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1. Introduction  

 

In an important paper deriving axiomatically measures of distributional change, Cowell (1985) 

started by asking what is meant by distributional change. In the context of mobility, distributional 

change simply aims at estimating the amount of movement taking place when a vector x of 

individual incomes becomes a vector y, of the same population size. Such a change generally 

involves a re-ranking of the individuals. Even without re-ranking there may be some amount of 

distributional change if there was a change in the inequality of the distribution. Distributional 

change may however refer to another issue, that of horizontal inequity, when a given distribution 

(e.g. that of post-tax incomes) is compared to a reference distribution (e.g. that of pre-tax incomes). 

Here also there may be re-ranking, but even without re-ranking one may be interested in checking 

how distant the pre-tax are from the post-tax incomes. Cowell’s (1985) study was a follow up to a 

previous paper of his (Cowell, 1980) where he proposed a measure of distributional change related 

to the concept of generalized entropy. Both papers took a relative approach to distributional change 

while Berrebi and Silber (1983), borrowing ideas from Kolm (1976), proposed an absolute 

measure of distributional change. Later on, Silber (1995) introduced a Gini-related index of 

distributional change. Jenkins and van Kerm (2006) extended this measure, using the concept of 

generalized Gini. They provided an analytical framework in which changes in income inequality 

over time are related on one hand to the re-ranking of individuals that took place during the period 

examined, on the other hand to the pattern of income growth across the income range. The Jenkins 

and van Kerm approach linked in fact the concept of distributional change to that of pro-poor 

growth. Starting around the year 2000 there has indeed been a growing literature on the concept 

of pro-poor growth (see, Deutsch and Silber, 2011, for a short review of this literature). A 

distinction is generally made between an approach where growth is labeled as pro-poor if the 

incomes of the poor grow, while another view assumes that growth is pro-poor if the incomes of 

the poor rise proportionally more than the average income (see, for example, Kakwani, 2004; 

Ravallion, 2004; Dollar and Kray, 2002). This literature makes also a distinction between an 

anonymous approach where two or more cross-sections of incomes are compared, and a non-

anonymous approach based on panel data (see, for example, Fields et al., 2003; Grimm, 2007; 

Nissanov and Silber, 2009). 
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Nissanov and Silber (2009) stressed in fact the similarity between an analysis of pro-poor growth 

and that of convergence. While the literature on pro-poor growth focused generally on individual 

or household data, the emphasis in the literature on convergence was clearly on macroeconomic 

data, since this type of study had a solid theoretical foundation based on growth theory. Following 

previous work on the concept of convergence (see, for example, Baumol, 1986; Barro and Sala-i-

Martin, 1992; Mankiw, Romer and Weil, 1992), Sala-i-Martin (1996) introduced the concepts of 

- and -convergence 2 . For Sala-i-Martin (1990) “there is absolute -convergence if poor 

economies tend to grow faster than rich ones”. As far as -convergence is concerned, Sala-i-Martin 

(1990) states that “a group of economies are converging in the sense of  if the dispersion of their 

real per capita GDP levels tends to decrease over time”. O’Neill and van Kerm (2004) then showed 

the link that exists between the measurement of -convergence and that of tax progressivity. They 

measured -convergence as the change over time in the Gini coefficient and decomposed this 

change in the Gini coefficient into two components, one corresponding to -convergence, the other 

to the concept of leapfrogging (see, for example, Brezis et al., 1993, for this notion of 

leapfrogging). The component reflecting -convergence measures in fact the extent to which poor 

economies grow faster than rich ones. As stressed by O’Neill and van Kerm this term is parallel 

to the notion of vertical equity in the tax literature (see, Reynolds and Smolensky, 1977; or 

Kakwani, 1977) while leapfrogging corresponds to re-ranking.  

Such a unified framework of analysis, as that proposed by O’Neill and van Kerm, appears also in 

a recent paper by Dhongde and Silber (2016) who defined a set of income weighted measures of 

mobility, convergence and pro-poor growth, in the non-anonymous as well as in the anonymous 

case.  

This paper contributes however in several ways to the literature. First, like Dhongde and Silber 

(2016), it proposes a unified framework to analyze mobility, convergence and pro-poor growth, 

but here the indices derived are population rather than income weighted measures. Second it sheds 

light on the role played by individual income changes in macro-economic growth and stresses the 

role of education and age. Third, and most importantly, it shows, using data on non-retired 

individuals in urban China, how crucial is the distinction between an anonymous and a non-

anonymous approach to pro-poor growth.  

                                                           
2  These concepts were actually introduced in the Ph.D. thesis of Sala-i-Martin (1990).  
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The paper is organized as follows. Section 2, 3 and 4 describe the methodology. In Section 2 we 

define the notion of population weighted approach to measuring distributional change and show 

how this concept allows one to measure mobility, convergence and pro-poor growth. While the 

measures derived in Section 2 were linked to concepts of Lorenz and relative concentration curves, 

we generalize this approach in Section3 by applying the notion of generalized Gini index. Whereas 

in Section 2 and 3 income was both the variable under scrutiny and the criterion for ranking 

individuals, in Section 4 we show that it is possible to define the income related distributional 

change by selecting another ranking criterion. Section 5 shows the usefulness of our approach by 

presenting an empirical illustration based on Chinese data covering urban areas and non-retired 

individuals. Finally, concluding comments are given in Section 6. 

 

2. A population weighted approach to measuring distributional change 

2.1. Notation 

 

As in Dhongde and Silber (2016) let 𝑥𝑖 and 𝑦𝑖 refer to the absolute income of the 𝑖𝑡ℎ observation 

and �̅� and �̅� to the average incomes at times 0 and 1 in a population of n individuals, respectively.3 

Define the absolute changes in incomes, 𝑥𝑖 and �̅�, as  𝑥𝑖 = (𝑦𝑖 − 𝑥𝑖) and �̅� = �̅� − �̅� . Let 

𝑠𝑖 = (𝑥𝑖/𝑛�̅�) and 𝑤𝑖 = (𝑦𝑖/𝑛�̅�) = (𝑥𝑖 + 𝑥𝑖) 𝑛(�̅� + �̅�)⁄ ) refer to the income shares at times 0 

and 1. Upon simplification, the difference (𝑤𝑖 − 𝑠𝑖) may be expressed as 

𝑤𝑖 − 𝑠𝑖 = (
1

𝑛�̅�
) (

(�̅�𝑥𝑖−𝑥𝑖�̅�)

(�̅�+�̅�)
)                                                                                                         (1) 

Now define 
𝑖
 and ̅ as 

𝑖
= (𝑥𝑖)/𝑥𝑖 and ̅ = (�̅�/�̅�), where 

𝑖
  denotes the growth in income 

of observation i and ̅ denotes the growth in average income; then, as shown in Dhongde and 

Silber (2016), expression (1) implies that 

𝑤𝑖 − 𝑠𝑖 = 𝑠𝑖
(𝑖−̅)

1+̅
                                                                                                                         (2) 

 

                                                           
3 For the ease of exposition, we refer to i as an individual here.  However, i may also represent a population centile, a region, or a 

country, depending on the application.  
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2.2. A population-weighted measure of the distributional change and equivalent growth rate 

Let us now plot the cumulative population shares (
1

𝑛
) , (

2

𝑛
) , … (

𝑖

𝑛
) , … , (

𝑛−1

𝑛
) , 1 on the horizontal 

axis and the corresponding cumulative values of the shares  𝑠𝑖 and 𝑤𝑖 on the vertical axis in a one 

by one square, these shares being ranked according to a given criterion. We therefore obtain two 

curves, one, 𝐶𝑠, plotting (on the vertical axis) the cumulative income shares at time 0 versus (on 

the horizontal axis) the corresponding population shares, the other, 𝐶𝑤, doing the same for the 

cumulative income shares at time 1. These two so-called concentration curves are increasing, 

starting at point (0, 0) and end at point (1, 1). They may of course cross once or more the diagonal. 

Let us first compute the area 𝐴𝑠  situated below the curve 𝐶𝑠. Assuming n observations, it is 

identical to the sum of a triangle and of (𝑛 − 1) trapezoids. It is easy to check that this area may 

be expressed as 

𝐴𝑠 = (
1

2
) (

1

𝑛
) 𝑠1 + (

1

2
)(

1

𝑛
)[∑  (𝑠𝑖 + 2 ∑ 𝑠𝑗)𝑖−1

𝑗=1
𝑛
𝑖=2 ]                                                                         (3) 

Similarly the area 𝐴𝑤 situated below the curve 𝐶𝑤 will be expressed as 

𝐴𝑤 = (
1

2
) (

1

𝑛
) 𝑤1 + (

1

2
)(

1

𝑛
)[∑  (𝑤𝑖 + 2 ∑ 𝑤𝑗)𝑖−1

𝑗=1
𝑛
𝑖=2 ]                                                                     (4) 

The difference between these two areas will then be written as 

𝐴𝑤 − 𝐴𝑠 = (
1

2
) (

1

𝑛
) (𝑤1 − 𝑠1) + (

1

2
)(

1

𝑛
)[∑ [(𝑤𝑖 − 𝑠𝑖) + 2 ∑ (𝑤𝑗 − 𝑠𝑗)𝑖−1

𝑗=1 ]𝑛
𝑖=2 ]                              (5) 

Combining (2) and (5) we then obtain 

𝐴𝑤 − 𝐴𝑠 = (
1

2
) (

1

𝑛
) (

1

1+̅
) {∑ [𝑠𝑖(𝑖

− ̅) + ∑ [2𝑠𝑗 (
𝑗

− ̅)]𝑖−1
𝑗=1 ]𝑛

𝑖=1 }  

𝐴𝑤 − 𝐴𝑠 = (
1

2
) (

1

𝑛
) (

1

1+̅
) ∑ (

𝑖
− ̅)𝑠𝑖(2𝑛 + 1 − 2𝑖)𝑛

𝑖=1                                                                 (6) 

Let us call CHANGE the value of twice the difference (𝐴𝑤 − 𝐴𝑠) . We then derive that      

𝐶𝐻𝐴𝑁𝐺𝐸 = ∑ 𝑖
(𝑖−̅)

(1+̅)
= ∑ 𝑖

(1+𝑖)−(1+̅)

(1+̅)
𝑛
𝑖=1

𝑛
𝑖=1 = ∑ 𝑖 [

(1+𝑖)

(1+̅)
− 1]𝑛

𝑖=1                                           (7)     
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with    

𝑖 = (
2𝑛+1−2𝑖

𝑛
) 𝑠𝑖                                                                                                                           (8) 

But expression (7) may also be written as 

𝐶𝐻𝐴𝑁𝐺𝐸 =
∑ 𝑖(1+𝑖)𝑛

𝑖=1

(1+̅)
− [∑ 𝑖

𝑛
𝑖=1 ] =

∑ 𝑖+∑ 𝑖𝑖
𝑛
𝑖=1

𝑛
𝑖=1

(1+̅)
− [∑ 𝑖

𝑛
𝑖=1 ]    

𝐶𝐻𝐴𝑁𝐺𝐸 = [∑ 𝑖
𝑛
𝑖=1 ] {

(1+∑ 𝑖𝑖
𝑛
𝑖=1 )

(1+̅)
− 1} = [∑ 𝑖

𝑛
𝑖=1 ] {

(1+𝐸)

(1+̅)
− 1}                                              (9) 

with 


𝑖

=
𝑖

∑ 𝑖
𝑛
𝑖=1

                                                                                                                                     (10) 

and 


𝐸

= ∑ 
𝑖


𝑖
𝑛
𝑖=1                                                                                                                              (11) 

where 
𝐸

 is the “equally distributed equivalent growth rate”.   

Since 𝑥𝑖 is the income of individual i at time 0 and 𝑠𝑖 = (𝑥𝑖/𝑛�̅�) we derive  

∑ 𝑖 =𝑛
𝑖=1 ∑ (

2𝑛+1−2𝑖

𝑛
) (

𝑥𝑖

𝑛�̅�
) = ∑ (

2𝑛+1−2𝑖

𝑛2 ) (
𝑥𝑖

�̅�
)𝑛

𝑖=1
𝑛
𝑖=1                                                                 (12) 

Since ∑ (2𝑛 + 1 − 2𝑖) = 𝑛2𝑛
𝑖=1 ,  ∑ (

2𝑛+1−2𝑖

𝑛2
)𝑛

𝑖=1 𝑥𝑖 = 𝑥𝐸  in (12) is a weighted average of the 

different incomes. Note that the weights are higher, the lower the rank of the individuals, given 

the ranking criterion selected. Moreover the difference between the weights of two individuals 

who are adjacent in the ranking is always equal to (2/𝑛2).  It is easy to check that when the 

individuals are ranked by increasing income, 𝑥𝐸 turns out to be Atkinson’s “equally distributed 

equivalent level of income” at time 0, assuming we use Gini’s social welfare function (see, 
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Donaldson and Weymark4, 1980). 𝐸0 = (𝑥𝐸/�̅�) is then identical to Gini’s measure of equality (the 

complement to 1 of Gini’s famous inequality index) at time 0. 

Combining (9) and (12) we then end up with 

𝐶𝐻𝐴𝑁𝐺𝐸 = 𝐸0 {
(1+𝐸)

(1+̅)
− 1}                                                                                                       (13) 

 

2.3. The non-anonymous case: measuring population-weighted income mobility and 

 −convergence 

Following earlier work on an approach to the computation of the Gini index based on the use of 

the so-called G-matrix (see, Silber, 1989), Silber (1995) defined a population weighted measure 

𝐽𝐺𝑃 of distributional change as 

𝐽𝐺𝑃 = 𝑒′𝐺(𝑠 − 𝑤)                                                                                                                      (14) 

where 𝑒′  is a 1 by n vector of the population shares (
1

𝑛
), s and w are (n by 1) vectors of the income 

shares 𝑠𝑖 and 𝑤𝑖 that were defined previously, but both sets of shares are ranked by decreasing 

values of the incomes 𝑥𝑖 at time 0. Finally, G  is a n by n square matrix, whose typical element is 

equal to 0 when 𝑖 = 𝑗, to -1 when 𝑗 > 𝑖 and to +1 when 𝑖 > 𝑗. Silber (1995) has also shown that 

this index 𝐽𝐺𝑃 is actually equal to twice the area lying  between the curves 𝐶𝑠 and 𝐶𝑤 previously 

defined. Note that in drawing these curves 𝐶𝑠 and 𝐶𝑤, both sets of shares, 𝑠𝑖   and 𝑤𝑖, are ranked by 

increasing values of the shares 𝑠𝑖  at time 0. Since the area between the diagonal and the curve 𝐶𝑠 

is equal to (1 2⁄ )(𝑒′𝐺𝑠),  while the area between the diagonal and the curve 𝐶𝑤  is equal to 

(1 2⁄ )(𝑒′𝐺𝑤), we derive that 

𝐶𝐻𝐴𝑁𝐺𝐸 = 2(𝐴𝑤 − 𝐴𝑠) = 2 {[
1

2
− (1 2⁄ )(𝑒′𝐺𝑤)] − [

1

2
− (1 2⁄ )(𝑒′𝐺𝑠)]} = (𝑒′𝐺𝑠) − (𝑒′𝐺𝑤) = 𝐽𝐺𝑃                  (15) 

                                                           
4  Donaldson and Weymark (1980) ranked the incomes by decreasing rather than increasing values, hence the 

difference in the formulations. 
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Since the shares 𝑠𝑖 are ranked by increasing values, the curve 𝐶𝑠 is in fact the Lorenz curve at time 

0. The shares 𝑤𝑖, however, are ranked by increasing values of the incomes at time 0 so that the 

curve 𝐶𝑤 may lie below or above the curve 𝐶𝑠  and it may even cross once or several times the 

diagonal. It should thus be clear that if CHANGE is positive the curve 𝐶𝑤 will lie more above than 

below the curve 𝐶𝑠 so that the area 𝐴𝑤 will be greater than the area 𝐴𝑠 . This observation implies 

that the poorer individuals did on average better than the richer ones so that we can conclude that 

there was what is called  −convergence. Obviously if CHANGE is negative there would be 

 −divergence. 

 

A simple illustration: 

Assume 3 individuals whose income at time 0 are respectively 1, 2 and 7 while their corresponding 

incomes at time 1 are 3, 7 and 5.  

It is then easy to find out that the measure CHANGE is equal to 0.311. The “equivalent growth 

rate” 
𝐸

 turns then out to be equal to 1.28 which is much higher than the average growth rate ̅ 

(which is equal to 0.5) so that we certainly can conclude that there was income convergence during 

the period. We should remember that this “equivalent growth rate” 
𝐸

 which was defined in (10) 

gives in the present case a higher weight to the individuals who at time 0 had a low income. 

The properties of the index 𝐽𝐺𝑃 were derived and listed in Proposition 1 of Silber (1995). The main 

properties may be summarized as follows: the index 𝐽𝐺𝑃 is invariant to homothetic changes of the 

individual incomes. The effect on 𝐽𝐺𝑃  of an income swap is greater, the greater the difference 

between the swapped incomes and that between the ranks of the individuals who swap their 

incomes. Finally, if a sum  is transferred from individual j to individual f (assuming 𝑠𝑗 > 𝑠𝑓 and 
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no change in the ranking of the individuals), the value of the index 𝐽𝐺𝑃  will be an increasing 

function of . 

Note also that the gap between the curves 𝐶𝑤  and 𝐶𝑠 , at a point corresponding to the i first 

observations, may be expressed as 𝐺𝐴𝑃𝑖 = ∑ (𝑤𝑗 − 𝑠𝑗)𝑗≤𝑖 . If this gap is positive, it implies, using 

(2), that  

𝐺𝐴𝑃𝑖 = ∑ 𝑠𝑗 (
𝑗−̅

1+̅
) > 0  [

∑ 𝑠𝑗𝑗𝑗≤𝑖

∑ 𝑠𝑗𝑗≤𝑖

∑ 𝑠𝑗𝑗≤𝑖

1+̅
]𝑗≤𝑖 − [

∑ 𝑠𝑗𝑗≤𝑖

1

̅

1+̅
] > 0                                              (16) 

Note however that  

(
∑ 𝑠𝑗𝑗𝑗≤𝑖

∑ 𝑠𝑗𝑗≤𝑖
) = (

∑ 𝑥𝑗𝑗𝑗≤𝑖

∑ 𝑥𝑗𝑗≤𝑖
) = 

𝐽
̅̅ ̅                                                                                                       (17) 

where 
𝑗

̅̅ ̅ is a weighted average of the growth rate of the i first observations. 

Combining (16) and (17) we derive that 

𝐺𝐴𝑃𝑖 = (∑ 𝑠𝑗𝑗≤𝑖 )
𝑗̅̅ ̅−̅

1+̅
                                                                                                                    (18) 

We therefore conclude that the gap between the curves 𝐶𝑤 and 𝐶𝑠, at a point corresponding to the 

i first observations, will be positive if the (weighted) average growth rate of the i first observations 

is higher than the average growth rate in the whole population, an intuitive result indeed. 

Silber (1995) has also proven that the index 𝐽𝐺𝑃 could be expressed as the sum of a component 

𝐹𝐺𝑃 measuring the change in inequality (structural mobility) and another one, 𝑃𝐺𝑃 , representing re-

ranking (exchange mobility). Let us call v the vector of the income shares 𝑤𝑖 at time 1 when these 

shares are ranked by their increasing values at time 1. In such a case we may express the measure 

CHANGE defined in (9) as 

CHANGE = STRUCTURAL MOBILITY + EXCHANGE MOBILITY                                        (19) 

where 
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STRUCTURAL MOBILITY = [∑ 𝑖
𝑛
𝑖=1 ] {

(1+𝐸
𝑠𝑣)

(1+̅)
− 1}                                                               (20) 

In (20) 𝑖 is defined as previously since the starting vector is also the vector of the shares 𝑠𝑖. ̅ is 

also defined as previously since the shares 𝑣𝑖 and 𝑤𝑖  are the same shares, just classified 

differently. The “equivalent growth rate” 
𝐸
𝑠𝑣 is the one obtained when the change which takes 

place is the one observed when moving from vector s to vector v. 

We may also define EXCHANGE MOBILITY  as 

 𝐸𝑋𝐶𝐻𝐴𝑁𝐺𝐸 𝑀𝑂𝐵𝐼𝐿𝐼𝑇𝑌 = [∑ 𝑖
𝑛
𝑖=1 ] {

(1+𝐸
𝑣𝑤)

(1+𝑣𝑤̅̅ ̅̅ ̅̅ ̅̅ )
− 1}                                                               (21) 

where 
𝐸
𝑣𝑤 is the one obtained when the change which takes place is the one observed when 

moving from vector v to vector w. Note 𝑣𝑤̅̅ ̅̅ ̅̅ ̅ = 0 since the shares 𝑣𝑖 and 𝑤𝑖  are the same 

shares, just ranked differently. Finally 𝑖  is defined, using (9), as 

𝑖 = (
2𝑛+1−2𝑖

𝑛
) 𝑣𝑖                                                                                                                        (22) 

where, as mentioned previously, the shares 𝑣𝑖 are ranked by increasing values. 

We therefore end up with 

𝐸𝑋𝐶𝐻𝐴𝑁𝐺𝐸 𝑀𝑂𝐵𝐼𝐿𝐼𝑇𝑌 = ∑ (
2𝑛+1−2𝑖

𝑛
) 𝑣𝑖𝐸

𝑣𝑤𝑛
𝑖=1                                                                  (23) 

 

An illustration: 

Assuming, as before, 3 individuals whose income at time 0 and 1 are respectively 1, 2 and 7 and 

then 3, 7 and 5, it is easy to check that 

CHANGE = 0.311, 
𝐸
𝑠𝑤 = 1.28 and 𝑠𝑤̅̅ ̅̅ ̅̅ ̅ = 0.5 

STRUCTURAL MOBILITY = 0.222, 
𝐸
𝑠𝑣 = 1.06 and 𝑠𝑣̅̅ ̅̅ ̅̅ ̅ = 0.5 

EXCHANGE MOBILITY = 0.089, 
𝐸
𝑣𝑤 = 0.108 and 𝑣𝑤̅̅ ̅̅ ̅̅ ̅ = 0 
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It is easy to verify that CHANGE = STRUCTURAL MOBILITY + EXCHANGE MOBILITY. 

Note also that 
𝐸
𝑠𝑣 is positive because (relative) inequality decreased between times 0 and 1 while 


𝐸
𝑣𝑤 is positive because the second poorest individual receives 7 at the end of the move described 

here rather than 5 as received originally (there is no change in the income of the poorest individual). 

 

2.4. The anonymous case: measuring -convergence 

Since here we ignore by assumption the identity of the individuals, we have to assume, going back 

to our numerical illustration, that the vector of the incomes at time 0 is {1, 2 7} while that of the 

incomes at time 1 is {3, 5, 7}. 

The corresponding individual growth rates (the 
𝑖
′s)  between the two periods are then 

respectively 2, 1.5 and 0 while the average growth rate is, as before, ̅ = 0.5. It is then easy to find 

out that this time the measure CHANGE, is equal to 0.222 while the “equivalent growth rate” 
𝐸

 

is equal to 1.06. Since the average growth rate ̅ is equal to 0.5 which is smaller than the value of 


𝐸

, we can conclude that there was structural mobility, as a consequence of the decrease in 

inequality between times 0 and 1. The indicator CHANGE measures therefore also the extent of 

what is called -convergence in the literature. Since we deal now with the anonymous case, there 

is evidently no exchange mobility 

Note also that the absolute value of the indicator CHANGE and that of the Gini index are identical. 

A quick computation shows that the Gini index at time 0 is equal to 0.4 while at time 1 it is equal 

to 0.178 and the difference between these two Ginis is precisely 0.222: in other words inequality 

decreased by 0.222 and this decrease (-0,222) is identical in absolute value to the value of the 

indicator CHANGE. 
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2.5. Measuring pro-poor growth 

2.5.1. Anonymous pro-poor growth 

The literature on pro-poor growth (see, for example, Kakwani and Pernia, 2000) took originally 

an anonymous approach to the topic. Such an approach is evidently relevant when one wants to 

compare two cross sections. 

Let us therefore assume that a poverty line z has been defined and that the proportion of poor in 

the population is (q/n). Define now an equivalent growth rate among the centile groups that were 

poor at time 0 and call it 
𝐸,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠. Using (8), (10) and (11) we derive that 


𝐸,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 = ∑ 

𝑖
𝑖

𝑞
𝑖=1                                                                                                                 (24) 

with 


𝑖

=
𝑖

∑ 𝑖
𝑞
𝑖=1

                                                                                                                                    (25) 

and 

𝑖 = (
2𝑞+1−2𝑖

𝑞
) 𝑠𝑖

′                                                                                                                          (26)         

with  

𝑠𝑖
′ =

𝑠𝑖

∑ 𝑠𝑖
𝑞
𝑖=1

                                                                                                                                    (27)        

where i refers to a given centile. If 
𝐸,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠> ̅, growth has been pro-poor in the 

anonymous sense, since the originally “poor” centile groups experienced a growth rate that is 

higher than the average growth rate in the population. 

 

2.5.2. Non anonymous pro-poor growth 

We can define in a similar way a measure 
𝐸,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝑁𝑜𝑛 𝑎𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠

 of pro-poor growth for the non-

anonymous case and write that 


𝐸,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝑁𝑜𝑛 𝑎𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 = ∑ 

𝑖
𝑖

𝑞
𝑖=1                                                                                                          (28) 

In (28) however, the subscript i does not refer, as in the anonymous case, to a given centile group, 

but to a given individual whose income is known at times 0 and 1. If 
𝐸,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝑁𝑜𝑛 𝑎𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠

 > ̅,  non-

anonymous growth has been pro-poor. As in the anonymous case, 
𝐸,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝑁𝑜𝑛 𝑎𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠
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takes into account the inequality in growth rates among the poor since different weights are 

attached to the various individuals. 

 

3. Generalized population-weighted measures of distributional change, convergence and 

pro-poor growth 

 

Jenkins and Van Kerm (2006) showed that changes in income inequality over time are related to 

the pattern of income growth across the income range and the reshuffling of individuals in the 

income pecking order. Such a breakdown is quite similar to that suggested by Silber (1995) who 

showed that a Gini-related measure of distributional change may be decomposed into a component 

measuring the change in inequality and another one reflecting the extent of re-ranking that took 

place over time. Jenkins and van Kerm (2006) used the so-called generalized Gini index to measure 

inequality and their approach was extended by Dhongde and Silber (2016) to the analysis of 

convergence and pro-poor growth but they derived income-weighted measures of distributional 

changes. In the present paper we propose, like Jenkins and van Kerm (2006), population-weighted 

measures of such changes but we show how the generalized Gini index may be also used to derive 

measures of convergence and pro-poor growth.  

 

3.1.  The anonymous case 

This is the case where we have two cross-sections and we compare anonymous income 

distributions at time 0 (the set of incomes 𝑥𝑖) and 1 (the set of incomes 𝑦𝑖). 

Using Atkinson’s (1970) concept of “equally distributed equivalent level of income”, Donaldson 

and Weymark (1980) have defined a generalized Gini index 𝐼𝐺𝐺  as 

𝐼𝐺𝐺 = 1 − {∑ [((𝑖/𝑛) − ((𝑖 − 1)/𝑛))](𝑥𝑖 �̅�⁄ )𝑛
𝑖=1 }                                                                    (29)                 
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where 𝑥𝑖  is the income of individual i (at time 0) with 𝑥1 ≥ ⋯ ≥ 𝑥𝑖 ≥ ⋯ ≥ 𝑥𝑛  where n is the 

number of individuals, γ is a parameter measuring the degree of distribution sensitivity (γ>1 and 

the higher γ, the stronger this sensitivity) while �̅�  is the average income in the population at time 

0. 

The population-weighted change in inequality between times 0 and 1 will hence be expressed as 

𝐼𝐺𝐺,𝑃 = {1 − {∑ [((𝑖/𝑛) − ((𝑖 − 1)/𝑛))](𝑦𝑖 �̅�⁄ )𝑛
𝑖=1 }} − {1 − {∑ [((𝑖/𝑛) − ((𝑖 − 1)/𝑛))](𝑥𝑖 �̅�⁄ )𝑛

𝑖=1 }}  

𝐼𝐺𝐺,𝑃 = ∑ [(
𝑖

𝑛
)


− (
𝑖−1

𝑛
)


] ((𝑥𝑖 �̅�⁄ ) − (𝑦𝑖 �̅�⁄ ))𝑛
𝑖=1                                                                  (30) 

where 𝑥1 ≥ ⋯ ≥ 𝑥𝑖 ≥ ⋯ ≥ 𝑥𝑛 as well as 𝑦1 ≥ ⋯ ≥ 𝑦𝑖 ≥ ⋯ ≥ 𝑦𝑛. 

It is easy to check that if =2,  𝐼𝐺𝐺,𝑃 in (30) will be expressed as  

𝐼𝐺𝐺,𝑃
=2

= ∑ [(
2𝑖−1

𝑛2
)]𝑛

𝑖=1 [(
𝑥𝑖

�̅�
) − (

𝑦𝑖

�̅�
)] = (

𝑥𝐸

�̅�
) − (

𝑦𝐸

�̅�
)                                                                  (31) 

where 𝑥𝐸 and 𝑦𝐸 are respectively Atkinson’s “equally distributed equivalent levels of income” at 

time 0 and 1, assuming we use Gini’s social welfare function. Moreover from (31) we derive that 

𝐼𝐺𝐺,𝑃
=2

= [1 − (
𝑥𝐸

�̅�
)] − [1 − (

𝑦𝐸

�̅�
)] = 𝐼𝐺

𝑥 − 𝐼𝐺
𝑦

                                                                             (32) 

which is the difference5 between the Gini indices at times 0 and 1. 

Note that if we rank the incomes at times 0 and 1 by increasing values, expression (30) will be 

written as 

𝐼𝐺𝐺,𝑃 = ∑ [(
(𝑛−𝑖+1)

𝑛
)


− (
𝑛−𝑖

𝑛
)


] ((𝑥𝑖 �̅�⁄ ) − (𝑦𝑖 �̅�⁄ ))𝑛
𝑖=1                                                                (33) 

so that, when =2,  𝐼𝐺𝐺,𝑃 will be expressed as 

𝐼𝐺𝐺,𝑃 == ∑ (
2𝑛−2𝑖+1

𝑛2 ) [(𝑥𝑖 �̅�⁄ ) − (𝑦𝑖 �̅�⁄ )]𝑛
𝑖=1                                                                                                             (34) 

 

                                                           
5  Donaldson and Weymark (1980) had already shown that if γ =2, the index 𝐼𝐺𝐺  becomes equal to the traditional Gini 

index of inequality.  
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3.2. The non-anonymous case 

3.2.1. Decomposing the distributional change index 𝑱𝑮𝑮,𝑷 

Let now the sets of incomes {𝑦𝑖} and {𝑥𝑖}  refer to the incomes at time 1 and 0, ranked by 

increasing values of the incomes at time 0. Let {𝑡𝑖} refer to the incomes at time 1, ranked by 

increasing incomes (at time 1).  

Extending (33) we may then express the distributional change 𝐽𝐺𝐺,𝑃 between times 0 and 1 as 

𝐽𝐺𝐺,𝑃 = ∑ [(
(𝑛−𝑖+1)

𝑛
)


− (
𝑛−𝑖

𝑛
)


] ((𝑥𝑖 �̅�⁄ ) − (𝑦𝑖 �̅�⁄ ))𝑛
𝑖=1                                                               (35) 

𝐽𝐺𝐺,𝑃 = ∑ [(
(𝑛−𝑖+1)

𝑛
)


− (
𝑛−𝑖

𝑛
)


] {[(𝑥𝑖 �̅�⁄ ) − (𝑡𝑖 𝑡̅⁄ )] + [(𝑡𝑖 𝑡̅⁄ ) − (𝑦𝑖 �̅�⁄ )]}𝑛
𝑖=1                        (36) 

The first expression on the R.H.S. of (36) is evidently the difference between the value of the 

generalized Gini index at times 0 and 1, that is, the change in inequality between times 0 and 1. 

The second expression on the R.H.S. of (36) measures the amount of re-ranking that took place 

between times 0 and 1, since the sets of incomes {𝑦𝑖} and {𝑡𝑖} refer to the same incomes, just 

ranked differently.  

 

3.2.2. Checking for convergence 

From (35) we derive that 

𝐽𝐺𝐺,𝑃 = 𝑛 ∑ [(
(𝑛−𝑖+1)

𝑛
−

(𝑛−𝑖)

𝑛
)] ((𝑥𝑖 𝑛�̅�⁄ ) − (𝑦𝑖 𝑛�̅�⁄ ))𝑛

𝑖=1 = 𝑛 ∑ [(
(𝑛−𝑖+1)

𝑛
−

(𝑛−𝑖)

𝑛
)] (𝑠𝑖 − 𝑤𝑖)𝑛

𝑖=1                    (37) 

where, as previously, 𝑠𝑖 = (
𝑥𝑖

𝑛�̅�
)  and 𝑤𝑖 = (

𝑦𝑖

𝑛�̅�
). 

Combining (2) and (37) we obtain 

𝐽𝐺𝐺,𝑃 = 𝑛 ∑ [(
(𝑛−𝑖+1)

𝑛
−

(𝑛−𝑖)

𝑛
)] (𝑠𝑖

(𝑖−̅)

1+̅
)𝑛

𝑖=1                                                                           (38) 

𝐽𝐺𝐺,𝑃 = 𝑛 ∑ 
𝑖

𝑛
𝑖=1 [

(1+𝑖)−(1+̅)

1+̅
] = 𝑛 ∑ 

𝑖
𝑛
𝑖=1 [

(1+𝑖)

(1+̅)
− 1]                                                     (39) 
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where 

 
𝑖

= (
(𝑛−𝑖+1)

𝑛
−

(𝑛−𝑖)

𝑛
) 𝑠𝑖                                                                                                             (40) 

Expression (39) may be also written as 

𝐽𝐺𝐺,𝑃 = 𝑛 ∑ 
𝑖

(1+𝑖)

(1+̅)
− 𝑛 ∑ 

𝑖
= 𝑛(∑ 

𝑖
𝑛
𝑖=1 ) [∑

𝑖

∑ 𝑖
𝑛
𝑖=1

𝑛
𝑖=1

(1+𝑖)

(1+̅)
− 1]𝑛

𝑖=1
𝑛
𝑖=1   

𝐽𝐺𝐺,𝑃 = 𝑛(∑ 
𝑖

𝑛
𝑖=1 ) (

(1+𝐸,𝐺𝐺,𝑃)

(1+̅)
− 1)                                                                                     (41) 

where 
𝑖

=
𝑖

∑ 𝑖
𝑛
𝑖=1

                                                                                                                        (42) 

and 
𝐸,𝐺𝐺,𝑃

= ∑ 
𝑖


𝑖
𝑛
𝑖=1                                                                                                                (43) 


𝐸,𝐺𝐺,𝑃

 is clearly the “equally distributed equivalent growth rate” derived from the generalization 

of the Gini index.  

Finally note that, using (40), ∑ 
𝑖

𝑛
𝑖=1  may be also written as 

∑ 
𝑖

𝑛
𝑖=1 = ∑ (

(𝑛−𝑖+1)

𝑛
−

(𝑛−𝑖)

𝑛
) 𝑠𝑖 =𝑛

𝑖=1 ∑ (
(𝑛−𝑖+1)

𝑛
−

(𝑛−𝑖)

𝑛
)

𝑥𝑖

𝑛�̅�

𝑛
𝑖=1 =

𝑥𝐸

𝑛�̅�
                                 (44) 

where 𝑥𝐸 = ∑ (
(𝑛−𝑖+1)

𝑛
−

(𝑛−𝑖)

𝑛
) 𝑥𝑖

𝑛
𝑖=1  is the “equally distributed equivalent level of income” 

corresponding to the generalized Gini-related welfare function.  

Combining (41) and (43) we end up with 

𝐽𝐺𝐺,𝑃 = (
𝑥𝐸

�̅�
) (

(1+𝐸,𝐺𝐺,𝑃)

(1+̅)
− 1)                                                                                                             (45) 

 

A numerical illustration 

First example: convergence 

Assume the incomes at time 0 are {1, 2, 7} and at time 1 {5, 6, 9}, so that the lower the income, 

the higher the growth rate. We hence expect to observe a convergence of the incomes. 
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It is easy to find out that, when =3, the weights 
𝑖
 are respectively: 

1
= (1.9/4); 

2
=

(1.4/4); 
3

= (0.7/4)  

The individual growth rates are 4, 2, (2/7). 

The equivalent growth rate 
𝐸,𝐺𝐺

 is then 2.65, while the average growth rate is 1, so that there was 

convergence of the incomes. 

 

Second example: 

Assume the incomes at time 0 are {1, 2, 7} and at time {1.1, 2.5, 16.4}. In this illustration we 

observe that the lower the income, the lower the growth rate, so that we expect that there will be 

divergence. 

The weights 
𝑖
 are, as before, are (1.9/4), (1.4/4), (0.7/4) 

The individual growth rates are now 0.1, 0.25 and 1.34. 

The equivalent growth rate 
𝐸,𝐺𝐺

 is then equal to 0.37 while the average growth rate is 1, so that 

there was now divergence of the incomes. 

 

3.3.  Checking for pro-poor growth 

3.3.1. Anonymous pro-poor growth 

As in the case of the Gini index, we will say that there is pro-poor growth if  


𝐸,𝐺𝐺,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 = ∑ 𝑖𝑖

𝑞
𝑖=1 > ̅                                                                                                 (46) 

with 

𝑖 =
[(𝑞−𝑖+1)−(𝑞−𝑖)]𝑠𝑖

′

∑ 𝑠𝑗
′𝑞

𝑗=1
[(𝑞−𝑗+1)−(𝑞−𝑗)]

                                                                                                                (47) 

with 𝑠𝑖
′  defined in (27) while the sub-index i refers to a given centile. 
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3.3.2. Non-anonymous pro-poor growth 

Here also we use expressions (45) and (46) but the sub-script i refers now to a specific individual 

whose income is known at times 0 and 1. 

 

A simple illustration for the anonymous case.  

Assume that the set 𝑥𝑖 of incomes at time 0 is {1, 2, 7, 10, 30} and that the corresponding set of 

incomes 𝑡𝑖 at time 1 is {1.1, 2.4, 6.5, 10, 46}. The average growth rate ̅ will hence be equal to 

(66-50)/50=0.32 

Assume the poverty line z is equal to 6. 

The individual growth rates 
𝑖
 among the poor will then be: 

1
= 0.1; 

2
= 0.2  

Using (47) we easily derive that the numerator of 1 is equal (assuming  = 3) to (23 − 13)(1/3) =

7/3, while the numerator of 2 is equal to (13 − 03)(2/3) = 2/3. 

The denominator of 1  and 2 is hence equal to (9/3) so that 1  = (
7

9
)  and 2 = (

2

9
) 

and we then conclude that 


𝐸,𝐺𝐺,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 = ∑ 𝑖𝑖

𝑞
𝑖=1 =(7/9) (0.1) + (2/9) (0.2) = (1.1/9) =0.122< ̅ = 0.32. 

Anonymous growth was hence not pro-poor. 

 

A simple illustration for the non-anonymous case 

Assume the same set of incomes at time 0, that is X ={1, 2, 7, 10, 30} while the corresponding set 

of incomes 𝑤𝑖 at time 1 is  {6.5, 46, 1.1, 2.4, 10}. The average growth rate is still 

 ̅ = (66-50)/50 = 0.32 but the individual growth rates 
𝑖
 of the poor (at time 0) are now  

  (6.5-1)/1 = 5.5; (46-2)/2 =22. 

Using again (47) we easily derive that the numerator of 1 is equal (assuming  = 3) to (23 −

13)(1/3) = 7/3, while the numerator of 2 is equal to (13 − 03)(2/3) = 2/3. 

The denominator of 1  and 2 is hence equal to (9/3) so that 1  = (
7

9
)  and 2 = (

2

9
) 
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We then conclude that 


𝐸,𝐺𝐺,𝑝𝑟𝑜−𝑝𝑜𝑜𝑟
𝑁𝑜𝑛 𝑎𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 = ∑ 𝑖𝑖

𝑞
𝑖=1 =(7/9) (5.5) + (2/9) (22) = 9.17> ̅ = 0.32. 

Non-anonymous growth was hence pro-poor. 

 

4. Measuring distributional change with another ranking criterion 

 

The analysis has hitherto been conducted by assuming, whether in the anonymous or in the non-

anonymous case, that the variable under discussion is also the ranking criterion. Equations (11) 

and (28) are in fact general formulations that may be used for any ranking criterion. They however 

show that in computing the “equivalent growth rate” 
𝐸

 the weight given to an individual depend 

now on the rank of  this individual for the variable that serves as ranking criterion. If the variable 

under study is, for example, education, it might then be interesting to find out whether progress in 

education has been more favorable to those who were originally rich or those who were originally 

poor. 

In such a case the observations 𝑥𝑖 at time 0 and 𝑦𝑖 at time 1 will refer to the educational levels of 

the individuals at time 0 and 1, but they will be ranked by increasing original incomes (individual 

incomes at time 0). The same ranking criterion will also be used for the vectors 
𝑖
,

𝑖
 and 

𝑖
.  

 

A simple illustration (non-anonymous change): 

Assume again 3 individuals whose levels of education (years of education) at time 0 are 

respectively 5, 9 and 12 while their corresponding levels of education at time 1 (e.g. 10 years later) 

are 8, 9 and 15. 
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The corresponding individual growth rates (the 
𝑖
′s)  between the two periods are then 

respectively 0.6, 0 and 0.25 while the average growth rate is 

̅ = (32-26)/26 = (6/26) = 0.231.  

Assume now that the original (at time 0) incomes of these same three individuals were 400, 100, 

300. It is the easy to find out that in (40) the shares 𝑠𝑖 of the educational levels at time 0, ranked 

by increasing original income at time 0, are respectively equal to (9/26), (12/26), (5/26) while, 

when  = 3, the numerators of the weights 
𝑖
 in (42) are (19)(9/26), (7)(12/26), (1)(5/26). The 

weights 
𝑖
 in (42) are then 0.658, 0.323 and 0.019. 

Since the individual growth rates in education, ranked by increasing original income, are 0, 0.25 

and 0.6, the “equally distributed equivalent growth rate” 
𝐸

 is 

(0.658)(0)+(0.323)(0.25)+(0.019)(0.6)=0.092 which is less than the average growth rate 0.231. As 

expected, we conclude that the growth in educational levels was not “pro-poor income”, that is it 

did not favor the lower incomes.  

 

5. An empirical illustration: income mobility and convergence in China 2010-2014 

 

Despite the exceptional income growth experienced by China, there is evidence of a rapid increase 

in income inequality relative to China’s own past as well as to other countries with similar levels 

of economic development (Xie et al. 2015). Using national accounts, surveys and tax data, Piketty 

et al. (2019) also corrected the officially under-reported inequality index in China for the period 

1978-2015, and found that inequality levels in 2015 were approaching US levels.  

We frequently have cross-sectional information on the level of income and the distribution of 

income in China, but we know little about how growth was distributed in the population. In this 
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section we illustrate how the proposed indices can be used to check whether income growth in 

China in the period 2010-2014 favored certain categories of individuals. With the change in the 

economic structure and the new policy tools introduced in recent years, an analysis of the Chinese 

income growth and its distribution should give us the latest information about the change in income 

and the income mobility of individuals and the impacts on the income distribution of these 

economic and policy changes. We therefore try to answer the following questions: Did growth 

promote convergence? Which type of convergence? Who has benefited more from growth: poor 

or rich people, more educated or less educated people, older or younger people? 

This section uses data of the China Family Panel Studies (CFPS), funded by the 985 Program of 

Beijing University and carried out by the Institute of Social Science Survey of Beijing University. 

The CFPS is the first nationally representative survey designed to characterize China’s ongoing 

social transformation by collecting data at the community, family, and individual levels (Xie and 

Hu, 2014). The CFPS was first launched in 2010 and has since then been conducted every two 

years. It uses a multi-stage, implicit stratification and a proportion-to-population size sampling 

method with a rural–urban integrated sampling frame. The sample of CFPS is drawn from 25 

provinces/cities/autonomous regions in China excluding Hong Kong, Macao, Taiwan, Xinjiang, 

Xizang, Qinghai, Inner Mongolia, Ningxia, and Hainan. The population of these 25 

provinces/cities/autonomous regions in China (excluding Hong Kong, Macao, and Taiwan) 

includes 95% of the Chinese total population. Thus, CFPS can be regarded as a nationally 

representative sample6.  

                                                           
6  CPFS data were also used by Kanbur et al. (2017) and Piketty (2019) as nationally representative data, to 

investigate the evolution of inequality in China. 
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The CFPS contains a family questionnaire that asked a series of questions pertaining to family 

income, including labor and non-labor income, expenditures in different categories, and income-

generating activities of all family members. The longitudinal design of the CFPS enables the study 

of trends in income inequality and individual income growth in contemporary China at the micro 

level. 

Regarding the use of sample weights, the CFPS data contain regional subsamples and thus require 

weighting to be nationally representative (Xie and Hu 2014; Xie and Lu 2015). This is further 

complicated by sample attrition over time. Following Lu and Xie (2015), we use the restricted 

sample that includes families that were successfully interviewed in both 2010 and 2014, with panel 

weights. As stated by Xie et al. (2015), in using weights based on regional and demographic 

characteristics, we implicitly make use of an unverifiable assumption, often called the ‘missing-

at-random’ assumption (Little and Rubin 2002), that the observations that were lost in the follow-

up survey can be approximated by observations with similarly observed regional and demographic 

characteristics. We restrict our analysis to urban China7 and males under 60 and females under 55 

and drop retired people from the survey and clean the age effect. 

The income variable we use in this study is per capita family net income – the total net income 

from all sources divided by the number of family members. Income is measured in five major 

categories: (i) wage income (after-tax wages and salaries of individual family members employed 

in the agricultural or non-agricultural sector, including employer-provided bonuses and in-kind 

benefits; (ii) income from agricultural production and profits from family-run/owned businesses, 

                                                           
7  We do not use rural samples in this paper for two reasons. First, the labor market in China is not an integrated one 

because of the Household Registration System (Hukou), and income sources in rural and urban citizens are quite 

different.  Second, most of the economic growth in China comes from the urban rather than the rural sector. For 

example, the share of the primary industry GDP in total GDP in 2018 was only 7.2 per cent (data source: website of 

NBS of China, http://www.stats.gov.cn). So, focusing on the urban sector can help understanding a large part of the 

economic growth and structural changes in China 
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(iii) property income (rents of land, housing units and other assets); (iv) transfer income (sum of 

pensions, various kinds of government aids and allowances, and (v) monetary compensation for 

government appropriation of land and residential relocation), and other income (private transfers 

and gifts). 8 Income components are not strictly comparable across the 2010 and 2014 waves of 

the CFPS. Therefore, as in the analysis we compare 2010 and 2014 using longitudinal data we 

restrict ourselves to a ‘comparable income’ measure, the sum of income components that were 

comparable between the two waves. We adjust the value of income to eliminate the inflation9. 

Then we attach the inflation-adjusted net family income (comparable with year 2010) to each 

member of the household and then follow the individual across years 2010 and 2014. 

The annual samples have been symmetrically truncated with the elimination of 1 percent of the 

observations at each end of the income distribution. This type of truncation is frequent in 

intertemporal comparisons due to the possible contamination of the data by anomalies in the 

extreme values (Cowell et al., 1999). A balanced panel of 4,097 records was generated across these 

years of data collection containing data on income for both years. 

 

A population-weighted measure of the distributional change and equivalent growth rate. 

We start with the non-anonymous measurement of changes in income. Table 1 shows the measure 

of CHANGE (expression 15) that is equal to 0.1856 for the non-anonymous case. The equivalent 

growth rate, 
𝐸

, turns out to be equal to 0.5961 which is much higher than 0.2096, the average 

growth rate, ̅ , so that we can conclude that there was income convergence during the period, that 

is, those with lower incomes were, in general, the ones with greater growth rates, fostering 

                                                           
8 For details of the income component adjustment of CFPS, see Xie, Zhang, Xu and Zhang (2015). 
9 We use the Urban China Consumer Price index, 2010 base year, provided by the National Bureau of Statistics of 

China 
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 −convergence. Assuming that the parameter  is equal to 2, we decompose this change in income 

into two components: structural and exchange mobility. Structural mobility is equal to -0.0046. 

Most of the change comes from exchange mobility, that is re-ranking in the distribution, which is 

equal to 0.1902.  

Table 1. Estimates of proposed indices for China 2010-2014. 

  
 

 

 

 

CHANGE Structural Exchange 

 = 2 

 

Non –anonymous 0.5961 0.2096 0.1856 -0.0046 0.1902 

Anonymous 0.2000  -0.0046   

Sensitivity       

 =3 

 

Non -anonymous 0.8539     

Anonymous 0.1434     

 = 4 

 

Non -anonymous 1.0600     

Anonymous 0.0813     

 = 5 

 

Non -anonymous 1.2356     

Anonymous 0.0229     

 = 10 

 

Non -anonymous 1.8780     

Anonymous -0.1944     

Source: CFPS 2010 and 2014 

 

Now, we analyze the anonymous case that allows us to conclude that there was a slight -

divergence. It then turns out that the equivalent growth rate, when individuals are not identified, 

is equal to 0.2000 and is smaller than the average growth rate, but the difference is not significant. 

We can therefore conclude that income growth in urban China in the period 2010-2014 was slightly 

smaller for lower incomes deciles, resulting in trifling -divergence, and at the same time income 

growth was greater for initially lower income individuals, when they are identified.  
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Results for the case where the sensitivity parameter takes different values are shown in the lower 

rows ( = 3, 4, 5 and 10) of Table 1. For higher values of   the equivalent growth rates are higher 

in the non-anonymous case and smaller in the anonymous case, becoming even negative when  =

10. This means that the higher the weight attached to lower income individuals, the greater the 

non-anonymous convergence and the anonymous divergence. To sum up, during the period 

examined, on the one hand income growth was higher for those at the lower end of the distribution, 

and the lower the position, the higher the growth. On the other hand lower income quantiles 

experienced lower growth rates in general, and when we attach a greater weight to the lowest part 

of the distribution this fact is even more pronounced.   

 

Checking for pro-poor growth. 

Now we focus on poor individuals. We work with the international poverty line of 1.9 US $ (in 

2011 PPP $) a day from the World Bank. In Table 2 we estimate equivalent growth rates for the 

anonymous and non-anonymous cases among the individuals considered as poor. 
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Table 2. Equivalent growth rates for poor individuals. 

   
 

 = 2 

 

Non –anonymous 3.2328 0.2096 

Anonymous -0.5981  

Sensitivity    

 =3 

 

Non -anonymous 3.5202  

Anonymous -0.6500  

 = 4 

 

Non -anonymous 3.6355  

Anonymous -0.6830  

 = 5 

 

Non -anonymous 3.6420  

Anonymous -0.7054  

 = 10 

 

Non -anonymous 3.2617  

Anonymous -0.7515  

Source: CFPS 2010 and 2014 

 

We obtain interesting results that are in agreement with the previous observations we made. The 

non-anonymous equally distributed equivalent growth rate is 3.2328 and is hence much greater 

than the average growth rate, ̅ = 0.2026. Non-anonymous growth was hence clearly pro-poor. 

The anonymous equally distributed equivalent growth rate is equal to -0.5981 so that anonymous 

income growth was clearly non-pro-poor. The different conclusions derived in the anonymous and 

non-anonymous approaches are due to the fact that there is a reshuffling of the positions of the 

individuals, which is not taken into account in the anonymous approach. We can even state that 

poorer quantiles experienced a decline in income. We assess this result under different sensitivity 

parameter in the lower rows of Table 2 ( = 3, 4, 5 and 10). For higher values of , the non-

anonymous equivalent growth rates are higher than the average growth rate while the anonymous 
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equivalent growth rates are more negative. We can therefore expect to reach similar conclusions 

(pro-poor non-anonymous growth and non-pro-poor anonymous growth) when adopting lower 

poverty lines.   

 

Conditional convergence 

In this part of the empirical analysis we check whether income growth was more favorable to those 

individuals with a higher educational level or to older people. We therefore apply the conditional 

measures of distributional change previously defined. We work with two conditioning variables: 

the education and age of the individuals.  

For education the following categories are distinguished: 1 Illiterate/Semi-literate; 2 Primary 

school; 3 Junior high school; 4 Senior high school; 5 2- or 3-year college; 6 4-year 

college/Bachelor's degree; 7 Master's degree; 8 Doctoral degree. We rank individuals according to 

their level of education and check whether those with a higher educational level experienced a 

more favorable income growth. Similarly we rank individuals by their age and check whether 

income growth was higher for younger or older people.  

Table 3 gives the equally distributed equivalent growth rate for the anonymous and non-

anonymous case regarding the two conditional variables.  

 

Table 3. Equivalent growth rates, conditioning on education and age. 

  

 

  
 

 

  
 

 Cond. to education Cond. to age 

Non -anonymous 0.2240 0.2165 

Anonymous 0.2109 0.2101 
Source: CFPS 2010 and 2014 
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We conclude that given that the non-anonymous equally distributed equivalent growth rates for 

individuals ranked according to their educational level, 0.2240, is greater than the average growth 

rate, 0.2096, income growth favored individuals with lower levels of education, while no 

significant conclusion can be drawn in the anonymous case. 

Regarding age, we conclude that income growth was more pro-young people in the non-

anonymous case (the equally distributed equivalent growth rate was 0.2165) but no conclusion can 

be drawn in the anonymous case (the equally distributed equivalent growth rate was 0.1997).  

We believe that these results confirm that China has reached the Lewis Turning Point (LTP)10. 

Thus at the beginning of the 21st century (around 2004-2005), some enterprises in the coastal cities 

began to find it was difficult to hire enough workers, hence the use of the expression “migrant 

workers shortage” in the media. At the same time, the wages of migrant workers in the urban labor 

market began to rise sharply. Zhang et al. (2011) and Li et al. (2012) argued that China’s economy 

reached the LTP, or began to face labor shortages around 2005 in China. However, they do not 

provide convincing evidence. Applying Minami’s (1968) method of identifying the LTP in Japan 

to a nationally representative rural household sample from NBS of China, Zhang et al. (2018) 

provided evidence suggesting that the Chinese economy reached the LTP around 2010, rather than 

in 2005. As a consequence we expect that incomes of those workers with low-skilled or who are 

young will increase faster than those of the older workers or of the workers having a high education. 

It is thus not surprising that the findings of our empirical analysis showed that in urban China, 

during the period 2010-2014, income growth favored individuals with low levels of education and 

young people. 

 

                                                           
10  In economic development the Lewis turning point occurs when there is no more surplus rural labor. 
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6. Conclusions  

 

Following previous work on the parallelism between the study of income convergence in the 

growth literature and that of vertical and horizontal equity in the tax literature, as well as on the 

similarity between the notions of convergence and pro-poor growth, the present paper extended 

recent work by Dhongde and Silber (2016) on income-weighted measures of distributional change. 

It introduced population weighted measures of structural and exchange mobility, of conditional 

and unconditional - and -convergence and of anonymous and non-anonymous pro-poor growth. 

These measures should help revealing the micro structural changes that took place behind the 

macro economic growth. For example, the empirical illustration based on urban non-retired 

Chinese panel data concluded that income growth in urban China, during the period 2010-2014, 

was slightly smaller for lower incomes deciles, leading to some trifling -divergence. At the same 

time there was β-convergence, that is, income growth was higher for individuals with an initially 

lower income. Non-anonymous growth was clearly pro-poor, while anonymous income growth 

was clearly not pro-poor, a result robust to a wide range of values of the sensitivity parameter. 

Income growth favored individuals with lower levels of education, and younger people individuals 

in the non-anonymous case, while this claim does not hold for the anonymous case. All these 

results are actually in line with recent studies that indicate that China seems to have reached the 

Lewis Turning Point around 2010. 
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