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1 Introduction

The rapid urbanization process around the world has brought renewed interest to the

question of the size distribution of cities. Many countries are urbanizing at relatively early

stages of development (Jedwab and Vollrath, 2018, Glaeser, 2014), and the total urban

population of the world is set to grow by 2.7 bn people from 2015 to 2050 (United Nations,

2018). Whether this growth is distributed equally among cities of all size, or whether

the largest metropolises are further increasing their share, is an important question for

policymakers. Bigger cities can reap agglomeration benefits by pooling physical and

human capital as well as by exploiting spillovers across and within industries, but they

also suffer from plights such as congestion (Rosenthal and Strange, 2004, Desmet and

Rossi-Hansberg, 2013).

It has long been argued that Zipf’s Law should be an appropriate description of the size

distribution of big cities within a country, implying that a city’s rank is approximately

inversely proportional to its size (Zipf, 1949). There are strong theoretical arguments

for Zipf’s Law as well as empirical evidence with population data, in particular for the

U.S. (Gabaix, 1999, Rozenfeld et al., 2011). But cross-country studies have so far yielded

mixed results (Rosen and Resnick, 1980, Soo, 2005). Unfortunately, they are often limited

to countries with a high statistical quality and miss out on large parts of the rapidly

urbanizing developing world. Population data on a country’s cities ultimately rely on

national statistical agencies. This implies not only large cross-country variations of data

quality and availability across time, but also in terms of definitions of what constitutes

a city. This is exemplified by a look at the database www.citypopulation.de (Brinkhoff,

2017), a regularly updated compilation of national census statistics which has been used

by many cross-country studies (e.g. Soo, 2005, Henderson and Wang, 2007): The listed

cities start at 50,000 inhabitants in the UK, 150,000 in Japan, and 15,000 in Egypt.

By contrast, the global threshold of 300,000 inhabitants imposed by the database of

the U.N. World Urbanization Prospects misses out on locally important cities in less

populous countries. In fact, the World Bank (2009) argue that a threshold of 50,000

people is reasonable for a sizable settlement in developed and developing countries.

In this paper, we systematically examine the size distribution of cities with a truly global

data set. We exploit geo-spatial data as well as recent theoretical advances on the origin

of the city size distribution. In particular, we use a consistent city identification scheme

across countries based on the European Commission’s Global Human Settlement Layers

(GHSL) and include all cities with more than 50,000 inhabitants in every country of the

globe. In this way, we contour the issues of limited data availability and comparability

plaguing earlier studies. Another advantage of working with such geo-spatial data is

that we can define cities based on their de facto geographical extent rather than working

with administrative city boundaries. This can capture the economic and social reality
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of cities more appropriately. With our approach, we arrive at a data set of 13,844 cities

in 194 countries.1 Using this data set, our paper might be called the Zipf paper for the

geo-spatial age. In particular, we carry out the following three investigations: (i) We

analyze for each country whether Zipf’s law holds in terms of population and examine

deviations. (ii) In addition to population, our geo-spatial data allows us to measure

city size by nighttime lights proxying for economic activity. To our knowledge, we are

the first to investigate whether the size distribution of economic activity in countries

also follows Zipf’s Law. (iii) We investigate the geographical, institutional and historical

determinants of the cross-country variation we observe in the city size distribution, and

we look at changes over time.

More broadly, with our data analysis we extend the Zipf question into a general discussion

of how to measure cities’ economic and social importance. Satellite data of nighttime

lights have been shown to be an appropriate proxy for local economic activity (Henderson

et al., 2012, Donaldson and Storeygard, 2016) and are increasingly used for the study of

cities in developing countries where up-to-date population data are lacking (Bluhm and

Krause, 2018, Storeygard, 2016, Fetzer et al., 2016). But it is an open question whether

light per capita is the same for all cities in a country and how light output in cities

responds to changes in population. We address these points by comparing population

and light across the whole city size distribution. We examine the particular role played

by primary cities, which have been linked to autocratic structures (Ades and Glaeser,

1995), political centralization (Davis and Henderson, 2003) and low levels of development

in general (Henderson, 2003). If luminosity in the largest cities is more responsive to

population changes, it suggests that positive agglomeration effects are being reaped.

But if primary cities are systematically brighter than the rest and relatively inelastic to

population changes, other factors might play a role, such as wasteful political spending

(Lipton, 1977).

Going further, our paper exploits the geo-spatial structure of the data and decomposes

city size, in terms of both light and population, into the product of area and density.

While larger cities are typically both more extended and denser than smaller ones, we

examine which factor dominates. This carries vital insights for the types of agglomeration

effects at play: Economies of scale and the wider market access of bigger cities (Krugman,

1991, Fujita et al., 1999) mainly operate through a larger area, while more frequent

human capital interactions, as highlighted by Moretti (2004) and Bettencourt (2013), are

arguably working through a higher density.

The main results of our paper are the following: (i) For many countries, the city

size distribution in terms of population can be characterized by Zipf’s law, given the

1We will use the term city for all observations in our data set, while keeping in mind that there are
some agglomerations that do not reflect one but several cities in the administrative sense, such as the
Pearl River Delta in China.
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appropriate threshold is applied. (ii) The city size distribution of light is more unequal

than that of population and Zipf’s law in light can be rejected for most countries.

The distributional difference between light and population is particularly pronounced

in African countries. (iii) Deviations from Zipf’s law can mostly be explained by the

top end of the distribution, with primary cities being disproportionately populous and

bright. In the biggest cities, economic activity is particularly concentrated and light is

less sensitive to population changes. (iv) Decomposing city size into density and area, our

results are mostly driven by the area effect of the largest cities. This suggests that the

agglomeration effects of scale and market access dominate; reaping also human capital

interaction effects requires a good inner-city infrastructure. (v) The observed cross-

country variation in the city size distribution can mostly be accounted for by historical

factors, which lends weight to the time of development hypothesis by Henderson et al.

(2018). Despite relatively little variation over the last decades, our results on higher

growth rates in primary cities suggest that the city size distribution of several conntries

might become more unequal in the future.

The remainder of this paper is structured as follows: In Section 2 we link our paper

to the literature on the size distribution of cities and urban primacy. In Section 3,

we describe our city identification scheme, the resulting data set of city size in terms

of light and population, as well as the econometric estimation approach. Section 4

contains the empirical estimation results on Zipf’s law and their implications, while

Section 5 investigates the determinants behind the cross-country variation in the city size

distribution and gives an outlook. Section 6 concludes. An Online Appendix contains the

accompanying material, such as supplementary information on the data set, a simulation

exercise, detailed results for each country as well as numerous robustness checks.

2 Related literature

As focal points of economic and social activity, cities and their size have attracted

researchers’ interest for a long time. It was first suggested by Auerbach (1913) that

the size distribution of cities in terms of population follows a Pareto distribution

Ny = A · y−α (1)

with Ny as the number of cities larger than population size y and shape parameter α.

The special case of α = 1, and constant A equal to the size of the largest city, is referred

to as Zipf’s Law (Zipf, 1949).

Various seminal papers have focused on the underlying theoretical processes. From the

homogeneity of cities’ growth processes with the same rate and variance independent of

their size - so-called Gibrat’s (1931) Law - one can derive that the entire distribution
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of all cities and towns should be lognormal (Eeckhout, 2004). But augmenting this

homogeneous growth process with a lower bound of city size and some shocks yields a

distribution that is Pareto at the top (Gabaix, 1999). A Pareto distribution in city size

also emerges from other theoretical consideration, for example the combination of cities’

agglomeration and congestion effects (Rossi-Hansberg and Wright, 2007), the interplay

between industry-specific shocks and firms’ location decisions (Duranton, 2007), or a

combination of sorting of individuals, productivity of firms as well as agglomeration

effects (Behrens et al., 2014).

Most of the empirical papers on the topic focus on the U.S. and provide supportive

evidence of a Zipf distribution for the biggest U.S. cities (see e.g. Rozenfeld et al., 2011,

Fazio and Modica, 2015); for example Gabaix (2016) obtains an alpha coefficient estimate

of 1.03. The implication of Zipf’s law that a city’s rank is approximately inversely

proportional to its size is neatly illustrated in the U.S., where the biggest city (New

York) has twice the population of the second-ranked city (Los Angeles) and three times

the population of the third-ranked city (Chicago).2

This paper sets itself apart from these works by its global focus, investigating Zipf’s law

in countries around the world. It follows earlier cross-country studies which were limited

in their data availability and comparability of city definitions. For example, Rosen and

Resnick (1980) use census data from 44 countries from the 1970s; Soo (2005) works with

the www.citypopulation.de data based on national statistical offices from 73 countries.

But how cities are defined in terms of minimum size and administrative borders varies

considerably across countries. It is therefore not clear to what extent the variability

of alpha estimates across the sample - Rosen and Resnick’s (1980) Pareto alphas range

from 0.809 (Morocco) to 1.963 (Australia) - is due to systematic deviations from Zipf’s

law or how much may be due to measurement issues. With our globally consistent

city identification scheme and our threshold discussion of the Pareto tail, we provide a

thorough treatment of these topics which was lacking until now. Also, Brakman et al.

(1999) have already remarked that there is more evidence in favor of Zipf’s Law when

agglomerations rather than core cities are considered as these tend to extend around the

largest metropolises. With geo-spatial data, we are able to investigate this argument

thoroughly. Although geo-spatial data are now widely used in regional and development

economics, there only seems to be one other Zipf-related paper which measures the urban

extent based on geo-spatial data: Small et al. (2011) look at the size distribution of the

world’s largest metropolises independent of countries.3

2Note that even if Zipf’s Law holds exactly, this rank-size association remains an approximation.
It is typically imprecise for the lower-ranked cities and provides a more adequate representation of the
many higher-ranked cities (Gabaix and Ioannides, 2004).

3Their supportive evidence of Zipf’s law in a sample of the world’s largest cities irrespective of
countries is intriguing. Yet, for policymakers, the city size distribution at the national level is arguably
more relevant, and in the absence of a friction-free movement of people and capital across borders, the
theoretical processes underlying city growth are more likely to hold at the national than at the global
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To our knowledge, our paper is also the first to look at the size distribution of cities in

terms of economic activity proxied for by light, in addition to population. Analyzing

the drivers of the geographical distribution of economic activity within countries with

nighttime lights is an active research area (see e.g. Henderson et al., 2018, Lessmann and

Seidel, 2017), but so far a connection to Zipf’s law is missing. We add up nighttime lights

analogously to population within the identified city boundaries and study differences in

the city size distributions of light and population. Nighttime lights capture consumption,

investment, government spending, in particular in public infrastructure (Henderson et al.,

2012, Elvidge et al., 2014), but the relation between light and population may be different

in cities of different size. For example, primary cities might own their outsized role to both

agglomeration effects (Rosenthal and Strange, 2004, Moretti, 2004) and disproportional

public resources (Ades and Glaeser, 1995). Our comparison of population and light across

the whole size distribution of cities directly contributes to this debate. One reason why

nighttime lights have so far not been used widely for the study of largest cities is also the

top-coding problem: The classical DMSP-OLS satellites fail to capture the brightness

of big cities due to sensor saturation, thereby underestimating their economic size. In

addition to the original data, we therefore work with the top-coding corrected lights

data by Bluhm and Krause (2018) to contour this problem and measure the city size

distribution of lights in an unbiased way.

By investigating Zipf’s law in each country and its patterns of deviations and determinants

in different world regions, our work is also related to continent-specific studies of cities.

In particular, Africa with its rapidly increasing urbanization rates, high primacy ratios

and often insufficient urban infrastructure is the topic of numerous papers (such as

Jedwab and Vollrath, 2018, Castells-Quintana, 2017, Christiaensen and Todo, 2014,

Barrios et al., 2006). It has been argued that the optimal city size distribution might

depend on a country’s level of development: Urban concentration is thought to be

helpful for poor countries with weak physical and human capital resources as well as

high transport costs, while a more balanced city size distribution should be beneficial for

more advanced economies (Krugman, 1991, Henderson, 2003). Our worldwide data set

allows to investigate to what extent deviations from Zipf’s law follow this argument, as

well as to give an outlook of the future city size distribution and its consequences.

level (Cristelli et al., 2012).
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3 Data and methodology

3.1 City identification and city size measurement

The key contribution of this paper is to conduct a global cross-country study of the

size distribution of cities using a consistent city identification scheme.4 We employ the

European Commission’s Global Human Settlement Layers (GHSL) to identify urban

settlements hosting more than 50,000 residents in 2015. The lower bound of 50,000

inhabitants has been found to be reasonable for agglomeration effects to take place in

countries around the world (World Bank, 2009). To determine the de facto spatial extent

of a city, the GHSL data combine Landsat satellite imagery on built up area with census

information (Pesaresi and Freire, 2016). Unlike other possible identification methods

derived from the nighttime lights data itself (Small et al., 2011), this method does not

suffer from overglow and identification problems at the bottom of the distribution. The

resolution of the data grid is 1 km pixel of the globe. Figure 1a illustrates for the case

of Paris that the identified urban boundaries (in blue) match the economic and social

reality of a city much better than administrative borders (in red). Technical details on

the city identification scheme, including the treatment of border cities and a robustness

check with shape files from other years are given in Online Appendix A. In this way, we

identify 13,844 cities in 194 countries.

For all the identified cities, we use two measures of size, namely geo-referenced

population and the sum of lights within their urban extents.

We take the population data from the same data source as the city shapes, the GHSL.

They combine Landsat information on built up area with NASA’s Socioeconomic Data

and Applications Center’s fourth version of the Gridded Population of the World (GPW)

to derive a population grid at the same resolution as the city shapes. Hence, we obtain

population data for each of our identified cities as a panel for the years 1975, 1990, 2000

and 2015.

In contrast to this, our nighttime light data form a yearly panel from 1992 to 2013.

We use the ‘stable night light images’ collected by the Defense Meteorological Satellite

Program’s Operational Linescan System (DMSP-OLS) operated by the National

Oceanic Administration Agency (NOAA). The satellites monitor light emissions between

8.30 and 10.00 pm local time on a daily basis and the published pictures are yearly

averages of light emissions on cloud-free days. Corrected for glare, auroral lights,

4For the reasons outlined above, we use a geo-spatial data set of cities based on a comparable
definition for our cross-country analysis. But as a direct comparison with the existing literature, we
repeat our analysis with the www.citypopulation.de data (Brinkhoff, 2017), which relies on definitions
from national statistical agencies. This data set differs from ours in the number of cities included, the
available years and the urban extents of the cities (administrative borders rather than geo-data based
extent). The results are discussed in Online Appendix E.
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Figure 1 – Measuring big cities

(a) Urban Extent of Paris (b) Lognormal Body of Cities with Pareto Tail

Notes: Figure 1a shows the administrative boundaries of Paris as well as the boundaries identified
by GHSL. Lit areas (stable lights) are shown in the background. Figure 1b is a stylized city size
distribution in line with the literature, showing a lognormal body of towns and smaller cities and a
Pareto tail of big cities.

forest fire and gas flares, the resulting lights are assumed to be exclusively man-made.

Light emissions at the pixel level are measured by a Digital Number (DN) ranging

from 0 (dark) to 63 (fully illuminated). This ‘stable lights’ data set has been used

extensively in applications in development and regional economics, see Donaldson and

Storeygard (2016) for an overview. However, Bluhm and Krause (2018) point out

that the ‘stable lights’ suffer from top-coding. Due to sensor saturation, the satellite

cannot capture the full brightness of the biggest cities in which many pixels reach the

end of the scale at 63 DN. As big cities form the focus of our analysis, we use as an

additional data source the top-coding corrected nighttime lights provided by Bluhm and

Krause (2018). For both the ‘stable’ and corrected lights separately, we add up the

DN’s for all the pixels within the city boundaries to obtain the total luminosity of the city.

Table 1 gives an overview of our data set in the year 2000 by presenting summary

statistics for all the cities of the world (13,844) as well as those in some selected countries.

While the median city has a population of 85,530 inhabitants, the world’s largest city has

more than 32m inhabitants (the Pearl River delta agglomeration in China covering inter

alia Shenzhen and Guangzhou). Comparing, for example, the 323 cities in the US and 514

in Bangladesh, we see that the median cities in both countries are of similar size in terms

of population but not in terms of sum of lights (34 DN vs 7295 DN). This underlines the

importance of analyzing the city size distribution in each country separately and thus

accounting for different development levels and country-specific heterogeneity. The table
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also shows that the differences between the ‘stable’ and the top-coding corrected lights

are larger in richer countries - and, for all countries, they are larger in the biggest cities

than at the median.

Table 1 – Summary Statistics of the Data Set in the Year 2000

USA DEU CHN NGA BGD World
Number of Cities 323 86 2,266 428 514 13,844
Median City Size

Population 100,909 105,124 99,455 72,434 98,226 85,530
Stable Light 7,295 4,153 474 53 34 284
Corrected Light 16,485 4,833 474 53 34 284

Maximum City Size
Population 14,853,624 7,477,014 32,343,639 7,789,496 15,452,476 32,343,639
Stable Light 474,339 299,255 502,338 43,631 58,281 502,338
Corrected Light 1,983,732 379,765 845,757 45,687 62,815 1,983,732

Top City’s Name
Population New Yorka Ruhrgebietb Pearl River Lagos Dhakad Pearl River

Deltac Deltac

Stable Light Los Angelese Ruhrgebietb Pearl River Lagos Dhakad Pearl River
Deltac Deltac

Corrected Light Chicagof Ruhrgebietb Pearl River Lagos Dhakad Chicagof

Deltac

Notes: The sums of light within the city boundary are measured in DN. a: New York includes
Newark, Paterson. b: Ruhrgebiet (Essen, Duisburg, etc.) includes Düsseldorf, Cologne, Bonn. c:
Pearl River Delta includes Shenzhen, Guangzhou, Huizhou, Dongguan, Foshan, Jiangmen. d: Dhaka
includes Narayanganj. e: Los Angeles includes Pesadena, Irvine, San Bernadino etc. f: Chicago
includes Waukegan, Evanston, Gary, Joliet, Aurora, Elgin

3.2 Estimation approach

To test for Zipf’s law, we have to limit the analysis to those 103 countries from our data

set with a sufficient number of cities, set to 10 here.5 Within each country, the question

remains where the threshold between the lognormal body of towns and smaller cities on

the one hand and the Pareto tail of big cities on the other hand should be, see Figure 1b.

While our data set only contains cities with at least 50,000 inhabitants, a Chinese city of

that size might still belong to the lognormal part of its country’s distribution. Ioannides

and Skouras (2013) argue that in the U.S. the switch between the two portions of the

distribution occurs between 30,000 and 60,000 inhabitants, but a cross-country discussion

of this issue is missing so far. In Online Appendix B, we conduct a Monte Carlo simulation

which shows the potential distortion of the coefficient estimate when the Pareto estimation

is carried out using too low a threshold. Based on this result, a thorough discussion of

possible thresholds and a numeric identification algorithm, we follow a twofold strategy

in our empirical estimation: In each country, we use (i) all cities in our data set, (ii) only

5In the Online Appendix B, we motivate why we set a minimum requirement in the quantity of given
cities, showing that Pareto tails cannot be established empirically for tiny countries’ fewer cities.
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those cities above the median. The later follows from an optimization approach between

ensuring a pure Pareto tail in as many countries as possible (and therefore avoiding bias

by not setting the threshold too low), while using a large number of city observations per

country (and hence ensuring precision through not too high a threshold).6

For our actual estimation, we follow the literature in using log-rank regressions. If city

size y is Pareto distributed with shape parameter α above the threshold yc as determined

above, we have rank(y) ≈ Nyαc y
−α, or, in logarithms, log rank(y) − logN ≈ α log yc −

α log y. OLS estimation of this equation underestimates the true coefficients and standard

errors in small samples due to the ranking procedure (Gabaix and Ioannides, 2004).

However, subtraction of one half from the rank has been shown to improve the estimation

of the Pareto alpha (Gabaix and Ibragimov, 2011) so that we will estimate the following

log-rank regression by OLS

log
(
rank(y)− 1

2

)
− log(N) = cons.− α · log(y) + ε (2)

with the corrected OLS standard errors given as
√

2/N · α̂ by Gabaix and Ibragimov

(2011).7

4 Results on Zipf’s Law around the world

4.1 Results in terms of population and light

Running (2) individually for all countries with at least 10 cities, and measuring city size

respectively by population and light, we determine whether or not Zipf’s law holds.

Figure 2 shows the densities of the obtained Pareto alpha coefficients in the year

2000. The main insight is that Zipf’s law is an appropriate characterization of the city

size distribution for many countries in terms of population but not in terms of economic

activity as proxied for by light.

The green curve of the population alpha coefficients is centered around 1, and for

77% of countries the coefficients lie within 95% confidence bands around α = 1.8 When

using the full distribution of cities above 50,000 inhabitants in each country (Figure 2a),

the alpha density is slightly more left-skewed than when only including cities above the

6We also test other thresholds. In Online Appendix B we discuss a linear combination of a cutoff
that is first horizontal and then increasing in the number of cities per country, analogous to the literature
on international poverty lines (see for example Ravallion and Chen, 2011).

7An alternative to OLS is the Hill (1975) estimator, which is the maximum likelihood estimator if
the data is Pareto distributed but which is less robust to deviations. In Online Appendix D we repeat
our analysis with the Hill estimator as a robustness check for our results. They are very similar for most
countries; for example, the correlation between the OLS and Hill alpha estimates is 0.813 for ‘stable
lights’ in the above median sample.

8In Online Appendix C we list Pareto alpha coefficients for all countries with their standard errors.
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Figure 2 – Density Plots of Countries’ Estimated Pareto Alphas in the Year 2000

(a) Full Distribution of Cities (b) Cities Above Median

Notes: The estimated Pareto alphas of all countries with more than 10 cities. Figure 2a estimates
(2) for the whole distribution of countries, Figure 2b uses only cities above the median. Light is
based on satellite F15.

median (Figure 2b). As the former potentially features observations from the lognormal

body, inequality in the distribution is slightly overstated. Nevertheless, the mode at

α = 1 is a robust characteristic. Our result that an approximately equal share of

countries have coefficient estimates slightly smaller and larger than 1 differs from the

previous literature, which typically finds a dominating share of countries with larger

Pareto alphas (Rosen and Resnick, 1980, Soo, 2005). Apart from the larger number of

countries in our data set and the consistent city identification scheme, this may be due

to the different urban extent we measure. Administrative boundaries fail to capture

the economic and social extent of larger cities and suggest a more egalitarian city size

distribution than in our results.

Turning towards light, Figure 2 clearly shows that the Pareto alphas are more

unequally distributed than for population. Their distributions are centered around

coefficient estimates smaller than 1. Only 52% of ‘stable light’ alpha estimates, and 39%

of ‘corrected light’ estimates, lie within a 95% confidence interval around α = 1. In line

with our expectations, top-coding corrected lights are even more inegalitarian than the

‘stable lights’ as they capture the full brightness of the largest cities. This is particularly

evident when only cities above the median are considered, of which large metropolises

command a larger share (Figure 2b).
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(a) Stable Light: Germany (b) Stable Light: South Africa

(c) Corrected Light: Germany (d) Corrected Light: South Africa

(e) Population: Germany (f) Population: South Africa

Figure 3 – Zipf Plots for Germany and South Africa (Above Median Setting, Year 2000,
Satellite F15)

There is, however, evidence that the size distribution of cities in terms of light

follows a Pareto distribution; it is just not the special Zipf case of α = 1 for many

countries. Figure 3 uses the example of the two otherwise very different countries of

Germany and South Africa, which both display remarkably linear Zipf plots in terms of
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population, ‘stable’ and corrected light. It is the slopes of the OLS best-fit lines that

differ and deviate slightly more strongly from the green Zipf line (α = 1) for light than

for population.

Exploiting the global nature of our data set, we assemble the population and ‘stable

light’ alpha coefficients for available countries in the scatter plot in Figure 4. The

clustering of countries in the lower left and upper right quadrants shows that those whose

city size distribution is slightly more (less) egalitarian in terms of population is also more

(less) egalitarian in terms of light. Yet, the sizable number of countries in the upper-left

quadrant of more equality in the population size distribution and more inequality in light

suggests a more nuanced relation. Clearly, population increases do not always translate

one to one into increases in economic activity as proxied for by light, but the effects may

differ across the city size distribution, as we will examine in the following.

Figure 4 – Scatter Plot of Population and Stable Light Pareto Alpha Coefficients (Above
Median Setting, Omits Outliers: Kazakhstan, Romania, Ethiopia)

Furthermore, we note patterns of cross-country heterogeneity in the estimated

coefficients: Table 2 shows that on average, population and light are distributed more

equally in Europe than in Africa, Asia, and the Americas. In terms of population,

this confirms the cross-country pattern observed by Soo (2005). Going beyond that,

our results show that (i) this holds for light as well, even as light is more unequally

distributed than population, (ii) working with the full distribution of cities rather than

those above the median yields coefficients of a larger magnitude but with similar cross-
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Table 2 – Summary Statistics for Pareto Alphas (Year 2000)

Africa Americas Asia Europe World

Stable Full Mean 0.626 0.706 0.643 0.955 0.709
Light Dist. (SD) (0.126) (0.153) (0.125) (0.130) (0.178)

N 29 17 32 17 99
Above Mean 0.776 0.964 0.886 1.145 0.904
Median (SD) (0.156) (0.118) (0.161) (0.129) (0.204)

N 22 12 26 9 72
Corrected Full Mean 0.609 0.624 0.607 0.829 0.654
Light Dist. (SD) (0.102) (0.096) (0.104) (0.106) (0.135)

N 29 17 32 17 99
Above Mean 0.746 0.810 0.816 0.979 0.817
Median (SD) (0.113) (0.082) (0.128) (0.133) (0.152)

N 22 12 26 9 72
Population Full Mean 0.811 0.891 0.875 0.989 0.868

Dist. (SD) (0.263) (0.117) (0.271) (0.085) (0.244)
N 31 17 32 17 103

Above Mean 1.195 0.955 1.152 1.094 1.137
Median (SD) (0.294) (0.098) (0.331) (0.130) (0.308)

N 25 13 27 9 78

Note: The table presents the summary statistics of OLS alpha estimates by continent. Luminosity in
the year 2000 is here defined as the average of the two DN values obtained from the two satellites that
were active in that year (F14 and F15). Asia includes Oceania.

continent patterns, (iii) the distributional differences between light and population are

not as pronounced in Europe as on other continents. Across African countries, the mean

alpha estimate is 0.746 for the above-median corrected light distribution and 0.609 for

the full distribution, indicating strong deviations from Zipf’s law.

4.2 Explaining patterns along the city size distribution in

population and light

Let us now examine which part of the distribution is driving the deviations from Zipf’s

law. We compute primary shares as the proportion of the distribution’s total population

or light that is accounted for by the largest city.

Figure 5 show that higher primary shares are strongly correlated with smaller Pareto

alphas, both in terms of population and light. The best-fit line for light is flatter, so

that a smaller Pareto alpha is associated with an even larger primacy share for light. We

see that, overall, countries with a more unequal city size distribution exhibit an undue

concentration of population and economic activity in primary cities.

How is this concentration in the primary cities related to the more unequal distribution

of light compared to population? Emitted light per capita obviously is not constant

throughout the distribution and the process between population, light and economic

activity differs between cities of varying size. We therefore run regressions of the logarithm

of total light emissions in city i in country j and year t on the logarithm of population,
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Figure 5 – Primary Share and Estimated Pareto Alpha in the Year 2000

(a) Population (b) Stable Light

Notes: The scatter plots show the relation for the estimated Pareto alphas (above median setting, all
countries with more than 10 cities) with the primary share, defined as the share of the distribution’s
population or total luminosity that is due to the largest city. The stable light alphas are based on
the satellite F15.

including country- and year-fixed effects, δj and γt:

log(Lightijt) = β0 + β1 log(Populationijt) + δj + γt + εijt (3)

According to the estimates displayed in the first two columns of Table 3 a one

percent surge in population is associated with an increase in light that is significantly

more than a one percent.9 The stronger impact on corrected lights arises from the fact

that the total luminosity of larger cities is more severely underestimated by top-coding

than it is the case for smaller cities. To see whether the elasticity is different for primary

cities compared to the rest of the distribution we add Primacyijt, a dummy that equals

one for the largest city in terms of population in a country in a certain year, and

its interaction with log(Populationijt) to the model. We can see that primary cities

are ceteris paribus on average brighter than other cities, irrespective of population,

but their light emissions respond less strongly to population level variation.10 The

interpretation of these findings is in line with, inter alia Ades and Glaeser (1995),

Henderson and Wang (2007) and Gollin et al. (2017), who find that disproportionately

many resources are pooled into primary cities, and that primary cities play an outsized

political, social and economic role. Potentially because they are already bright, their

emitted luminosity responds less strongly to population growth than that of smaller

cities. Regressions depicted in the last two columns of Table 3 show that this effect

9As robustness checks we repeat the estimation in a Seemingly Unrelated Regression Equations
(SURE) framework, which leads to nearly identical results.

10When clustering standard errors at the city rather than country level, the coefficient of the
interaction term coefficient is strongly significant for both light measures.
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is indeed specific to primary cities and not just a big city effect: Replacing the

Primacyijt dummy with TopTenijt, which equals one for the ten most populated cities

per country and year, yields insignificant results for the dummy and the interaction term.

Table 3 – Light-Population Elasticities

Dependent Variable: log(Light)
Stable Corrected Stable Corrected Stable Corrected

(1) (2) (3) (4) (5) (6)
log(Pop.) 1.098*** 1.171*** 1.094*** 1.160*** 1.080*** 1.127***

(0.045) (0.050) (0.050) (0.056) (0.068) (0.076)

Primacy 2.419*** 1.874**
(0.927) (0.943)

log(Pop.) x -0.155** -0.106
Primacy (0.068) (0.072)

TopTen 0.865 -0.122
(0.926) (1.014)

log(Pop.) x -0.048 0.036
TopTen (0.079) (0.087)

Constant -8.273*** -9.120*** -8.239*** -9.016*** -8.139*** -8.718***
(0.600) (0.662) (0.659) (0.728) (0.839) (0.931)

Country F. E. Yes Yes Yes Yes Yes Yes
Year F. E. Yes Yes Yes Yes Yes Yes
N 254,689 254,689 254,689 254,689 254,689 254,689
adj. R2 0.730 0.755 0.730 0.755 0.731 0.756

Note: Standard errors clustered at the country level in parentheses, * p < 0.1, ** p < 0.05, ***
p < 0.01. Primacy is a dummy that equals one for the largest city in terms of population in the
respective year and country. TopTen is a dummy that equals one for the 10 largest city in terms of
population in the respective year and country.

That primary cities in countries around the world behave so differently from their

second- and third-largest peers is worth a closer look. With their outsized position, they

benefit from agglomeration effects particularly strongly: They are home to many firms

and skilled workers, are often the center of political power, and offer a vibrant social

and cultural life. This adds to their productivity, which, in turn makes the city more

attractive to newcomers, further propelling its role. The literature on agglomeration

effects and positive externalities splits these factors into a scaling and a density effect:

Larger cities offer larger markets with more opportunities for both firms and workers

(Krugman, 1991, Fujita et al., 1999), while denser cities facilitate the interactions of

individuals (Bettencourt, 2013) and make them benefit from human capital externalities

(Moretti, 2004, Diamond, 2016).

We investigate the relative size of these effects using our data set. Let us keep in mind

that city size - be it in terms of population or light - of city i at time t is the product of

area and density

Sizeit = Areait ·Densityit. (4)
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This means that primary cities can be bigger than secondary cities for two reasons:

either they extend to a larger area or they have a higher density of population (or light).

Obviously, we often have a combination of both contributors, but they are not equally

important. We divide city size, area and density for the primary and secondary city of

each country and summarize the mean values across measures and continents in Table 4.11

Table 4 – Comparing Primary and Secondary Cities (Countries with 10 or more cities),
Years 2013/15

World Africa Americas Asia Europe

Size 4.322 4.661 5.011 4.192 2.871

(4.032) (2.924) (3.545) (5.456) (2.216)

Population Density 1.324 1.118 1.459 1.547 1.082

(0.905) (0.691) (0.544) (1.255) (0.377)

Area 4.241 5.651 3.849 3.559 2.854

(4.021) (4.764) (3.078) (3.944) (1.914)

Size 4.666 6.819 4.095 3.555 2.704

(4.561) (6.195) (3.201) (3.066) (1.665)

Stable Light Density 1.255 1.333 1.099 1.335 1.021

(0.590) (0.478) (0.261) (0.833) (0.121)

Area 3.792 4.930 3.604 3.181 2.674

(3.119) (3.707) (2.387) (2.994) (1.604)

Size 5.507 7.904 5.462 4.240 2.642

(5.453) (6.819) (4.677) (4.363) (1.574)

Corrected Light Density 1.530 1.522 1.472 1.703 1.141

(0.941) (0.526) (0.791) (1.298) (0.789)

Area 3.865 4.950 3.642 3.314 2.768

(3.163) (3.691) (2.465) (3.139) (1.641)

The values are computed as 1
N

∑N
i=1

PrimaryCitySizei

SecondaryCitySizei
, 1

N

∑N
i=1

PrimaryCityDensityi

SecondaryCityDensityi
,

1
N

∑N
i=1

PrimaryCityAreai

SecondaryCityAreai
with country i and N as the total number of countries on the respective

continent. The respective standard deviations are denoted in parentheses. Asia includes Oceania.

Several observations can be made: (i) Across the world, a country’s primary city is

on average 4.3 times as populous and 4.6-5.5 times as bright as the city at rank two.

These are sizable proportions, given that the Zipf’s Law predicts a factor of two, albeit

with large confidence bands (Gabaix and Ioannides, 2004). We conclude that primary

cities are disproportionately large, underlining their special role (Ades and Glaeser, 1995,

Fetzer et al., 2016, Storeygard, 2016). (ii) In Africa, primary cities are more than 4

times as populous and about 7-8 times as bright as secondary cities, a higher factor than

on any other continent. This goes in line with the well-known high primacy share in

Africa (Henderson and Wang, 2007, Junius, 1999). Europe, by contrast, has the lowest

proportions between primary and secondary cities and they are of a similar magnitude for

population and light. (iii) The size differences between primary and secondary cities can

mostly be attributed to differences in area rather than density. Across all continents it

11These results are for the latest available years, 2013 for light and 2015 for population. They include
the countries with 10 or more cities for which we calculate the Pareto alphas. Pooling the data across
all available years as well as including countries with fewer than 10 cities does not qualitatively change
the results, see Online Appendix F.
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holds that the largest cities are only slightly denser - in terms of both light and population

- but much more extended than secondary cities. Hence, area is driving inequality at the

top of the city size distribution. This suggests that agglomeration effects work through

scaling rather than through density, which holds lessons for policy makers. A more

extended city brings economies of scale and larger product and labor markets, and it can

also ease congestion away from packed areas (Rosenthal and Strange, 2004). By contrast,

density is associated with more frequent interactions of its inhabitants and with pooled

resources. In the model of Bettencourt (2013), the cost of human interactions increases

with the traverse dimension, which is the area of the city. We interpret our results

in the way that innercity infrastructure is the key. We see an outsized concentration

of economic activity in the largest cities, compared to what is predicted by Zipf’s law.

But the agglomeration benefits will be limited if cities are so extended and fragmented

that they fail to connect their inhabitants. For example, the typically insufficient public

infrastructure in many African cities, as inter alia remarked by Castells-Quintana (2017),

Lall et al. (2017) and Bluhm and Krause (2018), can be an obstacle on the way of

channeling their outsized primary cities into hubs of innovation.

5 Determinants of the city size distribution and time

variation

5.1 Determinants of cross-country variation

What are the underlying factors that engender such a city size distribution that is

more unequal in some countries than in others? Earlier papers have linked the city

size distribution to various institutional and geographic factors, such as total area

and population (Rosen and Resnick, 1980), trade openness (Moomaw and Shatter,

1996), infrastructure (Junius, 1999), autocracy (Ades and Glaeser, 1995), government

expenditure (Small et al., 2011), fiscal decentralization (Davis and Henderson, 2003),

and ethnic fractionalization (Mutlu, 1989).

While all of these factors have been shown to play a role, we are here going to test them

in connection with an overarching theory on the evolution of the spatial distribution

of economic activity put forward by Henderson et al. (2018). Their key concept is

the time of development. According to this argument, the larger spatial equality in

economic activity in early developed countries can be traced back to cities’ formation

in agricultural regions at times when transport costs were still high. This is also in line

with Motamed et al. (2014) who use historic population data to show that places with

good agricultural quality urbanized earlier. As agglomeration patterns exhibit strong

persistence, these structures are still visible today. By contrast, in countries which
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developed later, when transport costs were already low, fewer and larger cities were built,

often in strategically important coastal locations. While Henderson et al. (2018) provide

evidence for this theory in terms of the spatial variation of nighttime lights across the

total area of countries, our data set puts us in a position to test it using countries’

actual city size distribution. As variables proxying for early and late development, we

use education, urbanization and GDP per capita of countries in 1950, just as Henderson

et al. (2018).

Table 5 – Time of Development as Determinants of the City Size Distribution

Stable Lights Corrected Lights Population
Alpha Pr. Sh. Alpha Pr. Sh. Alpha Pr. Sh.

Education in 1950 -0.010 0.009 -0.005 0.002 -0.012 -0.001
(0.025) (0.013) (0.018) (0.013) (0.021) (0.011)

Urbanization in 0.006*** -0.003* 0.004*** -0.001 -0.004* 0.003**
1950 (0.002) (0.001) (0.001) (0.001) (0.002) (0.001)

GDP p.c. in 1950 -0.000 -0.000** -0.000 -0.000** 0.000 -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.758*** 0.543*** 0.740*** 0.567*** 1.149*** 0.341***
(0.032) (0.035) (0.024) (0.034) (0.048) (0.029)

Year fixed effects Yes Yes Yes Yes Yes Yes
N 1358 1742 1358 1742 255 324
adj. R2 0.217 0.198 0.100 0.150 0.142 0.047

Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01. Education: average
years of schooling. Urbanization: percent urbanized. GDP p.c.: dollars (in 2005 PPP). Alpha: OLS
Alpha Estimate. Pr. Sh.: Primary Share.

Table 5 shows the result of the panel regression with year fixed effects of

ineqcitysizeit = β0 + β1educ1950i + β2urban1950i + β3gdp1950i + γt + εit, (5)

where inequality in the city size distribution of country i at time t is expressed

either by the Pareto alpha estimate (based on the above-median distribution) or the

primary share.12 According to Table 5 countries which were highly urbanized in 1950,

this is early developed, tend to exhibit greater Pareto alpha coefficients in their city size

distributions nowadays, both in terms of light and population. The negative coefficient

12Running a cross-sectional regression yields very similar results. To increase the sample size we use
the panel regression (5) and cluster standard errors at the country level, while taking into account year
fixed effects.
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estimate of early development on primary cities’ relative size supports that notion.

We now investigate the connection between this time of development theory of the

city size distribution and other variables, including, but not limiting ourselves to, those

that have been used in previous studies. We look at a total of 36 possible explanatory

variables ranging from population structure (such as total population, fertility, migration)

over physical geography (such as terrain ruggedness, coastal border, continent),

institutions (such as time of independence, political rights, fiscal centralization), economic

structure (such as agricultural share, energy use, patent applications) and international

connectedness (such as exports and interstate war).13

Due to the collinearity of this huge number of possible determinants, we employ a model

selection approach: We regress the country’s Pareto alpha coefficient on up to 7 out of

the 36 determinants Xit at a time, including year fixed effects:

α̂it = β0 +
I∑

i=1

βiXit + δt + εit with I ∈ {1, ..., 7} (6)

This amounts to 10,739,175 regressions to compare, out of which we select the best

ones based on AIC and BIC. Table 6 shows the coefficient estimates of the determinants

included in the selected models to explain the size distribution of, respectively, ‘stable’

light, corrected light, and population. Even using such a purely algorithmic approach,

we see the importance of historic variables, such as the year of independence as well as

population in 1400, which are clearly in line with the time of development framework

by Henderson et al. (2018). The continent dummies also play a large role in all three

selected models, capturing in particular a more egalitarian city size distribution in (early

developed) Europe. Also, current urbanization rates predict a higher Pareto alpha. The

effect of trade-related variables on city size is ambiguous, in line with the literature

(Duranton, 2008, Fujita and Mori, 1996). However, the association of coastal proximity

with a more unequal city size distribution can be seen in light of the recent works by

Bonfatti and Poelhekke (2017) and Jedwab and Moradi (2016), who argue that outward-

oriented colonial infrastructure in many developing countries still has an effect on their

distribution of economic activity. Taken together, our results suggest to a much stronger

extent than previous Zipf-related studies that historical determinants can explain a lot

of the cross-country variation of the city size distribution.

13A complete list of the 36 variables including their sources is contained in Appendix G. We do not
use transportation variables, such as the road and rail network, which we consider endogeneous to the
city size distribution even though they have been used in some other studies, such as Rosen and Resnick
(1980).
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Table 6 – Coefficient Estimates of Selected Models

Stable Light Corrected Light Population
Alpha Alpha Alpha

Coastal Proximity -0.002*** -0.001***
(0.000) (0.000)

Independence
before 1914 0.049*** 0.070***

(0.010) (0.011)

between 1946 and 1989 0.060*** 0.047***
(0.009) (0.009)

after 1989 0.233*** 0.203***
(0.012) (0.011)

Continent Dummy
Americas -0.031*** -0.019* 0.038

(0.010) (0.010) (0.025)

Asia 0.051*** 0.084*** 0.121***
(0.009) (0.008) (0.027)

Europe 0.166*** 0.223*** 0.272***
(0.013) (0.011) (0.033)

Oceania -0.395*** -0.187*** -0.062
(0.021) (0.020) (0.058)

Trade -0.002*** -0.000*** 0.000
(0.000) (0.000) (0.000)

Urbanization 0.004*** 0.002***
(0.000) (0.000)

Fertility -0.048***
(0.002)

Exports 0.004***
(0.001)

Agriculture -0.001
(0.000)

Population in 1400 0.000*** 0.000***
(0.000) (0.000)

Interstate War 0.042
(0.059)

Patent Applications -0.000
(0.000)

GDP p.c. -0.000***
(0.000)

Ethnic Fractionalization 0.255***
(0.038)

Constant 0.894*** 0.655*** 0.742***
(0.024) (0.023) (0.035)

Satellite-Year F.E. Yes Yes
Year F.E. Yes
N 2225 2165 123
adj. R2 0.705 0.482 0.713

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. The base categories for the two
categorial variables are non-colonies and Africa respectively. The category ”independence 1914 and
1945” drops out due to the lack of observations.
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5.2 Changes over time and outlook

What do these results mean in a dynamic perspective? If the city size distribution in

terms of light and population can be explained to a large degree by historical factors, it

will change only very slowly. It has been shown for particular countries, such as the U.S.

(Black and Henderson, 2003), France (Duranton, 2007), and Japan (Eaton and Eckstein,

1997), that the city size distribution has been rather persistent across decades despite

structural economic change and city growth. Here we exploit the panel structure of our

global data set to verify this hypothesis for countries around the world: Figure 6 shows

that across the available years for population (1975-2015) and light (1992-2013), the

alpha coefficients and their cross-country distributions exhibit little variation. In terms

of population, the range of Pareto alpha coefficients around 1 seems to have narrowed so

that some countries are getting a bit closer to Zipf’s law from either side. In terms of

corrected light, the cross-country distribution of Pareto alphas remains centered around

a value of 0.8 for the entire period. Tracing the coefficients for each individual country

over time shows similarly little movement, underlining the strong persistence in the city

size distribution for most countries.

Figure 6 – Stability of estimated Pareto alpha coefficients over time

(a) Population (b) Corrected Lights

Notes: The estimated Pareto alphas of all countries with more than 10 cities, based on the above-
median distribution, are shown in the boxplots. The boxes indicate the 25% to 75% percentiles with
the median in between. The range of the plots go up the adjacent values, omitting outliers. In years
where more than one satellite per year is available for the lights data, values are averaged.

How can we then expect the future size distribution to look like? Extrapolating the

results from our analysis over time would suggest that most countries will remain close

to Zipf’s law in population and keep their more unequal distribution in terms of light.

However, the growth rates of the biggest cities add a twist here. In the long run, cities

of different size have to grow at the same average rate for the distribution to remain

stable, according to Gibrat’s Law. Figure 7 compares the population growth rates of
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primary and secondary (2nd to 10th largest) cities in each country from 2000 to 2015. In

the scatter plot of growth rates (Figure 7a), we see countries distributed along the main

diagonal, but a larger number are located above than below it. Hence, in more countries,

primary cities have outgrown secondary cities, pointing to a relative consolidation rather

than a catch-up. This holds both for countries with both egalitarian and inegalitarian

city size distributions, as the different colors of the dots show. Figure 7b compares the

cross-country growth rate distributions: The growth rate distribution of primary cities is

a bit to the right of that of secondary cities and has its mode at a slightly higher level;

the Kolmogorov-Smirnoff test rejects equality of the distributions at the 10% level.

Figure 7 – Population Growth Rates of Primary and Secondary Cities (2000 - 2015)

(a) Growth Rates by Pareto alpha (b) Growth Rate Densities

This tentative evidence of higher population growth rates of primary cities fits in with

other results from the literature. Bluhm and Krause (2018) find that in Sub-Saharan

Africa, primary cities are growing significantly faster than secondary cities in terms of

light once the top-coding correction is applied to the data. United Nations (2018) forecast

that in 2030, there will be 43 mega-cities with more than 10m inhabitants, most of them

in developing countries. Given our result that large primary shares drive inequality of

the total size distribution of cities, this increasing concentration can have wide-ranging

effects. In terms of Zipf’s law, we can expect existing deviations not only to persist but

to become larger rather than smaller, if the largest cities draw away from the rest. For

policymakers, managing the growth of such evolving mega-cities is vital, in particular

in developing countries. There is a debate whether overall poverty is lower in larger or

smaller cities (Ferre et al., 2012, Christiaensen and Todo, 2014). But growing primary

cities will struggle to reap the benefits of agglomeration if (i) living conditions remain bad

(Castells-Quintana, 2017, Glaeser, 2014), and (ii) they are disconnected neighborhoods

with poor infrastructure (Lall et al., 2017, Bluhm and Krause, 2018).
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6 Concluding remarks

We revisit the discussion about Zipf’s Law in a cross-country setting by exploiting recent

geo-spatial data. We use a consistent city identification scheme, provide a rigorous

treatment of the threshold issue, and compare the city size distribution in each country

based on both population and light proxying for economic activity. In total, the data set

contains 13,844 cities in 194 countries.

The main insight from our analysis is that Zipf’s law is an adequate characterization

for the size distribution of cities for many, but not for all, countries. Light, however, is

typically distributed more unequally, so that Zipf’s law does not hold for most countries

in terms of light. Such deviations can be explained to a large extent by an undue

concentration of resources in the largest cities. We also note that the size effect is mainly

driven by area rather than density, so that agglomeration effects are more likely to work

through economies of scale and market access rather than human capital interactions.

To explain the cross-country heterogeneity in the size distribution of cities, we make use

of recent theories about the time of development. Factors related to economic history

turn out to be robust explanatory factors in our model selection procedure. Despite this

persistence of the city size distribution, recent growth rates of the largest cities lead us to

suggest that we might see a further move away from rather than to Zipf’s law in several

countries.

Of course, the question remains which distribution of city size is optimal for a given

country. Despite the strong theoretical arguments leading to Zipf’s law, Henderson

(2003) claims that country-specific factors, such as the current development level, might

make a different distribution more appropriate. In particular, a stronger concentration

of resources at earlier stages of development is said to be beneficial, but later on a

more balanced size distribution should emerge (Hansen, 1990, Junius, 1999, Davis and

Henderson, 2003). Our results about a relatively persistent size distribution, which might,

however, become more unequal rather then equal in the future, suggest that a number of

countries are moving in the opposite direction. More research on the interactions between

city size, population, economic growth, and welfare is needed here.

24

ECINEQ WP 2019 - 488 January 2019



References

Ades, A. F. and E. L. Glaeser (1995). Trade and Circuses: Explaining Urban Giants. Quarterly Journal
of Economics 110 (1), 195–227.

Auerbach, F. (1913). Das Gesetz der Bevölkerungskonzentration. Petermanns Geographische
Mitteilungen 59, 74–76.

Barrios, S., L. Bertinelli, and E. Strobl (2006). Climatic Change and Rural–Urban Migration: The Case
of Sub-Saharan Africa. Journal of Urban Economics 60 (3), 357–371.

Behrens, K., G. Duranton, and F. Robert-Nicoud (2014). Productive Cities: Sorting, Selection, and
Agglomeration. Journal of Political Economy 122 (3), 507–553.

Bettencourt, L. M. A. (2013). The Origins of Scaling in Cities. Science 340 (6139), 1438–1441.
Black, D. and J. Henderson (2003). Urban Evolution in the USA. Journal of Economic Geography 3 (4),

343–372.
Bluhm, R. and M. Krause (2018). Top Lights - Bright Cities and their Contribution to Economic

Development. UNU-MERIT Working Paper 2018-041.
Bonfatti, R. and S. Poelhekke (2017). From Mine to Coast: Transport Infrastructure and the Direction

of Trade in Developing Countries. Journal of Development Economics 127, 91–108.
Brakman, S., H. Garretsen, C. V. Marrewijk, and M. van den Berg (1999). The Return of Zipf: A

Further Understanding of the Rank-Size Distribution. Journal of Regional Science 39 (1), 183–213.
Brinkhoff, T. (2017). City population. http://www.citypopulation.de [Accessed: December 2017 -

February 2018].
Castells-Quintana, D. (2017). Malthus Living in a Slum: Urban Concentration, Infrastructure and

Economic Growth. Journal of Urban Economics 98, 158–173.
Christiaensen, L. and Y. Todo (2014). Poverty Reduction During the Rural-Urban Transformation - The

Role of the Missing Middle. World Development 63, 43–58.
Cristelli, M., M. Batty, and L. Pietronero (2012). There is More than a Power Law in Zipf. Scientific

Reports 812,2, 1–7.
Davis, J. and J. Henderson (2003). Evidence on the Political Economy of the Urbanization Process.

Journal of Urban Economics 53 (1), 98–125.
Desmet, K. and E. Rossi-Hansberg (2013). Urban Accounting and Welfare. American Economic

Review 103 (6), 2296–2327.
Diamond, R. (2016). The Determinants and Welfare Implications of US Workers’ Diverging Location

Choices by Skill: 1980-2000. American Economic Review 106 (3), 479–524.
Donaldson, D. and A. Storeygard (2016). The View from Above: Applications of Satellite data in

Economics. Journal of Economic Perspectives 30 (4), 171–198.
Duranton, G. (2007). Urban Evolutions: The Fast, the Slow, and the Still. American Economic

Review 97 (1), 197–221.
Duranton, G. (2008). Viewpoint: From Cities to Productivity and Growth in Developing Countries.

Canadian Journal of Economics 41 (3), 689–736.
Eaton, J. and Z. Eckstein (1997). Cities and growth: Theory and evidence from france and japan.

Regional Science and Urban Economics 27 (4-5), 443–474.
Eeckhout, J. (2004). Gibrat’s Law for (All) Cities. American Economic Review 94 (5), 1429–51.
Elvidge, C. D., F.-C. Hsu, Kimberly, Baugh, and T. Ghosh (2014). National Trends in Satellite-Observed

Lighting: 1992-2012. In Q. Weng (Ed.), Global Urban Monitoring and Assessment through Earth
Observation, Taylor & Francis Series in Remote Sensing Applications, Chapter 6, pp. 97–120. CRC
Press.

Fazio, G. and M. Modica (2015). Pareto or Lognormal? Best Fit and Truncation in the Distribution of
all Cities. Journal of Regional Science 55 (5), 736–756.

Ferre, C., F. H. Ferreira, and P. Lanjouw (2012). Is there a metropolitan bias? the relationship between
poverty and city size in a selection of developing countries. The World Bank Economic Review 26 (3),
351–382.

Fetzer, T., V. Henderson, D. Nigmatulina, and A. Shanghavi (2016). What Happens to Cities when
Countries Become Democratic? unpublished.

Fujita, M., P. Krugman, and A. Venables (1999). The Spatial Economy: Cities, Regions and International
Trade . MIT Press Cambridge.

Fujita, M. and T. Mori (1996). The Role of Ports in the Making of Major Cities: Self-Agglomeration

25

ECINEQ WP 2019 - 488 January 2019



and Hub-Effect. Journal of Development Economics 49 (1), 93–120.
Gabaix, X. (1999). Zipf’s Law for Cities: An Explanation. Quarterly Journal of Economics 114 (3),

739–767.
Gabaix, X. (2016). Power Laws in Economics: An Introduction. Journal of Economic Perspectives 30 (1),

185–206.
Gabaix, X. and R. Ibragimov (2011). Rank - 1/2: A Simple Way to Improve the OLS Estimation of Tail

Exponents. Journal of Business and Economics Statistics 29 (1), 24–39.
Gabaix, X. and Y. Ioannides (2004). The Evolution of City Size Distribution. In J. Henderson and J.-F.

Thisse (Eds.), Handbook of Regional and Urban Economics, Chapter 53, pp. 2341–2378. Elsevier.
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A Data set construction

This section contains a detailed description of the construction of our data set, including

the treatment of border cities and the robustness of our procedure to different shapefiles.

We identify cities based on information provided by the Global Human Settlement

Layers. The employed geo-spatial data of a 1 km resolution divide the globe into rural

areas, urban clusters and urban centers. The classification of each cell relies on census

data and satellite imagery of built-up area. The spatial extent of an urban area in

the GHSL data is unconstrained by administrative boundaries such as city, region or

country borders. We choose their urban centers as the spatial extent of our cities.

These are defined as contiguous cells hosting at least 50,000 inhabitants with a minimum

density of 1,500 people per km2 or a built-up density above 50 percent. The cutoff

at 50,000 inhabitants matches exactly the threshold choice recommended by the World

Bank (2009). The geo-spatial data provides us with the shape and location of overall

13,844 urban centers which we call cities or agglomerations in a total of 194 countries.

All people (or light emissions) aggregated within each of those areas is what we call city

size.1 Not being restricted by administrative city and region borders allows us to measure

the contiguous settlements within which agglomeration economies and congestion costs

come into play. This means that some what we identify as cities in our data set consist

of several cities in the administrative sense. This is illustrated by Figure A-1, a picture

of the Ruhrgebiet region in Germany. Although the agglomeration houses a number of

different administrative cities (boundaries in red), it is de facto one economic and social

contiguum, as the luminosity map indicates. In our data set, it features as one city within

the blue boundaries.

1Nighttime light images consist of 30 by 30 arc seconds pixel of the globe (about 0.86 square kilometers
at the equator). The pixels are thus smaller than GHSL pixels. This does not impede the results since
aggregation happens based on GHSL agglomerations derived from the larger GHSL pixels across all data
sets.
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Figure A-1 – The Largest German Agglomeration (Year 2000, Satellite F15,
Administrative Boundaries of Urban Municipalities Only)

However, this identification scheme poses a challenge at country borders. Dissecting a

city and assigning its fractions to the respective countries would on the one hand violate

the lower bound of 50,000 inhabitants and on the other hand underestimate the full area

relevant for agglomeration effects. Omitting those border cities biases countries’ city

size distributions, especially when one of the major metropolises is affected. Assigning

the affected cities to all bordering countries at the same time would assign cities to

too many countries.2 In cases with just a few houses on the other side, attributing an

entire agglomeration to a country for a few houses seems unreasonable. Therefore, our

solution is to assign the full city to one of the countries if more than 75 percent of the

urban space are located on one side of the border - and to assign it to all bordering

countries otherwise. Figure A-2 illustrates the two cases. The agglomeration Niagara

Falls (Figure A-2a) covers areas of similar size in the United States and Canada and

is assigned to both countries. Antwerp (Figure A-2b) is a city in Belgium. Our data

allocates around 0.04 percent of its area in the Netherlands. The border correction

algorithm accordingly assigns it to the city size distribution of Belgium only. We have

experimented with other ways to solve the border city issue and find it to be the most

2In many cases cities overlap into another country just because of the different format of city shapes
and country borders. Our settlements are based on a raster of 1 km grid cells. It can happen that one
of the city’s cells exceeds the country border, denoted by polygons, simply due to the aggregation.
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robust. In total, 264 out of the 13,844 cities in the data set are affected by this issue; 106

countries have at least one such border city. 137 out of the 264 cities are assigned to a

single country.

(a) Niagara Falls (b) Antwerp

Figure A-2 – Border Cities

In our baseline methodology, we use the city shapes derived from observations in

2015 for all years, implicitly assuming the spatial extent of an agglomeration to be time-

constant. The advantage is that it allows us to easily identify and track agglomerations

over time. However, this approach entails some endogeneity concerns. Using cities’

current shapes induces the inclusion of areas that were still sparsely populated in

earlier years. In addition, some agglomerations with 50,000 inhabitants in 2015 were

considerably smaller in earlier years. To address these concerns, we repeat our analysis

with earlier years’ agglomeration shapes and check the extent to which the shapes of city

size distributions differ. Figure A-3 shows the scatter plots of the Pareto alpha estimates

in the year 2000, using repsectively the 1990 and 2015 shape files. Both for stable light

(Figure A-3a) and corrected light (Figure A-3b), we see strong correlations between the

estimates from different shape files. The estimates for all countries are scattered around

the 45 degree line, which is evidence against a systematic bias. We conclude that our

city identification procedure is robust to the use of different shape files.
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(a) Stable Light (b) Corrected Light

Figure A-3 – Comparison of City Shapes (Above Median Setting, Year 2000, Satellite
F15)
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B Optimal threshold for the Pareto tail

In this section, we provide a rigorous treatment of the threshold selection issue alluded

to in the paper. It is a challenge to determine for each country where the cutoff between

the lognormal body of towns and smaller cities and the Pareto tail should be, and many

previous cross-country papers have largely ignored the issue or used adhoc measures.

Here, we (i) conduct a Monte Carlo simulation to illustrate the consequences of using

an incorrect threshold, (ii) motivate our threshold choice for the empirical investigation,

and (iii) provide results using alternative thresholds.

B.1 Simulation

A crucial prerequisite for empirical tests on Zipf’s law in city size distributions is the

correct dissection of distributions’ lognormal body from the Pareto distributed upper

tail. Using Monte Carlo simulations we motivate why this issue deserves more attention

than related research has paid to it and highlight the consequences that follow from

incorrect assumptions.

The first step of our simulation is the data generation of a stylized city size distribution.

We randomly draw 1,000,000 observations from a lognormal distribution with a

probability density function of

fLX(x) =
1

xσ
√

2π
e−

(lnx−µ)2

2σ2 (B-1)

with µ = 0 and σ = 1. The threshold T at which the Pareto tail begins is set to x = 6.

We discard all observations above that cutoff and attach a matching Pareto tail. That

tail needs to have the same density as the lognormal body at the cutoff to avoid any

discontinuities. Hence, we compute the lognormal distribution’s density at the threshold

T = 6 through (B-1) and set the Pareto distribution’s parameters to reach the same

density at x = 6. The Pareto distribution’s probability density function depends on a

scale parameter, xm, a slope parameter, α, and looks as follows:

fPX(x) =
αxαm
xα+1

(B-2)

Under Zipf’s law, it holds that α = 1. Plugging this in and using fPX(T ) = fLX(T )

determines the scale parameter xm as follows:

xm = fLX(T ) · T 2 (B-3)

For T = 6 we obtain xm ≈ 0.48. Accordingly, we draw 1,000,000 random observations

from the derived Pareto distribution, discard all values below the threshold and attach
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the remainder to the lognormal body. The outcome is a simulated city size distribution

with a lognormal body and a Pareto distributed tail as suggested by the literature, see

Figure B-1.

Figure B-1 – Kernel Density Plot of Simulation Outcome (Zoom on x < 15)

Overall we draw 1,000 of these distributions. In our Monte Carlo simulations we know

the true threshold and obtain an estimated alpha coefficient of approximately unity for

the interval [6,∞[.

In real city size distributions the threshold is unknown and has to be placed by

assumption. What happens if you set it too low and include smaller cities that should

belong to the lognormal body? And, conversely, what happens if you set the threshold

too high, hence using too few cities from the Pareto tail for the estimation of the alpha

parameter?
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Figure B-2 – Comparison of Assumed Thresholds (True T = 6)

Figure B-2 gives the alpha estimates which are obtained when the threshold is set

too low (assumed T < 6) or too high (assumed T > 6). Dissecting the distribution

above the true threshold, i.e. within the Pareto upper tail, does not bias the results but

inflates the variance and produces imprecise results because fewer cities are included.

The reason behind this is that the assumed shorter tail distribution is still Pareto, hence

the parameter estimate is unbiased. The lower number observation is not a major issue

in a simulation with more than 1,000,000 observations in each draw but poses a problem

in practice, as many countries have much shorter distributions. The standard errors will

then be inflated, invalidating inference about Zipf’s law.

On the other hand, an assumed threshold which is too low, yields a biased parameter

estimate. When observations from the lognormal body are included, the estimation of

the Pareto alpha is carried out based on a mixed distribution, leading to results which

are centered away from α = 1 - even as Zipf’s law holds above the correct threshold. We

conclude that care should be taken not to set the threshold at too low a value.

B.2 Threshold choice in practice

Section B.1 motivates the sensitivity of our estimates to threshold assumptions. These

simulations illustrate the problem but do not help us identify the optimal solution to our

real world applications.

Obviously, the threshold between city size distributions’ lognormal body and the Pareto

distributed upper tail varies between countries. Not only the Pareto tail’s length but the
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absolute size of its smallest included city should vary between, say, China and Greece.

We need to design an identification strategy that can be applied worldwide and which

accounts for country-specific heterogeneity.

In a first step we have a minimum city size of 50,000 inhabitants for all countries in our

data set as a consequence of our city identification scheme. According to the World Bank

(2009), this is the settlement size above which agglomeration effects come into play.

In the second step we need to determine the fraction of those cities with more than 50,000

inhabitants in a given country that belong to the Pareto tail. The threshold should grant

comparability across countries and measures, i.e. light and population, and should be set

as low as possible to maximize estimation precision but not too low either. One method

of assessing whether observations are Pareto distributed is the graphical assessment of

the linearity in Zipf Plots, e.g. Figure 3 in the paper. However, Discriminant Moment

Ration Plots (Cirillo, 2013) offer a more clear-cut identification and a more aggregate

cross-country comparison than is available for Zipf Plots. Discriminant Moment Ratio

Plots identifiy a distribution as Pareto based on its skewness and coefficient of variation.

Figure B-3 illustrates such a plot for corrected lights in the year 2000. Including all

cities with more than 50,000 inhabitants, such as in the displayed scenario, leads to the

rejection of the Pareto distribution for many countries as too many observations from the

lognormal body are included. This holds for both, light and population, across all years.

Figure B-3 – Discriminant Moment Ratio Plot (Log Corrected Light, Full Distribution,
Year 2000, Satellite F15)

We should therefore use a higher threshold. In order to find the optimal threshold, we
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design an algorithm counting the number of countries in the Discriminant Moment Ratio

Plot’s areas. The aim is to maximize the fraction of countries located in the Pareto area

without losing too many observations. Setting the threshold at a (cumulative) percentile

of, say, 95% would be a rather safe way of ensuring a Pareto distribution but only 5%

of observations could then be used for the estimation of the Pareto alpha. We test

all available percentiles of the city size distribution for all three measures. Figure B-4

displays the share of countries falling into the Pareto area for the given threshold setting

applied to data from the year 2000. In terms of light, the share in the light data peaks

and approximates the share in the population data around the median. But we also note

that the graphs are not strictly increasing in the percentile thresholds.

Figure B-4 – Share of Countries in DMRP’s Pareto Region (Year 2000, Satellite F15)

However, this picture changes once we restrict the graph to countries with at least 10

cities above the respective percentile cutoff. To avoid our results being driven by outlier

countries with, say, three cities, where a Pareto tail cannot be sensibly established, we

therefore restrict our empirical Zipf law investigation to countries with at least 10 cities

above the threshold. Now, the curves are converging towards unity, in line with the

underlying theory about the lognormal body and the Pareto tail. The higher you set

the threshold, the more likely you are to obtain a Pareto distribution. Notably, the

median threshold is where all three size measures reach equally high levels of about

90% of countries in the Pareto area. Further increasing the threshold hardly brings any

improvements in terms of getting more countries into the Pareto area, but it would lead

to a loss of observations per country. To illustrate that other years produce the same

result Figure B-6 plots the graphs shown in Figure B-4 and Figure B-5 for all years.

We note the same pattern. From these findings we conclude that setting a threshold of
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including the top 50% of cities above 50,000 inhabitants into the Pareto alpha estimation

is the optimal threshold choice.

Figure B-5 – Share of Countries in DMRP’s Pareto Region (Min. 10 Cities above
Threshold, Year 2000, Satellite F15)
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(a) Stable Light (b) Stable Light (Min. 10 Cities)

(c) Corrected Light (d) Corrected Light (Min. 10 Cities)

(e) Population (f) Population (Min. 10 Cities)

Figure B-6 – Share of Countries in DMRP’s Pareto Region

B.3 Alternative thresholds

We also explore other threshold setting mechanisms, but find that they come with serious

drawbacks.
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For example, using relative thresholds, such as the top X cities in each country,

is inconsistent with the threshold requirements and country-specific heterogeneity.

Selecting, say, the thirty largest settlements in both Greece and China, will include many

Greek towns from the distributional body and use fewer cities in China than would be

optimal, given its large number of cities in the Pareto tail.

Population-proportional thresholds are another simplistic approach and select cities based

on their share of the total population. However, they suffer from sample size sensitivity

and a dependence on the degree of urbanization (Cheshire, 1999).

A strategy close but inferior to our baseline approach is an increasing population or lights

threshold. The idea is similar to international poverty lines as used in that strand of the

literature by, inter alia, Ravallion and Chen (2011). Let us outline the idea using a linear

example and the threshold Tit of country i at time t be determined by its number of cities

Nit according to

Tit = L+ (Nit −NL) · U − L
NU −NL

(B-4)

for NL < Nit ≤ NU , Tit = L if Nit ≤ NL and Tit = U otherwise. With arbitrary values

plugged in, this equation could look as follows:

Tit = 50, 000 + (Nit − 20) · 300, 000− 50, 000

2, 000− 20
(B-5)

for country i with 20 < N ≤ 2, 000 cities at time t. Countries with up to twenty cities are

subject to an absolute population threshold of 50,000. Starting with the 21st city, this

cutoff increases linearly by 250,000
1,980

until it reaches a city size of 300,000 with the 2,000th

city. Above that the threshold remains constant again.

As a robustness check, we apply this threshold to the city size distribution in terms of

population in our data set. The Pareto alpha coefficients using this linear threshold and

our above-median threshold are rather similar for most countries (Figure B-7).

One drawback of this approach is the high number of underlying assumptions. The upper

bound, U , of 300,000 inhabitants, the switching points at NL = 20 and NU = 2, 000 and

the linearity of the connection in between are purely arbitrary. However, the largest

obstacle to this strategy is that it is unfeasible with the multiple city size measures

used in this paper. Given we choose some upper bound or at least a slope for the

population data, we would have to identify the corresponding settings for both nighttime

light measures. But the luminosity of a city with a given number of inhabitants varies

widely across countries. By contrast, our baseline strategy of working with the full- and

the above-median distribution is free from such concerns and only relies on the properties

of the distributions themselves. It requires little assumptions and enables cross-measure

comparisons, which makes it our preferred threshold setting strategy.

xiii

ECINEQ WP 2019 - 488 January 2019



Figure B-7 – Comparison of Threshold Settings (Year 2000)
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C Detailed Pareto alpha results for all countries

This section supplements the analysis in the paper by providing the Pareto OLS estimates

for all countries in the year 2000. Table C-1 contains all the Pareto estimates for the

size distribution of cities in terms of, respectively, population, ‘stable’ light and corrected

light, both for the whole distribution of cities in each countries and only cities above the

median. When comparing the coefficient estimates, one should keep in mind that the full

distribution might potentially include cities from the lognormal body, leading to a slightly

biased estimate, but smaller standard errors. By contrast, the above median distribution

contains only observations from the Pareto tails, yielding an unbiased estimate but has

larger standard errors due to fewer observations, see also Appendix B.

Table C-1 – OLS Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Afghanistan 0.448 0.447 0.314 0.564 0.561 1.107

(0.135) (0.135) (0.052) (0.241) (0.239) (0.261)

Algeria 0.800 0.748 0.978 1.315 1.088 1.364

(0.118) (0.110) (0.144) (0.274) (0.227) (0.284)

Angola 0.641 0.625 0.682 0.678 0.657 1.317

(0.165) (0.161) (0.139) (0.247) (0.240) (0.380)

Argentina 0.860 0.715 0.908 0.988 0.837 0.937

(0.149) (0.124) (0.157) (0.240) (0.203) (0.227)

Australia 0.704 0.663 0.693 0.659 0.618 0.654

(0.199) (0.188) (0.196) (0.258) (0.242) (0.256)

Azerbaijan 0.486 0.481 0.995

(0.172) (0.170) (0.341)

Bangladesh 0.621 0.620 0.742 0.874 0.872 1.559

(0.042) (0.042) (0.047) (0.084) (0.084) (0.140)

Belarus 0.973 0.917 0.931

(0.324) (0.306) (0.310)

Belgium 0.985 0.779 0.926

(0.338) (0.267) (0.317)

Benin 0.512 0.512 0.721 0.670 0.669 1.040

(0.158) (0.158) (0.200) (0.286) (0.285) (0.408)

Bolivia 0.544 0.486 0.674

(0.222) (0.198) (0.275)

Brazil 0.986 0.846 0.983 1.078 0.901 0.963
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Table C-1 – OLS Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

(0.075) (0.065) (0.075) (0.117) (0.097) (0.104)

Bulgaria 0.894 0.817 1.015

(0.400) (0.365) (0.454)

Burkina Faso 0.584 0.582 1.085 0.589 0.586 1.089

(0.169) (0.168) (0.280) (0.240) (0.239) (0.398)

Burundi 0.762 1.481

(0.204) (0.560)

Cameroon 0.649 0.647 0.781 0.689 0.683 1.098

(0.168) (0.167) (0.158) (0.252) (0.250) (0.311)

Canada 0.956 0.651 0.869 0.977 0.711 0.874

(0.193) (0.132) (0.175) (0.276) (0.201) (0.247)

Chad 0.563 0.563 0.276 1.660

(0.205) (0.205) (0.059) (0.500)

Chile 0.686 0.612 0.950 0.940 0.733 0.889

(0.169) (0.151) (0.230) (0.322) (0.259) (0.305)

China 0.595 0.586 1.043 1.016 0.943 1.225

(0.018) (0.018) (0.031) (0.043) (0.040) (0.051)

Colombia 0.655 0.580 0.831 0.923 0.744 0.902

(0.106) (0.093) (0.133) (0.209) (0.168) (0.204)

Congo, D.R. 0.609 0.607 0.661 0.713 0.709 1.116

(0.140) (0.139) (0.078) (0.231) (0.230) (0.186)

Côte d’Ivoire 0.753 0.744 0.951 0.859 0.836 0.846

(0.213) (0.210) (0.269) (0.337) (0.328) (0.332)

Cuba 0.713 0.713 1.023 0.969 0.967 1.124

(0.210) (0.210) (0.302) (0.396) (0.395) (0.459)

Czech Rep. 1.068 0.920 1.095

(0.390) (0.336) (0.400)

Dominican Rep. 0.793 0.706 0.845

(0.280) (0.250) (0.299)

Ecuador 0.619 0.589 0.899 0.909 0.805 0.976

(0.160) (0.152) (0.232) (0.332) (0.294) (0.357)

Egypt 0.703 0.658 0.794 0.785 0.735 0.782

(0.100) (0.094) (0.113) (0.157) (0.147) (0.156)

El Salvador 0.770 0.706 0.898
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Table C-1 – OLS Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

(0.328) (0.301) (0.383)

Eritrea 1.285

(0.486)

Ethiopia 0.712 0.711 0.377 0.940 0.934 2.086

(0.113) (0.112) (0.027) (0.210) (0.209) (0.214)

France 1.142 0.956 1.050 1.336 1.067 1.147

(0.181) (0.151) (0.166) (0.299) (0.239) (0.256)

Germany 0.997 0.901 0.975 1.048 0.967 0.999

(0.152) (0.137) (0.149) (0.226) (0.209) (0.215)

Ghana 0.535 0.533 1.045 0.688 0.682 0.986

(0.113) (0.112) (0.216) (0.203) (0.201) (0.285)

Guatemala 0.580 0.568 1.075 0.779 0.727 0.919

(0.150) (0.147) (0.269) (0.284) (0.266) (0.325)

Guinea 0.744 0.745 1.014

(0.292) (0.292) (0.370)

Haiti 0.608 0.608 0.931 0.838

(0.230) (0.230) (0.287) (0.357)

Hungary 0.938 0.837 0.888

(0.420) (0.374) (0.397)

India 0.558 0.555 0.730 0.876 0.854 1.386

(0.014) (0.014) (0.017) (0.030) (0.029) (0.046)

Indonesia 0.580 0.576 0.850 0.826 0.811 1.014

(0.043) (0.043) (0.060) (0.088) (0.086) (0.101)

Iran 0.801 0.692 1.038 1.137 0.891 1.183

(0.088) (0.076) (0.114) (0.177) (0.138) (0.184)

Iraq 0.666 0.644 0.825 0.918 0.835 1.094

(0.111) (0.107) (0.137) (0.216) (0.197) (0.254)

Israel 0.865 0.673 0.741

(0.339) (0.264) (0.291)

Italy 0.936 0.870 0.921 0.960 0.908 0.888

(0.163) (0.151) (0.160) (0.236) (0.224) (0.219)

Japan 0.897 0.754 0.847 0.978 0.859 0.881

(0.117) (0.098) (0.110) (0.180) (0.158) (0.162)

Jordan 0.699 0.599 0.709
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Table C-1 – OLS Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

(0.285) (0.244) (0.289)

Kazakhstan 0.594 0.560 1.088 1.445 1.214 1.641

(0.138) (0.130) (0.253) (0.469) (0.394) (0.533)

Kenya 0.605 0.603 0.960 0.714 0.710 0.917

(0.147) (0.146) (0.215) (0.232) (0.231) (0.290)

Kyrgyzstan 0.714 0.712 1.023

(0.270) (0.269) (0.387)

Libya 0.962 0.786 1.125

(0.340) (0.278) (0.398)

Madagascar 0.461 0.460 0.530 0.886

(0.206) (0.206) (0.172) (0.396)

Malaysia 0.687 0.625 0.817 0.950 0.746 0.913

(0.167) (0.152) (0.198) (0.326) (0.256) (0.313)

Mali 0.698 0.696 1.006

(0.255) (0.254) (0.356)

Mexico 0.909 0.709 0.800 1.128 0.853 0.999

(0.101) (0.079) (0.089) (0.177) (0.134) (0.157)

Morocco 0.864 0.784 0.999 0.982 0.870 0.976

(0.158) (0.143) (0.182) (0.254) (0.225) (0.252)

Mozambique 0.520 0.519 0.278 0.707 0.702 1.387

(0.128) (0.128) (0.048) (0.243) (0.241) (0.336)

Myanmar 0.652 0.651 0.575 0.839 0.836 1.289

(0.092) (0.092) (0.073) (0.168) (0.167) (0.232)

Nepal 0.585 0.583 0.621 0.852 0.838 1.466

(0.144) (0.144) (0.148) (0.292) (0.287) (0.489)

Netherlands 1.046 0.808 1.106 1.130 0.814 1.117

(0.247) (0.190) (0.261) (0.377) (0.271) (0.372)

Nicaragua 0.493 0.483 0.994

(0.193) (0.189) (0.390)

Niger 0.625 0.622 1.029 0.736 0.727 1.402

(0.188) (0.188) (0.206) (0.314) (0.310) (0.396)

Nigeria 0.573 0.560 0.852 0.735 0.699 1.279

(0.046) (0.045) (0.058) (0.083) (0.079) (0.124)

North Korea 0.518 0.517 1.196 0.829 0.817 1.170
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Table C-1 – OLS Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

(0.119) (0.119) (0.207) (0.269) (0.265) (0.284)

Pakistan 0.532 0.524 0.607 0.913 0.849 1.137

(0.041) (0.040) (0.045) (0.099) (0.092) (0.119)

Papua New Guinea 0.481 0.480 1.718 2.262

(0.215) (0.215) (0.558) (1.012)

Peru 0.544 0.523 0.634 0.869 0.777 0.933

(0.122) (0.117) (0.140) (0.275) (0.246) (0.288)

Philippines 0.729 0.718 0.940 0.851 0.823 0.975

(0.105) (0.104) (0.136) (0.174) (0.168) (0.199)

Poland 0.622 0.573 0.982 1.032 0.886 1.021

(0.123) (0.113) (0.194) (0.286) (0.246) (0.283)

Portugal 0.822 0.655 0.774

(0.351) (0.279) (0.330)

Romania 1.111 1.025 0.366 1.648 1.406 1.393

(0.282) (0.260) (0.093) (0.583) (0.497) (0.492)

Russia 0.850 0.741 1.042 1.300 1.111 1.219

(0.078) (0.068) (0.095) (0.168) (0.144) (0.157)

Rwanda 0.956

(0.375)

Saudi Arabia 0.449 0.359 0.839 0.852 0.681 0.916

(0.087) (0.070) (0.163) (0.232) (0.185) (0.249)

Senegal 0.580 0.579 0.505 0.775 0.769 1.273

(0.155) (0.155) (0.122) (0.293) (0.291) (0.437)

Serbia 0.843 0.802 1.111

(0.319) (0.303) (0.420)

Somalia 0.719 0.719 1.009

(0.322) (0.322) (0.336)

South Africa 0.842 0.788 0.947 0.899 0.827 0.901

(0.143) (0.134) (0.161) (0.215) (0.198) (0.215)

South Korea 0.789 0.596 0.708 0.893 0.653 0.770

(0.166) (0.126) (0.149) (0.263) (0.193) (0.227)

South Sudan 0.193 2.272

(0.041) (0.670)

Spain 1.085 0.803 0.999 1.141 0.865 1.035
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Table C-1 – OLS Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

(0.177) (0.131) (0.163) (0.262) (0.198) (0.237)

Sri Lanka 0.797 0.798 0.872 0.686 0.686 0.737

(0.240) (0.241) (0.263) (0.292) (0.293) (0.314)

Sudan 0.493 0.490 0.363 0.827 0.803 1.455

(0.092) (0.091) (0.047) (0.213) (0.207) (0.264)

Sweden 1.038 0.903 0.955

(0.424) (0.369) (0.390)

Switzerland 1.024 0.892 1.019

(0.362) (0.315) (0.360)

Syria 0.827 0.730 0.837 0.934 0.812 0.809

(0.239) (0.211) (0.241) (0.381) (0.332) (0.330)

Taiwan 0.708 0.551 0.654 0.793 0.598 0.664

(0.230) (0.179) (0.212) (0.355) (0.267) (0.297)

Tajikistan 0.616 0.615 1.407 0.813 0.809 1.409

(0.162) (0.162) (0.370) (0.297) (0.295) (0.515)

Tanzania 0.541 0.540 0.718 0.855 0.850 1.170

(0.129) (0.129) (0.157) (0.285) (0.283) (0.361)

Thailand 0.833 0.795 1.159 0.977 0.919 1.060

(0.147) (0.141) (0.205) (0.244) (0.230) (0.265)

Togo 0.530 0.530 0.734

(0.208) (0.208) (0.245)

Tunisia 0.796 0.740 1.176 0.952 0.871 1.028

(0.209) (0.194) (0.309) (0.348) (0.329) (0.375)

Turkey 0.668 0.650 0.959 1.030 0.947 1.025

(0.085) (0.083) (0.122) (0.185) (0.170) (0.184)

Turkmenistan 0.630 0.613 1.041

(0.282) (0.274) (0.465)

Uganda 0.654 0.653 0.442 0.663 0.662 1.195

(0.193) (0.193) (0.079) (0.271) (0.270) (0.304)

Ukraine 0.876 0.862 1.061 1.288 1.236 1.329

(0.139) (0.137) (0.169) (0.288) (0.276) (0.297)

United Kingdom 1.071 0.907 1.074 1.138 0.963 1.092

(0.132) (0.112) (0.133) (0.198) (0.168) (0.190)

United States 0.852 0.698 0.841 0.971 0.850 0.882
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Table C-1 – OLS Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

(0.067) (0.055) (0.066) (0.108) (0.094) (0.098)

Uzbekistan 0.839 0.828 0.971 1.039 1.009 1.029

(0.143) (0.141) (0.165) (0.248) (0.241) (0.246)

Venezuela 0.750 0.633 1.000 1.215 0.924 1.175

(0.138) (0.116) (0.184) (0.314) (0.239) (0.303)

Vietnam 0.538 0.538 0.606 0.826 0.819 1.195

(0.053) (0.052) (0.057) (0.114) (0.113) (0.160)

Yemen 0.504 0.499 0.504 0.885 0.831 1.193

(0.106) (0.105) (0.094) (0.261) (0.245) (0.313)

Zambia 0.541 0.540 1.013 0.720 0.713 1.287

(0.137) (0.137) (0.232) (0.255) (0.252) (0.417)

Zimbabwe 0.438 0.438 1.033 0.704 0.704 0.975

(0.129) (0.129) (0.281) (0.287) (0.287) (0.369)

Note: Coefficients are only calculated for distributions with at least ten cities of non-zero city size.
A few cities have a non-zero population but no detected light emissions. That can lead to a shorter
city size distribution for lights than for population. Corrected standard errors according to

√
2/N · α̂

(Gabaix and Ibragimov, 2011) are given in parentheses.
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D Robustness check: Hill estimator

This section discusses an alternative to OLS estimation of the log-rank regression

log rank(yi)− logN ≈ α log yc − α log yi. (D-1)

The Hill estimator (Hill, 1975) is given by

α̂Hill =
N − 1∑N−1

i=1 log(yi)− log(yc)
(D-2)

with standard errors as SEHill = α̂Hill/
√
N − 3 (Gabaix, 2009). If the data is indeed

Pareto distributed, the Hill estimator is the maximum likelihood estimator and, by

consequence, efficient. While the results presented in the paper are based on OLS

estimation, we here repeat the analysis with the Hill estimator as a robustness check to

confirm that we obtain the same pattern for the cross-country Pareto alpha distribution.

The key motivation to choose OLS over Hill as the baseline methodology is the Hill

estimator’s sensitivity to violations of the Pareto assumption. To illustrate that point we

repeat the Monte Carlo simulation described in Section B.1.

Figure D-1 – Hill Estimator: Comparison of Assumed Thresholds (True T = 6)

The comparison of Figure B-2 and Figure D-1 suggests that the bias of the OLS

and the Hill estimator do not only point into opposite directions but that the bias from

assuming the threshold within the lognormal body tends to be larger in absolute terms
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for Hill than for OLS. Hence, although the Hill estimator may be more efficient when the

data is indeed Pareto distributed, its larger bias in cases of deviations from the Pareto

distribution is a considerable drawback. Still, the Hill coefficient estimates provide a

useful robustness check for our main results.

It is known that the two estimates are often highly correlated in empirical studies;

for instance, Soo (2005) finds a correlation coefficient of 0.7 between the OLS and Hill

estimators on his data set, with larger differences for countries with smaller city samples.

In our case the correlation ranges above Soo’s coefficient of 0.7: In the baseline sample

(above median setting) we obtain correlation coefficients of 0.813 for stable lights, 0.722

for corrected lights and 0.760 for population.

The scatter plots between the OLS and Hill alpha estimates for all other measures

(population, ‘stable’, and corrected light) and both the above-median and full-distribution

setting shown in Figure D-2. We note strong correlation coefficients and see that, in

particular in the above-median setting, most coefficients are clustered around the main

diagonal. The cross-country patterns of the Pareto alpha in the city size distribution does

not depend on whether the estimation is carried out by OLS or Hill estimation. However,

when the full distribution of cities is used (scatter plots on the right), the majority of

countries has a Hill Pareto alpha estimate which is lower than the OLS estimate. In this

setting, many countries’ distributions still contain cities from the lognormal body and are

not purely Pareto. The Hill estimator is then likely to be biased. Still, the correlation

coefficients remain high.

For more detailed insights we report Hill alpha estimates for all countries in the year 2000

in Table D-1 - analogous to Table C-1 for OLS. We see that the Hill coefficient estimates

often deviate from Zipf’s law more strongly, but the bias may play a role here. When only

the above-median distribution is used, which is more likely to be purely Pareto, the Hill

estimates are relatively close to the OLS estimates for most countries. Using Zambia as

an example, the Hill (OLS) estimate in terms of population is 1.401 (1.287), for ‘stable’

lights 0.655 (0.720) and for corrected lights 0.652 (0.713). Overall, we conclude that our

main insights about the city size distribution of countries around the world are robust to

using the Hill rather than the OLS estimator.
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(a) Stable Light (Above Median Setting) (b) Stable Light (Full Distribution Setting)

(c) Corrected Light (Above Median Setting) (d) Corrected Light (Full Distribution
Setting)

(e) Population (Above Median Setting) (f) Population (Full Distribution Setting)

Figure D-2 – Comparison of OLS and Hill Alpha Estimates (Year 2000, Satellite F15)
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Table D-1 – Hill Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Afghanistan 0.302 0.302 0.155 0.460 0.458 1.041

(0.069) (0.069) (0.019) (0.163) (0.162) (0.181)

Algeria 0.245 0.240 0.330 1.236 1.064 1.386

(0.026) (0.025) (0.035) (0.188) (0.162) (0.211)

Angola 0.558 0.550 0.244 0.674 0.651 1.042

(0.107) (0.106) (0.036) (0.195) (0.188) (0.227)

Argentina 0.457 0.389 0.607 0.923 0.815 0.802

(0.057) (0.049) (0.076) (0.166) (0.146) (0.144)

Australia 0.741 0.727 0.739 0.687 0.674 0.660

(0.158) (0.155) (0.158) (0.217) (0.213) (0.209)

Azerbaijan 0.219 0.219 1.199

(0.061) (0.061) (0.321)

Bangladesh 0.361 0.361 0.176 0.781 0.780 1.406

(0.017) (0.017) (0.008) (0.053) (0.053) (0.090)

Belarus 0.798 0.775 0.567

(0.206) (0.200) (0.146)

Belgium 0.715 0.569 1.082

(0.191) (0.152) (0.289)

Benin 0.269 0.269 0.269 0.762 0.762 1.254

(0.063) (0.063) (0.056) (0.270) (0.269) (0.397)

Bolivia 0.355 0.331 0.676

(0.118) (0.110) (0.225)

Brazil 0.517 0.475 0.528 1.056 0.908 0.970

(0.028) (0.026) (0.029) (0.081) (0.070) (0.075)

Bulgaria 0.844 0.796 1.103

(0.319) (0.301) (0.417)

Burkina Faso 0.424 0.424 0.591 0.594 0.593 1.622

(0.093) (0.093) (0.114) (0.198) (0.198) (0.468)

Burundi 0.454 1.907

(0.091) (0.575)

Cameroon 0.449 0.448 0.251 0.732 0.729 1.242

(0.086) (0.086) (0.037) (0.211) (0.211) (0.265)

Canada 0.831 0.487 0.604 0.898 0.679 0.844

(0.123) (0.072) (0.089) (0.192) (0.145) (0.180)
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Table D-1 – Hill Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Chad 0.433 0.433 0.090 1.400

(0.125) (0.125) (0.014) (0.321)

Chile 0.349 0.331 0.892 1.146 1.027 1.177

(0.064) (0.060) (0.160) (0.306) (0.285) (0.314)

China 0.204 0.203 0.153 0.863 0.836 1.183

(0.004) (0.004) (0.003) (0.026) (0.025) (0.035)

Colombia 0.244 0.234 0.330 0.818 0.656 0.867

(0.028) (0.027) (0.038) (0.136) (0.109) (0.145)

Congo, D.R. 0.416 0.416 0.165 0.760 0.758 1.088

(0.070) (0.070) (0.014) (0.190) (0.190) (0.131)

Côte d’Ivoire 0.572 0.570 0.960 0.793 0.787 1.060

(0.122) (0.122) (0.205) (0.251) (0.249) (0.335)

Cuba 0.432 0.432 0.794 1.245 1.246 1.285

(0.097) (0.097) (0.178) (0.415) (0.415) (0.428)

Czech Rep. 1.194 0.975 1.353

(0.345) (0.282) (0.391)

Dominican Rep. 0.578 0.548 0.716

(0.160) (0.152) (0.199)

Ecuador 0.286 0.281 0.688 0.870 0.784 1.424

(0.055) (0.054) (0.132) (0.251) (0.226) (0.411)

Egypt 0.333 0.322 0.747 0.745 0.731 0.811

(0.034) (0.033) (0.076) (0.109) (0.107) (0.118)

El Salvador 0.743 0.715 1.053

(0.263) (0.253) (0.372)

Eritrea 1.095

(0.330)

Ethiopia 0.342 0.342 0.112 0.900 0.899 1.921

(0.039) (0.039) (0.006) (0.148) (0.148) (0.140)

France 0.614 0.595 0.779 1.265 1.146 1.065

(0.070) (0.068) (0.089) (0.208) (0.188) (0.175)

Germany 0.867 0.765 0.961 0.954 0.896 0.946

(0.095) (0.084) (0.105) (0.151) (0.142) (0.150)

Ghana 0.321 0.321 0.658 0.682 0.680 1.258

(0.050) (0.049) (0.099) (0.153) (0.152) (0.275)
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Table D-1 – Hill Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Guatemala 0.257 0.257 0.824 0.972 0.946 1.457

(0.050) (0.049) (0.153) (0.281) (0.273) (0.404)

Guinea 0.624 0.624 1.289

(0.197) (0.197) (0.372)

Haiti 0.526 0.526 0.669 1.379

(0.159) (0.159) (0.158) (0.487)

Hungary 0.997 0.938 1.224

(0.377) (0.354) (0.463)

India 0.280 0.279 0.126 0.720 0.713 1.295

(0.005) (0.005) (0.002) (0.018) (0.017) (0.030)

Indonesia 0.233 0.232 0.386 0.780 0.768 0.974

(0.012) (0.012) (0.019) (0.059) (0.058) (0.069)

Iran 0.275 0.260 0.564 1.234 0.985 1.205

(0.022) (0.020) (0.044) (0.138) (0.110) (0.135)

Iraq 0.237 0.235 0.323 0.749 0.715 0.849

(0.028) (0.028) (0.039) (0.130) (0.124) (0.146)

Israel 0.785 0.493 0.659

(0.248) (0.156) (0.208)

Italy 0.675 0.618 0.771 0.962 0.779 0.874

(0.085) (0.078) (0.097) (0.176) (0.142) (0.160)

Japan 0.604 0.537 0.764 0.933 0.745 0.823

(0.056) (0.050) (0.071) (0.125) (0.100) (0.110)

Jordan 0.781 0.678 1.191

(0.260) (0.226) (0.397)

Kazakhstan 0.395 0.380 0.723 0.820 0.718 1.470

(0.068) (0.065) (0.124) (0.205) (0.180) (0.368)

Kenya 0.331 0.331 0.782 0.905 0.903 1.125

(0.060) (0.059) (0.129) (0.226) (0.226) (0.273)

Kyrgyzstan 0.632 0.630 1.342

(0.190) (0.190) (0.405)

Libya 0.857 0.710 1.178

(0.238) (0.197) (0.327)

Madagascar 0.536 0.536 0.215 1.025

(0.203) (0.203) (0.054) (0.387)
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Table D-1 – Hill Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Malaysia 0.310 0.301 0.626 0.874 0.751 1.050

(0.056) (0.054) (0.112) (0.234) (0.201) (0.281)

Mali 0.643 0.643 1.061

(0.186) (0.186) (0.294)

Mexico 0.530 0.445 0.268 0.932 0.752 0.848

(0.042) (0.035) (0.021) (0.106) (0.085) (0.096)

Morocco 0.582 0.553 0.770 0.909 0.779 0.981

(0.077) (0.073) (0.102) (0.175) (0.150) (0.189)

Mozambique 0.411 0.411 0.122 0.636 0.634 1.580

(0.075) (0.075) (0.015) (0.170) (0.169) (0.284)

Myanmar 0.302 0.302 0.106 0.746 0.746 1.389

(0.031) (0.031) (0.010) (0.109) (0.109) (0.181)

Nepal 0.273 0.273 0.262 0.638 0.635 1.147

(0.050) (0.050) (0.046) (0.170) (0.170) (0.296)

Netherlands 0.843 0.690 1.018 1.249 0.978 1.236

(0.147) (0.120) (0.177) (0.322) (0.252) (0.319)

Nicaragua 0.300 0.297 0.769

(0.095) (0.094) (0.243)

Niger 0.424 0.423 0.440 0.695 0.692 1.291

(0.097) (0.097) (0.064) (0.246) (0.245) (0.275)

Nigeria 0.267 0.265 0.193 0.602 0.586 1.329

(0.015) (0.015) (0.009) (0.049) (0.048) (0.092)

North Korea 0.287 0.287 1.046 0.654 0.652 1.114

(0.048) (0.048) (0.131) (0.163) (0.163) (0.200)

Pakistan 0.234 0.232 0.144 0.758 0.734 1.074

(0.013) (0.013) (0.008) (0.059) (0.057) (0.081)

Papua New Guinea 0.347 0.347 1.210 2.679

(0.131) (0.131) (0.302) (1.013)

Peru 0.297 0.291 0.195 0.876 0.785 0.892

(0.049) (0.048) (0.032) (0.213) (0.190) (0.210)

Philippines 0.428 0.426 0.567 0.767 0.758 1.005

(0.044) (0.044) (0.059) (0.114) (0.113) (0.150)

Poland 0.215 0.208 0.735 0.908 0.742 0.818

(0.031) (0.030) (0.106) (0.189) (0.155) (0.171)
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Table D-1 – Hill Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Portugal 0.707 0.854 0.912

(0.250) (0.302) (0.322)

Romania 0.481 0.464 0.161 1.731 1.706 1.695

(0.091) (0.088) (0.030) (0.480) (0.473) (0.470)

Russia 0.230 0.219 0.755 1.019 0.873 0.982

(0.015) (0.014) (0.049) (0.094) (0.081) (0.091)

Rwanda 0.867

(0.274)

Saudi Arabia 0.198 0.171 0.704 0.810 0.531 0.843

(0.028) (0.024) (0.100) (0.165) (0.108) (0.172)

Senegal 0.450 0.449 0.188 0.531 0.530 1.111

(0.090) (0.090) (0.034) (0.160) (0.160) (0.297)

Serbia 0.462 0.451 1.118

(0.139) (0.136) (0.337)

Somalia 0.491 0.491 0.749

(0.186) (0.186) (0.193)

South Africa 0.618 0.594 0.800 0.935 0.853 1.069

(0.076) (0.073) (0.098) (0.165) (0.151) (0.189)

South Korea 0.381 0.315 0.571 0.911 0.659 0.736

(0.059) (0.049) (0.088) (0.204) (0.147) (0.165)

South Sudan 0.124 1.766

(0.019) (0.395)

Spain 0.895 0.608 0.824 1.137 0.822 0.986

(0.105) (0.072) (0.097) (0.192) (0.139) (0.167)

Sri Lanka 0.874 0.874 1.156 0.916 0.916 0.928

(0.200) (0.200) (0.265) (0.324) (0.324) (0.328)

Sudan 0.256 0.255 0.108 0.699 0.694 1.504

(0.034) (0.034) (0.010) (0.135) (0.134) (0.198)

Sweden 1.158 0.759 0.976

(0.386) (0.253) (0.325)

Switzerland 1.049 0.902 1.119

(0.291) (0.250) (0.310)

Syria 0.596 0.550 0.874 0.714 0.619 0.779

(0.130) (0.120) (0.191) (0.238) (0.206) (0.260)
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Table D-1 – Hill Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Taiwan 0.508 0.423 0.550 0.828 0.583 0.664

(0.127) (0.106) (0.137) (0.313) (0.220) (0.251)

Tajikistan 0.411 0.411 1.215 0.632 0.631 1.521

(0.081) (0.081) (0.238) (0.182) (0.182) (0.439)

Tanzania 0.301 0.301 0.214 0.751 0.750 1.158

(0.053) (0.053) (0.034) (0.194) (0.194) (0.273)

Thailand 0.442 0.431 0.570 1.052 0.972 1.736

(0.057) (0.055) (0.073) (0.195) (0.181) (0.322)

Togo 0.438 0.438 0.392

(0.138) (0.138) (0.101)

Tunisia 0.436 0.419 1.255 0.971 0.818 1.308

(0.086) (0.082) (0.246) (0.280) (0.247) (0.378)

Turkey 0.176 0.174 0.370 1.057 0.999 1.068

(0.016) (0.016) (0.034) (0.138) (0.130) (0.139)

Turkmenistan 0.367 0.358 0.798

(0.139) (0.135) (0.302)

Uganda 0.494 0.494 0.142 0.948 0.947 1.913

(0.110) (0.110) (0.019) (0.316) (0.316) (0.362)

Ukraine 0.495 0.492 0.826 1.060 1.033 1.044

(0.057) (0.056) (0.095) (0.174) (0.170) (0.172)

United Kingdom 0.829 0.701 0.934 1.126 0.916 1.137

(0.073) (0.062) (0.083) (0.142) (0.115) (0.143)

United States 0.310 0.245 0.499 0.874 0.761 0.852

(0.017) (0.014) (0.028) (0.069) (0.060) (0.068)

Uzbekistan 0.442 0.440 0.749 1.000 0.982 0.899

(0.054) (0.054) (0.092) (0.177) (0.174) (0.159)

Venezuela 0.260 0.241 0.801 0.971 0.807 0.949

(0.035) (0.032) (0.107) (0.187) (0.155) (0.183)

Vietnam 0.265 0.265 0.143 0.690 0.688 1.258

(0.018) (0.018) (0.010) (0.068) (0.068) (0.121)

Yemen 0.251 0.250 0.157 0.758 0.739 1.148

(0.039) (0.039) (0.021) (0.170) (0.165) (0.225)

Zambia 0.341 0.340 0.434 0.655 0.652 1.401

(0.064) (0.064) (0.073) (0.182) (0.181) (0.350)
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Table D-1 – Hill Pareto Alpha Coefficient Estimates (Year 2000, Satellite F15)

Full Distribution Above Median Setting

Country Stable

Lights

Corrected

Lights

Pop. Stable

Lights

Corrected

Lights

Pop.

Zimbabwe 0.207 0.207 0.972 0.746 0.746 1.139

(0.046) (0.046) (0.198) (0.249) (0.249) (0.343)

Note: Coefficients are only calculated for distributions with at least ten cities of non-zero city size.
A few cities have a non-zero population but no detected light emissions. That can lead to a shorter
city size distribution for lights than for population. Corrected standard errors according to SEHill =
α̂Hill/

√
N − 3 (Gabaix, 2009) are given in parentheses.
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E Additional data source: Citypopulation

For comparison purposes we also take a look at the often-used data

www.citypopulation.de (CP) by Brinkhoff (2017). The website compiles census

outcomes and official estimates mostly released by national statistical offices. The data

is not geo-referenced and different city definitions are used in each country, so that it

cannot be combined with our city identification scheme. We repeat our analysis on the

city size distribution with the CP data mainly to replicate the results from the literature

(Soo, 2005, Henderson and Wang, 2007) and to compare them with ours.3 Table E-1

provides an overview of the data used, highlighting the superiority of the population

data (and nighttime light data) compared to the CP.

The CP data faces some disadvantages that do not apply to our baseline GHSL data.

It is a pure compilation of national census databases, therefore entailing various problems

of data availability and comparability. First, the lower bound of cities size distributions

varies drastically across countries. The Swiss data for the year 2000 counts 162 cities and

towns with the smallest one hosting 5,447 residents. The corresponding table on France

for the year 1999 is truncated at a much higher point and only provides information

on 39 settlements with at least 85,832 inhabitants. Second, reference years differ. CP

provides population information on multiple years. However, there is no standard on how

many and which years are reported, impeding comparisons. Third, the CP data is not

geo-referenced. Thus, we cannot compute the nighttime lights that fall within the areas

of the CP cities. We also do not know to what extent the chosen (administrative) city

boundaries cover the economically relevant agglomeration and to what degree variation in

these choices drives the resulting Pareto alphas. Consider Spain as an example. The CP

city size distribution in the year 2001 begins with a city of 50,096 inhabitants and contains

76 observations in total - close to GHSL with 50,000 and 75 observations. Despite this

outstanding similarity the distributional shapes are not similar. With GHSL we obtain

a Pareto alpha of 0.999, with CP one of 1.237. City size distributions constructed from

administrative boundaries tend to overestimate equality because the largest cities have

outgrown their administrative borders.

In Table E-1 we look at some more countries and compare the Pareto alpha based on our

data set with the CP Pareto alpha, as well as the size of the smallest CP city. We see

the large heterogeneity. For some countries, the CP estimates are similar than for our

data set, for others they are not, and it is plausible that all of the factors described above

contribute to these differences.

3The data on the CP website are continuously updated with information on smaller cities from
previous years, leading to an increase in the number of cities. For the same years and countries, CP lists
more cities than, for instance, when Soo (2005) carried out his study.
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Table E-1 – CP-GHSL Comparison for Selected Countries

Country GHSL Alpha (Full D.) CP Alpha Lower Bound (CP)
United States 0.841 1.231 14,676
Brazil 0.983 1.143 34,552
Bangladesh 0.742 1.118 12,660
Taiwan 0.654 0.629 9,531
France 1.050 1.359 85,832
Kenya 0.960 0.807 2,931
Colombia 0.831 0.872 10,032
Spain 0.999 1.237 50,096
Germany 0.975 1.239 47,382
Note: Data refers to the year 2000 or the closest one available in the CP data. CP results are based
on CP’s ”Cities and Towns” tables.
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F Additional results on density and area

Here we provide some additional results on the decomposition of city size into area and

density, supplementing the discussion in Section 4.2 in the paper.

Figure F-1 displays scatter plots about the city size (measured, respectively, in

terms of population, ‘stable’ and correctly lights) and either city area or city density.

Cities from countries around the world are pooled, with red dots indicating primaries

cities. As regards city area (Figure F-1a, Figure F-1c, Figure F-1e), we note a clear

positive association between city size of all three measures and area: More populous and

brighter cities are more extended; and primary cities (red dots) are the most extended

ones. There is more variation in the relation between size and density (Figure F-1b,

Figure F-1d, Figure F-1f): Cities of the same size can have widely different densities,

although on average brighter and more populous cities also tend to be denser. But the

relation is less clear-cut than for area. This holds in particular when size is measured

based on population. Overall, these scatter plots confirm our insights that size differences

between cities are driven to a larger extent by area than by density.

In the following, we take a closer look at the proportions of total size, area and density

between the largest and second-largest city in each country. We present robustness checks

to the analysis in the paper and show that the result of area rather than density being

the dominant factor is not driven by (i) the country sample, and (ii) the year. Table F-1

shows the results using the latest available year, 2013 for light and 2015 for population,

but unlike the calculations in the paper, we now take all countries that have two cities,

including those countries with less than 10 cities so that we do not have Pareto alpha

estimates. We see that the proportions of the largest to the second-largest cities become

even more severe and area is the driving factor. The world’s smallest countries often

have a dominating primary city, so that our baseline sample in the paper provides a

lower bound. We also see that on all continents, the proportions for light are larger than

for population.

Table F-2 underlines that there is nothing particular about the chosen years at the end

of the sample: Pooling the proportions between primary and secondary cities for all

available years for all countries with at least two cities yields very similar results to the

ones in the paper. This is in line with the large persistence in the city size distribution,

which also kept the proportions between primary and secondary cities for most countries

rather stable.
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(a) Stable Light: Area (Year 2013) (b) Stable Light: Density (Year 2013)

(c) Corrected Light: Area (Year 2013) (d) Corrected Light: Density (Year 2013)

(e) Population: Area (Year 2015) (f) Population: Density (Year 2015)

Figure F-1 – City Size Compared to City Area and City Size (Cities Relevant for Above
Median Pareto Alpha Estimates Only)
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Table F-1 – Comparing Primary and Secondary Cities in the most recent years 2013/2015

World Africa Americas Asia Europe

Size 4.754 5.279 5.373 4.673 3.797
(4.076) (4.469) (3.175) (4.996) (2.319)

Population Density 1.348 1.424 1.375 1.409 1.165
(1.251) (1.969) (0.429) (0.992) (0.387)

Area 4.352 5.413 4.268 3.984 3.476
(3.639) (4.367) (2.936) (3.917) (2.076)

Size 5.785 9.729 4.346 4.246 3.500
(9.910) (16.503) (2.771) (4.308) (2.152)

Stable Light Density 1.286 1.619 1.068 1.242 1.045
(0.950) (1.525) (0.196) (0.653) (0.103)

Area 4.244 5.575 3.985 3.723 3.346
(3.381) (4.299) (2.222) (3.342) (1.997)

Size 7.244 10.418 6.087 6.239 5.156
(10.706) (16.572) (4.256) (7.643) (5.098)

Corrected Light Density 1.657 1.735 1.493 1.842 1.433
(1.176) (1.518) (0.573) (1.273) (0.737)

Area 4.290 5.587 3.973 3.841 3.383
(3.403) (4.290) (2.303) (3.479) (1.857)

The values are computed as 1
N

∑N
i=1

PrimaryCitySizei

SecondaryCitySizei
, 1

N

∑N
i=1

PrimaryCityDensityi

SecondaryCityDensityi
,

1
N

∑N
i=1

PrimaryCityAreai

SecondaryCityAreai
with country i and N as the total number of countries on the respective

continent. The respective standard deviations are denoted in parentheses. Asia includes Oceania.
The lights data come from 2013, the population data from 2015.
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Table F-2 – Comparing Primary and Secondary Cities (All Years)

World Africa Americas Asia Europe

Size 4.791 5.407 5.216 4.948 3.547
(8.705) (11.565) (3.087) (10.188) (2.319)

Population Density 1.879 1.434 4.157 1.823 1.063
(11.278) (2.052) (27.499) (5.459) (0.368)

Area 4.781 5.049 4.200 5.805 3.541
(9.475) (4.071) (3.328) (16.622) (2.242)

Size 5.943 9.520 5.046 4.557 3.564
(8.429) (13.278) (4.117) (4.631) (2.130)

Stable Light Density 1.465 2.097 1.176 1.268 1.067
(2.722) (4.762) (0.445) (0.632) (0.137)

Area 4.215 5.364 4.077 3.799 3.333
(3.264) (4.023) (2.354) (3.315) (1.888)

Size 6.923 9.817 6.626 5.918 4.598
(8.976) (13.293) (5.126) (6.887) (3.633)

Corrected Light Density 1.722 2.152 1.560 1.636 1.375
(2.753) (4.756) (0.664) (1.014) (0.519)

Area 4.459 5.784 4.078 4.105 3.426
(4.290) (5.099) (2.460) (5.016) (2.083)

The values are computed as 1
N ·T

∑T
i=t

∑N
i=1

PrimaryCitySizeit

SecondaryCitySizeit
, 1

N ·T
∑T

i=t

∑N
i=1

PrimaryCityDensityit

SecondaryCityDensityit
,

1
N ·T

∑T
i=t

∑N
i=1

PrimaryCityAreait

SecondaryCityAreait
with country i, time t, N as the total number of countries in the

respective region and T as the total number of time periods. The respective standard deviations are
denoted in parentheses. Asia includes Oceania.
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G Model selection procedure for determinants

This section provides further insights into the model selection approach discussed in

Section 5.1, including an overview of the 36 variables considered together with their

data sources. As mentioned in the paper, our simplistic algorithm tests all models

with between one and seven regressors drawn from a pool of 36 variables and year fixed

effects. These 36 variables originate from a variety of country characteristics. We label

them into five categories: population structure, physical geography, institutions, economic

structure and international connectedness (see Table G-1). The respective data sources

are listed in Table G-2. Unlike earlier research we do not consider man-made transport

infrastructure, such as road (Soo, 2005) or railway networks (Rosen and Resnick, 1980),

due to simultaneous causality concerns. It is unclear whether an inegalitarian city size

distribution, often associated with a dominant (coastal) primate city, is caused by a scant

transport network or whether the absence of major hinterland cities renders an extensive

transport system unnecessary. Instead of purely man-made infrastructure, we rely on

terrain ruggedness and waterway density to account for intra-country connectedness.

These factors are also modifiable by humans, though to a much smaller extent than

roads and railways.

From our 36 potential regressors we obtain 10,739,175 combinations with between one

and seven variables. In the paper, we discuss the specifications resulting in the lowest

Akaike Information Criterion (AIC) and the lowest Bayesian Information Criterion (BIC)

for the respective data set.

Although our strategy is a considerable improvement to the determinant identification

in the existing Zipf literature, it comes with a number of caveats. First, we assume all

variables to be linearly related to the outcome which might be inappropriate for some

of the regressors. Second, missing values in the given variables do not only render a

regression containing all 36 factors impossible but induce variation in the sample employed

for our iterative procedure. This could induce sample selection bias and influence the

resulting information criteria. Third, the maximum of seven explanatory factors - in

addition to the year fixed effects - is chosen arbitrarily. The most suitable specification

might be longer than that. Fourth, some variables may be too aggregated. For example,

the influence of natural resources rents could vary between resources. Fifth, we count

categorial variables as a single variable in the maximum of seven even though they come

as multiple dummy regressors costing multiple degrees of freedom. Overall, we could

come up with numerous extensions, modifications and robustness checks to explore the

determinants of city size distributions even more profoundly. Options vary from designing

a theoretical model to the adoption of random forests classification algorithms. However,

that is beyond the scope of this paper and left for further research.
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Table G-1 – Explanatory Variables in Model Selection

Population Physical Institutions Economic International
Structure Geography Structure Connectedness

Total population x
Population growth x
Urbanization x
Population in 1400 x
Fertility x x
Net migration x x x
Ethnic fractionalization x x
Terrain ruggedness x
Coastal proximity x
Coastal border x
Land area x
Malaria incidence x
Extreme weather x
Natural resource rents x x
Border length x
Waterway density x
Latitude x
Continent x
Agricultural land x
Colonial heritage x
Financial development x
Fiscal centralization x
Government expenditure x x
Democracy x
Interstate war x x
Political rights, civil liberties x
Time of independence x
Patent applications x x
Trade x x
Exports x x
Energy use x
GDP x
GDP p.c. x
Agriculture x
Manufacturing x
Services x
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Table G-2 – Explanatory Variables’ Data Sources

Variable Data source
Total population World Development Indicators
Population growth World Development Indicators
Urbanization World Development Indicators
Population in 1400 Nunn and Puga (2012)
Fertility World Development Indicators
Net migration World Development Indicators
Ethnic fractionalization Alesina et al. (2003)
Terrain ruggedness Nunn and Puga (2012)
Coastal proximity Nunn and Puga (2012)
Coastal border CIA World Factbook
Land area World Development Indicators
Malaria incidence World Development Indicators
Extreme weather World Development Indicators
Natural resource rents World Development Indicators
Border length CIA World Factbook
Waterway density CIA World Factbook
Latitude Nunn and Puga (2012)
Continent World Development Indicators
Agricultural land World Development Indicators
Colonial heritage CEPII GeoDist
Financial development Global Financial Development
Fiscal centralization IMF Government Finance Statistics
Government expenditure World Development Indicators
Democracy Polity IV
Interstate war Correlates of War
Political rights, civil liberties Freedom House
Time of independence ICOW
Patent applications World Development Indicators
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