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This paper rigorously demonstrates that for any unequal income distribution, the well-known
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we propose a new postulate, ‘additive monotonicity’, for inequality indices and analyse its
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the Bonferroni indices, at some specific values.
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1 Introduction

The Gini index, the most popular index of inequality, is a relative index. A relative inequality index is
one that remains invariant under equi-proportionate changes in all incomes. The Gini index has several
advantages: it is easy to compute, can accommodate non-positive incomes, is bounded between zero
and one for non-negative incomes, has a nice graphical interpretation, can be regarded as a measure
of relative deprivation and possesses a nice compromise property – when multiplied by the positive
mean it becomes an absolute index that remains unvarying for equal absolute changes in all incomes
(see Blackorby and Donaldson, 1980 and Weymark, 1981). It as well satisfies the Daltonian population
principle – an income by income replication of the population keeps inequality unchanged so that
it becomes suitable for cross-population comparisons of inequality. Donaldson and Weymark (1980)
employed this postulate to characterize the S-Gini family of inequality indices that contains the Gini
index as a special case.

All these advantages of the Gini index, except the population principle, are shared by the less
known Bonferroni index, which relies on the comparison of the partial means and the general mean
of an income distribution. Only in recent years, some authors attempted to analyse this indicator of
inequality from different perspectives. (See, among others, Nygard and Sandstrom (1981), Giorgi (1984),
Tarsitano (1990), Giorgi and Mondani (1995), Aaberge (2000, 2007), Giorgi and Crescenzi (2001) and
Chakravarty (2007).)

While the Gini index of an income distribution is double the area enclosed between the line of equality
of the Lorenz curve of the distribution and the Lorenz curve itself, for the Bonferroni index the relevant
device is the Bonferroni curve. Assuming that incomes are non-decreasingly ordered, Barcena-Martin
and Silber (2013) defined the Bonferroni curve as the plot of the ratios between cumulative income
shares and cumulative population proportions against the cumulative population proportions. The
Bonferroni index turns out to the area between the Bonferroni curve and the horizontal line at height
1. The Bonferroni curve is just an alternative name of ‘scaled conditional mean curve’ considered by
Aaberge (2007) who provided an excellent discussion on different properties of the index. In particular,
he showed that the index may not satisfy the principle of diminishing transfer sensitivity (Kolm, 1976
and Shhorrocks and Foster, 1987), a stronger form of the principle of transfer that requires inequality
to reduce under an income transfer from a person to anyone who has a lower income, unambiguously.
However, it unambiguously fulfills the positional transfer sensitivity condition, a positional variant of
the diminishing transfer sensitivity principle (see Mehran, 1976 and Kakwani, 1980). Barcena-Martin
and Silber (2013) also devised an algorithm that simplifies the decomposition of the Bonferroni index
with respect to income sources, income classes and population subgroups.

In Section 2 of the paper where we present the basics and preliminaries, we make a simple yet
an extremely important observation which claims that the dominance relation generated by the non-
intersecting Lorenz curves of two income distributions of a given total over a given population size
is identical to that produced by the non-intersecting Bonferroni curves of the distributions. Given
this, and many common attractive properties of the Gini and Bonferroni indices, it will certainly be
worthwhile to inquire into the relationship between the two indices analytically. In Section 3 of the
paper we rigorously establish that for any unequal income distribution the Gini index is bounded above
by the Bonferroni index and the bound is exactly attained if and only if in any n-person society the
(n−1) poor incomes are equal. Exact equality case includes as well the possibility that the incomes are
perfectly unequally distributed; a situation where the richest person monopolizes the entire income and
the others receive the minimal income. This result has a highly interesting implication. Given a value
within the common range of the two indices, there exists a two-person income distribution for which the
Gini and Bonfronni indices take on this common value. We may regard this observation as a duality
problem in the theory inequality measurement. While the primal question deals with the determination
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of the level of inequality for a given distribution, the dual situation’s concern is to identify a distribution
when the level of inequality is given.

Weymark (1981) noted that if the rank order of incomes across all sources of income is the same,
while the absolute Gini inequality evaluator for the aggregated distribution is simply the sum of source-
wise absolute Ginis, in the relative case, the mean-weighted sum of source-wise relative Ginis generates
the aggregated relative Gini evaluator. If we treat the distribution produced by one source as the orig-
inal income distribution of the society and the sum of the distributions generated by other sources as
an incremental distribution, then Weymark’s observation claims that the absolute Gini metric for the
aggregated distribution increases. Taking cue from Weymark, in Section 4 of the article we introduce
a new postulate, ‘additive monotnicity’, for inequality standards. According to additive monotonicity,
inequality increases for unequal disproportionate increments across incomes, given that both the origi-
nal and incremental distributions are non-decreasingly ordered. (Unequal disproportionate increments
ensure that both the relative and absolute inequality levels for the incremental distribution are positive.)
For instance, if in a 3-person society the income distribution (1, 2, 6) expands to (2, 4, 9), then while the
first two incomes grow up by 100%, the third income escalates by 50%. Then additive monotonicity
demands that the expanded distribution (2, 4, 9) should be more unequal than its original sister (1, 2, 6).
Given non-decreasingness of the distributions of the original incomes as well as that of the increments,
we explicitly demonstrate that for both the Gini and the Bonferroni indices, the original distribution
does not have higher inequality than the aggregated one if and only if the incremental distribution is
at least as unequal as its original counterpart. One reason for this paradoxical result is that higher
mean is likely to lead to reduction in the relative distances between the mean and the incomes. Relative
additions in low incomes outweigh the corresponding additions in high incomes. Another likely reason
is non-decreasingness of incremental incomes. When we use the Gini index of inequality, for unordered
distributions a sufficient, but not necessary, condition for the new distribution not to have higher in-
equality than the original distribution is that the inequality of the incremental distribution is less than
that of its original twin. The section concludes with a discussion on a somewhat related axiom ‘the
principle of monotonicity in distance’, introduced by Cowell and Flachaire (2017, 2018).

In Section 5 of the paper we make an unfamiliar observation on the two indices. If the incomes
in a society follow a generalised arithmetic progression, defined in an unambiguous way, then as the
population size increases substantially, the values of the Bonferroni and Gini indices approach respec-
tively to two third and one half. In the case of simple arithmetic progression, the limiting values turn
into one half and one third respectively. These results hold independently of the initial income and the
common difference of the progression. One way to argue in favor of this bizarre observation is that a
policy maker in a society with a large population size thinks that given a minimum guaranteed income,
say the country’s poverty threshold, for the poorest person, how should incomes be distributed such
that the level of inequality, as measured by the Gini index, comes to be one third? This policy echoes
the Rawlsian (1971) maximin rule, a criterion that prioritizes the welfare of the worst off individual
of the society. For a finite population size incomes following either of the two progressions, both the
Bonferroni and the Gini indices can be reduced by increasing the minimum income and the next higher
income by the same absolute amount. This policy for reducing inequality may be interpreted as one-
step lexicographic extension of the maximin criterion. In the case when incomes follow a geometric
progression the limiting values of the two indices coincide at one, the common limiting value of the
two metrics when the income distribution is perfectly unequal. However, the distribution following the
geometric progression is not perfectly unequal and the result materializes independently of the common
ratio. With a finite population size, for a pre-defined value of the minimum income, a reduction in the
value of the common ratio over the relevant range decreases the proportionate gaps between consecutive
incomes leading to a shrinkage in the level of overall inequality.
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2 Preliminaries

Let R be the set of real numbers.
Consider a fixed homogeneous population N = {1, 2, . . . , n} of individuals. An income distribution

in this population is represented by a non-decreasingly ordered vector x = (x1, x2, . . . , xn) whose total
is positive, that is, x1 ≤ x2 ≤ · · · ≤ xn and

∑n
i=1 xi > 0. Thus, we allow the possibility that some of

the incomes can be negative. By Dn we denote the set of all income distributions in the society with n
individuals. Evidently, inequality is a vacuous concept for n = 1. We, therefore, assume at the outset
that n ≥ 2. Since many of our results hold on Dn, unless specified explicitly, we will assume that Dn is
the set of all income distributions.

An inequality index I is a real valued function defined on the set of income distributions. Formally,
I : Dn → R. The index I can be relative or absolute, where relativity means that for all x ∈ Dn,
I(cx) = I(x), c > 0 being any scalar. In contrast, absoluteness refers to the condition I(x + c1) = I(x)
where c is a scalar such that x + c1 ∈ Dn, where 1 is the n-coordinated vector of ones. These two
notions of inequality invariance reflect two different value judgment principles and each has its own
merits and demerits (see Kolm, 1976).

An inequality index I is assumed to satisfy anonymity, that is, any reordering of incomes should keep
inequality unchanged. Since I has been defined directly on ordered distributions, it fulfills anonymity.
For any x,y ∈ Dn, x is said to be obtained from y by a progressive transfer, if for some pair (i, j),
yj > 0 and c > 0, xj = yj − c, xi = yi + c ≤ xj and xk = yk for all k 6= i, j. That is, x is deduced
from y by a transfer of some positive amount of income for person j to a poorer person i, such that
in the post-transfer distribution i does not become richer than j. The index I is said to satisfy the
Pigou-Dalton transfer principle (transfer principle, for short) if I(x) < I(y), that is, inequality reduces
under a progressive transfer. Under anonymity only rank preserving transfers are allowed. Anonymity
and the transfer principle are regarded as minimal postulates for an inequality index.

Let x ∈ Dn be arbitrary.
For i = 1, . . . , n, define

si = x1 + · · ·+ xi,

µi = si/i.

So, s1, . . . , sn are the partial sums and µ1, . . . , µn are the partial means. Note that since the components
of x are non-decreasing, the partial sums and the partial means are also non-decreasing. Since sn is
positive, both xn and µn are also positive.

Given x ∈ Dn, the Gini index of x is defined to be G(x), where G(x) is given by the following
expression.

G(x) =
1

2n2µn

n∑

i=1

n∑

j=1

|xi − xj |. (1)

Since the components of x are assumed to be arranged in non-decreasing order, we have

G(x) =
1

n2µn

∑

1≤i<j≤n
(xj − xi). (2)

The absolute Gini index for a distribution x will be denoted as AG(x) and is defined as follows.

AG(x) = µnG(x) =
1

n2


 ∑

1≤i<j≤n
(xj − xi)


 . (3)

4

ECINEQ WP 2020 - 538 June 2020



Given x ∈ Dn, the Bonferroni index of x is defined to be B(x), where B(x) is given by the following
expression.

B(x) =
1

µn

(
µn −

1

n

n∑

i=1

µi

)
.

This can equivalently be written in the following form.

B(x) =
1

nµn

(
n∑

i=1

(xi − µi)
)
. (4)

The absolute Bonferroni index for a distribution x will be denoted as AB(x) and is defined as follows.

AB(x) = µnB(x) =
1

n

(
n∑

i=1

(xi − µi)
)
. (5)

The indices G(x) and B(x) are sometimes referred to as relative Gini and Bonferroni indices respectively
to distinguish them from the absolute Gini and Bonferroni indices AG(x) and AB(x) respectively.

Bonferroni curve: The Bonferroni curve of x ∈ D+
n is a piecewise linear plot on the plane joining

the point (0, 0) and the points (i/n, µi/µn), for i = 1, . . . , n, where D+
n is that subset of Dn in which

all incomes are non-negative. So, the entire plot lies within the square [0, 1]2. Let x,x′ ∈ D+
n be such

that sn = s′n (and so, µn = µ′n). The distribution x Lorenz dominates the distribution x′ if si ≥ s′i for
i = 1, . . . , n−1, with ‘>’ for at least one i in {1, . . . , n−1}. We have the following simple characterisation
of Lorenz domination.

Proposition 1 Let x and x′ be two distributions in D+
n with µn = µ′n = µ > 0. Then x Lorenz

dominates x′ if and only if the Bonferroni curve of x dominates the Bonferroni curve of x′.

Proof: Let µ denote the overall means of the two distributions. The Bonferroni curve of x dominates
the Bonferroni curve of x′ if and only if µi/µ ≥ µ′i/µ for i = 1, . . . , n, with ‘>’ for at least one i in
{1, . . . , n − 1}. The last condition holds (using the fact that µ is positive) if and only if si ≥ s′i for
i = 1, . . . , n with > for at least one i. This last condition is the well-known Lorenz domination of x
over x′. �

In view of the Dasgupta-Sen-Starrett (1973) theorem, the Bonferroni superiority of x over x′ is
equivalent to the stipulation that x can be obtained from x′ by a sequence of rank preserving progressive
transfers. Social welfare equivalence of this condition is that x is regarded as socially better than x′

by all strictly S-concave social welfare functions1 This as well is equivalent to the specification that
x is better than x′ by the symmetric utilitarian rule, where the identical individual utility function is
strictly concave.

1A social welfare function is called S-concave if for all x ∈ D+
n , W (xB) ≥ W (x), where B is any n × n bistochastic

matrix, a non-negative square matrix of order n each of whose of rows and columns sum to 1. W is called strictly S-concave,
if the weak inequality is replaced by a strict inequality whenever xB is not a permutation of x. All S-concave functions
are symmetric.
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3 Bonferroni Dominates Gini

Given any non-decreasing distribution x we prove that the Bonferroni index of x is at least as large as
the Gini index of x.

Theorem 1 (Bonferroni dominates Gini) Let x = (x1, . . . , xn) be a non-decreasing distribution
with mean µn > 0. Then B(x) ≥ G(x).

Further, equality holds if and only if x1 = · · · = xn−1 = x. In this case,

B(x) = G(x) =

(
1− 1

n

)(
1− x/xn

1 + (n− 1)x/xn

)
. (6)

In words, the Bonferroni index of x is at least as large as the Gini index of x with equality holding if
and only if the first (n− 1) components of x have the same value. In the later case, the equal value of
the Bonferroni and Gini indices is given by (6).

Proof: For 2 ≤ j ≤ n, we have

j−1∑

i=1

(xj − xi) = (j − 1)(xj − µj−1).

So, using (2) we may write

G(x) =
1

n2µn

n∑

j=2

(j − 1)(xj − µj−1).

Using (4), we have

B(x) =
1

nµn

n∑

i=1

(xi − µi) =
1

nµn

n∑

j=2

(xj − µj).

So, B(x) ≥ G(x) if and only if (using µn > 0)

n
n∑

j=2

(xj − µj) ≥
n∑

j=2

(j − 1)(xj − µj−1),

i.e., if and only if
n∑

j=2

(n− j + 1)xj −
n∑

j=2

(nµj − (j − 1)µj−1) ≥ 0.

Let

S =
n∑

i=2

(n− i+ 1)xi −
n∑

i=2

(nµi − (i− 1)µi−1).

So, B(x) ≥ G(x) if and only if S ≥ 0. We have

n∑

i=2

(nµi − (i− 1)µi−1) =
n∑

i=2

nµi −
n∑

i=2

(i− 1)µi−1

= nµn +

n−1∑

i=2

nµi −
n−1∑

i=2

iµi − µ1

= nµn − µ1 +
n−1∑

i=2

(n− i)µi.
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Note that µ1 = x1. Using the above simplification in the expression for S, we obtain

S =
n∑

i=2

(n− i+ 1)xi − nµn + x1 −
n−1∑

i=2

(n− i)µi

= −nµn + x1 +

n∑

i=2

xi +

n∑

i=2

(n− i)xi −
n−1∑

i=2

(n− i)µi

= −nµn +
n∑

i=1

xi +
n−1∑

i=2

(n− i)(xi − µi)

= −nµn + nµn +
n−1∑

i=2

(n− i)(xi − µi)

=
n−1∑

i=2

(n− i)(xi − µi).

For 2 ≤ i ≤ (n − 1), we have (n − i) > 0. Also, since µi is the mean of the numbers x1, . . . , xi with
x1 ≤ · · · ≤ xi, it follows that xi ≥ µi. As a result, we have S ≥ 0 and so B(x) ≥ G(x).

Further, B(x) = G(x) if and only if S = 0, i.e., if and only if xi = µi for i = 2, . . . , n − 1. The
last condition is equivalent to x1 = x2 = · · · = xn−1. Taking this common value to be x provides the
given expression for G(x) = B(x). Note that µn > 0 implies xn ≥ µn > 0 and so the division by xn is
possible.

�

We next prove an interesting consequence of Theorem 1, for which we assume that the set of income
distributions is D+

n . Let C be a class of distributions. The class C is complete for the Gini index if the
values of the Gini index for the distributions in C span the entire interval [0, 1− 1/n], i.e., if

{G(x) : x ∈ C} = [0, 1− 1/n].

One may similarly define the completeness of C for the Bonferroni index.
Define the class of k-valued distributions to be the class Ck such that for any x ∈ Ck, the number of

distinct values of the components of x is at most k. So, for any distribution x in C1, all components of
x have the same value. Both the Gini and Bonferroni indices for any such x is 0.

The next class to consider is C2, i.e., the class of 2-valued distributions. We show that C2 is complete
for both the Gini and the Bonferroni indices. It is clear from the definition of C2 that the following
theorem may be regarded as a dual of Theorem 1.

Theorem 2 (Completeness of 2-valued distributions for the Gini and Bonferroni indices)
Let δ ∈ [0, 1− 1/n]. Then there is a distribution x ∈ C2 such that G(x) = B(x) = δ.

In other words, given any value in the interval [0, 1− 1/n], it is possible to construct a distribution
whose components take at most two distinct values, such that both the Bonferroni and Gini indices of
this distribution is equal to the given value.

Proof: We consider distributions of the type x = (x, x, . . . , x, y), i.e., the first n− 1 components of x
are equal to x and xn = y, with 0 ≤ x ≤ y and y > 0. Clearly, any such x is in C2. and further, from
Theorem 1, it follows that G(x) = B(x). Define

λ =
n− 1− nδ

(n− 1)(1 + nδ)
. (7)
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and x = λy so that x/y = x/xn = λ. Substituting the expression for x/xn = λ given in (7) into (6) and
simplifying shows that B(x) = G(x) = δ. �
From (7), we have δ = 0 if and only if λ = 0, i.e., if and only if x = xn. Also, δ = 1− 1/n if and only if
λ = 0, i.e., if and only if x = 0.

We observe that Theorem 2 provides a solution for the inverse problem for the Gini (resp. Bonferroni)
index, i.e., given δ ∈ [0, 1 − 1/n], obtain a distribution whose Gini (resp. Bonferroni) index is equal
to δ. This has an interesting practical consequence. Consider the Gini index. Suppose in a practical
situation, the Gini index is computed and is found to be a value δ ∈ [0, 1 − 1/n]. From this value of
the Gini index what can be said about the distribution? Theorem 2 shows that there is a 2-valued
distribution of the type x = (x, . . . , x, xn) whose Gini index is δ. So, simply looking at the Gini or the
Bonferroni indices, one cannot rule out that the underlying distribution is such a degenerate type of
distribution. This suggests that making any conclusion about the distribution based solely on its Gini
or Bonferrroni indices may be misleading. It may also be noted that although Theorem 1 holds on the
general domain Dn, its dual Theorem 2, holds on the domain C2.

4 Paradox of Additivity

The absolute Gini and Bonferroni indices satisfies an additivity condition as stated in the following
result. For the absolute Gini index, this observation was already made by Weymark (1981) and the
proof that we provide is only for the sake of completeness.

Theorem 3 Let x,d ∈ Dn and y = x + d. Then

AG(y) = AG(x) + AB(d), (8)

AB(y) = AB(x) + AB(d). (9)

Proof: For i = 1, . . . , n, let µi, δi and νi be the means of (x1, . . . , xi), (d1, . . . , di) and (y1, . . . , yi)
respectively. Note that νi = µi + δi for i = 1, . . . , n.

For the result on the absolute Gini index, note that since both x and d are non-decreasing, so is y.
From (3) and (2), we have

AG(y) = νnG(y)

=
1

n2


 ∑

1≤i<j≤n
(yj − yi)




=
1

n2


 ∑

1≤i<j≤n
((xj − xi) + (dj − di))




=
1

n2


 ∑

1≤i<j≤n
(xj − xi)


+

1

n2


 ∑

1≤i<j≤n
(dj − di)




= µnG(x) + δnG(d)

= AG(x) + AG(d).
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For the result on absolute Bonferroni index, we proceed using (5) and (4).

AB(y) = νnB(y)

=
1

n

(
n∑

i=1

(yi − νi)
)

=
1

n

(
n∑

i=1

(xi + di − µi − δi)
)

=
1

n

(
n∑

i=1

(xi − µi)
)

+
1

n

(
n∑

i=1

(di − δi)
)

= µnB(x) + δnB(d)

= AB(x) + AB(d).

�
From Theorem 3, we see that the inequality in y, as measured by either the absolute Gini or the absolute
Bonferroni index, is the sum total of the inequality in x and d. So, the inequality in y is never lower
than the inequality in x.

Motivated by Theorem 3, we put forward the following postulate.

Postulate of Additive Monotonicity: An inequality index I : Dn → R is said to satisfy the
postulate of additive monotonicity, if for all x ∈ Dn, I(x + d) > I(d), where d ∈ Dn is not of the form
cx or c1, where c > 0 is any scalar.

Theorem 3 shows that both the absolute Gini and the absolute Bonferroni indices unambiguously
satisfy the postulate of additive monotonicity. Next we consider the question of whether the (relative)
Gini and Bonferroni indices satisfy this postulate. Towards this end, we need to obtain some results on
the additive properties of the Gini and Bonferroni indices.

Let x and d be two distributions and let y = x + d. The following results relate the Gini and
Bonferroni indices of y with those of x and d. For the Gini index this property was noted by Weymark
(1981). We present the proof here in order to make the paper self contained.

Theorem 4 (Additivity of Gini, Weymark (1981)) Let x,d ∈ Dn be two distributions with means
µ > 0 and δ > 0 respectively. Let y = x + d. Let α = µ/(µ+ δ). Then

G(y) = αG(x) + (1− α)G(d)

Further,

min(G(x), G(d)) ≤ G(y) ≤ max(G(x), G(d))

with equality if and only if G(x) = G(d).
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Proof: Note that the mean of y is µ+δ. Since x and d are non-decreasing, so is y. For 1 ≤ i < j ≤ n,
we have yj − yi = xj − xi + dj − di. So, from (2), we have

G(y) =
1

n2(µ+ δ)

∑

1≤i<j≤n
(yj − yi)

=
1

n2(µ+ δ)

∑

1≤i<j≤n
((xj − xi) + (dj − di))

=
1

n2(µ+ δ)


 ∑

1≤i<j≤n
(xj − xi) +

∑

1≤i<j≤n
(dj − di)




=
1

n2(µ+ δ)

(
n2µG(x) + n2δG(d)

)

= αG(x) + (1− α)G(d).

Given that both µ and δ are positive, 0 < α, 1− α < 1. Using this along with the expression for G(y)
in terms of G(x) and G(d), the inequalities follow. �

Theorem 4 requires both x and d to be non-decreasing. We consider a generalisation of Theorem 4,
where these conditions are not required to hold. The generalisation, however, comes at a cost of
obtaining a less sharper result. Note that if a distribution is not necessarily non-decreasing, the Gini
index cannot be computed using (2) and the formulation (1) has to be used.

Theorem 5 (Weak Additivity of Gini) Let x = (x1, . . . , xn) ∈ Rn and d = (d1, . . . , dn) ∈ Rn

be two distributions which are not necessarily non-decreasing and having means µ > 0 and δ > 0
respectively. Let y = x + d and α = µ/(µ+ δ). Then

G(y) ≤ αG(x) + (1− α)G(d) ≤ max(G(x), G(d)).

Consequently, if G(d) < G(x), then G(y) ≤ G(x).

Proof: Note that the mean of y is µ + δ. Since x and d are not necessarily non-decreasing, y is
also not necessarily non-decreasing. So, we cannot use (2) to compute the Gini indices of x, d and y.
Instead, we need to use (1). For 1 ≤ i < j ≤ n, we have |yi−yj | = |xi−xj +di−dj | ≤ |xi−xj |+ |di−dj |.
So, from (1), we have

G(y) =
1

2n2(µ+ δ)

n∑

i=1

n∑

j=1

|yi − yj |

≤ 1

2n2(µ+ δ)

n∑

i=1

n∑

j=1

(|xi − xj |+ |di − dj |)

=
1

2n2(µ+ δ)




n∑

i=1

n∑

j=1

|xi − xj |+
n∑

i=1

n∑

j=1

|di − dj |




=
1

2n2(µ+ δ)

(
2n2µG(x) + 2n2δG(d)

)

= αG(x) + (1− α)G(d).

Since both µ and δ are positive, 0 < α, 1− α < 1. This shows the last inequality. �
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In Theorem 5, the condition G(d) < G(x) is sufficient for the inequality G(y) ≤ G(x) to hold.
Consider for example, x = (1, 3, 5, 7, 9) and d = (2, 1, 1, 2, 1) so that y = (3, 4, 6, 9, 10). In this case,
we have G(d) = 0.17 < 0.32 = G(x) and consequently, we obtain G(y) = 0.24 < 0.32 = G(x). On
the other hand, the condition G(d) < G(x) is not necessary for the inequality G(y) ≤ G(x) to hold.
It is possible that G(d) > G(x) and yet G(y) ≤ G(x). As an example, consider x = (1, 3, 5, 7, 9) and
d = (0, 1, 0, 1, 1) with y = (1, 4, 5, 8, 10). In this case, G(d) = 0.4 > 0.32 = G(x) and yet we have
G(y) = 0.31 < 0.32 = G(x).

We prove a result on additivity of the Bonferroni index.

Theorem 6 (Additivity of Bonferroni) Let x,d ∈ Dn be two distributions with means µ > 0 and
δ > 0 respectively. Let y = x + d. Let α = µ/(µ+ δ). Then

B(y) = αB(x) + (1− α)B(d).

Further,

min(B(x), B(d)) ≤ B(y) ≤ max(B(x), B(d))

with equality if and only if B(x) = B(d).

Proof: For 1 ≤ i ≤ n, let µi (resp. δi) be the mean of x1, . . . , xi (resp. d1, . . . , di). Similarly, for
1 ≤ i ≤ n, let νi be the mean of y1, . . . , yi. Then νi = µi + δi, for i = 1, . . . , n. We have µn = µ and
δn = δ and νn = µn + δn = µ+ δ 6= 0.

Note that yi − νi = xi − µi + di − δi. From (4)

B(y) =
1

n(µ+ δ)

n∑

i=1

(yi − νi)

=
1

n(µ+ δ)

n∑

i=1

((xi − µi) + (di − δi))

=
1

n(µ+ δ)

(
n∑

i=1

(xi − µi) +

n∑

i=1

(di − δi)
)

=
1

n(µ+ δ)
(nµB(x) + nδB(d))

= αB(x) + (1− α)B(d).

Since 0 < α, 1− α < 1, the inequalities follow.
�

Considering distributions in Dn, Theorem 4 (resp. Theorem 6) shows that a sufficient condition
for the Gini (resp. Bonferroni) inequality metric of the original distribution not to exceed that of the
aggregate distribution is that the incremental distribution is more unequal than its original twin. We
make this statement precise in the following manner.

Theorem 7 (Additivity Paradox) Let x,d ∈ Dn and y = x + d. Then

1. G(y) ≤ G(x) if and only if G(d) ≤ G(x).

2. B(y) ≤ B(x) if and only if B(d) ≤ B(x).
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Proof: For the first point, we use Theorem 4. If G(d) ≤ G(x), then min(G(d), G(x)) = G(d) and
max(G(d), G(x)) = G(x). So, from Theorem 4, we have G(d) ≤ G(y) ≤ G(x). On the other hand, if
G(d) > G(x), then min(G(d), G(x)) = G(x) and max(G(d), G(x)) = G(d). So, from Theorem 4, we
have G(x) < G(y) < G(d). This proves the first point.

The argument for the Bonferroni index is similar to the argument given above and is based on
Theorem 6. �
From Theorem 7 it emerges that for both the Gini and the Bonferroni standards, the inequality in the
aggregate distribution obtained by aggregating a non-decreasingly ordered original distribution and a
non-decreasingly ordered incremental distribution is at most the inequality in the original distribution
if and only if the inequality in the incremental distribution is at most the inequality in the original
distribution.

The content of Theorem 7 is that by adding two non-decreasing distributions, it is possible to lower
the inequality below one of them. If x is an initial non-decreasing wealth distribution and d is an
incremental non-decreasing wealth distribution, then the wealth distribution given by y = x + d may
have inequality lower than the inequality of x. The paradoxical issue here is that the incremental
wealth distribution d is also non-decreasing. This means that it is possible to decrease the inequality in
wealth distribution while ensuring that the increments provided to the richer people are more than the
increments provided to the poorer people. More compactly, it is possible to decrease inequality while
ensuring that the rich get even richer. To bring out the paradoxical situation more clearly, we consider
two practical applications of Theorem 7.

Salary increments: Suppose the non-decreasingly ordered distribution x represents the various
salary levels in an organisation in a particular year. The next year, each salary level is increased by a
non-negative amount. The increments are given by the distribution d. The sums of the original salary
levels and the increments are the new salary levels which are given by the distribution y. A possible
social welfare goal in determining salary levels is to decrease the inequality in the various salary levels.
Supposing inequality in the salary levels is measured by the Gini or the Bonferroni indices. Theorem 7
tells us that it is possible to provide a non-decreasing sequence of increments and yet achieve an overall
decrease in inequality. In other words, it is possible to make the better paid even more better paid and
yet achieve an overall lower level of inequality.

Let us consider a concrete example to illustrate the above paradox. Suppose that the initial salary
levels are given by x = (1, 3, 6, 10, 15) which are entries in thousand-dollar unit. Suppose the increments
are d = (1, 2, 3, 4, 5) which are again in thousand-dollar unit. In other words, the salary at the lowest
level is increased by a 1000 Dollars, at the next level by 2000 Dollars and so on, finally at the last
level by 5000 Dollars. So, people who were already getting a higher salary, receives a higher amount
of increment. Let y = x + d = (2, 5, 9, 14, 20) be the new salary levels. How does the inequality in y
compare to the inequality in x? Since the salary increments make the better paid even more better paid,
one may expect that the inequality in y has increased compared to the inequality in x. However, if one
measures inequality using either the Gini or the Bonferroni indices, then it turns out that the inequality
in y has actually decreased in comparison to the inequality in x. We have, G(y) = 0.36 < 0.4 = G(x)
which from Theorem 7 happens due to the fact that G(d) = 0.27 < 0.4 = G(x). Similarly, we have,
B(y) = 0.43 < 0.47 = B(x) which from Theorem 7 happens due to the fact that B(d) = 0.33 < 0.47 =
B(x).

Tax rebates: We consider an example in the scenario of providing income tax rebates. Suppose
that the gross incomes are given by the non-decreasing distribution w. Let u be the distribution of
the present tax deductions, so that the net incomes are given by the distribution x = w − u. Let us
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assume that the components of x are also arranged in non-decreasing order. Suppose the goverment
announces a populist new tax scheme which leads to a tax distribution v. Being populist, the taxes for
all persons get reduced so that vi ≤ ui, for i = 1, . . . , n. So, the tax rebates are given by the distribution
d = u−v. Due to the new tax policy the net income distribution becomes y = w−v = x+d. In other
words, the new net incomes can be seen as the sum of the previous net incomes and the tax rebates.
So effectively, the i-th net income gets increased by an amount di. Suppose now that the government
decides to provide higher tax rebates to those with higher incomes, i.e., di ≤ di+1 for i = 1, . . . , n − 1.
This means that people who were already taking home a higher net pay now takes home an even higher
net pay. Consequently, one may be led to believe that the government policy has lead to an increase
in inequality. However, if inequality is measured using either the Gini or the Bonferroni indices, this is
not necessarily true. If the inequality in d is less than the inequality in x, then the inequality in the net
incomes after the new taxation policy is actually less than the inequality in the net incomes prior to
this taxation policy. In other words, it is possible to reduce inequality by allowing people with already
higher net pay to take home an even higher net pay.

Let us consider a numerical example. Suppose that the gross income is w = (6, 8, 11, 15, 20) (with
thousand-dollar unit). Suppose that the initial tax deductions are u = (5, 5, 5, 5, 5) which is the same
for all levels. The net incomes are x = (1, 3, 6, 10, 15). Further, suppose that the new tax deductions
are v = (4, 3, 2, 1, 0). So, people with higher incomes are required to pay less taxes and the resulting tax
rebates are d = (1, 2, 3, 4, 5). The new net income distribution is y = (2, 5, 9, 14, 20). The distributions
x, d and y are the same as those considered in the previous example. So, we have both G(x) > G(y)
and B(x) > B(y). Effectively, in this scenario requiring the people with higher incomes to pay lesser
taxes has led to a reduction in the inequality, as measured by Gini and Bonferroni indices.

From Theorem 7, we have that the Gini and the Bonferroni indices do not in general satisfy the
postulate of additive monotonicity. They satisfy the weak form of the postulate (that is, G(x + d) is
greater than or equal to G(x) and B(x+d) is greater than or equal to B(x)) if and only if the inequality
in d is at least as large as the inequality in x. In the examples discussed above, the distribution d has
been considered to be increments to the original distribution x. So, the Gini and the Bonferroni indices
satisfy the weak form of the postulate of additive monotonicity if and only if the inequality in the
increments is at least as large as the inequality in the original distribution.

4.1 On a Postulate of Cowell and Flachaire

A postulate, called the principle of monotonicity in distance, has been introduced by Cowell and
Flachaire (2017, 2018). The idea behind the postulate is the following. Suppose a distribution x =
(x1, . . . , xn) ∈ D+

n is changed to a distribution x′ = (x′1, . . . , x
′
n) ∈ D+

n , where the income of exactly one
person (say the i-th person) is increased. In other words, x′j = xj for j = 1, . . . , n and j 6= i; x′i = xi + δ
where δ > 0. Let µ and µ′ be the means of x and x′ respectively. Suppose that |xi − µ| < |x′i − µ′|.
Then the increment to the i-th income has moved the i-th person further away from the mean. The
principle of monotonicity in distance requires that the inequality in x to be lower than the inequality
in x′.

Cowell and Flachaire show that the Gini and the Theil indices do not satisfy the principle of mono-
tonicity in distance. The example they provide has x = (1, 2, 3, 4, 5, 9, 10) and x′ = (1, 2, 3, 4, 7, 9, 10)
with µ = 4.857 and µ′ = 5.143. The change from x to x′ is to increase the income of only the
fifth person from 5 to 7, i.e., x5 = 5 and x′5 = 7 and all other incomes remain the same. We have
|x5−µ| = 5−4.857 = 0.143 and |x′5−µ′| = 7−5.143 = 1.857. So, compared to the distribution x, in x′,
the income of the fifth person has moved further away from the mean and the principle of monotonicity
in distance requires that G(x) < G(x′). However, we have G(x) = 0.361 > 0.357 = G(x′).

We take a closer look at the above example. We note that for i = 1, . . . , 4, xi = x′i and since µ < µ′,
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we have |xi − µ| = µ− xi < µ′ − xi = µ′ − x′i = |x′i − µ|. So, it is not only that the deviation from the
mean of the fifth person’s income has increased, in fact, the deviations from the mean of the incomes
of all the first five persons have increased. On the other hand, let us now consider the deviations from
the mean of the last two persons. Note that |x6 − µ| = 9 − 4.857 = 4.143 > 3.857 = |x′6 − µ′| and
|x7 − µ| = 10 − 4.857 = 5.143 > 4.857 = 10 − 5.143 = |x′7 − µ′|. This shows that due to the increase
of the income of the fifth person, the deviations from the mean of the incomes of the first five persons
have increased, while the deviation from the mean of the last two persons have decreased. Focusing
only on the deviation from the mean of the fifth person’s income does not provide a complete picture.
Given the complete picture of how the various deviations behave, it does not appear to be intuitive to
expect that the overall inequality in x′ should be greater than that in x. This is especially so since the
deviations from the mean of people with higher incomes have actually gone down. Since the Gini index
is an overall measure of inequality, it is perhaps not unexpected that the inequality in x is more than
the inequality in x′.

The point of the above discussion is to argue that the principle of monotonicity in distance needs
discussion at greater length before it is accepted as a compelling postulate for an inequality index. The
above discussion has been in the context of the example provided by Cowell and Falchaire. It is not too
difficult to lift the essence of the discussion to a more general result.

Proposition 2 Let x = (x1, . . . , xn) be a non-decreasing distribution with mean µ > 0. Let i in
{1, . . . , n} with xi ≥ µ and δ > 0 be such that the distribution x′ = (x′1, . . . , x

′
n) defined as x′j = xj, for

j = 1, . . . , n and j 6= i; x′i = xi + δ, is also non-decreasing. Let µ′ be the mean of x′. Let j ∈ {1, . . . , n}.
Then

|xj − µ| < |x′j − µ′| if j = i;

|xj − µ| < |x′j − µ′| if j 6= i and xj ≤ µ;

|xj − µ| > |x′j − µ′| if j 6= i and xj ≥ µ′.

Remark: For j 6= i such that µ < xj < µ′, the relationship between |xj − µ| and |x′j − µ′| = |xj − µ′|
cannot be determined in general.

Proof: Note that, µ′ = µ+ δ/n.
For j = i, we have |x′i − µ′| = |xi + δ − (µ+ δ/n)| = |xi − µ|+ |δ − δ/n| > |xi − µ|.
For j 6= i, we have xj = x′j . If xj ≤ µ, then |x′j − µ′| = |xj − (µ + δ/n)| = µ + δ/n − xj =

|xj − µ| + δ/n > |xj − µ|. On the other hand, if xj ≥ µ′, we have |x′j − µ′| = |xj − µ′| = xj − µ′ =
xj − (µ+ δ/n) = xj − µ− δ/n < |xj − µ|. �

Proposition 2 shows that if only the income of the i-th person is increased, then the deviations from
the mean of the incomes of one set of persons increase while the devations from the mean of the incomes
of another set of persons decrease. Consequently, it is a priori not reasonable to expect that the overall
inequality should increase. In particular, one may note that the deviations from the means of the higher
income persons decrease. So, a reduction of inequality cannot be wholly unexpected.

5 Benchmark Distributions

Suppose G(x) is computed for a distribution x. From this value, what can be inferred about the distri-
bution x? Note that since the entire information in the n-component distribution x is represented by a
single value G(x), any inference based on this value is tentative. Nevertheless, the purpose of computing
the index is to be able to obtain some understanding of the inequality present in the distribution x.
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One way to obtain such an understanding is to compare G(x) with G(z), where z is some benchmark
distribution which is well understood. Similar considerations hold for B(x).

For a positive real number x, two simple benchmark distributions are the following.

eq = (x, . . . , x), ineq = (0, . . . , 0, x).

It is well known and easy to verify that G(eq) = 0 = B(eq) and G(ineq) = (1− 1/n) = B(ineq). Given
a distribution x, if G(x) (or, B(x)) turns out to be close to 0, then one interpret this by saying that the
distribution x is more or less equitable. Similarly, if the value of G(x) (or, B(x)) turns out to be close
to (1− 1/n), then the interpretation would be that distribution x has a great amount of inequality.

So, knowing values of an inequality index for certain benchmark distributions help in interpreting
the computed value of the index for a given distribution x. To the best of our knowledge, the values of
Gini and Bonferroni indices are not known for any benchmark distributions other than eq and ineq.

In this section, we derive values of the Gini and Bonferroni indices on two standard distributions,
namely distributions following either the arithmetic or the geometric progression.

5.1 Arithmetic Progression

We assume at the outset that the set of income distributions is D++
n , the strictly positive part of D+

n .
This domain restriction ensures that the minimum income x1 is positive. Consequently, in order to
maintain parity with the Rawlsian maximin policy, one can set x1 at a pre-specified level, say at the
country’s poverty threshold, the income necessary to maintain the subsistence standard of living.

Let di = xi+1 − xi for 1 ≤ i ≤ n − 1. Since we have assumed that the components of x are non-
decreasing, it follows that di ≥ 0 for i = 1, . . . , n− 1. If x is an AP, then d1 = . . . = dn−1. We consider
a more general situation, where the di’s themselves form an AP, i.e., there is a common difference d,
such that di = d1 + (i − 1)d. In other words, the di’s grow linearly with i. Note that we do not insist
that d ≥ 0. A negative value for d indicates that the difference between two successive components
decreases with i. On the other hand, we do have the constraint of non-decreasing behaviour on x. This
implies that dn−1 ≥ 0. So, d must satisfy the condition d ≥ −d1/(n− 1).

Theorem 8 (Gini and Bonferroni for generalised AP) Let x = (x1, . . . , xn) ∈ D++
n . Let di =

xi+1 − xi for i = 1, . . . , n− 1 and d ≥ −d1/(n− 1) be such that di = d1 + (i− 1)d. Then

G(x) =

(
n2 − 1

2n

)(
2d1 + d(n− 2)

6x1 + 3d1(n− 1) + d(n− 1)(n− 2)

)

B(x) =

(
n− 1

6

)(
9d1 + 4d(n− 2)

6x1 + 3d1(n− 1) + d(n− 1)(n− 2)

)
.
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Proof: For 2 ≤ j ≤ n and 1 ≤ i ≤ j−1, we have xj−xi = di+· · ·+dj−1. So,
∑j−1

i=1 (xj−xi) =
∑j−1

i=1 idi
and therefore

n∑

j=2

j−1∑

i=1

(xj − xi)

=

n∑

j=2

j−1∑

i=1

idi =

n−1∑

i=1

(n− i)idi =

n−1∑

i=1

(n− i)i(d1 + (i− 1)d)

= d1

(
n

n−1∑

i=1

i−
n−1∑

i=1

i2

)
+ d

(
(n+ 1)

n−1∑

i=1

i2 − n
n∑

i=1

i−
n−1∑

i=1

i3

)

= d1

(
n2(n− 1)

2
− n(n− 1)(2n− 1)

2

)

+d

(
(n+ 1)n(n− 1)(2n− 1)

6
− n2(n− 1)

2
−
(
n(n− 1)

2

)2
)

=

(
n(n2 − 1)

12

)
(2d1 + d(n− 2)).

Let si = x1 + · · ·+ xi and µi = si/i. Then

si = ix1 +

i−1∑

k=1

(i− k)dk

= ix1 +

i−1∑

k=1

(i− k)(d1 + (k − 1)d).

The last expression after simplification leads to

si =
i

6
(6x1 + 3d1(i− 1) + d(i− 1)(i− 2)) .

Using (2), we have

G(x) =
1

nsn

∑

1≤i<j≤n
(xj − xi)

=

(
n2 − 1

2n

)(
2d1 + d(n− 2)

6x1 + 3d1(n− 1) + d(n− 1)(n− 2)

)
.

This shows the expression for the Gini index.
We have

xi = x1 + d1 + · · ·+ di−1

= x1 +

(
i− 1

2

)
(2d1 + (i− 2)d).

From this we obtain

n∑

i=1

(xi − µi) =
1

6

n∑

i=1

(3d1(i− 1) + 2d(i− 1)(i− 2)) .
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After simplification, we obtain

n∑

i=1

(xi − µi) =
n(n− 1)

36
(9d1 + 4d(n− 2)) .

Using (4)

B(x) =
1

nµn

n∑

i=1

(xi − µi)

=

(
n− 1

6

)(
9d1 + 4d(n− 2)

6x1 + 3d1(n− 1) + d(n− 1)(n− 2)

)
.

This shows the expression for the Bonferroni index. �
For incomes following a simple arithmetic progression we have the following theorem.

Theorem 9 (Gini and Bonferroni for AP) Let x = (x1, . . . , xn) ∈ D++
n be a distribution such that

xi = x1 + (i− 1)d1 for i = 1, . . . , n, where d1 is a non-negative real number. Then

G(x) =
d1(n

2 − 1)

3n(2x1 + (n− 1)d1)
and B(x) =

d1(n− 1)

2(2x1 + (n− 1)d1)
.

Proof: The result follows from Theorem 8 by setting d = 0. �
Theorems 8 and 9 indicate that by increasing the incomes of the first and second worst off persons by
the same absolute quantity, we can reduce the values of the both the Gini and Bonferroni inequality
metrics when incomes follow the generalized or simple arithmetic progression. This is simply one-step
lexicographic spreading out of the maximin principle.

We make a clear distinction here between Sen’s (1970) lexicographic extension of the maximin
criterion and our one-step lexicographic spreading out. According to Sen’s criterion of two distributions
over a given population size n; maximize the welfare of the worst-off individual; for equal welfare of the
worst-off individual, maximize the welfare of the second worst-off individual;...; for equal welfare of the
worst-off individual, equal welfare of the second worst-off individual,..., equal welfare of the (n − 1)th
worst-off individual, maximize the welfare of the best-off (nth) individual. Our one-step lexicographic
extension requires that (possibly different) incomes of the worst-off and the second worst-off individuals
should be increased by the same rank-preserving absolute amount with the objective of making the
resulting distribution more equitable.

Corollary 1 (Asymptotic behaviour of Gini and Bonferroni on AP) Let x = (x1, . . . , xn) ∈
D++

n be a distribution such that xi = x1 + (i − 1)d1 for i = 1, . . . , n, where d1 is a non-negative
real number. Then, G(x)→ 1/3 and B(x)→ 1/2 as n→∞.

Proof: Given x1 > 0, using the scale invariance property of both the Gini and the Bonferroni indices,
we can scale down all the entries of the distribution x by x1 without changing the values of G(x) and
B(x). Such scaling down transforms the AP given by x to an AP whose first term is 1 and common
difference is d1/x1. Now, using Theorem 9 we obtain

G(x) =
(d1/x1)(n

2 − 1)

3n(2 + (n− 1)(d1/x1))
=

(
1

3
+

1

3n

)(
(d1/x1)

2/(n− 1) + (d1/x1)

)
,

B(x) =
(d1/x1)(n− 1)

2(2 + (n− 1)(d1/x1))
=

(d1/x1)

2 (2/(n− 1) + d1/x1)
.
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As n increases to infinity, both 1/(3n) and 2/(n − 1) go to zero. Consequently, G(x) goes to 1/3 and
B(x) goes to 1/2. �

From Corollary 1, the asymptotic behaviour of G(x) and B(x) do not depend on either the value of
the first term x1 or the value of the common difference d1. Consequently, if the population size is large
enough, then the asymptotic behaviour indicated in Corollary 1 may be assumed to hold for the given
distribution.

Equitable distribution of wealth is an ideal and is unlikely to be achieved in practice. Perhaps, the
next acceptable distribution would be that of an AP. For a large enough value of n, suppose the Gini
index of a distribution x comes out to be close to 1/3. This may be interpreted as being an acceptable
inequality. Similarly, if the value of the Bonferroni index of x comes out to be close to 1/2, then the
inequality in x may be considered acceptable.

Corollary 2 (Asymptotic behaviour of Gini and Bonferroni on generalised AP)
Let x = (x1, . . . , xn) ∈ D++

n be arbitrary. Let di = xi+1 − xi for i = 1, . . . , n− 1 and d > 0 be such that
di = d1 + (i− 1)d. Then G(x)→ 1/2 and B(x)→ 2/3 as n→∞.

Proof: Given x1 > 0, we scale down all the components of x by x1 without changing the values of
G(x) and B(x). Scaling down by x1 results in d1 becoming d1/x1 and d becoming d/x1. So, using
Theorem 8, we have

G(x) =
1

2

(
1− 1

n2

)(
2d1/(x1n) + d/x1(1− 2/n)

6/n2 + 3d1/x1(1/n− 1/n2) + d/x1(1− 1/n)(1− 2/n)

)

B(x) =
1

6

(
1− 1

n

)(
9d1/(x1n) + 4d/x1(1− 2/n)

6 + 3d1/x1(1/n− 1/n2) + d/x1(1− 1/n)(1− 2/n)

)
.

Again, we have G(x)→ 1/2 and B(x)→ 2/3 as n→∞. �

Consider the distribution x = (x1, . . . , xn) with di = xi+1 − xi and di satisfying di = d1 + (i− 1)d.
If d = 0, then x is an AP and Corollary 1 shows that the Gini and Bonferroni indices asymptotically go
to 1/3 and 1/2 respectively. On the other hand, if d > 0 (and d1 is independent of n), then Corollary 2
shows that the Gini and Bonferroni indices asymptotically go to 1/2 and 2/3 respectively. The result
does not depend on the actual value of d. So, the asymptotic values of the Gini and the Bonferroni
indices increase sharply if d increases from 0 to a very small positive value.

5.2 Geometric Progression

Theorem 10 (Gini and Bonferroni on GP) Let x = (x1, . . . , xn) ∈ D++
n be a distribution such

that xi = x1r
i−1 for i = 1, . . . , n, where r > 1 is a real number. Then

G(x) =

(
1− 1

n

)(
rn + 1

rn − 1
−
(

2r

(n− 1)(r − 1)

)(
rn−1 − 1

rn − 1

))
and B(x) = 1− Pn

rn − 1
+

Hn

rn − 1
.

In the above, Hn is the n-th harmonic number defined as Hn =
∑n

i=1(1/n) and Pn =
∑n

i=1(r
i/i).

Proof: Using scale invariance of the Gini and Bonferroni indices, we may assume that x1 = 1.
For i = 1, . . . , n, we have

µi =
1 + r + r2 + · · ·+ ri−1

i
=

ri − 1

i(r − 1)
.
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In particular, nµn = (rn − 1)/(r − 1).
We first consider the case of Gini index. For 2 ≤ j ≤ n,

j−1∑

i=1

(xj − xi) =

j−1∑

i=1

(
rj−1 − ri−1

)

= (j − 1)rj−1 −
(
1 + r + · · ·+ rj−2

)

= (j − 1)rj−1 − rj−1 − 1

r − 1
.

From (2), we obtain

G(x) =
1

n2µn

n∑

j=2

(
(j − 1)rj−1 − rj−1 − 1

r − 1

)

=
1

n2µn




n−1∑

j=1

jrj − 1

r − 1




n−1∑

j=1

rj − (n− 1)






=
1

n2µn

(
(n− 1)rn

r − 1
− r(rn−1 − 1)

(r − 1)2
− 1

r − 1

(
r(rn−1 − 1)

r − 1
− (n− 1)

))

=
1

n2µn

(
n− 1

r − 1
(rn + 1)− 2r

(r − 1)2
(rn−1 − 1)

)

=
1

n2µn

(
(n− 1)(rn + 1)(r − 1)− 2r(rn−1 − 1)

n(r − 1)(rn − 1)

)

=

(
1− 1

n

)(
rn + 1

rn − 1
−
(

2r

(n− 1)(r − 1)

)(
rn−1 − 1

rn − 1

))
.

Next we consider Bonferroni index. Using (4), we have

B(x) =
1

nµn

n∑

i=1

(xi − µi)

=
1

nµn

n∑

i=1

(
ri−1 − ri − 1

i(r − 1)

)

=
r − 1

rn − 1

(
rn − 1

r − 1
− Pn

r − 1
− Hn

r − 1

)

= 1− Pn

rn − 1
+

Hn

rn − 1
.

�
The expression for G(x) in Theorem 10 can be written as

G(x) =

(
1− 1

n

)((
1 + 1/rn

1− 1/rn

)
−
(

2r

(n− 1)(r − 1)

)(
1/r − 1/rn

1− 1/rn

))
. (10)

Since r > 1, as n→∞, 1/rn → 0. Also, 1/n→ 0 as n→∞. So, from (10), the expression for G(x) in
Theorem 10 goes to 1 as n goes to infinity.

A GP with common ratio greater than 1 has all the components in the distribution x to be unequal.
So, from Theorem 1, we have B(x) > G(x) for such a GP distribution x. Since we already know that
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G(x) goes to 1 as n goes to infinity, it follows that B(x) also goes to 1 as n goes to infinity. So, when the
distribution is a GP with common ratio greater than 1, then both the Gini and the Bonferroni indices
go to 1 as n goes to infinity. This asymptotic behaviour does not depend on the actual value of the
common ratio. As long as it is greater than 1, as n grows, eventually the inequality in the distribution
will be the maximum possible.

It is well known that a GP grows much faster compared to an AP. Correspondingly, one may expect
that the inequality in a GP will be greater than that in an AP. From Corollary 1, asymptotically, the
Gini index of an AP goes to 1/3 and the Bonferroni index of a GP goes to 1/2. In contrast, the above
discussion shows that both the Gini and the Bonferroni indices of a GP go to 1. This difference in the
asymptotic behaviours of the Gini and Bonferroni indices on distributions growing as a GP compared
to distributions growing as an AP, quantifies the faster growth of inequality in a GP compared to that
in an AP.

Given a pre-specified value of x1 > 0, say the poverty line, a reduction in the value of r over the
interval (1,∞) reduces the proportionate gaps between incomes leading to a reduction in the level of
inequality.

6 Concluding Remarks

This paper has explored some relationships between the Gini and Bonferroni inequality standards. Some
unexplained behaviours of the two indices have been analyzed as well. Following a characteristic of the
absolute Gini index, remarked by Weymark (1981), we introduced a new axiom, ‘additive monotonicity,’
for indicators of inequality. While the absolute Bonferroni index, like the absolute Gini, unambiguously
fulfills this postulate, necessary and sufficient conditions for its satisfaction by the relative counterparts
of the two indices, are identified. It now remains to be examined further implications of this postulate,
particularly, how the members of the generalised entropy measures behave with respect to the postulate.
Its role in characterisation of inequality indicators can as well be explored. Another line of investigation
that seems worthwhile is to consider a multidimensional version of the axiom and examine its implica-
tion on multidimensional inequality standards, say, on the Gajods-Weymark (2005) multidimensional
generalized Gini’s. We leave these as future research programs.
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