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1 Introduction

Many economic phenomena are concerned with the way individuals, partitioned into dif-

ferent social groups on the basis of characteristics they share in common, are distributed

across relevant outcome categories. Groups’ distributions could specify, for instance, how

people of different ethnic origin (the groups) are assigned with different intensity to the

neighborhoods of a city (the classes of realization). Distributions in which these eth-

nic groups are more evenly located across neighborhoods are less segregated. Likewise,

school/occupational segregation is concerned with the uneven distribution of ethic groups

across schools/jobs.

In other cases, the interest lies on the way one of more assignable attributes (such as

income, consumption or wealth) are distributed among individuals or families, and the

extent at which this distribution differs from a normatively relevant benchmark. Income

inequality, for instance, arises when the distribution of income shares across income units

differs from the distribution of the demographic weights of these units.

All these examples are concerned with the extent of dissimilarity between distributions

defined over categorical outcomes. A convenient (and equivalent) way of representing dis-

tinct sets of distributions is by adopting a matrix notation. We use distribution matrices

to depict configurations of data, each matrix representing, by row, the distribution of indi-

viduals belonging to a given group across classes of realizations of an attainable outcome.

In the example below we consider two distribution matrices, each with three groups and

two classes of realizations:

A :

Class 1 Class 2

Group 1 0.9 0.1

Group 2 0.1 0.9

Group 3 0.8 0.2

and B :

Class 1 Class 2

Group 1 0.6 0.4

Group 2 0.4 0.6

Group 3 0.55 0.45

. (1)
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We interpret entries of these matrices as frequencies so that, for instance, the share of group

3 in class 2 in A is 20%.1

This paper sets out the conditions for robustly ranking distribution matrices such as A

and B by the extent of dissimilarity they display. There is widespread agreement in the

literature on what constitutes lack of segregation or equality: these are situations in which

the groups are similarly distributed across the possible outcomes. The relevant notion of

similarity dates back to Gini (1914), who argues that two (or more) groups are similarly

distributed whenever “the overall populations of the two groups take the same values with

the same frequency.”2 While one can count on well-established methodology for the analysis

of lack of similarity between two distributions, substantial disagreement persists for what

concerns the extension of these results in the multi-group setting.

We develop an axiomatic foundation for the measurement of multi-group dissimilarity.

The focus is on partial orders of dissimilarity among distributions defined over discrete,

non-ordered categorical outcomes. Our main result establishes a complete characterization

of the dissimilarity partial order that links the mathematical, economical and statistical

aspects of dissimilarity, thereby complementing the literature on multidimensional analysis

of ordinal attributes (see for instance Atkinson and Bourguignon 1982, Dardanoni 1993,

Gravel and Moyes 2012).

To do so, we consider a number of alternative criteria for ranking distributions in terms

of their dissimilarity and we prove that the rankings generated by these criteria are in fact

equivalent. These equivalences are reminiscent of well known results in the literatures on

the measurement of inequality and risk (see Hardy, Littlewood and Polya 1934, Marshall,

Olkin and Arnold 2011, Gajdos and Weymark 2012). For example, when comparing income

1The multidimensional nature of the problem arises from the number of distributions to be compared
(the groups) and not by the domain of these discrete distributions (the classes, which by convenience are
limited to two in the example).

2Gini (1914, p. 189), translated from Italian, formalizes similarity through the notion of proportionality:
“If n is the size of group α, m is the size of group β, nx the size of group α assigned to class x and mx the
size of group β assigned to the same class, then it should hold [under similarity] that, for any value of x,
nx

mx
= n

m .”
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distributions in terms of their inequality, the following statements about income distribution

vectors x and y turn out to be equivalent: (i) x can be obtained from y by a finite sequence

of Pigou-Dalton (rich-to-poor) transfers or permutations, (ii) y exhibits at least as much

inequality as x for every inequality index that treats individuals symmetrically and that

regards a Pigou-Dalton transfer as an elementary inequality-reducing transformation, (iii)

the inequality in x is not larger than the one in y for all additive decomposable inequality

indices with increasing convex aggregators of individual incomes, (iv) x can be obtained

by multiplying y by a bistochastic matrix, and (v) x Lorenz dominates y.

Our main result proves the equivalence between the dissimilarity measurement ana-

logues of each of these five claims. Claim (i) states that dissimilarity comparisons can be

operationalized by specific transformations of the data, or sequences of them. We argue that

some transformations preserve dissimilarity across distributions, while a specific operation

called the merge transformation cannot increase (but not necessarily preserve) dissimilarity.

This transformation, when applied to a distribution matrix, produces a convex combina-

tion of groups’ proportions across two outcome realizations, thus reducing the extent of

information about the groups membership one can gather from the knowledge of the out-

come realization.3 Claim (ii) restricts the focus on those orderings that rank distribution

matrices consistently with the effect of these transformations. The dissimilarity partial

order arises from the agreement of these orderings (Donaldson and Weymark 1998). Claim

(iii) narrows down agreement to a specific parametric family of indices depicting dissimi-

larity as the average degree of dispersion in proportions of the groups in correspondence of

each outcome realization. Claim (iv) relates more formally dissimilarity to informativeness

(Grant et al. 1998) with a majorization result (see Marshall et al. 2011): one distribution

does not display more dissimilarity than another if and only if the former matrix majorizes

3The merge transformation can be associated to the notion of non-proportional split of school invoked
by Frankel and Volij (2011) in school segregation analysis or to linear bifurcations of a probability function
(Grant, Kajii and Polak 1998), and has parallels in the analysis of multivariate inequality (Gajdos and
Weymark 2005).
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the latter (Dahl 1999).4 Claims (i)-(iv) define robust and equivalent conditions to rank

distribution matrices such as A and B in (1), which cannot be tested empirically. We

introduce with claim (v) a new empirical test for the dissimilarity order which is based on

the inclusion of the Zonotope representation of the distributions matrices (i.e., the data).5

We provide an unified theory for the analysis of multi-group dissimilarity that, on the

one hand, nests all results relate to comparisons of two distributions, while on the other

hand is based on equivalent characterizations that incorporate the multivariate nature of

the problem. In this way, we avoid the undesirable consequences of ranking multi-group

distributions on the basis of pairwise comparisons of groups. For instance, one can easily

verify that any pair of groups distributions of matrix B display less dissimilarity than the

corresponding pair of groups distributions from matrix A, according to standard bivariate

analysis.6 Nonetheless, the ranking is not preserved, but it is rather reversed, as a result

of aggregating groups distributions. To see this, consider the distribution matrices Ã and

B̃ below, obtained from A and B respectively by mixing distributions of groups 1 and 2

with weights 0.875 and 0.125:

Ã :

Class 1 Class 2

Groups 1 & 2 0.8 0.2

Group 3 0.8 0.2

; B̃ :

Class 1 Class 2

Groups 1 & 2 0.575 0.425

Group 3 0.55 0.45

.

4Applications of matrix majorization can be found in linear algebra and majorization theory (Dahl 1999,
Hasani and Radjabalipour 2007), in inequality analysis (see Chapter 14 in Marshall et al. 2011), in the
comparison of statistical experiments (Blackwell 1953, Torgersen 1992), in information theory (Grant et al.
1998) and the study of bivariate dependence orderings for categorical variables (Giovagnoli, Marzialetti
and Wynn 2009), among others.

5Zonotopes are multi-group generalizations of Lorenz and segregation curves and their inclusion tests
can be implemented via standard linear programming methods. Detailed references can be found on
McMullen (1971) and Ziegler (1995). Routines implementing the inclusion test are made available by the
authors.

6The proof unravels as follows. Denote A(i, h) the distribution matrix obtained by isolating only groups
i, h ∈ {1, 2, 3}, and similarly B(i, h). Denote aij a generic element of A. Compute ai1/ah1 and ai2/ah2 and
select the class, either 1 or 2, with the largest value. This value can be compared to that obtained from
B(i, h), which turns out to be always smaller than that from A(i, h) for any pair i 6= h. This procedure is
equivalent to rank distributions A(i, h) and B(i, h) by their segregation curves (Hutchens 1991).

5
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Distributions in matrix Ã are similar, implying that now Ã unambiguously displays less

dissimilarity than B̃.

The interest of a multi-group characterization lies in its robustness against paradoxi-

cal results, guaranteeing that if A displays at least as much dissimilarity than B, then Ã

displays at least as much dissimilarity than B̃ for any way of reducing the original prob-

lem from many to few (two) distributions. This paper explicitly considers the multi-group

nature of the problem, and nests most results based on two-groups comparisons as special

cases. After describing the setting in Section 2, we set out the main result in Theorem 1: it

states the equivalence of claims (i)-(v) and is given in Section 3 (all proofs are collected in

the Appendix). The theorem has immediate consequences for the conceptualization, mea-

surement, and multi-group extension of dissimilarity analysis in empirical research. We

show in Section 4 that a variety of sparse and apparently unrelated results on the measure-

ment of segregation7 come down to assess how much dissimilarity there is between two or

more distributions. Even inequality8 comparisons involve specific dissimilarity evaluations,

although the converse is not necessarily true.

2 Setting

2.1 Notation

We compare distribution matrices of size d× n, depicting sets of distributions (indexed by

rows) of d ≥ 1 groups across n ≥ 2 disjoint classes (indexed by columns), each correspond-

ing to a specific category of non-ordered realizations. We develop dissimilarity comparisons

of distribution matrices with a fixed number d of groups and a variable number of classes.

7We refer to Duncan and Duncan (1955), Hutchens (1991), Reardon and Firebaugh (2002) and Reardon
(2009) for the analysis of segregation between two groups, and to Flückiger and Silber (1999), Chakravarty
and Silber (2007), Alonso-Villar and del Rio (2010), Lasso de la Vega and Volij (2014) and Frankel and
Volij (2011) for a survey on multi-group extensions. For an analysis of the economic motivations behind
segregation comparisons, see for instance Echenique, Fryer and Kaufman (2006) and Borjas (1995).

8Reference papers dealing with multivariate inequality that can be related to our dissimilarity model
are Kolm (1977), Koshevoy and Mosler (1996) and Ebert and Moyes (2003).
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These matrices are collected in the set

Md :=

{
A = (a1, . . . , aj, . . . , anA

) : aj ∈ [0, 1]d,

nA∑

j=1

aij = 1 ∀i
}
,

where aij is the proportion of group i observed in class j. In the analysis of school segrega-

tion by ethnic origin of the students, for instance, classes would represent schools and aij

would be the proportion of students with ethnicity i that are enrolled in school j. The col-

umn vector aj collects the proportions of all groups in school j. The distribution matrices

in Md are hence row stochastic, meaning that matrix A ∈Md represents a collection of d

elements of the unit simplex ∆nA . We interpret the rows of A as distributions of groups

frequencies.

We also consider transformation matrices, representing the linear transformations ap-

plied to the data. These matrices belong either to the set Pn of n×n permutation matrices,

or to the set Rn,m of n × m row stochastic matrices whose rows lie in ∆m.9 The set of

transformation matrices such that m = n is Rn, while Dn ⊆ Rn denotes the set of doubly

stochastic matrices whose rows and columns lie in ∆n.10 Finally, boldface letters always

indicate column vectors, with 1n := (1, . . . , 1)t and 0n := (0, . . . , 0)t, where the superscript

t denotes transposition.

2.2 Dissimilarity orders

The cases of perfect similarity and maximal dissimilarity can be formalized in matrix no-

tation. A perfect similarity matrix S represents a situation in which the distributions of all

groups coincide across classes and can be represented by the same row vector st ∈ ∆n. A

maximal dissimilarity matrix D represents instead situations where each class is occupied

9The entries xij of matrix X ∈ Rn,m can be interpreted as the probability that the population in class
i in the distribution of origin “migrates” to class j in the distribution of destination.

10Note that Rd,n ⊆ Md because both sets consider row stochastic matrices, but Md does not impose
restrictions on the number of columns.
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at most by one group and each group occupies separate classes. Thus, the distributions of

the groups dt1 ∈ ∆n1 , . . . ,dtd ∈ ∆nd do not overlap across classes. In compact notation:

S :=




st

...

st




and D :=




dt1 . . . 0tnd

...
. . .

...

0tn1
. . . dtd



. (2)

In the first case, S, all groups are equally represented with the same intensity in each class.

Conversely, in the second case, D, it is possible to forecast the group occupying each class.11

This paper investigates the possibility of ordering distribution matrices according to

the dissimilarity they display. A dissimilarity ordering is a complete and transitive binary

relation 4 on the setMd with symmetric part ∼, that ranks B 4 A whenever B is at most

as dissimilar as A.12 Given A ∈ Md, any dissimilarity ordering should rank S 4 A 4 D

for any perfect similarity matrix S and for any maximal dissimilarity matrix D. There

are infinitely many matrices that can be represented as S and D in (2). They are all

regarded as equivalent representations of perfect similarity or of maximal dissimilarity, the

focus being on differences across group distributions and not on the degree of heterogeneity

in the distribution of each group across realizations.The condition d ≤ n is, nevertheless,

necessary for D to exist. If A is such that d > n, then it can display some dissimilarity,

but not maximal dissimilarity.

In what follows, we characterize the dissimilarity partial order induced by the inter-

section of the dissimilarity orderings (Donaldson and Weymark 1998) satisfying desirable

properties.

11The condition of lack of overlapping between distributions dt
1, . . . ,d

t
d represents the case in which

group identity and realizations display the highest degree of connectivity, a condition regarded to in Gini
(1914) and subsequent literature (see Bertino, Drago, Landenna, Leti and Marasini 1987) as the maximal
dissimilarity scenario.

12For any A, B, C ∈ Md the relation 4 is transitive if C 4 B and B 4 A then C 4 A and complete
if either A 4 B or B 4 A or both, in which case B ∼ A.
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3 Characterization of the dissimilarity order

3.1 Axioms

We introduce axioms defining the change in dissimilarity that should be registered by every

dissimilarity ordering when data are transformed according to some specific operations.

These operations apply directly to distribution matrices. The first axiom characterizes

the context, introducing an anonymity property with respect to the labels (and hence the

arrangement) of the classes of a distribution matrix.

Axiom IPC (Independence from Permutations of Classes) For any A, B ∈Md

with nA = nB = n, if B = A ·Πn for a permutation matrix Πn ∈ Pn then B ∼ A.

Axiom IPC restricts the focus to evaluations where the classes cannot be meaningfully

ordered. To see the implications of the axiom, consider the problem of measuring schooling

segregation. It can be conceived as a problem of dissimilarity in the distributions of groups

of students with different ethnic background across the schools of a school district. The IPC

axiom posits that the name of the schools is irrelevant to conclude about the dissimilarity

in the distributions of students across these schools. This is arguably the case if the

schools should not be ordered according to additional information, for instance on their

performances, their quality or their budget. Another implication of axiom IPC is that

any distribution matrix that is obtained by a permutation of matrix D columns has to be

regarded to as an equivalent representation of maximal dissimilarity.

Dissimilarity comparisons might also be independent of the label assigned to the groups,

so that the focus shifts from labels of the groups to their distributions. This is formalized

by the IPG axiom.

Axiom IPG (Independence from Permutations of Groups) For any A, B ∈Md,

if B = Πd ·A for a permutation matrix Πd ∈ Pd then B ∼ A.

9
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We consider now two transformations that extend comparability to distribution matri-

ces that differ in the number of the classes. The first transformation consider the insertion

or elimination of empty classes, i.e., classes that are not occupied by groups. The operation

consists in adding/eliminating column vectors of size d with only zero entries to/from the

original distribution matrix. In the schooling segregation example, the operation corre-

sponds to adding/eliminating schools with no students to/from the same school district.

Admittedly, the presence of these schools in the district is irrelevant for assessing schooling

segregation therein. We retain with the Independence of Empty Classes (IEC ) axiom that

this transformation is a source of indifference for every dissimilarity ordering.

Axiom IEC (Independence from Empty Classes) For any A, B, C, D ∈Md and

A = (A1,A2), if B = (A1,0d,A2) , C = (0d,A) , D = (A,0d) then B ∼ C ∼ D ∼ A.

The IEC axiom places the emphasis on dissimilarity originated from non-empty columns

of a distribution matrix. If A and B differ only because of |nA − nB| empty classes in one

of the two matrices, then the dissimilarity in A should be regarded to as an equivalent

representation of that in B.

The second transformation considered increases the number of classes by splitting pro-

portionally (the groups densities in) a class into two new classes. This transformation

requires to replicate one column of a distribution matrix and then to scale the entries

of the original and of the replicated columns by the splitting coefficients β ∈ (0, 1) and

1 − β, respectively. This operation guarantees that the resulting distribution matrix is

row stochastic and that the degree of proportionality of the groups frequencies in the new

columns coincides with that in the original column. In the schooling segregation example,

splitting a school would require to randomly allocate its students population (i.e., irrespec-

tively of their group assignment) into two smaller institutes, so that ethnic proportions

in the two new institutes are not altered. There is agreement in the literature that the

10
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split transformation should not affect segregation.13 According to the Split of Classes (SC )

axiom we assume that the transformation described above is a source of indifference for

every dissimilarity ordering.

Axiom SC (Independence from Split of Classes) For any A,B ∈ Md with nB =

nA + 1, if ∃ j such that bj = βaj and bj+1 = (1 − β)aj with β ∈ (0, 1), while bk = ak

∀k < j and bk+1 = ak ∀k > j, then B ∼ A.

The SC axiom highlights that dissimilarity arises from the disproportionality of the

groups composition in some classes. A split transformation increases the number of classes

and modifies the shape of a distribution matrix, but it does not alter the proportionality

of the groups. For this reason, it is regarded to as dissimilarity preserving.

The merge of classes transformation complements the split operation. A merge con-

sists in adding together, distribution by distribution, the group proportions observed in two

classes. A merge of classes is implemented by vector summation of two adjacent columns

of a distribution matrix. The operation has an immediate interpretation in the schooling

segregation example: it consists in merging all students from two neighboring schools into

a single, larger school. Each ethnic group in the school of destination is increased by an

amount equal to the proportion of the corresponding group in the school of departure,

which is then emptied. If one or both schools are empty, segregation does not increase nor

decreases. Consider, instead, the case of two ethnic groups that are similarly distributed

across almost all schools in a district, apart from two schools, such that a group is over-

represented compared to the other in one school, and under-represented in the other school.

Merging each of these two schools with other schools in the district would reduce the com-

positional differences. Merging these two schools together would establish proportionality

in ethnic composition across all schools, leading to perfect similarity. The Dissimilarity

13Frankel and Volij (2011) advocate a similar property (composition invariance) in the study of multi-
group school segregation (see also James and Taeuber 1985).
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Decreasing Merge of Classes (MC ) axiom states that every merge of classes transformation

cannot increase dissimilarity.

Axiom MC (Dissimilarity Decreasing Merge of Classes) For any A, B ∈ Md

with nA = nB, if bj = 0d, bj+1 = aj + aj+1 while bk = ak ∀k 6= j, j + 1, then B 4 A.

Axioms MC, IEC, SC and IPC are independent. Altogether, they characterize dissim-

ilarity as disproportionality in the composition of the groups shares within each class. In

fact, splitting classes and inserting empty classes cannot improve on proportionality and by

merging two classes, on the contrary, disproportionality in groups composition cannot be

increased. These intuitions pave the way for characterizing the dissimilarity partial order

coherent with these axioms.

3.2 Characterization

If the distribution matrix B can be obtained from A through a sequence of transformations

implied by the axioms IPC, IEC, SC and MC, then every ordering consistent with these

axioms should not rank A as more dissimilar than B. We represent consensus among these

orderings in three distinct ways, each appealing to a specific perspective about dissimilarity.

First, we look at functional representations of dissimilarity orderings, i.e. a dissimilarity

index, which can be employed to quantify and compare patterns of dissimilarity across

distribution matrices. The second way of representing consensus among orderings draws on

the statistical foundations of majorization, describing rising dissimilarity as an improvement

on the extent at which the class of realization is informative about the identity of the group

achieving it. The third representation of consensus involves a statistical test.

Dissimilarity indices. This paper studies the intersection of dissimilarity orderings. We

consider here those orderings that can be represented by dissimilarity indices, which have

an appeal for empirical research. A dissimilarity index is a function D :Md → R mapping

12
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a distribution matrix into a number, regarded to as the degree of dissimilarity therein. We

consider a family of indices measuring dissimilarity as the average of within-class dispersion

of group frequencies. The degree of dispersion in each class is quantified by a function h

in the class H of real valued convex functions defined on ∆d. For a given h, a larger

dispersion in groups frequencies within a class always indicates an increase in dissimilarity

across groups. The convexity of the function h captures this effect. The evaluation of the

dispersion within class j contributes to the overall dissimilarity proportionally to the “size”

of that class, denoted aj := 1td ·aj. The dissimilarity index Dh with h ∈ H aggregates these

evaluations, and is defined as14

Dh(A) :=
1

d

nA∑

j=1

aj · h (a1j/aj, . . . , adj/aj), (3)

where aij/aj can be interpreted as the proportion of group i relative to the size of class j.

Dissimilarity is minimized when aij/aj = 1/d for each of the d groups in all classes. Hence,

by setting h
(

1
d
1td
)

= 0 the index can be normalized to 0 when perfect similarity is reached.

A robust dissimilarity evaluation would require to verify that Dh(B) ≤ Dh(A) holds

for every h ∈ H, thus expressing unanimous consensus over changes in dissimilarity. The

condition also implies agreement on the fact that the composition of the groups in A classes

is at least as informative about the group identity of any randomly selected occupant than

is the composition of the groups in B classes.

Majorization. In the context of comparisons of statistical experiments with finite num-

ber of outcomes, Blackwell (1953) has formalized a precise condition for “A is at least as

informative as B”, which consists in checking that B is matrix majorized by A. Matrix

majorization is denoted B 4R A (see also Dahl 1999), meaning that there exists a row

stochastic matrix X ∈ RnA,nB
, representing a set of linear transformations of the original

14For notational convenience empty classes receive weight a = 0 and therefore do not contribute to the
overall dissimilarity.

13
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data, such that B = A · X. The notion of matrix majorization has been investigated in

a variety of contexts (see p. 625 in Marshall et al. (2011) and literature therein). In the

spirit of the fundamental theorem for inequality measurement by Hardy et al. (1934), the

main result of this section consists in a set of equivalences between data transformations,

agreement among dissimilarity orderings and matrix majorization. None of these criteria,

however, can be empirically tested.

Dissimilarity tests. When the interest is not on measuring dissimilarity but, rather,

on testing the ranking of distribution matrices in a way consistent with consensus of all

inequality indices, it is meaningful to advocate for geometric representations of the data.

When the focus is on income distributions, for instance, Lorenz curves allow to conclude

on robust inequality rankings of the distributions. The problem of testing for dissimilarity

is, nonetheless, more complex than that of testing for income inequality, insofar it involves

testing over multiple distributions without resorting to a benchmark distribution (such as

that expressing equality) as a reference. Comparing Lorenz curves is therefore not sufficient

to conclude on dissimilarity ranking of distribution matrices.

We propose an empirically implementable criterion based on Zonotopes inclusion that

identifies the dissimilarity partial order of distribution matrices. In the multi-group setting,

the Zonotope Z(A) ⊆ [0, 1]d of any matrix A ∈Md is defined as:

Z(A) :=

{
z := (z1, . . . , zd)

t : z =

nA∑

j=1

θjaj, θj ∈ [0, 1] ∀j = 1, . . . , nA

}
.

Every element of the Zonotope is obtained from the Minkowski sum of the vectors with

coordinates given by A’s classes. The Zonotope’s graph is therefore a convex polytope

symmetric with respect to the point 1
2
1d (see McMullen 1971). The maximum Dissimilarity

Zonotope is the d-dimensional hypercube and corresponds to Z(D). Its diagonal is the

Similarity Zonotope, which corresponds to Z(S). All distribution matrices displaying some

14
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dissimilarity originate Zonotopes that lie in Z(D) and that share the reference diagonal

Z(S), for any matrix S and D defined as in (2). For each matrix in Md there exists

only one Zonotope representation. The Zonotope is also unique up to splits of classes,

insertion/elimination of empty classes and permutation of classes, as a consequence of

the invariance properties of the Minkowski sum. The Zonotope is not invariant to merge

operations.15

In Figure 1(a) we provide a graphical example of the 2-dimensions Zonotope of the

distribution matrix E ∈M2:

E =




0.4 0.1 0.3 0.2

0.1 0.4 0 0.5


 . (4)

The dimensionality of the example matrix helps visualizing the way Z(E) is constructed.

First, the vectors representing the classes of E are plotted in the unit square and connected

to the origin with line segments. In the figure, these vectors are marked with different

symbols. For instance, the vector marked with a black square represents the fourth class

of E and has coordinates 0.2 (the proportion of groups 1) and 0.5 (the proportion of group

2). Then, the resulting segments are tied together in any possible arrangement. In the

figure, adding together the vector corresponding to classes one and three gives the vector

with coordinates (0.7, 0.1), while adding this vector to the one representing the fourth class

gives (0.9, 0.6). The resulting Zonotope of E is the grey area in the figure that contains all

possible arrangements of these segments, or portions of them.

The main result. We show that the inclusion condition Z(B) ⊆ Z(A) always indicates

that B displays at most as much dissimilarity as A. This completes the list of criteria to

15The Minkowski sum
∑m

j=1 θjaj for a set of vectors a1, . . . ,an is invariant to operations involving adding
or eliminating empty vectors or permuting vectors labels. Every split of vectors can be obtained by setting
θj ∈ (0, 1), so that the operation does not impose constraints on the parameters of the Minkowski sum.
Conversely, any merge operation of vectors aj and ak implies a constraint θj = θk, which reduces the extent
of the set of points in the [0, 1]d space that can be characterized as the Minkowski sum of A’s columns.
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(b) Zonotopes inclusion

Figure 1: Zonotopes of matrices E (light grey area) and E′ (dark grey area).

assess dissimilarity with a testable dissimilarity criterion. Our main result states that all

these criteria are equivalent.

Theorem 1 For any A, B ∈Md, the following statements are equivalent:

(i) B is obtained from A through a finite sequence of insertions/elimination of empty

classes, permutations, splits and merges of classes.

(ii) B 4 A for every ordering 4 satisfying axioms IPC, IEC, SC and MC.

(iii) Dh(B) ≤ Dh(A) for all h ∈ H.

(iv) B 4R A.

(v) Z(B) ⊆ Z(A).

The equivalences between statements (i), (ii) and (iii) are novel. They provide the

basis for characterizing the class of measures Dh that are consistent with the dissimilarity

criterion. Claim (iii) clarifies that dissimilarity comparisons can be modeled as an average,

taken across classes of a distribution matrix, of judgements (expressed by the function h)
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about the dispersion in the composition of the groups proportions in each of the classes

(expressed by the ratio aij/aj).
16

The equivalence between claims (iii) and (iv) formalizes, in the context of dissimilarity

analysis, the criterion of informativeness in statistical experiments first documented in

Blackwell (1953). The interesting equivalence involves statements (i) and (iv) and provides

a characterization of matrix majorization alternative to Grant et al. (1998) and Frankel

and Volij (2011). It also shows that every informativeness comparison of matrices in Md

verifies the existence of dissimilarity preserving and reducing transformations mapping the

most informative distribution matrix into the least informative one.

The most relevant and new equivalence in Theorem 1 involves statements (iv) and (v).

It establishes that Zonotope inclusion (a testable condition) is sufficient and necessary to

implement dissimilarity comparisons according to the different perspectives highlighted in

claims (i), (ii), (iii) and (iv) (all not testable). This result extends to the multi-group

setting what has been already shown in Dahl (1999) for the case d = 2 in the context of

the analysis of informativeness in experiments. Furthermore, the equivalence of (i) and

(v) demonstrates that Zonotopes inclusion always grants the existence of a sequence of

dissimilarity preserving and reducing transformations that, when applied to matrix A,

allow to obtain matrix B in a finite number of steps, although the sequence itself cannot

be identified.

Claim (v) offers a novel geometric interpretation of dissimilarity. Note that every el-

ement z ∈ Z(A) can be obtained by merging together proportions of the classes of A

(i.e., it results from the Minkowski sum of vectors). Define an isopopulation line (when

d = 2) or (hyper)plane (when d ≥ 3) as the set of all combinations of proportions of the

groups collected in z that add up to p ∈ [0, 1], such that 1
d
1td · z = p. In this case, p is the

average proportion across groups depicting the “size” of z, obtained by weighting equally

16Bohnenblust, Shapley and Sherman (1949) have shown that a condition similar to (iii) can be inter-
preted in terms of loss functions and is tightly connected to comparisons of information distribution in
games.
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all groups. Claim (v) is verified if the set of all proportions of the groups adding up to p

in B is included in (i.e., is less dispersed than) the corresponding set of all proportions of

the groups adding up to p in A. The criterion is robust, given that the inclusion should be

verified for all p’s.

An example with two groups clarifies this point. In Figure 1(b) we depict the Zonotope

of E in (4) along with the Zonotope of the distribution matrix E′, obtained from E by

merging classes two and three as follows:

E′ =




0.4 0 0.4 0.2

0.1 0 0.4 0.5


 . (5)

As expected, we observe that Z(E′) ⊆ Z(E). The three dashed line segments crossing the

Zonotopes in Figure 1(b) correspond to the isopopulation lines at proportions p′, p′′ and

p′′′ in E and in E′. Each of these isopopulation lines identifies cross-sections of the two

Zonotopes, which are displayed as line segments delimited by the Zonotopes boundaries.

The size of these segments reflects the degree of dissimilarity in the distribution of the

proportions of the groups adding up to p′, p′′ and p′′′. Consistently with the main theorem,

all points lying on these segments can be obtained by different arrangements of splits,

merges and permutations of the classes of E and E′, respectively. The inclusion Z(E′) ⊆

Z(E) guarantees that the dispersion in the proportions of the groups is smaller in E′ than

in E for every proportion p ∈ [0, 1].

3.3 Remarks

The indifference class of the dissimilarity partial order is fully characterized by the fact

that B ∼ A for all admissible dissimilarity orderings if and only if there exist X ∈ RnA,nB

and X′ ∈ RnB ,nA
such that B = A ·X and A = B ·X′ (see Theorem 1, statement (iv)).

As a consequence, dissimilarity indifference holds whenever Z(B) = Z(A).
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The dissimilarity order is also preserved when some of the d groups in matrices A, B ∈

Md are mixed together with fixed weights, thus generating a new set of d′ < d distributions.

We use row stochastic matrices with at most a non-zero element in each column, denoted

by the subset R̂d′,d ⊂ Rd′,d, to represent such mixtures.17 The next remark is a consequence

of the definition of matrix majorization.

Remark 1 Let X̂ ∈ R̂d′,d with d′ < d, if B 4R A, then X̂ ·B 4R X̂ ·A.

The reverse implication is not true. The Introduction offers a counterexample, showing

that the ordering of distribution matrices induced by pairwise groups comparisons is not ro-

bust to the mixing of these groups. Thus, Z(B) ⊆ Z(A) is only sufficient but not necessary

for inclusion of the projections of the Zonotopes originated by considering X̂ ·B and X̂ ·A.

It follows that when d′ = 2, a widely explored case in segregation analysis, then testing

whether B is less dissimilar than A for any comparison involving different pairs of groups

(see Flückiger and Silber 1999) is not sufficient to guarantee that B can be obtained from A

through a sequence of dissimilarity preserving and reducing transformations. Nonetheless,

the Zonotopes inclusion criterion satisfied a “weak” form of subgroup consistency (Foster

and Shorrocks 1988), insofar if any pairwise comparisons of distributions agrees that the

two groups in A display at least as much dissimilarity as the same groups in B, then one

cannot conclude that B is more dissimilar than A, albeit there is no guarantee that the

two matrices can be eventually ranked.

Finally, the axiom IPG extends the dissimilarity indifference set to all comparisons

involving a relabeling of the groups. The next remak formalizes the implications of adding

IPG to the axioms considered in Theorem 1, and provides a natural multi-group extension

of Hutchens (2015) results, postulating symmetry of types.

17For instance, the matrices in R̂2,3 generate comparisons involving two groups starting from a population
partitioned into three groups. These comparisons involve either all three pairs of groups, or each single
group against a mixture of the remaining two groups. This case might be of interest for disentangling the
contribution of each dimension partitioning the population into groups on overall dissimilarity.
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Remark 2 For any A,B ∈ Md, B 4 A for all 4 satisfying axioms IPC, IEC, SC, MC

and IPG if and only if ∃Π ∈ Pd such that B 4R Π ·A.

Applications of the results in Theorem 1 to inequality and segregation analysis are

discussed in-depth in Section 4.

4 Related orders

4.1 Inequality

Consider two n-variate vectors at,bt ∈ M1, with at · 1n = bt · 1n = 1. These vectors may

represent, for instance, distributions of income shares across n individuals. A well known

result in inequality measurement is that an income distribution bt displays less inequality

than another distribution at if it can be obtained from the latter through a finite sequence

of progressive (Pigou-Dalton, PD) transfers of income from rich donors to poor recipients,

without switching their relative positions in the income ranking (Hardy et al. 1934, Marshall

et al. 2011).18 If this is the case, then the Lorenz curve of bt lies nowhere below the Lorenz

curve of at.

Recall that the Lorenz curve is a joint plot of the cumulative income shares, arranged by

increasing income magnitude, and the cumulative weight of the recipients of these income

shares observed in the data. Visually (see also Koshevoy and Mosler 1996), the curve

coincides with the lower bound of a Zonotope and the associated Lorenz dominance is

equivalent to the Zonotope inclusion criterion in statement (v) of Theorem 1. It follows that

every (income) inequality comparison involves the assessment of the dissimilarity between

the distributions of income shares and of the weights of the income recipients. The validity

of the claim extends as well to multidimensional inequality comparisons, where matrices A

18A PD transfer applied to at predicts that, for aj > ak, inequality is attenuated by operations involving
a reduction of aj by a quantity ε > 0 and an equal increase of ak by the same magnitude such that
aj − ε ≥ ak + ε, therefore preserving at · 1n.
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and B with d ≥ 2 represent, for instance, distributions of d-variate bundles of goods shares

across n equally weighted individuals or households. Thus, the “less spread out” relation

can be formalized as a dissimilarity relation between one (or many) distribution(s) and a

reference distribution.

The role of the dissimilarity model for inequality analysis is formalized in the following

corollary. It establishes equivalent conditions regarding the dissimilarity between the dis-

tributions of relevant outcomes and the distribution of individual weights, here assumed

uniform and equal to 1/n.

Corollary 1 Let A, B ∈ Md. For every dissimilarity ordering 4 satisfying axioms IEC,

IPC, SC and MC it holds that

B′ :=




1
nB

1tnB

B


 4 A′ :=




1
nA

1tnA

A


 (6)

if and only if there exists X ∈ RnA,nB
such that (i) B = A ·X and (ii) nA

nB
1tnB

= 1tnA
·X.

Corollary 1 follows from the equivalence of claims (ii) and (iv) in Theorem 1 (a more

formal proof is in the Appendix). When nA = nB = n, matrix X in the corollary should be

doubly stochastic.19 The condition B = A ·X with X ∈ Dn implied by (6), often referred to

as uniform majorization, is widely adopted in robust univariate and multivariate inequality

analysis (see p. 613 in Marshall et al. 2011). It states that one income distribution should

be compared to another if the former looks more similar to a uniform distributions (where

every unit receives the same income share) compared to the latter. All social welfare

functions that are increasing in incomes and Schur-concave (i.e. display some degree of

inequality aversion) would rank the two income distributions accordingly.

In the univariate case (d = 1), B′ 4 A′ in (6) indicates that the PD transfers applied to

19In fact, if nA = nB , then matrix X that is row stochastic should also be column stochastic because of
condition (ii) in Corollary 1.
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at to obtain bt involve precise sequences of split and merge transformations of the classes

of A′. Hence:

Corollary 2 Every PD transformation can be decomposed into a sequence of split of classes

and merge of classes operations.

Split and merge operations can hence be seen as inequality reducing transformations that

are more elementary than PD transformations. In the Appendix, we provide an algorithm

that shows how any T-transform, an equivalent matrix representation of a PD transfer (see

p. 33 in Marshall et al. 2011), can be exactly decomposed into the product of matrices

representing split and merge operations. It follows that any univariate inequality com-

parison based on uniform majorization can be seen as a dissimilarity comparison but not

the reverse, insofar the dissimilarity preserving operations of split and merge characterize

matrix majorization of which uniform majorization is a particular case.

The interesting result is that there always exists a sequence of splits and merges that

supports uniform majorization even in the multidimensional case (d ≥ 2), while this is not

the case for PD transfers (Kolm 1977).

4.2 Lorenz Zonotopes and inequality analysis

Alternative criteria for assessing multivariate inequality are also embedded within the dis-

similarity model. Koshevoy and Mosler (1996) have analyzed the distributions of con-

sumption goods shares across individuals. Their proposal is to rank distribution matrices

through the Lorenz Zonotopes inclusion order. A Lorenz Zonotope LZ(.) in Rd+1
+ is the

plot, for each population share, of the associated set of possible bundles of goods that this

share of population may achieve. When d = 1, the order induced by LZ is consistent with

the Lorenz curve order. Following the notation in Corollary 1, LZ(A) := Z(A′). Theorem

1 allows to conclude that the Lorenz Zonotope relation LZ(B) ⊆ LZ(A) always indicates

that there exists a sequence of merge, split, permutation and insertion/elimination of empty
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classes transforming B′ into A′. This result characterizes the Lorenz Zonotope inclusion

order in terms of elementary transformations for any d ≥ 1.

4.3 Welfare

Ebert and Moyes (2003) analyze the relation between welfare evaluations, Lorenz domi-

nance and equivalence scales for incomes when population weights may differ among units

and across distribution matrices. In line with Corollary 1, inequality comparisons in this

framework can be made in terms of the dissimilarity between the income distribution and

the distribution of population weights. A direct application of Theorem 1, consistent with

results in Ebert and Moyes (2003), is that every welfare-consistent measure of inequality can

be written as an average of convex transformations of equivalized incomes, scaled by their

demographic weights. This is formalized by the inequality index Dh =
∑n

j=1 ωjh(aj/ωj)

with h convex, where ωj is individual j’s weight and aj/ωj is her equivalent income.20

4.4 Inequality of opportunity

An increasingly popular notion of inequality, alternative to inequality of outcomes, is that

of inequality of opportunity (Roemer 2012, Andreoli, Havnes and Lefranc 2019). According

to this theory, outcomes are generated by individual effort (gathering all dimensions upon

which people have full control and responsibility), by circumstances (such as the background

of origin), and by the interaction of these two. Inequality of opportunity criteria account

for the implications of the unequal distribution of circumstances on the distribution of some

relevant outcome. In the context of income opportunities, some authors (for a review, see

Ramos and Van de gaer 2016) have suggested to use as benchmark the counterfactual fair

income distribution (representing the income distribution that would have occurred if the

implications of the circumstances on income were eliminated). Inequality of opportunity

20The result, based on Lemma 1 in the Appendix, follows from the homogeneity and convexity of
g : R2 → R, that give g(aj , ωj) = ωjg(aj/ωj , 1) = ωjh(aj/ωj) with h convex.
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stems from the dissimilarity in the distribution of the actual income shares across the

entire population and the distribution of the counterfactual (fair) income shares in the

same population. Theorem 1 hints on the possibility of using Zonotopes inclusion to test

inequality of opportunity for income, and provides a consistent measurement framework.

4.5 Segregation

Segregation arises when individuals with different characteristics (such as their race or

gender) are distributed unevenly across the neighborhoods of a city, the schools of a school

district, or the jobs within a firm. In segregation analysis, the realizations of interest are

categorical by nature. Mainstream approaches to segregation focus on the two-groups case

and are consistent with the segregation curve order (Duncan and Duncan 1955).

The segregation curve is obtained by ordering the classes of A by increasing magnitude

of the ratio a2j/a1j evaluated for each class j. It gives the proportions of group 1 and

of group 2 that are observed in the classes where group 2 is relatively over-represented.

The graph of the segregation curve coincides with the lower boundary of the Zonotope

representing the data about groups 1 and group 2 distributions across categories. The

segregation curve of matrix E in (4), for instance, is the lower boundary of the Zonotope

represented in Figure 1(a). It is obtained by placing first class three, which has the lowest

concentration ratio (equal to 0), while class two is placed last, as it displays the largest

concentration ratio (equal to 4).

Theorem 1 bears three contributions to the field. First, the theorem clarifies that

the operations of merge, split, permutation and insertion/elimination of empty classes

characterize the ranking produced by non-intersecting segregation curves (Hutchens 1991).

Second, the theorem establishes that the segregation curve dominance criterion can be nat-

urally extended to the multi-group setting by looking at the d-variate Zonotopes inclusion

order, which generalizes connections between the segregation curve and informativeness
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discussed in the bivariate setting (Dahl 1999, Frankel and Volij 2011, Lasso de la Vega

and Volij 2014). Furthermore, the two tests are equivalent in the case of two-groups dis-

tributions: for A,B ∈ M2, if Z(B) ⊆ Z(A) then the segregation curve of B lies nowhere

below the segregation curve of A. Third, Theorem 1 identifies and characterizes the class

of multi-group segregation indices that are coherent with the family Dh. Below are some

examples of well-known segregation indices belonging to this class.

The Duncan and Duncan’s dissimilarity index for a matrix A ∈ M2 is D(A) :=

1
2

∑nA

j=1 |a1j − a2j|. It measures dissimilarity as the average absolute distance between the

elements a1j/aj and a2j/aj in each class. By setting

h(a1j/aj, a2j/aj) := |a1j/aj − a2j/aj|

it follows that Dh(A) = D(A).

In the multi-group context (A ∈ Md), segregation can be measured by the Atkinson-

type segregation index, defined Aω(A) := 1 − ∑nA

j=1

∏d
i=1 (aij)

ωi for ωi ≥ 0 such that

∑d
i=1 ωi = 1. By setting

h (a1j/aj, . . . , adj/aj) := 1− d
∏d

i=1
(aij/aj)

ωi .

it follows that Dh(A) = Aω(A). Convexity of h stems from the features of the weighting

scheme.

The mutual information index characterized in Frankel and Volij (2011) is M(A) :=

log2(d) −∑nA

j=1

(
aj

d

)∑d
i=1

aij

aj
· log2

(
aj

aij

)
with

aij

aj
· log2

(
aj

aij

)
set equal to 0 if aij = 0. By

setting

h (a1j/aj, . . . , adj/aj) :=
d∑

i=1

· log2 (d)− aij
aj
· log2

(
aj
aij

)

it follows that Dh(A) = M(A). Convexity of h stems from the log operator.
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5 Concluding remarks

A large and sparse literature on segregation and inequality measurement has proposed

criteria for ranking multi-groups distributions according to the dissimilarity they exhibit.

This paper establishes the foundation of the dissimilarity model, which provides an orga-

nized and integrated measurement framework for a variety of socio-economic phenomena.

For empirical purposes, the interesting result is that the existence of dissimilarity preserv-

ing and/or reducing transformations mapping one configuration into another can be tested

upon inclusion of the distribution matrices Zonotopes representation, a multidimensional

generalizations of the segregation curve. This last aspect allows to implement dissimilarity

analysis for policy evaluation purposes.

For instance, a policymaker interested in reducing ethnic segregation of students across

schools located in a given school district, might propose a portfolio of policy measures, none

of which has to do with more “elementary” transformations such as splitting, merging, per-

muting schools or adding empty schools. Nonetheless, these “elementary” transformations

might still be targeted as obviously segregation-preserving/reducing. If the “complex” pol-

icy measures reshape the students distribution across schools in a way that is consistent with

the existence of sequences of more “elementary” transformations, then the policymaker can

safely conclude that his de-segregation objective has been achieved. The policymaker can

conclude that such sequence exists upon verification of the Zonotopes inclusion empirical

test, based on the available data. Routines are made available to facilitate this task.

In some cases, Zonotopes inclusion is rejected by the data. The dissimilarity indices

characterized in Theorem 1 allow to produce conclusive evaluations about the changes in

dissimilarity, in a way consistent with the implications of the “elementary” transformations.

Evaluations based on one or few dissimilarity indicators, however, are not robust and can

always be challenged on the perspective offered by alternative measures. The complete

characterization of the dissimilarity indicators presented here is left for future research.
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A Proofs

A.1 Preliminary results

The first result shows that matrix majorization admits an equivalent representation in

terms of unanimous ranking for a well defined class of convex functions.

Lemma 1 For any A,B ∈Md, B 4R A if and only if

nB∑

j=1

g(b1j, . . . , bdj) ≤
nA∑

j=1

g(a1j, . . . , adj), (7)

for all functions g : Rd → R that are convex and homogeneous such that g(0td) = 0.

For a formal proof, see Lemma 15.C.11 in Marshall et al. (2011).

The second result shows that the insertion of empty classes, split and merge operations

can be represented through linear transformations involving row stochastic matrices. An

operation of insertion of empty classes transforms A into B with nB > nA by augmenting

A of nB−nA columns with zero entries. We denote RIEC
nA,nB

⊂ RnA,nB
the set of all matrices

reproducing an insertion of empty classes when post-multiplied to a distribution matrix A.

Hence Y ∈ RIEC
nA,nB

is an identity matrix of size nA augmented by nB − nA columns with

zero entries.

Let M0
d ⊂Md define the set of matrices exhibiting at least one column of zeroes. For

A ∈ M0
d, let J 0

A denote the index set of all columns in A with all zeroes and JA denote

the index set of all the other columns of A. Let j ∈ JA such that j + 1 ∈ J 0
A. The matrix

Z[j] incorporates an operation of split of classes applied to matrix A ∈ M0
d that leads to

matrix B ∈ Md with bj = λaj and bj+1 = aj+1 + (1− λ)aj = (1− λ)aj. Let k 6= k′ 6= j,
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the set of all transformation matrices Z[j] reproducing a split of classes is denoted by:

RSC
A :=





Z[j] ∈ Rn :
zjj := λ , zj j+1 := (1− λ), zkk := 1, zkk′ := 0,

λ ∈ [0, 1], j ∈ JA, j + 1 ∈ J 0
A




.

Also the merge of classes operation originates a distribution matrix B = A ·M[j], where

the matrix M[j] performs a merge of class j towards j + 1. It belongs to the set:

RMC
n :=

{
M[j] ∈ Rn : mj j+1 = mkk = 1 ∀k 6= j, mij = 0 in all other cases

}
.

A.2 Proofs of Theorem 1

Proof. We show that (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(i).

(i) ⇒ (ii). This is a consequence of the definition of the axioms.

(ii) ⇒ (iii). The ordering induced by the family of indicators Dh is consistent with

axioms IPC (Dh is symmetric with respect to classes) and IEC (empty classes receive

weight aj = 0). Consistency with axiom SC follows from homogeneity with respect to aj:

a split of class j into j and j′ with split parameters λ and 1− λ gives λaj/(λaj) = aj/aj =

(1−λ)aj/((1−λ)aj). Finally, if Dh is consistent with MC then h is subadditive that, along

with homogeneity, gives that h is also convex (see Proposition B.9.b at p.651 in Marshall

et al. 2011).

(iii) ⇒ (iv). Note that B 4R A is equivalent to




B

b
t


 4R




A

at


, where b

t
and

at are row vectors depicting the distribution of groups’ frequencies across classes, that

is b
t

= 1td · B and at = 1td · A. Hence condition (7) in Lemma 1 can be written as

∑
j g(btj, bj) ≤

∑
j g(atj, aj) with g defined on Rd+1. Given that g is convex and homo-

geneous, then g(atj, aj) = ajg(atj/aj, 1) = ajh(atj/aj) where h ∈ H, while for convenience

empty classes receive weight a = 0 and do not count in the index computation. Moreover,
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adding |nA − nB| empty classes preserves the relation in (7). We have therefore obtained

the index Dh in (3). By Lemma 1, Dh(B) ≤ Dh(A) ∀h ∈ H is equivalent to (7) and implies

(iv).

(iv)⇒ (v). Recall that B 4R A means that B = A ·X for X ∈ RnA,nB
. The set RnA,nB

describes a polytope in Rn,m
+ . Every X ∈ RnA,nB

can be written as the convex combination

of its vertices, given by all the H = (nB)nA (0,1)-matrices of dimension nA × nB with

exactly one nonzero element in each row, hereafter denoted as X(1), . . . ,X(h), . . . ,X(H).

Hence B =
∑

h λhA ·X(h) with weights λh ≥ 0 ∀h and
∑

h λh = 1, where h ranges from

1 to H. Following this notation, any column k of B rewrites bk =
∑

h λhA · xk(h). Using

Tonelli’s theorem, the weighted sum z =
∑nB

k=1 θkbk becomes:

z =

nB∑

k=1

θk

(∑

h

λh
∑

j

aj · xjk(h)

)
=

nA∑

j=1

aj

(∑

h

λh
∑

k

θkxjk(h)

)
=

nA∑

j=1

θ̃jaj.

Denote θ̃ =
(
θ̃1, . . . , θ̃j, . . . , θ̃nA

)
where θ̃j is defines as above, the Zonotope of matrix B

writes:

Z(B) :=

{
z := (z1, . . . , zd)

t : z =

nB∑

k=1

θkbk, θk ∈ [0, 1] ∀k = 1, . . . , nB

}

=

{
z =

nA∑

j=1

θ̃jaj, θ̃ ∈ I ⊆ [0, 1]nA ∀j = 1, . . . , nA

}
⊆ Z(A),

where I is a subset of the nA-fold cartesian product of [0, 1], following from the fact that

if xjk(h) = 1 then xjk′(h) = 0 for all k′ 6= k, and given the restrictions on θk. The elements

of I (that is, the new weights θ̃j) are obtained for a given weighting scheme (λ1, . . . , λH).

If I ⊆ [0, 1]nA then every element of Z(B) can be written as an element of Z(A), or

equivalently Z(B) ⊆ Z(A). When I = [0, 1]nA , Z(B) = Z(A), otherwise Z(B) could be

strictly included in Z(A).

(v)⇒ (i). Let consider B,A ∈Md and use the indices k and j to denote the columns of
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B and A respectively. While assuming Z(B) ⊆ Z(A), we show that if bk ∈ Z(A) ∀k, then

there exists a finite sequence of insertion of empty classes, permutation, split and merge of

classes of A that gives B. Assuming statement (v) and knowing that A · 1nA
= B · 1nB

,

the columns of B identify vectors that lie on Z(A) and can hence be written (using the

Zonotope definition) as follows:

bk :=
∑

j

θj(k)aj, for all k ∈ {1, . . . , nB}\k′ and

bk′ :=
∑

j

θj(k
′)aj = A · 1nA

−
∑

k 6=k′

∑

j

θj(k)aj =
∑

j

(
1−

∑

k 6=k′

θj(k)

)
aj

for a generic class k′ of B. In shorthand notation

B =

nA∑

j=1

(θj(1)aj, . . . , θj(nB)aj). (8)

Given that θj(k) ∈ [0, 1] and θj(k
′) :=

(
1−∑k 6=k′ θj(k)

)
∈ [0, 1], this implies that

∑
k θj(k) = 1. So, each addendum in (8) can be written as:

(
λj1aj, λj2(1− λj1)aj, . . . , λj(nB−1)

∏

1≤k<nB−1

(1− λjk)aj,
∏

1≤k≤nB−1

(1− λjk)aj
)
, (9)

where λ ∈ [0, 1]. In fact, every sequence of nB random numbers {θ(k)}nB
k=1 with support in

[0, 1] satisfying
∑

k θ(k) = 1 can be written as:

θ(1) = λ1 ∈ [0, 1]

θ(k) = λk

(
1−∑k−1

j=1 θ(j)
)

with λj ∈ [0, 1] ∀j = 2, . . . , nB.

(10)

The constraint
∑

k θ(k) = 1 imposes that there must exist an index k such that λk = 1.

If λk = 1, then the series is completed and λj = 0 = θ(j) for any j > k. Note that

θ(k) = 0 also if λk = 0, thus the sequence of θ(k) may also include elements equal to 0
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even if it is not yet completed. Solving backward the sequence in (10) leads to (9) given

that θ(k) = λk ·
∏k−1

j=1 (1− λj) with λj ∈ [0, 1] ∀j and λk ∈ [0, 1] ∀k = 2, . . . , nB.

Consider a sequence of matrices Z[k] ∈ RSC
A .21 Matrix Z[1] performs the first split

of vector aj according to proportion λj1. Matrix Z[2] performs a split on the residual

component (1 − λj1)aj according to the proportion λj2. The iteration of these arguments

leads to matrix Z[nB−1], representing the last split of vector aj out of a sequence of nB − 2

splits. It follows that (9) can be equivalently written as:

(
λj1aj, . . . ,

∏

1≤k<nB−1

(1− λjk)aj,0d
)
· Z[nB−1] = (aj,0d, . . . ,0d) ·

∏

1≤k≤nB−1

Z[k]. (11)

Extending the representation in (11) to all addends in (8) leads to a total of nA(nB−1) = n

splits of A’s classes. The split operation preserves the number of classes, therefore it can

be operationalized only if there exists a matrix Y ∈ RIEC
nA,n

adding a sufficient amount of

empty class to A to perform the n splits. The summation in (8) reveals that the order of

the classes of A is irrelevant. Thus operations of permutations of classes are admitted.22

By combining all the operations in a single row we obtain A · X̂, where the nA × n matrix

X̂ rewrites:

X̂ := ΠnA
·Y · diag

(
nB−1∏

k=1

Z[k](1), . . . ,

nB−1∏

k=1

Z[k](nA)

)
(12)

= ΠnA
·Y ·

nA∏

j=1

(
nB−1∏

k=1

Z̃[k](j)

)
, (13)

where Z[k](j) is indexed for j to highlight the relation with the class j in A. Here Z̃[k](j) :=

diag
(
I, Z[k](j), I

′) and I and I′ are two identity matrices of size (j − 1)nB and (nA −
21See the preliminary results in Appendix A.1.
22The two operations of permutation and insertion of classes transform A into

A ·ΠnA
·Y := (a1, 0d, . . . ,0d︸ ︷︷ ︸

nB−1 times

, . . . ,anA
, 0d, . . . ,0d︸ ︷︷ ︸
nB−1 times

).
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j)nB respectively. Line (13) comes from the fact that every block diagonal matrix can be

represented as the product of the matrices associated with each block, obtained substituting

the remaining blocks with identity matrices.

To conclude, it is possible to perform permutations of nAnB classes to rearrange the

entries in A·X̂ to accommodate the definition of a merge of classes transformation through

a matrix ΠnAnB
. A convenient permutation rearranges nB groups of nA-tuples of classes of

A · X̂, so that the j-th group consists of the sequence of classes (λ1ja1, . . . , λnAjanA
, . . .).23

Consider a sequence of merges of classes, so that class 1 in the new configuration is merged

with class 2, then the resulting class 2 is merged with class 3 and so on, up to the first nA

classes. The sequence of merge transformations can be modeled by matrices M[1] ∈ RMC
nAnB

,

M[2] ∈ RMC
nAnB

and so on, up to M[nA−1] ∈ RMC
nAnB

, respectively. Given the order of the

classes, the same procedure can be extended to all the nB − 1 remaining nA-tuples of

classes. This operation leaves many empty classes, that can be eliminated using a matrix

Y′, incorporating the elimination of empty classes operation. As a result:

B = A · X̂ ·ΠnAnB
·
∏

1≤k≤nB


 ∏

(k−1)nA<j<knA

M[j]


 ·Y′.

Hence, the condition Z(B) ⊆ Z(A) is mapped into matrix operations transforming

A into B that can be decomposed into a finite sequence of permutations, insertion or

elimination of empty classes, split and merge transformations, which concludes the proof.

Q.E.D.

A.3 Proofs of Corollary 1

Proof. By Theorem 1, (6) is equivalent to B′ = A′ · X for X ∈ RnA,nB
, which gives

condition (i). Each entry in the first row of A′ is a constant equal to 1/nA, so it can be

transformed by X into the corresponding element in B′, equal to 1/nB, only by multiplying

23Formally: A ·X ·ΠnAnB
= (λ11a1, . . . , λnA1anA

, . . . , λ1nB
a1, . . . , λnA nB

anA
).
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each single entry by nA/nB, thus (ii) should also hold. Q.E.D.

A.4 Proofs of Corollary 2

Proof. A formal proof draws on the fact that any (inequality reducing) PD transfer of an

income share λ among classes j and k can be formalized through a linear transformation of

vector at towards bt involving a T-transform matrix T(λ, k, j), such that bt = at ·T(λ, k, j),

with T(λ, k, j) := λIn + (1 − λ)Πj,k, where In is the identity matrix, λ ∈ [0, 0.5] and

Πj,k ∈ Pn is a permutation matrix obtained from In by permuting columns j and k. Given

a matrix A ∈Md with n columns, let S(λ, k, j) ∈ RnA,nB
be a row stochastic matrix that

splits column k of A and merges a share (1− λ) of k with column j. This row stochastic

matrix writes:

S(λ, k, j) := [λ (In,0n) + (1− λ) (In,0n) Πn+1,k] ·




In

ij,·


 ,

where ij,· is a row vector corresponding to row j of In, λ ∈ [0, 0.5] and Πn+1,k ∈ Pn+1

is n + 1 dimensional permutation matrix obtained from In+1 permuting columns n + 1

and k. Any T-transform involves a proportional movement of population masses from two

classes, which amounts to repeating twice a sequence of splits and merges S(λ, k, j), so that

T(λ, k, j) := S(λ′, k, j) · S(λ′′, j, k), where the splitting parameters must satisfy λ′′ = 1− λ

and λ′ = 1−2λ
1−λ . This concludes the proof.

Q.E.D.
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