result is given by

Ω1 = {x ∈ Ω | |Σ(x)| = 1}.

The restriction of a resilience ordering to streams with a single down spell is referred to as
a single-spell resilience ordering.

For some of our properties, it is convenient to employ the following definition and
notation. Two streams x, y ∈ H1

T have the same timing structure if Sx = Sy, Dx = Dy

and Ux = Uy. If x, y ∈ H1
T have the same timing structure, we write s := s(σx) = s(σy),

d := d(σx) = d(σy), u := u(σx) = u(σy), and U := Ux = Uy. Note that, in this case,
U = {d + 1, . . . , u} and |U| = u− d.

5.1 Recovery neutrality

We begin with a property that ensures that all periods in the recovery phase are treated
equally by our measure. This implies, in particular, that no discounting can be employed.
Thus, if the order of the health-variable values that occur during recovery is changed, this
is a matter of equal resilience. In other words, the property ensures that our measure treats
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all time periods in which recovery occurs equally, paying no attention to the order in which
the requisite health-variable values appear in a stream.

Recovery neutrality. For all T ∈ T and for all x, y ∈ H1
T with the same timing structure,

if xτ = yτ for all τ ∈ {1, . . . , T} \U and (yτ )τ∈U is a permutation of (xτ )τ∈U, then

x ∼ y.

To illustrate this property, consider the streams x = (5, 1, 2, 4, 3, 5) and y = (5, 1, 3, 2, 4, 5).
The two streams have the same timing structure with U = {3, 4, 5} and, because y3 = 3 =
x5, y4 = 2 = x3 and y5 = 4 = x4, it follows that (y3, y4, y5) is obtained from permuting
(x3, x4, x5). Thus, recovery neutrality requires that

(5, 1, 2, 4, 3, 5) = x ∼ y = (5, 1, 3, 2, 4, 5).

5.2 Recovery translation invariance

Translation invariance is a commonly-imposed condition in the design of social index num-
bers; for example, absolute measures of inequality such as those of Kolm (1976) or Blackorby
and Donaldson (1980) are translation invariant. In our setting, the property is defined for
pairs of streams with the same timing structure. Although the label translation invari-
ance typically refers to situations in which the same value is added to all components, our
version goes beyond that by allowing these additions to be specific to each time period.
Nevertheless, we use the term translation invariance because it captures the motivation
underlying the axiom. Note that the property is analogous to the axiom of independence
of income source employed by Weymark (1981) in the context of social welfare functions
and inequality measures defined on income distributions. See also Blackorby, Bossert and
Donaldson (2005, p. 118) who use a related axiom that they label incremental equity in a
characterization of utilitarianism.

Recovery translation invariance as defined below demands that adding or subtracting
the same vector of health values to the recovery phase of two streams without changing the
common timing structure does not affect the relative ranking of the two streams.

Recovery translation invariance. For all T ∈ T, for all x, y ∈ H1
T with the same timing

structure and for all z ∈ RT such that xτ = yτ and zτ = 0 for all τ ∈ {1, . . . , T} \U, if
(x + z), (y + z) ∈ H1

T and U(x+z) = U(y+z) = U, then

(x + z) % (y + z) ⇔ x % y.

Again, we employ an example to illustrate this axiom. Let x = (5, 1, 2, 4, 3, 5) and y =
(5, 1, 3, 3, 3, 5). The two streams have the same timing structure with U = {3, 4, 5}. Defin-
ing z = (0, 0,−1,−1, 1, 0) ∈ R6, it follows that (x+z), (y+z) ∈ H1

T and U(x+z) = U(y+z) =
U. Therefore, recovery translation invariance requires that

(5, 1, 1, 3, 4, 5) = (x + z) % (y + z) = (5, 1, 2, 2, 4, 5)

if and only if
(5, 1, 2, 4, 3, 5) = x % y = (5, 1, 3, 3, 3, 5).
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5.3 Recovery monotonicity

We assume that our resilience ordering possesses a plausible monotonicity property with
respect to the health-variable values experienced in the recovery phase. In particular,
if all values in the recovery phase increase (while all other health-variable values remain
unchanged), resilience increases.

Recovery monotonicity. For all T ∈ T and for all x, y ∈ H1
T with the same timing

structure such that U 6= ∅, if xτ > yτ for all τ ∈ U and xτ = yτ for all τ ∈ {1, . . . , T} \U,
then

x � y.

For example, if x = (5, 2, 3, 5, 4, 6) and y = (5, 1, 2, 4, 3, 6), recovery monotonicity requires
that (5, 2, 3, 5, 4, 6) = x � y = (5, 1, 2, 4, 3, 6) because xτ > yτ for all τ ∈ U = {3, 4, 5} and
xτ = yτ for all τ ∈ {1, 2, 6}.

5.4 Amplitude and recovery consistency

The following axiom requires that certain movements along a stream leave the value of
vulnerability unchanged; in particular, only the amplitude and the recovery delay are of
importance. The duration of a downwards movement is irrelevant—all that matters is the
amplitude of the drop. Furthermore, we do not distinguish between full recovery and excess
recovery; any recovery that takes us beyond the pre-drop level is treated in the same way
as a recovery to the pre-drop level. Finally, anything that happens prior to the down spell
plays no role.

Amplitude and recovery consistency. For all T, T ′ ∈ T, for all x ∈ H1
T and for all

y ∈ H1
T ′ such that |Ux| = |Uy|, if there exists t ∈ Z such that xs(σx)−xd(σx) = ys(σy)−yd(σy)

and xs(σx) − xτ = ys(σy) − yt+τ for all τ ∈ Ux, then

x ∼ y.

Let x = (3, 1, 2) and y = (4, 4, 2, 3). We have s(σx) = 1, s(σy) = 2, d(σx) = 2, d(σy) = 3,
Ux = {3} and Uy = {4}. Because

x1 − x2 = y2 − y3 = 2 and x1 − x3 = y2 − y4 = 1,

amplitude and recovery consistency requires that x ∼ y.

5.5 Continuity

We employ a mild continuity property that ensures that small changes in the values of the
health variables do not lead to large changes in vulnerability provided that the time period
in which down spell ends does not change. This is another well-established condition that
is employed throughout the literature concerned with the design of social index numbers.
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Continuity. For all T ∈ T, for all sequences 〈xk〉k∈N, with xk ∈ H1
T for all k ∈ N and

limk→∞ xk = x ∈ H1
T , and for all y ∈ H1

T ,

[
xk % y for all k ∈ N and lim

k→∞
d(σxk

) = d(σx)
]
⇒ x % y

and [
y % xk for all k ∈ N and lim

k→∞
d(σxk

) = d(σx)
]
⇒ y % x.

Consider the sequence 〈xk〉k∈N defined by letting xk = (5, 1, 2, 4, 3 − 1/k, 5) for all k ∈ N.
Furthermore, let x = (4, 1, 3, 2, 3, 4). It follows that

lim
k→∞

xk = (5, 1, 2, 4, 3, 5).

Continuity demands that if xk % (4, 1, 3, 2, 3, 4) for all k ∈ N, then

lim
k→∞

xk = (5, 1, 2, 4, 3, 5) % (4, 1, 3, 2, 3, 4)

and, likewise, if (4, 1, 3, 2, 3, 4) % xk for all k ∈ N, then

(4, 1, 3, 2, 3, 4) % (5, 1, 2, 4, 3, 5) = lim
k→∞

xk.

5.6 Homogeneity of degree zero

Our final axiom is homogeneity of degree zero. This well-established requirement demands
that resilience is invariant with respect to the multiplication of all health-variable values
by the same positive constant. The homogeneity property defined below is frequently
employed to ensure that a measure is relative. Again, prominent examples can be found
in the literature on inequality measurement. For instance, the relative indices of Atkinson
(1970), Kolm (1969) and Sen (1973) are homogeneous of degree zero; see also Blackorby
and Donaldson (1978).

Homogeneity of degree zero. For all T ∈ T, for all x ∈ H1
T and for all λ ∈ R++,

λ · x ∼ x.

For x = (5, 1, 2, 4, 3, 5) and λ = 1/2, homogeneity of degree zero requires that

(5/2, 1/2, 1, 2, 3/2, 5/2) = λ · (5, 1, 2, 4, 3, 5) ∼ (5, 1, 2, 4, 3, 5).
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6 A characterization

Our main result is the following characterization of the resilience ordering %r.

Theorem 1. A single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance, recovery monotonicity, amplitude and recovery consistency, con-
tinuity and homogeneity of degree zero if and only if %=%r.

Proof. If. To show that %r satisfies recovery neutrality, assume that T ∈ T and x, y ∈ H1
T

have the same timing structure. If xτ = yτ for all τ ∈ {1, . . . , T} \ U and (yτ )τ∈U is a
permutation of (xτ )τ∈U, it follows immediately that r(x) = r(y) and hence x ∼r y.

Now we establish recovery translation invariance. Let T ∈ T, x, y ∈ H1
T and z ∈ RT

be such that x and y have the same timing structure, xτ = yτ and zτ = 0 for all τ ∈
{1, . . . , T} \U, (x + z), (y + z) ∈ H1

T and U(x+z) = U(y+z) = U. It follows that

a(σx+z) = a(σy+z) = a(σx) = a(σy),

b(σx+z) = b(σx)−∑t∈U zt,

b(σy+z) = b(σy)−∑t∈U zt.

Therefore,

(x + z) %r (y + z) ⇔ a(σx+z)

a(σx+z) + b(σx+z)
≥ a(σy+z)

a(σy+z) + b(σy+z)

⇔ a(σx)

a(σx) + b(σx)−∑t∈U zt

≥ a(σx)

a(σx) + b(σy)−∑t∈U zt

⇔ b(σx) ≤ b(σy)

⇔ x %r y.

Next, we prove that %r satisfies recovery monotonicity. Assume that T ∈ T and
x, y ∈ H1

T have the same timing structure with U 6= ∅. Furthermore, assume that xτ > yτ

for all τ ∈ U and xτ = yτ for all τ ∈ {1, . . . , T} \ U. This immediately implies that
b(σx) < b(σy) and, because %r decreases in the recovery delay, it follows that x �r y.

Now consider amplitude and recovery consistency. Let T, T ′ ∈ T, x ∈ H1
T and y ∈

H1
T ′ be such that |Ux| = |Uy|. Furthermore, assume that there exists t ∈ Z such that

xs(σx) − xd(σx) = ys(σy) − yd(σy) and xτ − xd(σx) = yt+τ − yd(σy) for all τ ∈ Ux. By definition,
this implies that

a(σx) = xs(σx) − xd(σx) = ys(σy) − yd(σy) = a(σy)

and
b(σx) =

∑

τ∈U

(
xs(σx) − xτ

)
=
∑

τ∈U

(
ys(σy) − yt+τ

)
= b(σy)

and hence r(x) = r(y), which implies x ∼r y.

That continuity is satisfied follows immediately from the continuity of the restriction
of the function r to H1

T for all T ∈ T, provided that we require that limk→∞ xk = x ∈ H1
T

and limk→∞ d(σxk
) = d(σx).
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Finally, we prove that %r is homogeneous of degree zero. Let T ∈ T, x ∈ H1
T and

λ ∈ R++. It follows that

a(σλ·x) = λ · xs(σx) − λ · xd(σx) = λ ·
(
xs(σx) − xd(σx)

)
= λ · a(σx)

and
b(σλ·x) =

∑

t∈Ux

(
λ · xs(σx) − λ · xt

)
= λ ·

∑

t∈Ux

(
xs(σx) − xt

)
= λ · b(σx).

Therefore, r(λ · x) = r(x) and hence λ · x ∼r x.

In the only-if part of the proof, we proceed in several steps to illustrate how adding one
axiom at a time successively narrows down the set of possible orderings until we arrive at
the desired conclusion.

We begin by showing that the conjunction of recovery neutrality and recovery transla-
tion invariance implies that the criterion is insensitive to the distribution of health values
in the recovery phase provided that the sum of the health values in the recovery phase
remains unchanged.

Lemma 1. If a single-spell resilience ordering % satisfies recovery neutrality and recovery
translation invariance, then, for all T ∈ T and for all x, y ∈ H1

T with the same timing
structure, if xτ = yτ for all τ ∈ {1, . . . , T} \U and

∑
τ∈U xτ =

∑
τ∈U yτ , then

x ∼ y.

Proof. Assume that x, y ∈ H1
T have the same timing structure,

∑
τ∈U xτ =

∑
τ∈U yτ and

xτ = yτ for all τ ∈ {1, . . . , T} \U.
It is trivially true that x ∼ y if |U| = u− d equals 0 or 1.
Now assume that |U| = u− d ≥ 2. Define the vectors x0, . . . , xu−d−1 by x0 = x and

xk = xk−1 + wk for all k = 1, . . . , u− d− 1,

where, for all k = 1, . . . , u − d − 1, wk ∈ RT is given by wk
u−k+1 = yu−k+1 − xk−1

u−k+1,
wk

u−k = −wk
u−k+1 and wk

τ = 0 for {1, . . . , T} \ {u− k, u− k + 1}. Note that

xu−d−1
d+1 = xd+1 − yd+2 + xu−d−2

d+2 = · · · = xd+1 +
u∑

τ=d+2

(xτ − yτ ) = yd+1

since, by assumption,
∑u

τ=d+1 yτ =
∑u

τ=d+1 xτ , while, by construction, xu−d−1
τ = yτ for all

τ ∈ {d + 2, . . . , u}. Hence, xu−d−1 = y.
It remains to be shown that xk ∼ xk−1 for all k ∈ {1, . . . , u− d− 1}. Note that

xk−1
u−k + xk−1

u−k+1 = xk
u−k + xk

u−k+1
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since wk
u−k = −wk

u−k+1. Hence, we can define the scalars αk and βk as follows.

αk = 1
2
·
(
xk−1

u−k + xk−1
u−k+1

)
= 1

2
·
(
xk

u−k + xk
u−k+1

)
,

βk = 1
2
·
(
xk−1

u−k − xk
u−k

)
= 1

2
·
(
xk

u−k+1 − xk−1
u−k+1

)
.

Let zk ∈ RT be given by

zk
u−k+1 = αk − 1

2
·
(
xk−1

u−k+1 + xk
u−k+1

)
,

zk
u−k = αk − 1

2
·
(
xk−1

u−k + xk
u−k

)

and zk
τ = 0 for all τ ∈ {1, . . . , T} \ {u− k, u− k + 1}. Then

xk
u−k+1 + zk

u−k+1 = αk + 1
2
·
(
xk

u−k+1 − xk−1
u−k+1

)
= αk + βk

= αk + 1
2
·
(
xk−1

u−k − xk
u−k

)
= xk−1

u−k + zk
u−k

and

xk−1
u−k+1 + zk

u−k+1 = αk − 1
2
·
(
xk

u−k+1 − xk−1
u−k+1

)
= αk − βk

= αk − 1
2
·
(
xk−1

u−k − xk
u−k

)
= xk

u−k + zk
u−k.

By recovery neutrality and recovery translation invariance, it follows that xk ∼ xk−1 for all
k ∈ {1, . . . , u− d− 1} and hence x ∼ y by transitivity.

Our next step consists of adding recovery monotonicity to the two axioms of the above
lemma. As a consequence, it follows that an additive criterion must be used to compare
any two streams with the same timing structure and with identical health-variable values
in the periods prior to the recovery phase.

Lemma 2. If a single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance and recovery monotonicity, then, for all T ∈ T and for all x, y ∈ H1

T

with the same timing structure, if xτ = yτ for all τ ∈ {1, . . . , T} \U, then

x � y ⇔
∑

τ∈U

xτ ≥
∑

τ∈U

yτ .

Proof. Assume that x, y ∈ H1
T have the same timing structure and xτ = yτ for all τ ∈

{1, . . . , T} \ U. Note that the equivalence stated in the lemma is trivially true if |U| =
u− d = 0. Thus, we can without loss of generality assume that |U| = u− d > 0. In view
of Lemma 1, we only have to prove that, under the assumptions of the lemma statement,
the inequality ∑

τ∈U

xτ >
∑

τ∈U

yτ

implies x � y.
The implication follows directly from recovery monotonicity if |U| = u− d = 1.
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Now assume that
∑

τ∈U xτ >
∑

τ∈U yτ and |U| = u − d ≥ 2. Define x′, y′ ∈ H1
T as

follows. Let y′d+1 = yd+1 and choose x′d+1 ∈ (yd+1, xs) such that x′d+1−yd+1 <
∑

t∈U(xt−yt).
Moreover, define

x′τ =
1

u− d− 1
·
(∑

t∈U

xt − x′d+1

)
and y′τ =

1

u− d− 1
·
(∑

t∈U

yt − y′d+1

)

for all τ ∈ {d + 2, . . . , u}, and let x′τ = y′τ = xτ = yτ for all τ ∈ {1, . . . , T} \ U. By
definition, x′ and y′ have the same timing structure as x and y and, moreover, we have

∑

τ∈U

x′τ =
∑

τ∈U

xτ and
∑

τ∈U

y′τ =
∑

τ∈U

yτ

as well as x′τ > y′τ for all τ ∈ U. By Lemma 1, x′ ∼ x and y′ ∼ y. By recovery monotonicity,
x′ � y′ and hence x � y by transitivity.

If the axiom of amplitude and recovery consistency is employed in addition to the
properties previously imposed, it follows that knowledge of the recovery delays b(σx) and
b(σy) is sufficient to rank the streams x and y, provided that they are associated with
recovery phases of the same length and share the same amplitudes.

Lemma 3. If a single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance, recovery monotonicity and amplitude and recovery consistency, then,
for all T, T ′ ∈ T, for all x ∈ H1

T and for all y ∈ H1
T ′ such that |Ux| = |Uy|, if xs(σx) −

xd(σx) = ys(σy) − yd(σy), then
x % y ⇔ b(σx) ≤ b(σy).

Proof. Assume that T, T ′ ∈ T, x ∈ H1
T and y ∈ H1

T ′ are such that |Ux| = |Uy| and
xs(σx) − xd(σx) = ys(σy) − yd(σy). Let u = |Ux| + 2 = |Uy| + 2 and define x′, y′ ∈ H1

u as
follows. Let x′1 = y′1 = max{xs(σx), ys(σy)}, x′2 = y′2 = max{xd(σx), yd(σy)}, x′τ = xd(σx)−2+τ +
max{0, ys(σx) − xs(σy)} and y′τ = yd(σy)−2+τ + max{0, xs(σx) − ys(σy)} for all τ ∈ {3, . . . , u}.
Hence, s(σx′

) = s(σy′
) = 1, d(σx′

) = d(σy′
) = 2 and Ux′

= Uy′
= {3, . . . , u}. Note that,

by construction, x′τ ≥ xτ ≥ 0 and y′τ ≥ yτ ≥ 0 for all τ ∈ {1, . . . , u}. By amplitude and
recovery consistency, x′ ∼ x and y′ ∼ y and, by Lemma 2,

x′ % y′ ⇔ b(σx′
) = (u− 2) · x′1 −

u∑

τ =3

x′τ ≤ (u− 2) · y′1 −
u∑

τ=3

y′τ = b(σy′
)

because x′1 = y′1. The result follows since b(σx) = b(σx′
) and b(σy) = b(σy′

) and % is
transitive.

The next property to be added is continuity. This axiom allows us to extend the result
of the previous lemma to any two streams x and y with the same amplitudes; the recovery
phases associated with x and y may now differ in length.
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Lemma 4. If a single-spell resilience ordering % satisfies recovery neutrality, recovery
translation invariance, recovery monotonicity, amplitude and recovery consistency and con-
tinuity, then, for all T, T ′ ∈ T, for all x ∈ H1

T and for all y ∈ H1
T ′, if xs(σx) − xd(σx) =

ys(σy) − yd(σy), then
x % y ⇔ b(σx) ≤ b(σy).

Proof. Assume that T, T ′ ∈ T, x ∈ H1
T and y ∈ H1

T ′ are such that xs(σx) − xd(σx) =
ys(σy) − yd(σy).

If |Ux| = |Uy|, then the result follows from Lemma 3.
Now assume that |Ux| 6= |Uy|; without loss of generality, assume that |Ux| < |Uy|. Let

u = |Uy|+ 2 and define x′, y′ ∈ H1
u as follows. Let x′1 = y′1 = max{xs(σx), ys(σy)}, x′2 = y′2 =

max{xd(σx), yd(σy)}, x′τ = xd(σx)−2+τ + max{0, ys(σx) − xs(σy)} for all τ ∈ {3, . . . , |Ux| + 2},
x′τ = x′1 for all τ ∈ {|Ux| + 3, . . . , u} and y′τ = yd(σy)−2+τ + max{0, xs(σx) − ys(σy)} for all
τ ∈ {3, . . . , u}. Hence, s(σx′

) = s(σy′
) = 1, d(σx′

) = d(σy′
) = 2, Ux′

= {3, . . . , |Ux| + 2}
and Uy′

= {3, . . . , u}. Note that, by construction, x′τ ≥ xτ ≥ 0 and y′τ ≥ yτ ≥ 0 for all
τ ∈ {1, . . . , u}. By amplitude and recovery consistency, x′ ∼ x and y′ ∼ y.

If |Ux| = 0 (and, by assumption, |Uy| > 0), then b(σx′
) = 0 < b(σy′

). Construct
the sequence 〈xk〉k∈N by letting, for all k ∈ N, xk be defined by xk

1 = x′1, xk
2 = x′2 and

xk
τ = x′1 − ε/k for all τ ∈ {3, . . . , u}, where (u − 2) · ε < b(σy′

), so that b(σy′
) > b(σx1

) >
· · · > b(σxk

) > b(σxk+1
) > · · · > b(σx′

) = 0. Note that |Uxk | = |Uy|. By Lemma 3,
σy′ � σxk

for all k ∈ N and σxk � limκ→∞ σxκ
= σx′

for all k ∈ N by continuity because
limκ→∞ xκ = x′ and b(σxk

) is strictly decreasing in k. Hence,

x ∼ x′ � y′ ∼ y

because % is transitive.
Finally, assume that |Ux| > 0. Construct the sequence 〈xk〉k∈N by letting, for all

k ∈ N, xk be defined by xk
1 = x′1, xk

2 = x′2, xk
3 = x′3 + (u − |Ux| − 2) · ε/k, xk

τ = x′τ
for all τ ∈ {4, . . . , |Ux| + 2} and xk

τ = x′1 − ε/k for all τ ∈ {Ux| + 3, . . . , u}, where
(u − |Ux| − 2) · ε < x′1 − x′3, so that xk

2 ≤ x′3 < xk
3 < xk

1. It follows that |Uxk | = |Uy|. By
construction, b(σx1

) = · · · = b(σxk
) = b(σxk+1

) = · · · = b(σx′
). Combined with Lemma 3,

it follows that σxk ∼ σx′
for all k ∈ N by continuity; note that limκ→∞ xκ = x′. Hence, by

Lemma 3 and transitivity,

x′ ∼ xk % y′ ⇔ b(σx′
) = b(σxk

) ≤ b(σy′
)

for all k ∈ N so that

x ∼ x′ % y′ ∼ y ⇔ b(σx) = b(σx′
) ≤ b(σy′

) = b(σy).

We are now ready to prove the only-if part of our axiomatization. Adding homogeneity
of degree zero implies that we can divide by the amplitude of a down spell so that we arrive
at the ordering %r represented by the resilience measure r.

23

ECINEQ WP 2019 - 486 January 2019



Proof. Only if. Assume that � is an ordering that satisfies the axioms of the theorem
statement. Let T, T ′ ∈ T, x ∈ H1

T and y ∈ H1
T ′ . Define

λx =
1

xs(σx) − xd(σx)

=
1

a(σx)
and λy =

1

ys(σy) − yd(σy)

=
1

a(σy)
.

Let x′ ∈ H1
T and y′ ∈ H1

T ′ be defined by x′ = λx · x and y′ = λy · y. By homogeneity of
degree zero,

x ∼ x′ and y ∼ y′.

We have that

x′s(σx) − x′d(σx) =
xs(σx) − xd(σx)

a(σx)
= 1 =

ys(σy) − yd(σy)

a(σy)
= y′s(σy) − y′d(σy),

thus, by Lemma 4,

x′ % y′ ⇔ b(σx)

a(σx)
= b(σx′

) ≤ b(σy′
) =

b(σy)

a(σy)

⇔ 1 +
b(σx)

a(σx)
≤ 1 +

b(σy)

a(σy)

⇔ a(σx) + b(σx)

a(σx)
≤ a(σy) + b(σy)

a(σy)

⇔ a(σx)

a(σx) + b(σx)
≥ a(σy)

a(σy) + b(σy)
.

As established above, we also have x ∼ x′ and y ∼ y′ so that we obtain

x ∼ x′ % y′ ∼ y ⇔ x %r y,

using the definition of %r.

That our axioms are independent is established in the appendix.

7 Concluding remarks

In this paper, we propose and axiomatize a measure of resilience based solely on the proper-
ties of the health streams—the fundamental determinants of our notion of resilience. More
specifically, our approach treats down spells as the crucial experiences that reflect an indi-
vidual’s ability to recover. Implicit in our definition is the assumption that, in a down spell,
the severity of the down movement matters but not its duration. Likewise, our properties
imply a specific way of identifying the dividing line between a downwards movement and
the recovery phase. These features represent modeling choices that we consider attractive
in the measurement of resilience. Of course, there are alternative methods of defining the
amplitude of a down spell and the transition from a drop to the period in which recovery
can occur, and it may be useful to explore some of these in future work. A more general
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approach is to enrich the framework by taking into consideration information concerning
the influencing forces that precipitate a down spell. However, if we were to adopt such a
procedure we would have to rely on enriched data which might not be as easily available
as the health streams on which our resilience ordering is based.

Our measure of resilience has a drawback at the level of the individual of not being
continuous when a sequence of health streams converges to a health stream for which the
down spell ends in a different period. To exemplify, consider Figure 4 and the let the health
value in period 3 (instead of having the value 3) approach the health value 2 from below. To
be specific, consider the sequence 〈xk〉k∈N of streams with xk = (4, 2, 2− 1

k+1
, 1, 4), so that

x = limk→∞ xk is given by x = (4, 2, 2, 1, 4). For each element of this sequence, d(σxk
) = 4,

meaning that the down spell ends in period 4 and our measure of resilience r(xk) equals 1,
since full recovery is immediate. However, in the limit, d(σx) = 2 and r(x) = 2

7
, since full

recovery now takes two periods.
In practical applications, health is represented by a finite number of discrete values.

In particular, when applying a Short Form Health Survey such as SF-36 (or the shorter
version SF-12), health might be assigned integer values on a scale of 0 to 100 where a score
of 0 indicates the worst possible perceived health and a score of 100 is equivalent to full
health.

By not relying on information at the individual level concerning the forces that precip-
itate the individual down spells, our measure of resilience can be used for measuring the
resilience of large populations of subjects. At such an aggregate level, the issue of whether
the measure is continuous at the individual level loses much of its importance. Thus, the
measure of resilience that we propose might be well-posed to identify the effects of interven-
tions designed to improve mental-health resilience. This can be accomplished by studying
populations of subjects some of whom are treated and some of whom remain untreated.

A possible concern is that our ordinal measure of resilience may not allow for a suffi-
cient degree of differentiation across individuals. Nevertheless, this may not pose a serious
problem, as demonstrated by the results when applying our measure to the German Socio-
Economic Panel. The SOEP is an ongoing panel survey with yearly re-interviews (see
http://www.diw.de/gsoep). It is a representative longitudinal micro-level study providing
a wide range of demographic and socio-economic information on private households and
all household members. The first data was collected in 1984 from a sample of randomly-
selected adult respondents in the Federal Republic of Germany. Since then, the same
individuals have been surveyed annually. In 1990 the survey was expanded to include the
states of the former German Democratic Republic. New samples were included later on
to collect information on specific population groups or to boost the sample size. Every
year since 1994, individuals are asked to rate their health by responding to the question
“How would you describe your current health?” with possible answers on a five-point scale,
ranging from “bad” (1) to “very good” (5). They are also asked “How satisfied are you
with your health?” where responses are given on an 11-point scale from 0 (“completely
dissatisfied”) to 10 (“completely satisfied”). We analyzed the years from 1994 to 2016 and
restricted the sample to respondents for whom we have at least six consecutive observa-
tions, leaving us with 15,015 individuals. A histogram representing the relative frequencies
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of the attained resilience levels is provided in Figure 8 for self-assessed health status and
in Figure 9 for health satisfaction. As is evident from these diagrams, there is considerable
variation in both cases.
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Figure 8: Self-assessed health
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Figure 9: Health satisfaction
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We conclude by noting that our approach is general enough to accommodate the assess-
ment of resilience in the context of other variables. These could be both at an individual
level, such as equivalent household income, and aggregate variables of economic perfor-
mance, such as unemployment rates and GDP growth rates of countries.

A Appendix: Independence of the axioms

For each of the six axioms employed in our characterization, we provide an example that
violates the axiom and satisfies the remaining properties. We note that the five examples
that satisfy recovery monotonicity also satisfy the following stronger property.

Strong recovery monotonicity. For all T ∈ T and for all x, y ∈ H1
T with the same timing

structure such that U 6= ∅, if xτ ≥ yτ for all τ ∈ U with at least one strict inequality and
xτ = yτ for all τ ∈ {1, . . . , T} \U, then

x � y.

Thus, the examples also show that strengthening the monotonicity axiom in this way does
not affect the independence of the axioms. Note that our ordering %r possess this stronger
property.

A.1 Recovery neutrality

Let δ ∈ (0, 1) and define, for all x ∈ Ω1,

r1(x) =
a(σx)

a(σx) +
∑

t∈U(σx) δt−d(σx) · (xs(σx) − xt)

and, for all x, y ∈ Ω1, x %1 y if and only if r1(x) ≥ r1(y). The ordering %1 satisfies all our
axioms except for recovery neutrality.

A.2 Recovery translation invariance

Let δ ∈ (0, 1) and define, for all x ∈ Ω1,

r2(x) =
a(σx)

a(σx) +
∑

t∈U(σx) δt−d(σx) · (xs(σx) − xπ(t))
,

where π : U(σx) → U(σx) is a bijection satisfying xπ(t) ≤ xπ(t+1) for all t ∈ U(σx)\{u(σx)},
and, for all x, y ∈ Ω1, x %2 y if and only if r2(x) ≥ r2(y). The ordering %2 satisfies all our
axioms except for recovery translation invariance.

A.3 Recovery monotonicity

Let %3 be the universal indifference relation, that is, for all x, y ∈ Ω1, x ∼3 y. The ordering
%3 satisfies all our axioms except for recovery monotonicity.
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A.4 Amplitude and recovery consistency

Define, for all x ∈ Ω1,

r4(x) =
a(σx) · (d(σx)− s(σx))

a(σx) · (d(σx)− s(σx)) + b(σx)

and, for all x, y ∈ Ω1, x %4 y if and only if r4(x) ≥ r4(y). The ordering %4 satisfies all our
axioms except for amplitude and recovery consistency.

A.5 Continuity

Define, for all x ∈ Ω1,

r5(x) =
a(σx)

a(σx) + |Ux| · b(σx)

and, for all x, y ∈ Ω1, x %5 y if and only if r5(x) ≥ r5(y). The ordering %5 satisfies all our
axioms except for continuity.

A.6 Homogeneity of degree zero

Define, for all x, y ∈ Ω1, x %6 y if and only if b(σx) ≤ b(σy). The ordering %6 satisfies all
our axioms except for homogeneity of degree zero.
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