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1. Introduction 

 

A large empirical literature in economics focuses on the estimation of the degree of income 

persistence across generations. Studies in this literature typically estimate simple regression 

models that deliver an estimate of the statistical association between the income of parents and 

that of their adult offspring. Although no causal interpretation is possible, these correlations 

are generally used as informative statistics for the level of social mobility within a country—

see Corak (2013) and Emran and Shilpi (2019) for reviews. 

Despite the clear relevance of intergenerational economic mobility to equity, efficiency 

and public policy, economists have only recently renewed their interest in the issue. During the 

last three decades, increased access to data has enabled multiple years of observations of the 

economic status of successive generations in a number of countries. In addition, new 

methodological tools have allowed a clearer understanding of the key measurement issues in 

assessing the intergenerational transmission of economic status. In high-income countries, and 

in an increasing number of low and middle-income countries, the new empirical analyses have 

allowed comparisons of the extent of social mobility across nations with different economic 

systems and values (Solon, 2002; Björklund and Jäntti, 2009) as well as over time and space 

for a subset of countries (Aaronson and Mazumder, 2008; Olivetti and Paserman, 2015). These 

comparisons have shown significant variation in the degree of intergenerational income 

inequality, thereby paving the way for the investigation of the institutional and policy features 

that can help explain the observed patterns (Blanden, 2013; Chetty et al., 2014).  

At the same time, it is noticeable that the global evidence on intergenerational income 

mobility is often based on low-quality data. These are instances where the available 

observations do not permit to establish a direct parent-child link with adequate income 

information. This limitation is of particular relevance for developing countries and for 

historical analyses of mobility in societies at various stages of economic development. The 

widespread use of sub-optimal data affects the credibility of comparative analyses, to the extent 

that differences in observed levels of mobility may be driven by varying data conditions 

(Emran and Shilpi, 2019). The contribution of our paper is to propose an estimation approach 

that can improve the reliability and comparability of intergenerational mobility estimates based 

on sub-optimal data. 

Specifically, we propose a modification of the current workhorse estimator used in the 

literature for measuring mobility when intergenerationally-linked income information is not 

available. This is the Two-Sample Two-Stage Least Squares (TSTSLS) estimator originally 
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pioneered by Björklund and Jäntti (1997) and used since then in numerous empirical studies 

(e.g. Aaronson and Mazumder, 2008; Gong et al., 2012; Olivetti and Paserman, 2015; Piraino, 

2015). This estimator uses retrospective information on socioeconomic background along with 

a sample of ‘pseudo’ parents to impute parental incomes. Since background information of this 

type is more likely to be available in survey datasets (or historical censuses) compared to 

parental income, the TSTSLS methodology allowed the estimation of intergenerational income 

mobility for a significantly larger number of countries and historical periods, with a major 

impact in the coverage of developing nations (Narayan et al, 2018; Brunori et al., 2020). 

We advance an approach that improves the imputation of parental income in the 

TSTSLS and that provides an objective criterion for choosing across different specifications of 

the prediction equation. By taking advantage of machine learning techniques, we minimize the 

out-of-sample prediction error. Using a criterion that is applicable to different data conditions 

can increase the comparability across studies, as mobility estimates become less sensitive to 

arbitrary specification choices. Since it is not possible to know a priori which model best 

predicts parental income in different contexts, we suggest a data-driven routine for model 

selection in the first stage of the TSTSLS. Researchers working on (potentially) very different 

datasets can utilize the same algorithm, which exploits the information embedded in all 

available predictors of parental income. Among the algorithms currently available to minimize 

the out-of-sample prediction error, we opt for a shrinkage method (Zou and Hastie, 2005). The 

method avoids overfitting by shrinking the standard linear regression coefficients. Unlike other 

algorithms, regularized regression improves the precision of the estimates without limiting our 

ability to easily interpret the output. 

We show the usefulness of our methodological approach by testing its performance on 

longitudinal income survey data from the United States (PSID). The empirical analysis shows 

that our method reduces the distance between the TSTSLS estimate and the benchmark OLS 

estimate obtained from longitudinally-linked data on the same sample of individuals and their 

real parents. As noted in some recent studies (Olivetti and Paserman, 2015; Santavirta and 

Sthuler, 2019) and contrary to what is generally assumed in the earlier literature on 

intergenerational mobility (Corak, 2006), we confirm that the TSTLS estimator can produce 

both upward and downward biased estimates of the underlying true elasticity. This depends on 

the relative magnitude of the downward bias induced by measurement error in imputed incomes 

and the upward bias due to the residual association (i.e. uncorrelated with parental income) 

between first-stage predictors and child’s income. By virtue of focusing on the maximum 

predictive power (out-of-sample) of the first stage, our approach limits both measurement error 
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and the predictors’ informational content over and above parental income. By constraining both 

sources of bias, which move in opposite directions, the algorithm limits the risk of TSTSLS 

delivering an estimate overly affected in either direction.  

We test the applicability of our method to sub-optimal data conditions by replicating 

part of the analysis on survey data from South Africa. While we do not have a benchmark 

longitudinal estimate on this sample, the estimator produces analogous results for the subset of 

estimates we can reproduce. Taken together, our findings on the United States and South Africa 

are of high relevance for the vast majority of countries (and of the world’s population) where 

long-span income information, from either administrative or survey panel data, is not available. 

More generally, we suggest that machine learning approaches, such as the one advanced in this 

paper, should become part of the standard set of empirical tools for analyses of 

intergenerational income mobility relying on imperfect data. 

The rest of the paper proceeds as follows. Section 2 revisits the standard TSTSLS 

estimator and clarifies its sources of bias. Section 3 presents our machine learning method. 

Section 4 shows the empirical results, while Section 5 concludes. 

 

 

2. Two-sample two-stage least squares (TSTSLS) estimator 

 

The standard empirical specification for estimating intergenerational income mobility is given 

by the following equation: 

 

𝑦"# = 𝛼 + 𝛽𝑦"
( + 𝜖"                     (1) 

 

where 𝑦"# is the logarithm of the child’s permanent individual income and 𝑦"
( is the logarithm 

of the parent’s permanent individual income. The coefficient estimate for 𝛽 is generally named 

the ‘intergenerational elasticity’ (IGE) and forms the basis for comparisons across countries 

around the world. 

Amongst the existing IGE estimates in the literature, a significant number (and virtually 

all of those for developing countries) are obtained through the TSTSLS methodology 

introduced by Björklund and Jäntti (1997). This estimation requires two samples. The main 

sample contains information on individual incomes and recall socioeconomic information 

about their parents. The auxiliary sample is typically derived from an earlier survey of the same 
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population where individuals (pseudo-parents) report their income as well as information 

similar to that recalled by respondents in the main sample.1  

The estimation then proceeds in two steps. First, the auxiliary sample is used to estimate 

a Mincer equation: 

 

𝑦"*
(+ = 𝜑𝑧"

(+ + 𝜗"*      (2) 

 

where 𝑦"*
(+ is the income of pseudo-parents in a given year, 𝑧"

(+ is a vector of time-invariant 

characteristics, and 𝜗"* is the component of pseudo-parents’ income that is not captured by the 

observed predictors. In the second step, the main sample is used to estimate the equation: 

 

𝑦"# = 𝑎 + 𝛽𝑦"
( + 𝜔"             (3) 

 

where 𝑦"# is the income of children. 𝑦"
( = 𝜑𝑧"

( is the imputed income of unseen parents, and 

𝑧"
(are recall variables analogous to 𝑧"

(+. Note that Equation (3) abstracts from measurement 

error in the child’s permanent income. While left-hand side measurement error is a well-

documented source of bias for the IGE (Haider and Solon, 2006; Nybom and Stuhler, 2016), 

our focus here is on the correct prediction of parental income.2 

 

2.1 Sources of bias in TSTSLS estimates 

Since intergenerational regression models do not aim to identify the causal effect of parental 

income on child income, the first-stage predictors need not satisfy any exclusion restriction. 

The sources of bias we discuss here refer to the difference between the TSTSLS estimate from 

Equation (3) and the elasticity estimated on Equation (1) under ideal data conditions (i.e. direct 

parent-child link and permanent incomes for both generations).  

                                                
1 A growing recent literature makes use of surnames or first names to impute parental socioeconomic status and 
estimate intergenerational mobility over the long-run in certain countries (e.g. Clark, 2014; Olivetti and Paserman, 
2015). While these studies also use a TSTSLS (or related) estimator, our discussion here focuses on a scenario 
common to several contemporary developing countries, where survey data with recall information on parental 
background is available. The general idea of using machine learning to predict parent’s income, however, extends 
to the set of studies using the informational content of (sur)names. 
2 In fact, Equations (1) to (3) may vary depending on data availability. Many of the existing IGEs in the literature, 
including most longitudinal OLS estimates, are based on imperfect measures of the child’s permanent income.	
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 Relative to the linked estimator on longitudinal data, the IGE obtained from the two-

sample approach will suffer from two main sources of bias (Solon, 1992; Björklund and Jäntti, 

1997; Jerrim et al., 2016): 

(i) incorrect prediction of the income of unseen parents; 

(ii) first-stage predictors entering the child’s income equation over and above 

parental income. 

Given the type of first-stage variables usually available to researchers (parental education, 

occupation, area of birth, etc..) it is common to treat TSTSLS estimates as upper bound values 

of the ‘true’ IGE. This is because the first-stage predictors are positively related to child income 

independently of parental income—i.e., bias (ii) is positive. Most studies providing TSTSLS 

estimates are less explicit about bias (i), which may work in the opposite direction. The choice 

of the prediction model is generally motivated by data availability, and several IGE estimates 

based on different combinations of variables are presented as robustness checks. Thus, the sign 

of the overall bias in many of the existing TSTSLS estimates is a priori ambiguous. 

In order to show how the approach we propose can limit the overall bias affecting the 

TSTSLS estimates, we derive a simple expression of the various components of the estimator. 

We begin by considering the linear projection of 𝑦"
( on 𝑦"

(: 

  

𝑦"
( = 𝛾𝑦"

( + 𝑣"                                                                (4) 

 

where 𝑣" is the projection error.  

Focusing on the right-hand side measurement error (i.e. assuming that child’s 

permanent earnings are observable) we can use Equation (4) to express the probability limit of 

the TSTSLS estimator as follows: 

 

𝑝𝑙𝑖𝑚𝛽787898 =
#:; <=

>,<=
@

;AB <=
@ = C#:; <=

>,<=
@

CD;AB <=
@ E;AB(;=)

+ #:; <=
>,;=

CD;AB <=
@ E;AB(;=)

  (5) 

 

Which, using Equation (1), can be rewritten as 

 

𝑝𝑙𝑖𝑚𝛽787898 = 𝜃𝛽 + #:; I=,;=
CD;AB <=

@ E;AB(;=)
   (6) 
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where 𝜃 = C;AB <=
@

CD;AB <=
@ E;AB(;=)

 represents bias (i), and the ratio #:; I=,;=
CD;AB <=

@ E;AB(;=)
 represents bias 

(ii). In general, bias (i) will be an attenuation bias as the denominator is greater than the 

numerator unless 𝛾 is extremely low.3 Bias (ii) is typically assumed to be positive, which 

amounts to assuming that 𝑐𝑜𝑣 𝜖", 𝑣" > 0.  

We show in the empirical analysis below how our method compares to the standard 

TSTSLS in terms of the size of both biases, which we are able to infer from our benchmark 

estimate on the longitudinal sample. Before turning to the empirical results, however, we first 

describe the machine learning approach used to minimize the out-of-sample prediction error in 

the parental income imputation (Equation 2). 

 

 

3. Method 

 

Our goal is to predict the earnings of unseen parents with the smallest possible squared error: 

 

𝑚𝑖𝑛 𝔼 (𝑦P
( − 𝑦P

()R = 𝑚𝑖𝑛 𝔼 𝑦:
( − 𝑓 𝑧P

(+ R
     (7) 

 

where 𝑦P
( is the income of the real parent of individual 0 (a person we do not observe) and 

𝑓 𝑧P
(+ 	is an unknown prediction function based on the vector 𝑧P

(+. A well-known result in 

statistical learning is that, out-of-sample, the expected squared error of a prediction can be 

decomposed into three elements: 

 

𝔼 (𝑦:*
(+ − 𝑦:*

(+)R = 𝑣𝑎𝑟 𝑓 𝑧P
(+ +	 𝑏𝑖𝑎𝑠 R + 𝑣𝑎𝑟(𝜗P*)       (8) 

 

where 𝑣𝑎𝑟 𝑓 𝑧P
(+ = 𝔼	[𝑓(𝑧P

(+)R] − 𝔼	 𝑓 𝑧P
(+ R

	is the variance of the model; that is the 

error caused by the sensitivity of the model to random noise in the observed sample. The term 

𝑏𝑖𝑎𝑠 = 𝔼 𝑓 𝑧P
(+ − 𝔼 𝑓 𝑧P

(+ 	is the bias of the model, which quantifies the error that is 

introduced by approximating an unknown data generating process by a simpler model (for 

                                                
3 The term describing bias (i) above is similar to the first term in Equation (2) in Olivetti and Paserman (2015), 
who derive the relationship between the TSTSLS (pseudo-panel) estimator and the longitudinal OLS (linked) 
estimator in the context of name-based imputations of parental economic status. 
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example by assuming additivity of the predictors’ effect or excluding interaction effects). 

Finally, 𝑣𝑎𝑟 𝜗P*  is variation unrelated with covariates and is therefore an irreducible term of 

the out-of-sample prediction error. When trying to minimize Equation (7) on a limited number 

of observations, we face a trade-off. Very complex models will tend to have low bias and large 

variance. On the other hand, overly simple models are characterized by high bias and low 

variance. We handle such variance-bias trade off departing from the classical least square 

regression analysis and estimating the first-stage regression using the elastic-net shrinkage 

operator introduced by Zou and Hastie (2005). An elastic-net obtains the regression coefficients 

by minimizing: 

 

𝑦" − 𝑏: − 𝑏Z𝑋Z," − 𝑏R𝑋R," …− 𝑏]𝑋],"
R^

"_Z + 𝜆 𝛼 |]
b_Z 𝑏b| + (1 − 𝛼) 𝑏b

R]
b_Z     (9) 

 

The regularization term 𝛼 |]
b_Z 𝑏b| + (1 − 𝛼) 𝑏b

R]
b_Z  shrinks the coefficient estimates 

towards zero, in order to avoid the risk of overfitting. 𝜆 ≥ 0 is a parameter that controls the 

importance of the regularization term. Elastic-net is a linear combination of two standard 

operators in machine learning: LASSO (least absolute shrinkage and selection operator) and 

ridge regression. When 𝛼 = 0, the elastic-net algorithm is equivalent to the ridge regression. 

When 𝛼 = 1, it is equivalent to the LASSO. Provided that 𝜆 > 0 and 𝛼 > 0, some coefficients 

will be set exactly to zero and others will be shrunk.  

 Using elastic-net, we obtain different sets of 𝑏s depending on the value of 𝜆 and 𝛼. In 

statistical learning terminology, this implies that the algorithm needs to be tuned so as to obtain 

a more precise model specification. Among all possible specifications, we aim at tuning 𝜆 and 

𝛼 so that Equation (7) is minimized. A standard method to tune elastic nets is k-folds cross-

validation. Cross-validation provides a direct estimate of the out-of-sample prediction error 

under very weak assumptions (Arlot and Celisse, 2010). A reader familiar to machine learning 

may wonder why we opt for the elastic-net, an algorithm that can be outperformed by others in 

term of predicting performance (James et al., 2013). The reason is that elastic-nets, contrary to 

more complex algorithms, are rather efficient and very easy to interpret, since they regularize 

an ordinary least squares regression. 
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4 Empirical analysis 

 

We first provide an empirical application of our method using longitudinal survey data from 

the United States. This allows us to benchmark the performance of the estimator in a scenario 

where we can obtain the IGE through both a standard OLS on a single longitudinal sample and 

through the TSTSLS on two separate samples. We then replicate part of the analysis on South 

African data, which provides a case study for typical sub-optimal data conditions in the 

developing country literature. 

 

4.1 Standard and regularized TSTSLS vs. benchmark longitudinal OLS 

For the sake of simplicity, and consistent with a large section of the literature, we restrict our 

analysis to males only. For the United States, we use the 2011 wave of the Panel Survey of 

Income Dynamics (PSID) to obtain the main sample of sons aged 30-60, with positive earnings 

and non-missing background information about their fathers.4 In the longitudinal OLS 

specification, the earnings of real fathers are averaged over all yearly observations available. 

We include only sons whose real fathers have at least five years of positive earnings (and were 

30 to 60 years old) between 1968 and 1992. The final main sample consists of 1,061 

observations. 

We then obtain an auxiliary sample of 1,860 pseudo-fathers aged 30-60 using the 1982 

wave of the PSID. In both the main and auxiliary samples, we use yearly gross employment 

income, constructed as the sum of wages, salary bonuses, overtime income, labor income from 

business, commission income, income from professional practice or trade and labor part of 

income from farming or market gardening. 

When estimating 𝛽efefgf, it is common practice in the literature to use different 

additive combinations of the available first-stage predictors and report the resulting 

coefficients. Instead, our approach lets the elastic-net find the specification that minimizes the 

out-of-sample prediction error for each potential set of regressors. In our sample, the first-stage 

variables are dummies for education (8), occupation (9), industry (9), and race (3), plus all 

possible pairwise interactions. The regularization of the first-stage model is thus performed on 

                                                
4 As mentioned above, the imperfect measurement of child’s income can introduce a bias in both the OLS and 
TSTSLS estimates. We select a sample of children who are on average 44.8 years old, which is line with the range 
suggested in the literature to minimize the left-hand side bias.  
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1,023 different models.5 Amongst models with an equal number of regressors, we select the 

one with the highest R2 (in-sample).6 This results in 257 models of varying complexity (i.e. 

number of regressors) for which we estimate the in- and out-of-sample R2 for both the 

regularized and standard TSTSLS. Figure 1 shows the relationship between the in-sample (x-

axis) and out-of-sample (y-axis) R2 for the estimated models.  

 
Figure 1:  

Increasing complexity of the first-stage model and predictive performance 

 of standard TSTSLS vs. regularized regression 

 
Source: PSID (1982-2011) 
Notes: The horizontal axis reports the highest in-sample R2 for each possible number of regressors. The vertical axis 
reports the out-of-sample R2 estimated by 5-fold cross-validation for both the standard TSTSLS (blue) and 
regularized (red) models. 

 

The first noticeable result from Figure 1 is that the predictive performance of the non-

regularized regression (blue dots) shows the expected pattern: very parsimonious models (to 

the left of the graph) underfit the data while overly complex models (to the right) tend to overfit 

                                                
5 This is the sum of all k-combinations of the 10 available first-stage predictors (i.e. education, occupation, sector, 
race, education*occupation, education*race, education*sector, occupation*race, occupation*sector, race*sector). 
6 This “best subset regression” approach is a method to select the best performing model when, as in this case, the 
number of possible models is reasonably low. For a given number of controls (degrees of freedom), the in-sample 
prediction performance has a monotonic relationship with the out-of-sample performance. Therefore, it is 
sufficient to focus on models with the highest in-sample R2.  

ECINEQ WP 2020 - 526 March 2020



	 11	

the data, which reduces the ability to correctly predict out-of-sample. On the other hand, the 

regularized models (red dots), while performing worse in-sample, have significantly higher 

out-of-sample predictive power for more complex models as they are able to avoid overfitting. 

Our first result is thus to confirm that as models become more complex, regularization 

improves out-of-sample prediction. 

 
Figure 2:  

In-sample R2 and estimated IGE for standard TSTSLS and regularized model (red) 

 
Source: PSID (1982-2011) 
Notes: The horizontal axis reports the highest in-sample R2 for each possible number of regressors. The vertical axis 
reports the corresponding IGE estimate for both standard TSTSLS (blue) and regularized (red) models. The solid 
horizontal line indicates the benchmark IGE estimated on longitudinal data (with the dashed lines displaying the 
95% confidence interval).  
 

One implication from Figure 1 is that our method improves the prediction of unseen fathers’ 

income for models with a high number of first-stage regressors. While some existing studies in 

the literature warn against the use of a high number of variables in the prediction equation, this 

is often motivated by a presumed risk of an increase in the upward bias of the resulting IGE 

estimate. We show in Figure 2, however, that this presumption may not be correct. The figure 

plots the relationship between the in-sample R2 (x-axis) and the IGE (y-axis). It shows that 

underfitted models (left) tend to produce upwardly biased estimates (even more so when 

regularized). As the complexity of the model increases, the regularized models tend to converge 
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to the benchmark longitudinal IGE estimated on real fathers (black solid horizontal line). 

Instead, the overfitting in the standard TSTSLS (right side of the graph) induces a clear 

downward bias. The intuition behind this result is that for very imprecise (out-of-sample) 

models the information embedded in the predicted father’s income is so noisy that it attenuates 

the estimated intergenerational income association. Our second finding is thus that as models 

become more complex, regularization corrects the downward bias in the IGE. 

Figure 3 below provides an explanation for this finding. For more complex models, 

𝑣𝑎𝑟(𝑣") increases exponentially in the non-regularized models. This leads to a progressively 

smaller θ in Equation (6), which implies a more severe attenuation bias. In other words, the 

standard TSTSLS faces a trade-off between the potentially valuable information contained in 

a large number of regressors with the risk of overfitting the data. Regularization bounds this 

source of bias, while at the same time trying to extract the useful variation in all possible 

predictors of parental income. 

 
Figure 3:  

𝑽𝒂𝒓(𝒗𝒊) and in-sample R2 

 
Source: PSID (1982-2011) 
Notes: The horizontal axis reports the highest in-sample R2 for each possible number of regressors. The vertical axis 
reports the variance component for both standard TSTSLS (blue) and regularized (red) models. 
 

Figure 4 shows that something similar may be happening with respect to the second 

source of bias in the TSTSLS. As models become more complex, 𝑐𝑜𝑣 𝜖", 𝑣"  increases. Since 
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this is one of the drivers of bias (ii), the standard approach once again faces a trade-off between 

using the potentially valuable information in a larger number of regressors and the risk of a 

greater bias. Unlike the previous figure, however, here the risk is towards an upward bias from 

the direct effect of first-stage variables on sons’ income. Regularization limits this risk by using 

a specification of the first-stage model that reduces the residual variation entering directly in 

the second-stage equation. In other words, by virtue of focusing on the maximum predictive 

power of the first-stage, the algorithm leaves less room for the included variables to ‘bypass’ 

parental income, which bounds the upward bias in the TSTSLS.  

 
Figure 4: 

 𝒄𝒐𝒗 𝝐𝒊, 𝒗𝒊  and in-sample R2 

 
Source: PSID (1982-2011) 
Notes: The horizontal axis reports the highest in-sample R2 for each possible number of regressors. The vertical axis 
reports the covariance component for both standard TSTSLS (blue) and regularized (red) models. 

 

 

Table 1 presents IGE estimates for the United States and the corresponding in- and out-

of-sample R2. The first row reports the benchmark IGE estimated on the longitudinal PSID 

sample linking sons to their real fathers. The estimated value is 0.492, which is consistent with 

many of the existing estimates of intergenerational income mobility available for the U.S. 

(Corak, 2013). The second row presents the IGE resulting from the TSTSLS specification that 
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minimizes the out-of-sample MSE.7 The IGE estimated by this model is equal to 0.496, which 

is remarkably close to the one obtained from the longitudinal sample. This result holds when 

considering the average estimates across the top-5 and top-10 performing models (rows 3 and 

4). Overall, Table 1 suggests that by bounding both sources of bias in the TSTSLS, 

regularization leads to a bias (i) and bias (ii) of comparable magnitudes. As they operate in 

different directions, this results in an IGE estimate close to the benchmark. 

 
Table 1:  

IGE estimates: Regularization 
 

  IGE s.e. First-Stage R2  

(out-of-sample) 
First-Stage R2  

(in-sample) 𝛾 𝑣𝑎𝑟(𝑣") 𝑐𝑜𝑣 𝜖", 𝑣" 	
Bias 
(i) 

Bias 
(ii) 

Final 
Bias 

1. Benchmark (OLS) 0.492 0.062          

2. ‘Best’ model 0.496 (0.078) 0.261 0.324 0.363 0.124 0.032 -0.200 0.204 0.004 

3. Average of top 5 performing models  
(out-of-sample) 
  

0.487 (0.074) 0.260 0.317 0.373 0.129 0.032 -0.203 0.198 -0.005 

4. Average of top 10 performing models  
(out-of-sample) 
 

0.494 (0.080) 0.260 0.319 0.369 0.127 0.032 -0.200 0.202 0.002 

Sample size 1,061 1,061 1,860 1,860 1,061 1,061 1,061 1,061 1,061 1,061 

Source: PSID (1982-2011) 
Notes: Bootstrapped standard errors (reps 500) in parentheses. 
 

 

Table 2 shows the estimated levels of intergenerational mobility in the United States 

using different combinations of first-stage variables for the standard TSTSLS method. The first 

row reports again the benchmark IGE estimated on the longitudinal PSID sample linking sons 

to their real fathers. The remaining rows confirm that more complex models tend to 

underestimate the IGE by increasing the attenuation bias. In particular, the results in the table 

confirm that it is not advisable to use all the available variables without regularization (row 6). 

This is because a higher R2 does not necessarily decrease the bias. In fact, beyond a certain 

threshold, the attenuation bias becomes substantial. On the other hand, when using only 

education as predictor of parental income, the IGE suffers from a considerable upward bias. 

This is due to a combination of low g and low residual variability in the first-stage model.  

It is worth noting that the specification using education and occupation (row 3) delivers 

an IGE that is fairly close to the longitudinal benchmark. Since this is a common specification 

                                                
7 This model includes 164 first-stage regressors and is regularized by an elastic-net with 𝜆 = 0.4015 and 𝛼 =
0.0101. Figure A1 in the Appendix shows the model selection, while the first-stage coefficients are presented in 
Table A1. 
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choice in the literature, we may be tempted to interpret this result as a reassuring finding for 

the reliability of existing estimates. However, it is not possible to know a priori which 

combination of first-stage predictors delivers the least biased estimate. While this specification 

appears to be the best in this U.S. sample, it may not be true in other contexts or even in other 

U.S. samples where this information is reported on a different number of categories or using a 

different classification. The advantage of using our approach is that it does not require 

researchers to know ex ante the best set of first-stage predictors.  

 
Table 2:  

IGE estimates: Standard TSTSLS 
 

  IGE s.e. First-Stage R2  

(out-of-sample) 
First-Stage R2  

(in-sample) 𝛾 𝑣𝑎𝑟(𝑣") 𝑐𝑜𝑣 𝜖", 𝑣"  Bias (i) Bias (ii) Final 
Bias 

1. Benchmark (OLS) 0.492 0.062          

2. Education only 0.929 (0.127) 0.151 0.162 0.226 0.050 0.030 -0.035 0.472 0.437 

3. Education + occupation 0.478 (0.073) 0.202 0.222 0.368 0.139 0.037 -0.224 0.210 -0.015 

4. Education + occupation + industry 0.379 (0.069) 0.250 0.276 0.412 0.176 0.031 -0.254 0.142 -0.113 

5. Education + occupation + industry + race 0.400 (0.068) 0.255 0.282 0.429 0.174 0.034 -0.247 0.154 -0.092 

6. Education + occupation + industry + race + interactions 0.219 (0.053) 0.096 0.383 0.455 0.450 0.052 -0.378 0.104 -0.274 

Sample size 1,061 1,061 1,860 1,860 1,061 1,061 1,061 1,061 1,061 1,061 

Source: PSID (1982-2011) 
Notes: Bootstrapped standard errors (reps 500) in parentheses. 
	
 

Overall, the results in Table 1 and 2 show that the elastic net can limit the risk of bias 

in the TSTSLS. By bounding the two main sources of bias, which work in opposite ways, the 

regularization lowers the risk of the estimator moving excessively in either direction. As our 

approach lets the data find the optimal specification for predicting parental income for any 

context or data availability, it is no longer necessary to defend arbitrary specifications. This has 

important consequences for the comparability of IGE estimates across countries and time 

periods, where the data generating processes are likely to be very different.	

 

4.2 Standard and regularized TSTSLS on sub-optimal data 

The previous section highlights the usefulness of our proposed method in a data scenario where 

we can have a benchmark OLS estimate on longitudinal information. For most countries, 

however, scholars have access to sub-optimal data sources and cannot estimate the IGE on an 

intergenerationally-linked sample. These are precisely the situations where our method can be 
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most valuable, by providing a non-arbitrary criterion to obtain an IGE estimate. We illustrate 

here an application of our approach on data from an emerging country where long-span income 

information covering two generations is not available. This represents a common data condition 

for the developing world, as well as for historical records.  

We replicate part of the empirical analysis in the previous section using survey data 

from South Africa. For simplicity, we use the same data and sample selection rules as in Piraino 

(2015), who estimates the standard 𝛽efefgf on the basis of two nationally representative 

samples.8 The main sample of 1,241 sons derives from pooling the 2008 to 2012 waves of the 

National Income Dynamics Study (NIDS), which includes a dedicated section with 

retrospective information about the parents of respondents. The auxiliary sample of 1,292 

pseudo-fathers is based on the Project for Statistics on Living Standards and Development 

(PSLSD), the first nationally representative survey conducted in South Africa. We use monthly 

gross employment income, constructed as the sum of wages, salary bonuses, shares of profit, 

income from agricultural activities, casual and self-employment income. We restrict the 

analysis to male workers aged 20 to 44 with positive earnings. The first-stage variables used to 

predict fathers’ income are dummies for education (6), occupation (6), province (9), and race 

(4), plus all pairwise interactions. We thus obtain 1,023 different models and 203 models of 

varying complexity (i.e. number of regressors).  

Figure 5 and 6 use South African data to replicate the analysis in Figure 1 and 2 for the 

United States. Figure 5 confirms that the non-regularized regression (blue dots) overfits the 

data for models including a high number of regressors. The pattern is very similar to the one 

obtained on the U.S. data, showing the decrease in the ability to correctly predict out-of-sample 

for specifications delivering a very high in-sample R2. Once again, the elastic-net models (red 

dots) are able to avoid overfitting, confirming that regularization improves out-of-sample 

prediction for complex models. 

 

 

 

 

 

 

                                                
8	The main difference with respect to the selection rules adopted by Piraino (2015) is that we do not allow the 
samples to vary across different first-stage specifications according to missing information in the included 
variables. We use, instead, constant sample sizes of sons and pseudo-fathers across different models.	

ECINEQ WP 2020 - 526 March 2020



	 17	

Figure 5:  

Increasing complexity of the first-stage model and predictive performance of  

standard TSTSLS vs regularized regression: South Africa 

 
Source: PSLSD (1993) 
Notes: The horizontal axis reports the highest in-sample R2 for each possible number of regressors. The vertical axis 
reports the out-of-sample R2 estimated by 5-fold cross-validation for both the standard TSTSLS (blue) and 
regularized (red) models.   

 

 

Figure 6 shows that the overfitting in the standard TSTSLS results in lower estimated 

IGEs. Once again, this result is similar to the finding for the United States confirming the 

intuition that for very imprecise (out-of-sample) models the noisiness in predicted father’s 

income attenuates the estimated intergenerational income association. The regularized 

regression (red dots) corrects this attenuation bias and stabilizes the IGE as models become 

more complex. While we cannot estimate 𝑣𝑎𝑟(𝑣") and 𝑐𝑜𝑣 𝜖", 𝑣"  on the South African data, 

we can assume that the patterns shown in Figure 3 and 4 for the U.S. would extend to this 

sample. That is, 𝑣𝑎𝑟(𝑣") would increase exponentially in the non-regularized models, leading 

to a progressively more severe attenuation bias (smaller θ in Eq. 6). At the same time, as models 

become more complex, 𝑐𝑜𝑣 𝜖", 𝑣"  may increase, leading to an upward bias in the IGE. 

Regularization can bound both sources of bias. It extracts the variation in all possible first-
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stage predictors while limiting the risk of overfitting the data and reducing the extent to which 

first-stage predictors enter directly in the child income equation. 

 
Figure 6:  

In-sample R2 and estimated IGE for standard TSTLS and regularized models: South Africa 

 
Source: NIDS (2008-2012) 
Notes: The horizontal axis reports the highest in-sample R2 for each possible number of regressors. The vertical axis 
reports the corresponding IGE estimate for both standard TSTSLS (blue) and regularized (red) models. 

 

 

Table 3 reports the TSTSLS intergenerational mobility estimates for South Africa along 

with the corresponding in- and out-of-sample first-stage R2. Panel A reports the IGE resulting 

from the TSTSLS specification that minimizes the out-of-sample MSE (row 1) and the average 

estimates across the top-5 and top-10 performing models (rows 2 and 3). The estimated IGE in 

these specifications ranges from 0.691 to 0.695.9 These values are consistent with the evidence 

from previous studies of South Africa (Piraino, 2015, Finn et al. 2017), which find very low 

levels of intergenerational mobility. 

                                                
9	The best model includes 67 first-stage regressors and is regularized by an elastic-net with 𝜆 = 0.123 and 𝛼 =
0.030.	
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Table 3:  

IGE estimates for South Africa: Regularization vs. Standard TSTSLS  
 

  IGE s.e. First-Stage R2  

(out-of-sample) 
First-Stage R2  

(in-sample) 
A. Regularized TSTSLS     

1. ‘Best’ model 0.691 (0.089) 0.491 0.521 

2. Average of top 5 performing models (out-of-sample) 0.694 (0.088) 0.491 0.522 

3. Average of top 10 performing models (out-of-sample) 0.695 (0.087) 0.491 0.523 

     

B. Standard TSTSLS     

4. Education only 0.628 (0.073) 0.337 0.345 

5. Education + occupation 0.642  (0.083) 0.421 0.436 

6. Education + occupation + province 0.676 (0.071) 0.435 0.455 

7. Education + occupation + province + race 0.762 (0.069) 0.466 0.499 

8. Education + occupation + province + race + interactions 0.452 (0.072) 0.417 0.577 

Sample size 1,241 1,241 1,292 1,292 

Source: NIDS (2008-2012) and PSLSD (1993). 
Notes: Bootstrapped standard errors (reps 100) in parentheses.  

 
 
Panel B of Table 3 displays the estimated IGEs using different combinations of first-stage 

variables for the standard TSTSLS method. Similar to the evidence from the U.S., the most 

complex model (row 8), which includes all available predictors and their interactions, has the 

highest in-sample R2 while delivering a very low IGE as a result of severe attenuation bias. 

This confirms that a higher R2 does not necessarily decrease the bias in the TSTSLS estimates. 

Note also that different combinations of first-stage predictors result in varying IGEs, with the 

estimates not following the same pattern observed in the United States. This highlights that 

using similar variables to predict parents’ income in different contexts need not have the same 

effect on the bias of the TSTSLS estimator. Using an objective and data-driven criterion to 

choose the first-stage specification may thus be preferable to choosing arbitrary combinations 

and may help increase comparability across countries.  
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5. Concluding remarks 

 

We suggest a modification to the standard two-sample two-stage approach for estimating the 

intergenerational income elasticity in sub-optimal data conditions. Our method minimizes the 

out-of-sample prediction error in the first-stage equation, which provides an objective criterion 

for choosing across different specifications of the parental income prediction. Using 

longitudinal data from the United States, we show that our approach decreases the risk of 

overfitting in the prediction of parental income, while at the same time reducing the potential 

for an upward bias in the IGE. Importantly, our two-sample estimates converge to the 

benchmark IGE estimate from longitudinal data. We replicate part of the analysis on South 

African data and find consistent results. Overall, the empirical evidence in the paper suggests 

that a simple machine learning method may improve the reliability and comparability of 

intergenerational mobility estimates for a large section of the world’s population. 
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Supplemental Appendix 

The model selection by the elastic-net on the U.S sample is represented below. Tuning the 

model by 5-fold cross validation, we test 100 𝜆s and 100 𝛼s. Each line represents the value of 

a coefficient for different values of 𝜆 (in logs) for the selected 𝛼. Larger 𝜆 shrinks the 

coefficients toward zero. The values that minimize the MSE out-of-sample are 𝜆 = 0.4015 and 

𝛼 = 0.0101. 

 

Figure A1:  

Elastic net coefficient selection 

 

Source: PSID (1982). 
The red vertical line represents the value of λ that minimize the out-of-sample MSE. 
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Table A1: 

First-stage elastic-net regression (best model) 

First-stage predictors Coefficients 
Education:  
0-5 grades (ef1) -0.067 
Grade school (ef2) -0.160 
Some high school (ef3) -0.128 
High school (ef4) -0.036 
12 grades plus non-academic training (ef5) 0.000 
Some college, no degree; associate's degree (ef6) 0.037 
College BA and no advanced degree mentioned (ef7) 0.113 
College, advanced or professional degree (ef8) 0.148 
Occupation:  
Legislators, senior officials, and managers (of1) 0.074 
Professionals (of2) 0.083 
Technicians and associate professionals (of3) 0.039 
Clerks (of4) 0.000 
Service and sales workers (of5) -0.009 
Skilled agricultural and fishery workers (of6) -0.424 
Craft and trades workers (of7) 0.000 
Operators and assemblers (of8) 0.000 
Elementary occupations (of9) -0.166 
Race:  
White (rf1) 0.051 
African American (rf2) -0.073 
Hispanic (rf3) 0.034 
Industry Sector:  
Agriculture, forestry, and fishing (sf1) -0.225 
Mining (sf2) 0.088 
Construction (sf3) -0.059 
Manufacturing (sf4) 0.030 
Transportation, communications, and public utilities (sf5) 0.060 
Wholesale and retail trade (sf6) -0.039 
Finance, insurance, and real estate (sf7) 0.000 
Private services (sf8) -0.021 
Public administration (sf9) 0.056 
Pairwise interactions (excluding coefficients set to zero by the algorithm):  
ef1*sf3 0.116 
ef1*sf4 -0.256 
ef1*sf5 -0.261 
ef2*sf1 -0.278 
ef2*sf5 -0.101 
ef2*sf6 -0.281 
ef2*sf7 0.065 
ef2*sf8 -0.212 
ef2*sf9 0.119 
ef3*sf2 -0.097 
ef3*sf5 0.021 
ef3*sf6 -0.196 
ef3*sf7 -0.129 
ef3*sf8 -0.119 
ef3*sf9 0.088 
ef4*sf1 -0.125 
ef4*sf2 0.140 
ef4*sf3 -0.015 
ef4*sf5 0.029 
ef4*sf6 -0.098 
ef4*sf7 0.038 
ef4*sf8 -0.149 
ef5*sf5 0.076 
ef5*sf6 0.077 
ef5*sf7 -0.066 
ef5*sf8 -0.177 
ef5*sf9 0.076 
ef6*sf1 0.097 
ef6*sf2 -0.299 
ef6*sf3 -0.042 
ef6*sf5 0.087 
ef6*sf6 0.021 
ef6*sf7 -0.108 
ef7*sf1 0.110 
ef7*sf4 0.117 
ef7*sf6 0.129 
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ef7*sf7 0.126 
ef8*sf1 -0.839 
ef8*sf3 -0.162 
ef8*sf4 0.189 
ef8*sf8 0.132 
of1*sf2 0.228 
of1*sf4 0.137 
of1*sf7 0.174 
of1*sf8 0.099 
of2*sf3 0.142 
of2*sf4 0.094 
of2*sf6 -0.056 
of3*sf3 0.168 
of3*sf5 0.112 
of4*sf4 -0.045 
of4*sf7 -0.847 
of4*sf8 -0.104 
of4*sf9 0.079 
of5*sf3 -0.640 
of5*sf4 0.041 
of5*sf5 0.111 
of5*sf7 -0.389 
of5*sf8 -0.208 
of6*sf1 -0.392 
of7*sf1 -0.124 
of7*sf2 0.165 
of7*sf3 -0.092 
of7*sf4 0.087 
of7*sf5 0.073 
of7*sf8 -0.177 
of8*sf1 0.244 
of8*sf2 -0.016 
of8*sf4 -0.066 
of8*sf6 -0.069 
of8*sf7 0.241 
of8*sf8 0.051 
of9*sf5 -0.115 
of9*sf6 -0.169 
Constant -0.030 
R-squared in-sample 0.324 
Cross-validation R-squared 0.261 
Alpha 0.010 
Lambda 0.402 
Nr. of folds 5 
Nr. of alpha tested 100 
Nr. of lambda tested 100 
Sample size 1,860 

   Source: PSID (1982) 

 

Table A1 reports the first-stage coefficients of the estimated elastic net in the U.S. sample. The shrunken 

coefficients are consistent with what one would expect for a large majority of the controls. Education up to high 

school (ef3) has a negative sign and is positive and increasing for higher levels of education. Occupation variables 

also have the expected sign: service and sales workers, skilled agricultural and fishery workers, and elementary 

occupations have a negative sign, all other occupations have a positive sign (professional has the largest 

coefficient), but clerks, craft and trades workers, and operators and assemblers have a coefficient shrunken very 

close to zero. As far as race is concerned, the African American dummy has a negative coefficient. Coefficients 

estimated for industry sector and for the interacted variables are less straightforward to interpret but some have a 

non-negligible magnitude. 
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