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Abstract

Approximating the top of income distributions with smooth parametric forms is valuable for descriptive purposes, as well

as for correcting income distributions for various top-income measurement and sampling problems. The proliferation of

distinct branches of modeling literature over the past decades has given rise to the need to survey the alternative

modeling options and develop systematic tools to discriminate among them. This paper reviews the state of

methodological and empirical knowledge regarding the adoptable distribution functions, and lists references and

statistical programs allowing practitioners to apply these parametric models to microdata in household income surveys,

administrative registers, or grouped-records data from national accounts statistics. Implications for modeling the

distribution of other economic outcomes including consumption and wealth are drawn. For incomes, recent consensus

shows that among the many candidate distribution functions, only a handful have proved to be consistently successful,

namely the generalized Pareto, and the 3–4 parameter distributions in the generalized beta family, including the

Singh-Maddala and the GB2 distributions. Understanding these functions in relation to other known alternatives is a

contribution of this review.

Keyword: statistical size distribution of incomes, top incomes measurement, parametric estimation,
extreme value theory, Pareto, inequality.
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I. Introduction 

 

Since Vilfredo Pareto’s (1895, 1896ab) seminal work, welfare economists have been noting 

regularities in the shape of the top of various income distributions and the value of using parametric 

approximations in place of actual income distributions. The distributions tend to be smooth and 

monotonically declining with the level of incomes – systematically a higher share of households 

have lower incomes while only a few households have higher incomes. The density functions of 

the distributions are also known to be heavy, meaning that the dispersion of top incomes is high, 

and the richest households are significantly richer than those that follow. 

It has been widely accepted that these distributions can fruitfully be described by a handful of 

parameters. These parameters vary modestly across countries, years, income concepts, or exact 

income ranges. The broadly similar shape of the distribution of top incomes in various settings 

mean that estimates from one empirical distribution could be used to approximate or validate 

incomes from other distributions. 

Recent academic literature has recognized the value of this tendency in light of measurement 

problems associated with top incomes. It is now well known that top ends of empirical income 

distributions suffer from various representation problems including data contamination (Cowell 

and Flachaire 2002, 2007), top coding (Hlásny and Verme 2018a), or sampling issues such as 

sampling errors, exclusion from sampling frame, and systematic nonresponse (Hlásny and Verme 

2018c). Evidence from the up-to-date stock of modeling literature has shown that problematic or 

missing incomes can satisfactorily be imputed using parametric approaches (Hlásny and Verme 

2015; Lustig 2019). 

The implicit assumption motivating these analyses is that the observed top incomes are 

realizations from a stochastic distribution well approximated by one of the known families of 

parametric distribution functions. Vilfredo Pareto proposed a one-parameter distribution function 

(referred to as Pareto 11), but subsequently generalized it to a two-parameter form (generalized 

Pareto, or Pareto 2) providing better fit across income distributions. 

Benini (1897) provided an early confirmation of the relevance of the Pareto distribution for 

incomes, but also proposed 2- and 3-parameter variants as providing a better fit. Literature that 

                                                      
1 Hereafter, for clarity of presentation, Arabic numbers will be used instead of Roman numerals, without the word 

‘type’ or ‘kind’: e.g., Pareto 2 rather than Pareto type II, GB2 rather than GB of the second kind. 
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followed in the first half of the 20th century called for higher-parametric distributions (Winkler 

1950). As McDonald and Xu (1995:139) point out, a 1-parameter distribution can model well one 

independent characteristic in a distribution, such as the mean among top incomes. To model 

multiple distribution characteristics, more complex forms are needed. Over the 20th century, 

alternative distribution functions have been proposed as providing a closer fit to the shape of 

income distributions, or more flexibility across different national distributions. (Persky, 1992, and 

Maccabelli, 2009, offer historical perspectives on the mixed acceptance of Pareto’s theory.) The 

improvement in computing power in recent decades has meant that more complicated functional 

forms could be fitted, using more robust estimators and using finer-grain data. 

Distribution functions nested in the Pareto, beta, and gamma distribution families, either as 

generalized or limiting forms of the baseline specifications, are some of the promulgated 

variations. These parametric distributions differ in the rates of decay of their densities with income 

levels (e.g., Pham-Gia and Duong 1989:1616–1617 illustrate for 3-parametric forms), in the 

existence of closed-form solutions for their moments and measures of inequality, and in the 

availability of statistical programs allowing their estimation and evaluation. Empirically, these 

distribution functions have also been found to differ in their fit across different income concepts, 

income brackets, data types, and survey samples. 

With the proliferation of alternative options for modeling top incomes, a need arose to be able 

to discriminate among them as well as among alternative analytical approaches. The approaches 

relate to the choice of the appropriate estimator, lower and upper cutoffs, and the approach for 

combining the parametric distribution for the top incomes under analysis with the rest of the 

nonparametric incomes or with statistics on their dispersion. The aim of this paper is to review the 

state of existing methodological and empirical knowledge, and contribute to clearing the confusion 

over the large number of distribution functions proposed, their names and relations, and their 

empirical performance. The survey provides references and statistical programs allowing 

practitioners to assess these distribution functions in relation to microdata in household income 

surveys, administrative registers, or grouped-records data generated from national accounts 

statistics. This survey draws heavily on McDonald and Xu (1995), Kleiber and Kotz (2003), 

Cowell and Flachaire (2015:13–18), and other studies cited below.2 

                                                      
2 We consider only stand-alone parametric distribution functions, not their mixtures or kernel estimators (Cowell and 

Flachaire 2015:ch.3.2–3.3; Lubrano 2017:ch.5) – which are important modeling classes in themselves, with unique 

properties and challenges, and unique diagnostic tests. One reason for excluding them is that these data-driven methods 
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The rest of the paper is organized as follows. Section II provides an overview of the families 

of distributions and individual functions considered in the existing literature. Section III then 

summarizes the evidence of their fit to empirical income distributions. Section IV reports the key 

lessons and implications for practitioners. Finally, three appendices review some of the 

methodological options for estimating and diagnosing the alternative parametric models: 

Appendix 1 lists a number of relevant user-written programs for Stata software, and Appendices 2 

and 3 briefly review some alternative estimators and diagnostic tests for alternative models. 

 

II. Distribution functions and their relations 

 

Several families of smoothly decaying distribution functions have historically been considered 

for modeling top incomes. This includes the generalized Pareto, beta (aka, Burr; see Burr 1942), 

gamma (Ammon 1895), and other distribution families. These families overlap, as some of their 

members can be derived or approximated as special cases of distribution functions in other families 

(Cowell 2011). Moreover, new distribution functions resembling the standard families continue to 

be proposed as providing better or more flexible fit in relation to top incomes. 

These distribution functions are generally well understood, and their moments and degrees of 

inequality represented by them can be computed analytically. (For the exponential, Pareto, 

lognomal, Burr and Dagum distributions, see references in Giorgi 1999:253–254.) A large arsenal 

of statistical programs has grown to estimate and diagnose them (see Appendix 1). This section 

provides a brief overview of a number of the promulgated distribution functions, some of their 

properties, and the relationships among them. Sarabia and Castillo (2005) study the stability of 

multiple distribution functions with respect to the maximum order statistics, and their use in the 

analysis of incomes. More technical detail for many of the distribution functions can be found in 

                                                      
are appropriate for modeling observations but not for prediction. Using them on contaminated data, or on one income 

bracket may not allow consistent imputation of the misreported or out-of-sample values. Kernel density estimation 

may also perform poorly in the tails. Relatedly, performance of these methods depends crucially on sufficient sample 

sizes. Single-distribution methods are more robust to data issues, because each distribution is estimated on an 

effectively larger sample, and the methods allow imputation and extrapolation. Finally, mixture models often produce 

multi-modal composite distributions, and can yield unrealistic predictions in between modes. 

The finite mixture model can be estimated automatically in Stata, starting in Stata 15. For instance, 

fmm 2: streg, distribution(gamma) estimates a fixed mixture model of 2 gamma distributions. The 

count and the type of parametric distributions are user-selected and can be evaluated using AIC, BIC and other model-

selection criteria. 
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McLaughlin (1999:App. A), Kleiber and Kotz (2003), Cowell (2011:ch.4 and A.3), or individual 

references cited below. 

 

(Generalized) Pareto family 

The Pareto family of distribution functions, including those introduced by Pareto himself in 

the 1890s and those proposed over the following century (Arnold 2015) remain among the most 

commonly applied functions and the first candidates to turn to for top-income modeling. This is 

because of their theoretical justification (Jones 2015), good empirical fit, ease of fitting, and ease 

of computing moments and inequality indexes. Pareto distributions exhibit slow decay based on 

the power law, which makes them appropriate for modeling of the heavy upper-most tail of income 

distributions (Gabaix 2009). 

There are several commonly used specifications of the Pareto distribution functions. They 

differ according to the rate of decay or shape in different income ranges, and their income scale. 

Pareto 1 has one shape parameter, while Pareto 2 and Pareto 3 are 2-parameter models allowing 

for shape and scale parameters, and Pareto 4 has an additional shape parameter (Arnold 2015). 

Pareto 2 and 3 can be viewed as special cases of the Pareto 4 and, in turn, Pareto 1 is a special case 

of theirs. Pareto 3 was characterized by Arnold et al. (1986), who showed that the logistic and Zipf 

distributions are mere transformations of the Pareto 3. 

Several less commonly used forms are also worth mentioning. Benini (1905) proposed 2- and 

3-parameter generalizations of the Pareto akin to the lognormal and log-Weibull, with a sub-

exponential rate of decay (Kleiber 2013). Stoppa’s (1990ab) two generalized Pareto 2 

distributions, obtained by exponentiating the Pareto distribution, relied on up to 4 parameters. 

Generalized Pareto 3 (Arnold and Laguna 1977; reviewed by Cowell 2011:ch. A.3.3) has links to 

other Pareto distributions as well as the exponential, Fisk’s sech-squared, logistic, reverse Pareto, 

and Weibull (for observations with a bounded support) distribution functions as special cases. 

Beirlant et al. (2009), and Papastathopoulos and Tawn (2013) proposed several re-parameterized 

variants of 3-parameter extended generalized Pareto distributions providing better fit to heavy 

upper tails. These were applied to incomes by Charpentier and Flachaire (2019). 

A number of distribution functions have top tails decaying at a similar rate as the Pareto, such 

as the closely related Champernowne (1937, 1952, 1953, 1973) family of distributions. Colombi 

(1990) proposed a Pareto-lognormal distribution as an alternative distribution for fitting incomes 
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beside the commonly used Singh-Maddala and Dagum models (described under generalized beta 

distributions below). Johnson et al. (1994) evaluate the similarly behaving generalized 

exponential, logistic and Gompertz distributions. Zandonatti (2001) proposed a generalized Pareto 

1 (aka, generalized Fisk) distribution, which also serves as the generalization of the Lomax (aka, 

shifted Pareto) distribution.3 Lomax is a special case of the generalized Pareto with one parameter 

being fixed. Hamed et al. (2018) also introduced a class of transformed T-Pareto distributions, 

with Pareto distributions and those approximating them as special cases. 

Among these related distributions, the Champernowne family has been accepted most widely 

for modeling incomes, particularly the 5-parameter Champernowne 1 and the 4-parameter 

Champernowne 2 (Ord 1975). Other special cases of the Champernowne distribution include 

Fisk’s (1961) sech-squared distribution (aka, sech2, square-of-hyperbolic-sequant, log-logistic, 

Fisk, Champernowne-Fisk, Burr distribution with d = 1), and the Yule distribution (Yule 1925; 

Kleiber and Kotz 2003:242–247; Duan 2016). Yule distribution has also been found to share 

properties with the lognormal distribution (Aitchison and Brown 1957; Simon 1955; Simon and 

Bonini 1958). Fisk (1961) compares the sech-squared distribution to the general Champernowne 

(4-parameter Champernowne 2) and the Pareto distribution. Finally, 3-parameter conic 

distributions have been proposed for incomes, with Pareto 1 distribution as a special case 

(Houthakker 1992; Taylor 2010:472; Kleiber and Kotz 2003:97–99). 

 

 (Generalized) Gamma family 

The generalized gamma family of distributions exhibit exponential decay that is faster than the 

power-function decay of the Pareto. They encompass all gamma distributions (Stacy 1962; Salem 

and Mount 1974), as well as the chi-square, exponential, lognormal, Rayleigh, and Weibull 

(Bartels and van Metelen 1975) distributions as special cases. Exponential distribution is a limiting 

case (shape parameter=1) of the Weibull distribution. Amoroso (1925) proposed a 3–4 parameter 

generalized gamma distribution with gamma as a special case (Lee 1984; Esteban 1986). 

                                                      
3 Simon (1955) has referred to the class of Pareto-Yule-Zipf distributions as a class of functional forms with similar 

properties and rates of decay that enable them to serve as approximations for one another. Pareto distributions also 

belong in the class of Pareto-Lévy distributions, which satisfy the weak Pareto law on the rate of decay of top incomes, 

and have the property of ‘stable distributions’ meaning that if two income sources follow the same law (up to location 

and scale parameters), their sum will too (Mandelbrot 1960, 1961; Zolotarev 1986; Dagsvik et al. 2013). 
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As with the Pareto family, a number of distribution functions have been proposed that 

approximate the behavior of the gamma distributions. Gibrat (1931) proposed a 2-parameter 

lognormal (aka, Galton, McAlister, Cobb-Douglas, or Gibrat) distribution as providing a superior 

fit to high incomes that fall short of the topmost tail (see also Kalecki 1945; Aitchison and Brown 

1954), and Metcalf (1969) enhanced this distribution with a third shifting parameter. The Johnson 

SB distribution function (aka, 4-parameter lognormal), appropriate for outcomes with spread-out 

lower incomes and thin (platykurtic) tails, requires minimum and maximum limits on income 

(Johnson 1949). Dubey (1970) proposed a compound-gamma generalization that can be re-

parameterized as the beta 1 and 2 described below and the F distributions. Benktander (1970) 

proposed two distributions, one approximating the lognormal (aka, Benktander 1), and one 

approximating the Weibull distribution (aka, Benktander 2) (Kleiber and Kotz 2003:247–252). 

Finally worth noting here, Marshall and Olkin (1997) proposed a method for expanding the 

lognormal and Weibull distributions by another parameter with some useful properties. 

These various distributions differ in their rate of decay, with lognormal and Weibull 

distributions decaying more gradually than gamma or exponential, a desirable property for 

modeling incomes. Lee (1984) review the relations among the lognormal, exponential, gamma and 

Weibull distributions. Chakraborti and Patriarca (2008) relate the exponential and gamma. 

 

(Generalized) Beta family 

The beta family of distributions has been used for incomes with bounded support, including a 

maximum limit on income (such as on an interval 0 to 1; Thurow 1970). Beta 1 and 2 distributions 

embrace as special cases the chi-squared, exponential, F, gamma, Lomax, power, uniform, and 

unit gamma distributions (Tadikamalla 1980; McDonald and Richards 1987; Johnson et al. 1994; 

McDonald and Xu 1995). Moreover, both the beta and gamma families can be said to belong to 

the generalized beta (henceforth GB) family of distribution functions.4 

The GB distribution allows for up to 5 parameters, with GB1 and GB2 providing the most 

commonly used 4-parameter specifications.5 Their flexibility allows for thin or thick upper tails. 

                                                      
4 Another representation of the beta 1 and 2 distributions is as the 3-parameter generalized beta (G3B) distribution, or 

the generalized F (G3F) (Libby and Novic 1982; Pham-Gia and Duong 1989; Warsono et al. 2017). These can be 

viewed as special cases of the GB2 (Cowell 2011:ch.A.3.3). 
5 In fact, GB family can be further generalized by a 6-parameter ‘compound confluent hypergeometric’ distribution 

(Gordy 1998), which also covers the Gauss hypergeometric distribution (Armero and Bayarri 1994) as a special case. 
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Following the exposition by McDonald and Butler (1990), most recent reviews of distributions for 

top-income modeling use the flexible 5-parameter GB distribution as their starting point 

(McDonald and Xu 1995). Figure A.1 in Cowell (2011) starts with GB2 and has the Singh-

Maddala, a 3-parameter special case, at its center. The 5-parameter GB distribution has a 

probability density function 

𝐺𝐵(𝑦; 𝑎, 𝑏, 𝑐, 𝑝, 𝑞) =
|𝑎|𝑦𝑎𝑝−1[1−(1−𝑐)(𝑦 𝑏⁄ )𝑎]𝑞−1

𝑏𝑎𝑝𝐵(𝑝,𝑞)[1+𝑐(𝑦 𝑏⁄ )𝑎]𝑝+𝑞
  for 0 < 𝑦𝑎 <

𝑏𝑎

1−𝑐
 , 0 ≤ 𝑐 ≤ 1 , 𝑏, 𝑝, 𝑞 > 0 

where 𝑎 is a ‘peakedness of the density’ parameter, 𝑏 and 𝑐 are ‘scale’ parameters, 𝑝 and 𝑞 are 

‘shape and skewness’ parameters, and 𝐵(𝑝, 𝑞) is the beta function (McDonald and Xu 1995). The 

GB2 distribution results from setting c=1; the Dagum distribution results from setting c=1 and 

q=1; the Singh-Maddala distribution results from setting c=1 and p=1; and the generalized gamma 

is the limit of the GB as 𝑞 → ∞ when  𝑏 = 𝑞1 𝑎⁄ 𝛽, c=1 (McDonald 1984). 

GB nests all the distributions in the beta and gamma families, as well as the Cauchy, chi-

square, exponential, F, Fisk’s sech-squared, lognormal, Lomax, power, uniform and Weibull 

distributions as special or limiting parametric cases (McDonald 1984; Patil et al. 1984; Cummins 

et al. 1990; Johnson et al. 1994; McDonald and Xu 1995). Figure 1 illustrates the relations among 

the more common types of distribution functions taking the GB2 as the starting point. (Other 

illustrations of the relations among distribution functions appear in Song 2005; or Leemis and 

McQueston 2008.) 

Among the family of GB functions, GB2 is the most widely accepted today for modeling 

incomes, and various representations – and classifications – of its density function have been 

proposed, including as the generalized Feller-Pareto (Arnold and Laguna 1977; Arnold 2015), 

generalized beta prime (Patil et al. 1984), transformed beta (Venter 1984), and generalized F (in 

different parameterization; Kalbfleisch and Prentice 1980) distributions. The GB2 distribution as 

well as its 3-parameter restricted versions decay like a heavy-tailed power function. By contrast, 

the lognormal distribution decays exponentially with a mid-heavy upper tail, and the Pareto class 

of distributions has a polynomial decay. 

Among the 3-parameter special cases of the GB2, the Singh-Maddala (aka, Burr, Burr 12, beta-

P, Pareto IV, or generalized log-logistic distribution) and Dagum (aka, Burr 3, inverse Burr, 3-

parameter kappa, beta-K) distributions have been adopted most widely. The Singh-Maddala 

distribution can be said to be a generalization of the Pareto, Weibull and sech-squared 

distributions, and behaves as Pareto among the highest incomes (Schluter and Trede 2002). The 
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Dagum distribution itself has several commonly-used variants. Dagum 1 is the standard 3-

parameter type that was promoted by Dagum (1999). Generalized 4-parameter Dagum 2 (aka, 

generalized logistic-Burr; evaluated by Jenkins and Jäntti 2005) and Dagum 3 distributions were 

also promoted by Dagum (1980, 1983). 

As with the Pareto and gamma distributions, the family of GB distribution functions shares 

properties and even overlaps with other families. For instance, if a variable is distributed as under 

the power law function, then its inverse is distributed as Pareto. The Lomax (1954) distribution is 

a 2-parameter distribution that is a special case of the generalized Pareto distribution (special 

parameterization; aka, Pareto 2), the beta-prime distribution (scale parameter 1), the F distribution 

(shape parameter 1 and scale parameter 1), the log-logistic (special parameterization; shape 

parameter 1), the q-exponential distribution (special parameterization), or a mixture of exponential 

distributions (special parameterization) (Kleiber and Kotz 2003; Van Hauwermeiren et al. 2012). 

The Hall (1982) class of distributions is also said to including the Singh-Maddala, student, Fréchet 

(for unbounded variables with a lower limit and a heavy tail) and Cauchy distributions, or a mixture 

of two strict Pareto-I distributions. 

 

Exponential Generalized Beta family 

A related family of distributions derived from the GB family is the exponential generalized 

beta (EGB) distribution. If a random variable Y is distributed as GB, then log(Y) is said to be 

distributed as EGB. 

For income distributions with extremely heavy tails, EGB can provide a viable way of 

parametric modeling in these tails. The EGB family covers the generalized forms of the 

exponential (EGB1), logistic (EGB2), Gompertz and Gumbel distributions; the ‘exponential’ 

versions of the Singh-Maddala, Fisk, power and Weibull distributions; and the standard versions 

of the Burr 2 (aka, generalized logistic, log-Burr 3), exponential, logistic and normal distributions 

as special cases (Ragab et al. 1991; Johnson et al. 1994; McDonald and Xu 1995). Generalized 

Gumbel (for variables with an infinite support but light tails, like the exponential distribution) is a 

limiting case of the EGB (with p=q) (McDonald and Xu 1995). The 2-parameter (log-)Gompertz 

distribution is another limiting case (refer to figure 3 in McDonald and Xu 1995:142). 

 

Pearson family 
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Many distribution functions in the generalized Pareto, beta and gamma families belong to the 

class of Pearson distributions (Lee 1984), even though generalized gamma, Singh-Maddala and 

Dagum do themselves not (McDonald and Xu 1995:138). “Pearson system purports to account for 

all possible shapes of observed distributions in any field [...], a general purpose system” (Dagum 

2012:3). 

There are 7 types of Pearson distributions, with the generalized Pareto and beta distributions 

covered by types 1 and 2, the inverse Gaussian and gamma covered in type 5, the beta prime 

covered in type 6, and the t and Cauchy distributions covered in type 7. Beta 1 and 2 can be referred 

to as Pearson 1, and the 2-parameter gamma as Pearson 3. Amoroso’s (1925) 3-parameter 

generalized gamma distribution has the Pearson 5 distribution (aka, inverse gamma, inverted 

gamma, reciprocal gamma, or Vinci) as its special case. Cauchy distribution is itself a special case 

of Pearson 7. Finally worth noting, transforming the distributions in the Pearson family can also 

lead to the so-called Gompertz-Verhulst distributions, with favorable properties for the fitting of 

extreme values (Ahuja and Nash 1967). Aiuppa (1988) provided calculations to estimate a number 

of distributions in the Pearson family. 

 

Extreme value distributions 

Another category of distributions that has been cited in the top-incomes literature is the 

extreme value (EV; aka, von Mises, or von Mises-Jenkinson type) distributions, based on the EV 

theory (Kotz and Nadarajah 2000; Coles 2001). EV distribution. There are 3 types commonly used: 

EV1 (aka, doubly exponential) covers the exponential Weibull (aka, log-Weibull), Gumbel and 

Gompertz distributions; EV2 is a Fréchet-type distribution; and EV3 is the Weibull distribution 

(either the ordinary type, or reversed Weibull type). The generalized Pareto distribution can be 

represented as an EV1 distribution related to the exponential Weibull. 

 

Figure 1. Relations among univariate distribution functions in the generalized beta family 
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Notes: Own analysis based on McDonald and Butler (1990), McDonald and Xu (1995). Only 

primary cross-row relations shown. Other relations ignored. 

Key (by row, alphabetically): 

B = beta; GB’ = generalized beta prime; GF = generalized F; GFP = generalized Feller-Pareto; TB 

= transformed beta. 

BR = Burr; GG = generalized gamma; IB = inverse beta; Log = logistic; UG = unit gamma. 

F = variance ratio (F); Fisk = Fisk’s sech-squared; GA = gamma; IL = inverse logistic; LN = 

lognormal; P = power; W = Weibull 

EXP = exponential; N = normal; R = Rayleigh; t = Student’s t; U = uniform 

 

Other distributions 

Beside the above oft-used families of distributions and their reparameterizations, various other 

models have been considered to represent the top income distribution, although they have not been 

adopted widely or have not been retained in recent literature. Among these, we could mention 

D’Addario’s (1949) generating system of income distributions that includes the Amoroso 

generalized gamma and the Davis (1941ab) distributions (including Vinci distribution) as special 

cases (Kleiber and Kotz 2003:238–242; Dagum 1990a, 1996, 2012). Topp-Leone (1955) class of 

distributions has been adopted by Van Dorp and Kotz (2006) in proposing a 2-parameter 
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generalization for fitting lower-range incomes. Also, Barndorff-Nielsen (1978) proposes a class of 

generalized hyperbolic distributions for fitting log incomes. 

 

III. Empirical properties 

 

Some distributions fit better at the top tail than above the middle of the income distribution; 

some distributions are more robust to data irregularities and can provide better out-of-sample fit. 

Parametric selection can be done through empirical testing, or using prior evidence or conceptual 

fit of each distribution. One important consideration is the nature of the data at hand. The incidence 

of income measurement errors (particularly at the uppermost tail), negative or zero incomes, and 

whether income data are available for individual units or as population densities in various income 

brackets (unit-record vs. grouped-records data) affects the estimation. Alternative distribution 

functions differ in how easily their parameters can be estimated on various income distributions, 

and in the stability and precision of the estimated parameters (Metcalf 1972:ch.2; Merkies 1987). 

In prior decades, another important property of distribution functions was the ease of their 

estimation (Campano and Salvatore 2006). Each additional estimable parameter represented a 

challenge for estimation. 

A “largely settled” modern consensus is that the vast bulk of incomes are best represented by 

lognormal, Singh-Maddala, Dagum, or GB2 distributions (Jäntti et al. 2015:310), while the 

uppermost 0.1–10 percent are distributed according to the extreme-values or Pareto distributions. 

This has to do with a “transition that occurs in the shape of an empirical income distribution from 

the middle, which decays exponentially, to the upper tail, which decays with respect to power” 

(Nirei and Souma 2007:441). One advantage of relying on distributions in the GB family is that 

they have known properties, and inequality indexes under these distributions can be derived 

analytically. For instance, the Gini coefficient can be computed using the estimated coefficients 

for all GB class distributions, except for the 5-parameter GB itself (Dagum 1977; McDonald 1984; 

Boundarian et al. 2003). 

This section reviews existing evidence of the empirical fit of alternative parametric models, 

and draws lessons for practitioners’ future work. One aim is to show how the modeling literature 

has evolved from using simple distribution functions to more complex ones, how some classes of 
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distributions have been sidelined in favor of better performing ones, and how the nature of data at 

hand affect the modeling choice. 

 

Pareto 1 

Pareto (1896) concluded that his one-parameter model provided a good fit for historical 

incomes in various places including England, Italian and Peruvian cities, German states, and Paris. 

On the general nature of the Pareto coefficient, Davis (1941b) noted that the coefficient has been 

estimated at similar levels for years as far apart as 1471 and 1894. “There is no reason to believe 

that a significant change has occurred in [the Pareto] parameter during the depression or 

afterwards, although there has been a tendency for it to increase as the tax burden has grown since 

1933” (Davis (1941b:31). 

More recent literature has restricted the use of the Pareto to a narrower and narrower range of 

top incomes (Jenkins 2017; Charpentier and Flachaire 2019) and considered other parametric 

functions for lower incomes. Aitchison and Brown (1954, 1957) found that for lower earnings in 

homogeneous occupational groups – 1950 UK data for nine agricultural occupations – a lognormal 

distribution provides a good fit, while for higher earnings a power law distribution, such as Pareto, 

fits better. Clementi and Gallegati (2005), using the US Panel Study of Income Dynamics (PSID) 

for 1980–2001, the British Household Panel Survey (BHPS) for 1991–2001, and the German 

Socio-Economic Panel (GSOEP) for 1990–2002, propose using a two-parameter lognormal (or an 

exponential) distribution for the low and middle income population (up to the 97th–99th percentile), 

and the Pareto distribution for the highest income group (1%–3% of the population). 

The parsimonious Pareto 1 model fares well even compared to more-parametric alternatives. 

Gabaix (2009) concluded that the 2-parameter lognormal distribution does not necessarily 

outperform the Pareto 1 on the topmost incomes, on account of the degrees of freedom lost. Hlásny 

and Verme (2018ab) similarly argued that Pareto 1 provides more consistent results than the Pareto 

2 for data in the US Current Population Survey (CPS), and than the GB2 for data in the EU Surveys 

on Income and Living Conditions and the US CPS. Hlásny and Verme (2018c), Ibragimov and 

Ibragimov (2018), and Hlásny (2019) found that the Pareto 1 fit well the distribution of incomes 

in transitional economies – Egypt, Russia and Mexico, respectively – and that the results were 

surprisingly similar to those obtained in high-income countries. Hlásny and Intini (2015) evaluated 

the fit of the Pareto 1 model to the distributions of household consumption in 11 Arab-region 
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surveys, using lower cutoff points between the 80th and the 99.9th percentiles. They concluded that 

the tops of the Egyptian, Palestinian and Tunisian distributions are adequately described by Pareto 

1, but Jordan and Sudan suffer from influential observations, which affects the estimation of the 

Pareto coefficients. 

With grouped-records data, an important consideration is the assumed distribution of incomes 

in each income range. Taking advantage of the ease of working with the Pareto distribution, and 

taking Pareto’s (1896) lead, densities in each income bracket can be modeled as Pareto-distributed 

(Feenberg and Poterba 1993; Piketty 2001). Gastwirth (1972) considers the extremes of the least 

versus most inequality in each income range to compute bounds on the composite inequality 

indexes. Alfons et al. (2013) derive the parameters of the Pareto 1 distribution in the presence of 

sampling weights, and numerically show their desirable properties. 

Atkinson et al. (2011) summarize the literature contending that the distribution of top incomes 

is best approximated by the Pareto distribution.6 Atkinson (2017) promotes the Pareto 1 

distribution as a valuable point of departure for modeling top incomes, but he favors more complex 

distributions including Pareto 2 for specific income distributions. Harrison (1981), using the 

British New Earnings Survey, concludes that the Pareto distribution fits the dispersion of top 15–

20 percent of incomes well, provided that an appropriate criterion of fit is used (i.e., Gastwirth-

Smith rather than chi-squared test). Disaggregating data by occupational group leads to better 

estimation results than using all data jointly, but the Pareto model outperforms the lognormal 

model both in the aggregated and the disaggregated data. The estimated Pareto coefficients differ 

across occupational groups, and even across choices for the lower cutoff point for a single 

occupational group – while the coefficient appears more stable in the aggregate sample. The poor 

performance of the lognormal distribution appears to be due to the income differences across 

occupational groups. 

As a final note, a number of studies take advantage of the power-law property, also known as 

van der Wijk’s law, that the mean of a Pareto-distributed variable can be approximated as �̅� =

                                                      
6 Beside incomes and consumption, Pareto distribution has also been advocated for modeling top wealth (Eckerstorfer 

et al. 2016; Vermeulen 2016; Credit Suisse 2019; Kennickell 2019). A convex combination of the Pareto and 

lognormal has been used by Hruschka et al. (2015). 

In fact, the Pareto class of distributions may be used even in the bottom tail of incomes. Van Kerm (2007) fitted an 

inversed Pareto distribution to negative incomes in the EU-SILC surveys, and Hlásny et al. (2020) did so for 

Mediterranean-region surveys in the Luxembourg Income Study database. Toda (2012) evaluated positively the 

double Pareto and the double Pareto-lognormal distributions on US CPS and PSID data. However, newer evidence 

suggests that exponential distribution may fit negative incomes better (Jenkins and Jäntti 2005; Jäntti et al. 2015). 
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𝐸(𝑥|𝑥 ≥ 𝑥0) = 𝑥0 𝑎 (𝑎 − 1)⁄  , where 𝑎 is the Pareto coefficient. This property makes it easy to 

approximate the mass of top incomes above a specific threshold. Bernstein and Mishel (1997) 

offered an early application. This is followed in recent studies by the World Inequality Lab, which 

have adopted the Pareto approximation and van der Wijk’s law extensively 

(https://wid.world/world-inequality-lab/ ; Piketty and Saez 2003; Blanchet et al. 2017, 2018b). 

Blanchet et al. (2018) estimated different Pareto distributions across income fractiles, and used a 

cubic spline to restrict the fitting and provide smoothness between fractiles ranges. 

 

Pareto 2 

In recent years, understanding has shifted toward advocating the more flexible Pareto 2 

distribution, particularly when a larger range of incomes are analyzed (Atkinson 2017). This shift 

in preference is based on the Pickands–Balkema–de Haan theorem (Balkema and de Haan 1974; 

Pickands 1975), also called the second theorem in the EV theory, giving the asymptotic tail 

distribution of values of a random variable above a certain threshold. For a large class of true 

distributions, as the lower threshold increases, the distribution is said to converge to the Pareto 2. 

We could also point out the related Fisher–Tippett–Gnedenko theorem, or the first EV theorem 

(Fisher 1930), pertaining to the distribution of extreme order statistics. To the extent that the 

distribution converges, it is said to converge to only one of 3 possible models, all in the class of 

generalized EV distributions: the Gumbel, the Fréchet, or the Weibull. 

Burkhauser et al. (2009) used one of Stoppa’s (1990a) exponentiated Pareto distributions to 

correct for top coding in US-CPS income data, because the distribution function has a heavy tail 

and can be made to mimic the mean as well as the variance of the raw top incomes. 

Departing from a baseline Pareto 1 specification, Jenkins (2017) found strong support for the 

Pareto 2 model for UK incomes, except in the complete top of the distribution (top 0.5–1%, or 

even fewer topmost incomes depending on year) where the Pareto 1 performs as well as the Pareto 

2 or even better. Based on Jenkins (2017), the most appropriate left-truncation threshold varies 

greatly across survey waves, from below the 85th percentile to as high as the 99.9th percentile for 

Pareto 1, even though it is more consistently between the 95th and the 99th percentile for Pareto 2. 

Charpentier and Flachaire (2019) compared Pareto 1, Pareto 2, and Beirlant et al.’s (2009) 3-

parameter extended Pareto distribution on the US CPS and the South African National Income 

Dynamics Study surveys. They found that the one-parameter Pareto 1 is clearly dominated by the 
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two/three-parametric alternatives, but the two-parameter Pareto 2 and the three-parameter 

extended Pareto cannot be ranked easily across various modeling specifications. Only among the 

topmost 1 percent or fewer incomes the Pareto 1 and 2 perform similarly, and the extended Pareto 

distribution appears to outrank them in the precision of fitting the empirical distribution. Finally, 

Charpentier and Flachaire (2019) report that the extended Pareto distribution also outperforms the 

Pareto 4 model (Arnold 2015) and a variant of an extended generalized Pareto model (EGPD3 in 

Papastathopoulos and Tawn, 2013). 

Charpentier and Flachaire (2019) also discuss three potential sources of bias in the estimation 

of a tail index (such as the Pareto coefficient): misspecification bias, estimation bias and sampling 

bias. Misspecification bias can be evaluated - with some success - using graphical methods such 

as the quantile-quantile (QQ) plot or the Pareto diagram. Increasing sample size does not mitigate 

the misspecification bias; only a more appropriate parametric form or a different (i.e., higher) 

threshold can mitigate it. Estimation bias arises because the observed empirical upper tail differs 

from the underlying population upper tail, and the divergence can be systematic, on account of 

oversampled (rare outliers) or undersampled units (underreporting, top coding). Having a larger 

sample size may partially mitigate these problems. On ther other hand, sampling bias comes from 

survey nonresponse or incidental inclusion of out of sampling frame units. This, once again, is 

unlikely to be mitigated by increasing the sample size. 

 

Lognormal 

Aitchison and Brown (1954, 1957) promoted the lognormal distribution as offering good fit to 

a wide range of incomes. Incomes between the 10th and the 80th percentiles (Fournier 2015), or 

even between the 5th and the 95th percentiles (Montroll 1978) were found to follow the lognormal 

distribution well.  

Metcalf (1969, 1972) found that the lognormal distribution overcorrects for the positive skew 

of the distribution of US-CPS incomes in 1949–1965. He proposed a generalized 3-parameter 

shifted version (i.e., displaced lognormal) that fits better than the lognormal and the exponential 

distributions, particularly lower down in the distribution. Metcalf (1972) described a method for 

estimating the displaced lognormal distribution by anchoring it at three symmetrically-spaced 

quantiles in the empirical data. Hart (1983) estimated the moments of the bivariate lognormal 

distribution for British 1971–1978 male earnings accounting for household size and composition. 
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While Gibrat’s and Metcalf’s 2 and 3-parameter lognormal distributions have been shown to 

provide inferior fit at the complete top, they continue to be used for incomes lower down in the 

distribution. In rural China, the lognormal distribution provided ‘perfect’ fit to income data 

(Kmietowicz and Ding 1993). Harrison (1981) concludes that the lognormal distribution fits well 

up to the 80th percentile of incomes. Applying the lognormal distribution to individual occupational 

groups, and adding the groups to one another, he fails to confirm the summation property of 

lognormal distributions, suggesting that not all occupational groups exhibit incomes distributed as 

lognormal. McDaniel et al. (1988) successfully fitted a tri-variate form of the Johnson SB (4-

parameter lognormal) distribution to monthly income, financial assets, and a physical disability 

indicator. Finally, Cowell (2015:15) concludes that the lognormal model fits the distribution of 

wages, but not of broader income concepts. 

 

Other Pareto-like models 

Winkler (1950; as reported by Kleiber 2013) fitted a 3-parameter Benini distribution to US 

incomes of 1919. Thatcher (1968) used the Champernowne distribution to model UK earnings, 

and Campano (1987) used the 5-parameter Champernowne on 1969 US incomes. Colombi (1990) 

estimated that a Pareto-lognormal distribution fit the Italian 1984–1986 family incomes as closely 

as the Singh-Maddala and Dagum models. Chung and Cox (1994) modeled the dispersion of 

superstar performers’ earnings using the Yule distribution, and found that it fits very well. Fisk 

distribution was successfully fitted to incomes in homogeneous occupations (Fisk 1961), in 17 

Peruvian cities during 1971–1972 (Arnold and Laguna 1977), and to the 1972 gross weekly 

earnings for full-time male workers in seven occupational groups in the UK, where it outperformed 

the lognormal or the Pareto distributions (Harrison 1979, 1981). Fisk distribution also fared well 

on the UK Family Expenditure Survey (Henniger and Schmitz 1989). Linear and quadratic special 

cases of conic distributions (evaluated positively by Kleiber and Kotz 2003) provided better fit to 

US individual earnings than the Singh-Maddala (Houthakker 1992; Taylor 2010). 

More recently, Dagsvik et al. (2013) found that a 3-parameter Pareto-Lévy distribution 

outperforms the 4-parameter GB2 distribution on grouped-records income data from 5 out of 8 

evaluated OECD countries. Fournier (2015) concluded that the Pareto 3 and 4, Champernowne, 

Fisk and Singh-Maddala distributions fit well the observed distribution of top incomes in the 

French fiscal authority data for 2006. 
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Estimation specifications: Lower and upper cutoff points for Pareto models 

The discussion in the preceding paragraphs suggests that the choice of functional form and the 

quality of fit of Pareto models depend on the income bracket evaluated. Various lower cutoff points 

have been used in existing studies, from the 80th (Piketty et al. 2017), 90th (Chancel and Piketty 

2017), 99th (Burkhauser et al. 2016), or as high as the 99.5th percentile of survey observations 

(Jenkins 2017). Coles (2001), and Gilleland and Katz (2005) explore the determination of the 

lower cutoff for the Pareto distribution. Cowell and Flachaire (2007), and Davidson and Flachaire 

(2007) choose the 90th percentile as the lower point based on the graphical Hill-plot approach 

(Drees et al. 2000). 

The Hill plot is a line showing the Pareto 1 coefficients estimated with various lower cutoff 

points. Under the Pareto law, the line should be horizontal. Hence, departures from that shape are 

an indication that the original data are not Pareto-distributed, and ‘Hill’s horror plot’ is an 

indication of a specific systematic type of deviation. 

Hlásny and Verme (2018abc) compare different combinations of lower and upper truncation 

points in survey data, and argue for a choice that maintains a large sample size for fitting and at 

the same time avoids using contaminated uppermost values for estimation. Jenkins (2017) 

evaluates various left-truncation points for the Pareto 1 and 2 distributions analytically, using 

alternative diagnostic tests. Using British administrative data, he identifies the optimal cutoff point 

at between the 90th and the 99th income percentile in various years, and typically at the 95th or 

higher percentile. Charpentier and Flachaire (2019) put the left cutoff point for the Pareto 1 model 

even higher, at the 99th or higher percentile. 

 

(Generalized) Gamma 

Gamma distribution was promoted as recently as the 1970s as offering good fit among 2-

parameter models, and was evaluated positively on incomes in the US (Salem and Mount 1974) 

and the Netherlands (Bartels and van Metelen 1975). Salem and Mount (1974) showed that the 

gamma fitted better than the lognormal for the middle-income range of US family incomes during 

1960–1969. In earlier decades, the 3–4 parameter generalized gamma distributions by Amoroso 

(1925) were successfully used for German and Italian incomes, even though the fit was weaker for 

US incomes (Davis 1941a:405–406). 
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More recent evidence suggests that distributions with more parameters, or other functions 

relying on the same number of parameters provide a closer fit to income data. Kloek and Van Dijk 

(1978) found that the lognormal and gamma functions showed poor fit to Dutch earnings, instead 

favoring the log-t and the log Pearson 4 models, and in some applications also a 3-parameter 

generalized gamma and a 4-parameter Champernowne function. Hippel et al. (2012) found that 

the extended generalized gamma, power normal and newly-proposed power logistic distributions 

compared favorably to Dagum, GB2 and logspline distributions on grouped-records household or 

family data in the US. Most recently, however, studies have used functions in other distribution 

families, including the 2-parameter Pareto 2, or the 3–5 generalized beta 2 functions. 

 

(Generalized) Beta 

Beta distributions have been at the forefront of empirical modeling of the overall income 

distributions. A large body of research has focused on comparing individual members of the beta 

family. Among the early research, a 3-parameter beta distribution was successfully fitted to the 

1949–1966 and 1952–1980 US income data (Thurow 1970; Slottje 1984). 

Recent decades have seen a quest for using more parametric representations that offer superior 

flexibility. One conceptual argument for using distribution functions with 3+ parameters is that the 

Lorenz (1905) functions of any two such distributions can show any relationship with one another. 

By contrast, Lorenz curves of 1–2 parameter distributions (such as F, lognormal, Lomax, Pareto, 

Weibull etc.) cannot intersect. To allow two estimated distributions to have intersecting Lorenz 

curves – as is common with real-world distributions – distribution functions with 3+ parameters 

should be applied. 

Higher-parametric distributions also appear to offer better fit at the top. Majumder and 

Chakravarty (1990) proposed a four-parameter generalization of the Dagum and Singh-Maddala 

distributions that exhibited better fit for personal income than the Dagum, Singh-Maddala and 

Champernowne distributions. However, McDonald and Mantrala (1993, 1995) showed that 

Majumder and Chakravarty’s model was a mere re-parameterization of the GB2 model. McDonald 

and Mantrala favored Dagum and Singh-Maddala models for 1970–1990 US family incomes. Only 

the four-parameter GB2 and the five-parameter GB distribution outperformed the Dagum 1 

(McDonald and Xu 1995). Gordy (1998) proposed a 6-parameter ‘compound confluent 
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hypergeometric’ distribution to household liquid assets in the US, and found that the added 

parameters were significant and useful, relative to the more restrictive GB and gamma models. 

Across the majority of empirical studies of income, GB2 has emerged as the preferred 

functional form representing well not only the top but also much of the support of the income 

distribution (Nadarajah and Kotz 2006; Jenkins et al. 2011; Graf and Nedyalkova 2013; Graf and 

Tille 2013; Chotikapanich et al. 2018). A number of empirical studies – Singh and Maddala (1976), 

Dagum (1977, 1980, 1983), McDonald (1984), Butler and McDonald (1989), Majumder and 

Chakravarty (1990), McDonald and Xu (1995), Bantilan et al. (1995), Victoria-Feser (1995, 2000), 

Brachmann et al. (1996), Bordley et al. (1996), Tachibanaki et al. (1997) and Bandourian et al. 

(2003) – found that the GB2, the Singh-Maddala and the Dagum distributions perform better than 

distributions with three or fewer parameters. 

For 1970–1980 US family incomes, McDonald (1984) preferred the GB1, GB2, Singh-

Maddala and generalized gamma distributions to the gamma and Weibull distributions, which 

themselves outperformed the Fisk distribution. For grouped-records Japanese income data for 

1963–1971, Singh-Maddala slightly outperformed the Fisk, which outperformed beta, gamma, 

lognormal and Pareto 2 (Suruga 1982). Atoda et al. (1988) and Tachibanaki et al. (1997) found 

that more-parametric models were needed for Japanese incomes. Chotikapanich et al. (2007) 

applied the GB2 successfully to grouped-records data in China. 

Bandourian et al. (2003) found that the Weibull, Dagum and GB2 distributions provide the 

best fit for group-records pre-tax incomes among ten GB-class distributions with 2, 3, and 4 

parameters, respectively (compared to gamma, lognormal, beta 1, beta 2, generalized gamma, 

Singh-Maddala, GB1, GB). They used 23 high and upper-middle income countries, and income 

data grouped into 20 5-percentage point groups. McDonald et al. (2013) found that the GB2 

approximates well the skewness and kurtosis in a set of 78 income distributions, compared to the 

generalized gamma, Dagum, Singh-Maddala, beta 1 and 2, and GB1 distributions. Okamoto (2013) 

evaluated a newly proposed k-generalized beta distribution favorably compared to GB2, on 60 

income distributions in the Luxembourg Income Study database. 

Brzezinski (2013) found that the GB2 model outperforms the Dagum and Singh-Maddala 

models on most distributions of disposable household income per adult equivalent in Central and 

East Europe during 1991–2010, with a few exceptions where Dagum and the GB2 perform 

similarly. The GB and GB2 models have been found to provide the best fit for US family income 

                            22 / 48



21 

 

(grouped-records for 11 or 21 quantiles), while the lognormal distribution provide the worst fit 

(the other evaluated distributions being GB1, gamma, generalized gamma, beta, beta 1, beta 2, 

Singh-Maddala, and Dagum). The GB2, Dagum, and gamma are the best-fitting four-, three-, and 

two-parameter distributions. 

The conventional wisdom from recent research is that the GB2 distribution can be used among 

middle and upper-middle incomes, but in the upper-most tail one might prefer a power-law 

distribution such as the Pareto 1 instead. Because the right tail of incomes may also be 

contaminated by nonresponse or income under-reporting, right-truncation to the GB2 distribution 

may be applied at the 95–99th percentile (Hlásny and Verme 2018ab; Hlásny 2019). Finally, 

because bottom incomes may not be approximated well by the GB2 distribution, Jenkins et al. 

(2011:69) propose estimating the GB2 distribution on income data left-truncated at the 30th 

percentile.  

 

Singh-Maddala 

In response to Salem and Mount’s (1974) advocating of the gamma distribution, Singh and 

Maddala (1976) compared the gamma, the lognormal and the Singh-Maddala distributions, and 

found that the latter provided a better fit to the 1960–1972 US family incomes. In regard to the 

degrees of freedom used up in estimation, particularly on grouped-records data, Cramer (1978) 

called for the development of more appropriate model-selection criteria recognizing the nonlinear 

nature of parameter estimation. Commenting on Singh and Maddala’s (1976) assumptions and 

model-fit statistics, he questioned whether their distribution really outperformed the gamma 

distribution. 

Nevertheless, subsequent research has largely confirmed the superior fit of the Singh-Maddala 

model to income distributions worldwide, compared to lower-parametric specifications. 

McDonald and Ransom (1979ab) compared the fit of the lognormal, gamma, beta and Singh-

Maddala distributions to decile-group data for 1960–1975 family incomes. The Singh-Maddala 

outperformed the beta distribution across most years, the beta in turn outperformed the gamma, 

and the gamma outperformed the lognormal. This ranking held when the same estimation 

technique was used across the competing distribution functions, but not necessarily otherwise. 

Brachmann et al. (1996) concluded that the GB1 and B1 distributions did not provide a good fit to 
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German net household incomes, while the Singh-Maddala and gamma fared well among the 

classes of 3- and 2-parameter distributions. 

Comparing the lognormal, gamma, log-logistic, Weibull, generalized gamma and Singh 

Maddala distributions, Tachibanaki et al. (1997) concluded that the generalized gamma fit better 

than the lognormal, the gamma, or the Weibull. The Singh-Maddala outperformed the Weibull and 

the log-logistic. Different estimations yielded vastly different parameters and inequality indexes, 

on account of 1) different estimators, and 2) data differences such as individual/grouped-records 

data. Tachibanaki et al. (1997) also compared income distributions estimated using individual-

level data (maximum likelihood method) versus grouped-records data (minimum chi-square or 

maximum likelihood method). They found that grouped-records data allowed estimating a well-

fitting distribution even when the values of individual incomes did not allow the estimation on 

individual-level data (i.e., the beta and the Johnson SB distributions). 

Biewen and Jenkins (2005) evaluated the fit of the Singh-Maddala and Dagum distributions 

for income distributions in the US, Great Britain and Germany, and concluded that the Singh-

Maddala distribution performed better. Similarly, Jäntti et al. (2015) found that the Singh-Maddala 

distribution offered a good fit to the distributions of positive incomes in the US, Germany, Italy, 

Luxembourg and Spain. 

 

Dagum and log-logistic models 

The natural alternative to the Singh-Maddala model is the other 3-parameter Burr-family 

specification, the Dagum function. As the studies in the previous and this section show, the 

evidence of their relative performance is mixed. Dagum (1983) found that his distributions 

(Dagum 1, 2 and 3) outperformed the lognormal, gamma and Singh-Maddala models on US family 

incomes. Using the UK data, the Dagum 1 was also shown to outperform the gamma distribution.7 

Dagum also found that a 2-parameter log-logistic distribution, as a special case of the Dagum 

model, fit Canadian data well. Suruga (1982) and Atoda et al. (1988) also evaluated the log-logistic 

model positively for Japanese incomes, relative to the lognormal, gamma, and beta distributions, 

but found it to be comparable to the 3-parameter Singh-Maddala distribution. 

                                                      
7 Dagum (1999) also proposed using the Dagum 1 distribution for the estimation of the joint distribution of income 

and wealth. Dagum 1 was used to model positive incomes, an exponential distribution for negative data, and a point-

mass for zero incomes. 
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Using French incomes, Espinguet and Terraza (1983) confirmed that the Dagum 2 distribution 

provided a superior fit compared to the Weibull, the Singh-Maddala, the Box-Cox-transformed 

logistic, the 3-parameter lognormal, and the 4-parameter beta 1 models. Dagum 1–3 showed good 

fit to Italian incomes (Dagum and Lemmi 1989), and incomes in the Buenos Aires region 

(Botargues and Petrecolla 1997, 1999ab), where they outperformed the lognormal and the Singh-

Maddala. Bantilan et al. (1995) found that the Dagum 1 provided a good fit for family incomes in 

the Philippines. Campano and Salvatore (2006) reported that the United Nations had concluded 

that the 4-parameter Dagum distribution “was the model of choice for over 60 countries” (p.51). 

The Dagum fit as well as or better than the 5-parameter Champernowne distribution (Campano 

1987). In fact, estimating “one serves as a check on [estimating] the other” (Campano and 

Salvatore 2006:53). Jäntti et al. (2015) also favored the Dagum distribution for positive incomes 

(and the exponential distribution for negatives). 

In relation to other GB-family distributions, Bordley et al. (1996) concluded that the Dagum 1 

worked better than other 3- and 4-parameter models, including the gamma and the GB1, but the 

GB2 remained as the most preferred form. Kleiber (1996, 2008:110) listed all the known empirical 

applications of the Dagum distribution, and summarized them by noting that the Dagum 

outperformed other models with 3 or fewer parameters, but concurred that the 4-parameter GB2 

could perform better. 

 

Beyond beta: other distribution functions 

A small number of studies have assessed the empirical fit of models outside the GB family, 

but their results are difficult to compare because of the lack of consistent benchmark specifications 

and test statistics. Here is the limited evidence. Horsky (1990) used a 2-parameter EV distribution 

(Gumbel distribution in the EGB class) to model wages and total incomes in the US Census data. 

The model fit wages better than the lognormal distribution, and as well as the best of the evaluated 

3- and 4-parameter models. Chumacero and Paredes (2005) found that the EV distribution 

outperformed the generalized Cauchy, logistic and other functional forms in fitting the Chilean 

income distribution, with the lognormal distribution also having desirable properties. 

Van Dorp and Kotz (2006; also Kotz and van Dorp 2004) applied the ‘reflected’ generalized 

Topp–Leone distribution to 2001 US household incomes, and found that it performed better at 

lower ranges of incomes than the beta family of distributions. Atoda et al. (1988) found that a 4-
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parameter J-shaped beta distribution, related to the Topp–Leone distributions, and a 2-parameter 

Weibull distribution provided a good fit to narrow income categories such as farmers’ primary 

incomes. The Weibull performed as well as the 4-parameter Singh-Maddala. Barndorff-Nielsen 

(1978) successfully fitted the generalized hyperbolic distribution to the 1962/1963 personal log-

income data for Australian residents. 

 

IV. Summary and implications for practitioners 

 

Fitting smooth parametric curves to the top of empirical income distributions is valuable for 

describing the general shape of the income density functions, as well as for correcting income 

distributions for various top-income measurement problems. Thanks to the extensive research 

undertaken in the past quarter-century, we now have access to a large body of empirical evidence 

and tools for estimating and diagnosing alternative models, and for replacing actual top incomes 

with model-generated ones. Alternative estimators have been developed, and a number of statistics 

exist to inform our model and estimator selection. This body of knowledge helps us understand 

the nature of the process underlying the distribution of incomes, and to some degree even the 

mechanisms driving the process. To the extent that observed incomes suffer from various top-tail 

measurement problems, the existing knowledge enables us to overcome them. 

The proliferation of distinct branches of modeling literature over the past decades gave rise to 

the need to survey the alternative modeling approaches and be able to discriminate among them 

based on their fit to empirical data. To this end, we have reviewed the state of methodological and 

empirical knowledge regarding the adoptable distribution functions, and provided references to 

original sources and statistical programs (refer to Appendix 1) allowing practitioners to apply these 

parametric functions to microdata in household income surveys, administrative registers, or 

grouped-records data generated from national accounts statistics. 

Many of the distribution functions reviewed in this study have theoretical or empirical merit. 

With arbitrary income data at hand, it is a priori unclear which distribution function will provide 

the best fit for the incomes used in estimation, as well as for those outside of the estimation sample. 

A typical confirmatory research path is to choose a set of theoretically or empirically comparable 

parametric forms, fit each of them, and then evaluate their degree of fit. Esteban (1986) propose 

an alternative search path: formulating a set of hypotheses, or stylized facts, about the empirical 
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distribution, and then identifying the (only) parametric distribution that satisfies them. For 

instance, hypothesizing that the income share elasticities have a constant rate of decline (plus two 

other assumptions), he shows that the 3-parameter generalized gamma is the only density function 

within its class that satisfies them. 

The alternative approaches to fitting each distribution function are beyond the scope of this 

survey, but a brief, non-exhaustive review is provided in Appendix 2. Similarly, some guidelines 

how to diagnose the alternative distribution functions and rank them are provided in Appendix 3. 

Our review suggests that among the large number of candidate families of distribution 

functions, only a handful have proved to be consistently successful in terms of feasibility of fitting 

and their fit to the original data, and have been used over the years and to this day. The choice 

depends in part on the range of incomes that needs to be represented parametrically. Across many 

countries and years, 3–4 parameter distributions in the generalized beta family – namely the Singh-

Maddala, the Dagum and the GB2 distributions – have proved successful at representing the vast 

mass of income distributions, approximately from the 30th to the 95th percentile. The lognormal 

distribution, itself a 2-parameter member of the generalized beta family, offers a weaker fit for that 

range of incomes, but may also be estimated due to degrees-of-freedom considerations, say on 

grouped-records data. For top incomes, flexible power function distributions, including 2–3 

parameter members of the EV and Pareto families exhibit a better-fitting rate of decay of income 

densities. Finally, in the uppermost tail of the top 0.5% or up to top 5% of income observations, 

due to data sparseness and heavy rate of decay, the Pareto 1 serves as an adequate parsimonious 

model. 

Model selection clearly also depends on the properties of the data at hand. Unit-records data 

call for functional forms and estimators that are less sensitive to individual income values. 

Grouped-records data, on the other hand, call for functional forms and estimators that are less 

demanding with regard to the degrees of freedom, such as distributions with fewer parameters. 

The narrower the income concept (say, wages or primary income), and the more homogeneous the 

sample (say, farmers, or workers in the same occupation, or residents in one city), the better the fit 

of simpler distribution functions such as the lognormal, the Weibull, or the Pareto 1 models. 

Finally, to the extent that multiple types of income must be added together (say, income sources) 

or juxtaposed (say, those of two subgroups), parametric functions that are additive or that allow 

the Lorenz curves to cross (e.g., 3+ parametric functions), respectively, would facilitate the most 
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relevant comparisons. In this respect it should be noted that there is presently limited record of 

stability of distribution functions across disparate components of total incomes. 

To summarize the evidence presented in this review, a large number of distribution functions 

have been considered over the past 120 years for modeling economic outcomes. We have 

introduced several classes of these models, including their theoretical properties and empirical 

record of fit. Among the dozens of models, only a handful have proved to be consistently 

successful, namely the generalized Pareto, and the 3–4 parameter distributions in the generalized 

beta family, including the Singh-Maddala, Dagum and GB2 distributions. Recent literature has 

focused on ascertaining the settings under which each model is appropriate, which estimator 

should be used in fitting each model, and how to compare or replace the observed values with the 

model-estimated ones. It should be re-emphasized that the distribution functions presented here 

can perform only as well as the income observations they are based on. In the presence of top-

income measurement biases, the models should be estimated on right-truncated samples or on 

samples where the measurement errors have been allayed. 

The quest for modeling best practices does not stop here. Future academic research should 

focus on bridging the disparate branches of modeling literature and developing a single-stop tool 

for model selection, estimation and evaluation. Among practitioners, a consensus should be sought 

on how to embrace the findings most effectively to, say, track measurement issues such as tax 

evasion, report on developmental policies, and improve fiscal targeting and redistribution. 

 

Acknowledgments 

 

This research project was conducted for the Commitment to Equity (CEQ) Institute, thanks to 

the generous support of the Bill & Melinda Gates Foundation. The author wishes to thank Nora 

Lustig for motivating this work, and Philippe Van Kerm for offering technical feedback. 

 

 

References 

 

Ahuja, J.C., and Stanley W. Nash (1967) The generalized Gompertz-Verhulst family of 

distributions, Sankhyā: The Indian Journal of Statistics, Series A 29(2):141–156. 

Aitchison, John, and James A.C. Brown (1954) On criteria for descriptions of income distribution, 

Metroeconomica 6:88–98. 

                            28 / 48



27 

 

Aitchison, John, and James A.C. Brown (1957) The Lognormal Distribution. Cambridge: 

Cambridge University Press. 

Aiuppa, Thomas A. (1988) Evaluation of Pearson Curves as an Approximation of the Maximum 

Probable Annual Aggregate Loss, Journal of Risk & Insurance 55(3):425–441. 

Alfons, Andreas, Matthias Templ, and Peter Filzmoser (2013) Robust estimation of economic 

indicators from survey samples based on Pareto tail modelling, Journal of the Royal Statistical 

Society: Series C (Applied Statistics) 62:271–286. 

Amoroso, Luigi (1925) Ricerche intorno alla Curva dei Rediti, Matematica Pura ed Applicata 

2(1):123–159. 

An, Di, and Roderick J.A. Little (2007) Multiple imputation: an alternative to top coding for 

statistical disclosure control, Journal of the Royal Statistical Society A 170:923–940. 

Armour, Philip, Richard V. Burkhauser, and Jeff Larrimore (2016) Using the Pareto Distribution 

to Improve Estimates of Topcoded Earning, Economic Inquiry 54(2):1263–1273. 

Arnold, Barry C. (2008) Pareto and Generalized Pareto Distributions. In Duangkamon 

Chotikapanich (ed), Modeling Income Distributions and Lorenz Curves, New York: Springer 

Verlag. 

Arnold, Barry C.  (2015) Pareto Distributions (2nd ed.), Boca Raton, FL: CRC Press. 

Arnold, Barry C., and Leonor Laguna (1977) On Generalized Pareto Distributions with 

Applications to Income Data. International Studies in Economics, Monograph #10, 

Department of Economics, Iowa State University. 

Arnold, Barry C., Christopher A. Robertson, and Hsiaw-Chan Yeh (1986) Some properties of a 

Pareto-type distribution. Sankhyā: Indian Journal of Statistics – Series A 48(3):404–408. 

Atkinson, Anthony B. (2017) Pareto and the upper tail of the income distribution in the UK: 1799 

to the present, Economica 84(334):129–156. 

Atkinson, Anthony, Thomas Piketty, and Emmanuel Saez (2011) Top incomes in the long run of 

history, Journal of Economic Literature 49:3–71. 

Atoda, Naosumi, Terukazu Suruga, and Toshiaki Tachibanaki (1988) Statistical inference of 

functional forms for income distribution, Economic Studies Quarterly 39(1):14–40. 

Balkema, August A., and Laurens de Haan (1974) Residual life time at great age, Annals of 

Probability 2:792–804. 

Bandourian, Ripsy, James B. McDonald, and Robert S. Turley (2003) A comparison of parametric 

models of income distribution across countries and over time, Estadística 55:135–152. 

Bantilan, Maria C.S., N.B. Bernal, M.M. de Castro, and Joanne M. Pattugalan (1995) Income 

distribution in the Philippines, 1957–1988: An application of the Dagum model to the family 

income and expenditure survey (FIES) data. Pp.11–43 in C. Dagum and A. Lemmi (eds.) 

Research on Economic Inequality, Vol. 6: Income Distribution, Social Welfare, Inequality and 

Poverty. Greenwich, CT: JAI Press. 

Barndorff-Nielsen, Ole (1978) Hyperbolic distributions and distributions on hyperbolae, 

Scandinavian Journal of Statistics 5(3):151–157. 

Beirlant, Jan, Elisabeth Joossens, and Johan Segers (2009) Second-order refined peaks-over-

threshold modelling for heavy-tailed distributions, Journal of Statistical Planning and 

Inference 139:2800–2815. 

Benini, Rodolfo (1897) Di alcune curve descritte da fenomeni economici aventi relazione colla 

curva del reddito o con quella del patrimonio, Giornale degli Economisti 14:177–214. English 

translation in Rivista di Politica Economica 87:701–744, 1997. 

                            29 / 48



28 

 

Benini, Rodolfo (1905) I diagrammi a scala logaritmica (a proposito della graduazione per valore 

delle successioni ereditarie in Italia, Francia e Inghilterra), Giornale degli Economisti 16:222–

231. 

Benktander, Gunnar (1970) Schadenverteilungen nach Grösse in der Nicht-Lebensversicherung 

[Loss distributions by size in non-life insurance]. Bulletin of the Swiss Association of 

Actuaries (in German):263–283. 

Bernstein, Jared, and Lawrence Mishel (1997) Has wage inequality stopped growing? Monthly 

Labor Review 120(12):3–16. 

Biewen, Martin, and Stephen P. Jenkins (2005) A framework for the decomposition of poverty 

differences with an application to poverty differences between countries, Empirical Economics 

30:331–358. 

Blanchet, Thomas, Juliette Fournier, Thomas Piketty (2017) Generalized Pareto curves: theory and 

applications, WID.world working paper 2017/3. 

Blanchet, Thomas, Ignacio Flores, and Marc Morgan (2018a) The Weight of the Rich: Improving 

Surveys Using Tax Data, WID.world working paper 2018/12. 

Blanchet, Thomas, Bertrand Garbinti, Jonathan Goupille-Lebret, and Clara Martínez-Toledano 

(2018b) Applying generalized Pareto curves to inequality analysis, AEA papers and 

proceedings 108:114–118. 

Bordley, Robert F., James B. McDonald, and Anand Mantrala (1996) Something new, something 

old: parametric models for the size distribution of income, Journal of Income Distribution 

6:91–103. 

Brachmann, Klaus, Andreas Stich, and Mark Trede (1996) Evaluating parametric income 

distribution models, Allgemeines Statistisches Archiv 80:285–298. 

Brzezinski, Michal (2013) Parametric modelling of income distribution in Central and Eastern 

Europe, University of Warsaw Working Paper 31(116). 

Burkhauser, Richard V., Shuaizhang Feng, and Jeff Larrimore (2009) Improving imputations of 

top incomes in the public-use current population survey by using both cell-means and 

variances, Economics Letters 108:69–72. 

Burr, Irving W. (1942) Cumulative frequency functions, Annals of Mathematical Statistics 

13(2):215–232. 

Butler, Richard J., and James B. McDonald (1989) Using incomplete moments to measure 

inequality, Journal of Econometrics 42:109–119. 

Campano, Fred (1987) A fresh look at Champernowne’s five-parameter formula, Economie 

Appliquee 40:162–175. 

Campano, Fred, and Dominick Salvatore (2006) Income distribution, Oxford: Oxford University 

Press. 

Chakraborti, Anirban, and Marco Patriarca (2008) Gamma-distribution and wealth inequality, 

Pramana Journal of Physics 71(2):233–243. 

Champernowne, David G. (1937) The theory of income distribution, Econometrica 5:379–381. 

Champernowne, David G. (1952) The graduation of income distributions, Econometrica 

20(4):591–615. 

Champernowne, David G. (1953) A model of income distribution, Economic Journal 

63(250):318–351. 

Champernowne, David G. (1973) The distribution of income, Cambridge: Cambridge University 

Press. 

                            30 / 48



29 

 

Charpentier, Arthur, and Emmanuel Flachaire (2019) Pareto models for top incomes, Aix-

Marseille Universite working paper, May. 

Chotikapanich, Duangkamon (1994) Techniques for measuring income inequality: an application 

to Thailand, Brookfield, VT: Avebury, Ashgate Publishing. 

Chotikapanich, Duangkamon, ed. (2008) Modeling Income Distributions and Lorenz Curves, New 

York: Springer Verlag. 

Chotikapanich, Duangkamon, William E. Griffiths, Gholamreza Hajargasht, Wasana 

Karunarathne, and D.S. Prasada Rao (2018) Using the GB2 income distribution, Econometrics 

6(2):21. 

Chotikapanich, Duangkamon, D.S. Prasada Rao, and Kam K. Tang (2007) Estimating income 

inequality in China using grouped data and the generalized beta distribution, Review of Income 

and Wealth 53:127–147. 

Chumacero, Rómulo A., and Ricardo Paredes M. (2005) Characterizing income distribution: 

policy implications for poverty and inequality, Estudios de Economía 32(1):97–117. 

Chung, Kee H., and Raymond A.K. Cox (1994) A Stochastic Model of Superstardom: An 

Application of the Yule Distribution,  Review of Economics and Statistics 76(4):771–775. 

Clementi, Fabio, and Mauro Gallegati (2005) Pareto’s Law of Income Distribution: Evidence for 

Germany, the United Kingdom and the United States, In: Chatterjee A., Yarlagadda S., 

Chakrabarti B.K. (eds) Econophysics of Wealth Distributions. New Economic Windows. 

Milano: Springer. 

Clementi, Fabio, T. DiMatteo, Mauro Gallegati and G. Kaniadakis (2008) The k-Generalised 

Distribution: a New Descriptive Model for the Size Distribution of Incomes, Physica A 

387:3201–3208. 

Coles, Stuart (2001) An introduction to statistical modeling of extreme values. New York: 

Springer. 

Colombi, Roberto (1990) A new model of income distribution: the Pareto-lognormal distribution, 

ch.2 in C. Dagum and M. Zenga (eds.) Studies in Contemporary Economics: Income and 

Wealth Distribution, Inequality and Poverty, Berlin: Springer. 

Cox, Christopher, Haitao Chu, Michael F.E. Schneider, and Álvaro Muñoz (2007) Parametric 

survival analysis and taxonomy of hazard functions for the generalized gamma distribution, 

Statistics in medicine 26(23):4352–4374. 

Cowell, Frank A. (2011) Measuring Inequality, (3rd ed.). Oxford: Oxford University Press. 

Cowell, Frank A., and Emmanuel Flachaire (2002) Sensitivity of inequality measures to extreme 

values, LSE STICERD Research Paper, DARP 60. 

Cowell, Frank A., and Emmanuel Flachaire (2007) Income distribution and inequality 

measurement: The problem of extreme values, Journal of Econometrics 141(2):1044–1072. 

Cowell, Frank A., and Emmanuel Flachaire (2015) Statistical Methods for Distributional Analysis, 

AMSE Working Papers 1507. 

Cowell, Frank A., and Philippe Van Kerm (2015) Wealth inequality: a survey, Journal of 

Economic Surveys 29(4):671–710. 

Cramer, Jan S. (1978) A function for size distribution of incomes: comment, note, Econometrica 

46:459–460. 

Credit Suisse (2019) Global wealth report 2019: Report and databook, October 2019. 

Cronin, David C. (1979) A Function for Size Distribution of Incomes: A Further Comment, 

Econometrica 47(3):773–774. 

                            31 / 48



30 

 

Cummins, J. David, Georges Dionne, James B. McDonald, B. Michael Pritchett (1990) 

Applications of the GB2 family of distributions in modeling insurance loss processes, 

Insurance Mathematical Economics 9:257–272. 

Dagsvik, John K., Weizhen Zhu, Bjørn H. Vatne, Zhiyang Jia (2013) Is the Pareto-Lévy Law a 

Good Representation of Income Distributions? Empirical Economics 44(2):719–737. 

Dagum, Camilo (1975) A model of income distribution and the conditions of existence of moments 

of finite order, Proceedings of the 40th session of the International Statistical Institute, pp.196–

202, Warsaw. 

Dagum, Camilo (1977) A new model of personal income distribution: specification and 

        Estimation, Economie Appliquée 30:413–437. 

Dagum, Camilo (1980) The generation and distribution of income, the Lorenz curve and the Gini 

ratio, Economie Appliquée 33:327–367. 

Dagum, Camilo (1983) Income Distribution Models, In: S. Kotz, N.L. Johnson, and C. Read (eds.): 

Encyclopedia of Statistical Sciences, Vol. 4., New York: John Wiley, p.27–34. 

Dagum, Camilo (1990) Generation and properties of income distribution functions, ch.1 in C. 

Dagum and M. Zenga (eds.) Studies in Contemporary Economics: Income and Wealth 

Distribution, Inequality and Poverty, Berlin: Springer. 

Dagum, Camilo (1999) A study on the Distributions of Income, Wealth and Human Capital, Revue 

europeenne des sciences sociales 37(133):231–268. 

Davidson, Russell, and Emmanuel Flachaire (2007) Asymptotic and bootstrap inference for 

inequality and poverty measures, Journal of Econometrics 141(1):141–166. 

Davis, Harold T. (1941a) The Analysis of Economic Time Series. Bloomington, IN: Principia 

Press. 

Davis, Harold T. (1941b) The theory of econometrics. Bloomington, IN: Principia Press. 

Duan, Yutong (2016) Implementing the Multimodel Generalized Beta Estimator in Stata and Its 

Application, Masters thesis, Department of Statistics, University of Texas at Austin. 

Dubey, Satya D. (1970) Compound gamma, beta and F distributions, Metrika 16:27–31. 

Eckerstorfer, Paul, Johannes Halak, Jakob Kapeller, Bernhard Schutz, Florian Springholz, and 

Rafael Wildauer (2016) Correcting for the missing rich: an application to wealth survey data, 

Review of Income and Wealth 62(4):605–627. 

Esteban, Joan (1986) Income share elasticity and the size distribution of income, International 

Economic Review 27:439–444. 

Feng, Shuaizhang, Richard V. Burkhauser, and John S. Butler (2006) Levels and long-term trends 

in earnings inequality: overcoming Current Population Survey censoring problems using the 

GB2 distribution, Journal of Business & Economic Statistics 24:51–62. 

Ferrari, Silvia L.P., and Francisco Cribari-Neto (2004) Beta regression for modelling rates and 

proportions, Journal of Applied Statistics 31(7):799–815. 

Fisher, Ronald A. (1930) The genetical theory of natural selection, New York: Oxford University 

Press. 

Fisk, Peter R. (1961) The Graduation of Income Distributions, Econometrica 29:171–185. 

Foster, James, Joel Greer, and Erik Thorbecke (1984) A Class of Decomposable Poverty Measures, 

Econometrica 52:761–766. 

Fournier, Juliette (2015) Generalized Pareto curves: Theory and application using income and 

inheritance tabulations for France 1901–2012, Paris School of Economics Masters thesis. 

Fréchet, Maurice (1927) Sur la loi de probabilité de l'écart maximum, Annales de la Société 

Polonaise de Mathematique, Cracovie 6:93–116. 

                            32 / 48



31 

 

Gabaix, Xavier (2009) Power Laws in Economics and Finance, Annual Review of Economics 

1:255–294. 

Gastwirth, Joseph L. (1972) The Estimation of the Lorenz Curve and Gini Index, Review of 

Economics and Statistics 54:306–316. 

Gastwirth, Joseph L., and Marcia Glauberman (1976) The interpolation of the Lorenz curve and 

Gini index from grouped data, Econometrica 44(3):479–483. 

Gibrat, Robert (1931) Les Inégalités économiques: applications aux inégalités des richesses, à la 
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Appendix 1. Statistical programs (Stata) 

 

The stock of statistical programs is continuously expanding – and so this section (non-

exhaustive as it is) will eventually become obsolete. The following programs are presently 

available in Stata software version 13 (most of them installable through ssc install ZZZ, 

update), but even these programs are being updated to allow additional options, such as left or 

right truncation, weighting, testing, graphical analysis and post-estimation. Unless noted, the 

following commands are designed for unit-record data. 

 

Estimators of selected parametric distributions, and some basic diagnostics 

 

paretofit (Jenkins and Van Kerm 2007): fits by ML the 1-parameter Pareto 1 distribution. 

(paretowml (Brzezinski 2014a): weighted maximum likelihood estimator (WMLE) for the 

shape parameter of Pareto 1 distribution) 

 

extreme gpd (Roodman 2015): fits by ML the 2-parameter generalized Pareto distribution (Pareto 

2). 

 

extreme gev: fits by ML the 3-parameter generalized extreme value distribution. 

 

lognfit (Jenkins 2007b): fits by ML the 2-parameter lognormal distribution. 

 

betafit (Buis et al. 2003): fits by ML the 2-parameter beta distribution. 

(qbeta (Cox 1998d): quantile-quantile plot for data vs fitted beta distribution.) 

(pbeta (Cox 1998a): probability plot for data vs fitted beta distribution.) 

 

gammafit (Cox and Jenkins 2003a): fits by ML the 2-parameter gamma distribution. 

streg, distribution(gamma): fits the generalized gamma 

(qgamma (Cox 1998f): quantile-quantile plot for data vs fitted gamma distribution.) 

(pgamma (Cox 1998c): probability plot for data vs fitted gamma distribution.) 

 

gumbelfit (Cox and Jenkins 2003b): fits by ML the 2-parameter Gumbel distribution. 

 (or extreme gev, gumbel: restrict location parameter to 0, estimate 2-parameter Gumbel 

distribution) 

 (qgumbel: quantile-quantile plot for data vs fitted Gumbel distribution.) 

(pgumbel: probability plot for data vs fitted Gumbel distribution.) 

 

fiskfit (Buis and Jenkins 2008): fits by ML the 2-parameter Fisk (log-logistic; sech-squared) 

distribution. 

 

invgammafit (Cox and Jenkins 2007a): fits by ML the 2-parameter inverse-gamma distribution. 

(qinvgamma: quantile-quantile plot for data vs fitted inverse-gamma distribution.) 

(pinvgamma: probability plot for data vs fitted inverse-gamma distribution.) 

 

streg, distribution(exponential): fits the exponential distribution 
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 (or extreme gpd, gumbel: restrict location parameter to 0, estimate 1-parameter exponential 

distribution) 

(pexp (Cox 1998b): probability plot for data vs fitted exponential distribution.) 

(qexp (Cox 1998e): quantile-quantile plot for data vs fitted exponential distribution.) 

 

streg, distribution(gompertz): fits the Gompertz 

 

mgbe (Duan and von Hippel 2016): fits 10 distributions from the GB2 family on grouped-records 

data (Hippel et al. 2016), including: GB2, Dagum, Singh-Maddala, beta 2, log-logistic, 

generalized gamma, gamma, Weibull, Pareto 2, lognormal 

 

gb2fit (Jenkins 2007a): fits by ML the 4-parameter GB2 distribution 

gb2lfit (Jenkins 2014): fits by ML the 4-parameter GB2 distribution. equivalent to gb2fit, but 

estimating parameters in the logarithmic metric, and allowing additional options including 

right-censoring or left-truncation of data, and estimation of inequality measures. 

(gbgfit (Nichols 2010): GB2 distribution fitted to grouped-records data.) 

(gb2dist (Brzezinski 2014c): computes poverty and inequality indices for the GB2 

distribution, following gb2fit/gbgfit estimation.) 

 

dagumfit (Jenkins 1999a): fits by ML the 3-parameter Dagum distribution. 

(dagumpred: derivation of additional statistics for the Dagum distribution.) 

(qdagum: quantile-quantile plot for data vs fitted Dagum distribution.) 

(pdagum: probability plot for data vs fitted Dagum distribution.) 

 

smfit: (Jenkins 1999b): fits by ML the 3-parameter Singh-Maddala distribution. 

(qsm: quantile-quantile plot for data vs fitted Singh-Maddala distribution.) 

(psm: probability plot for data vs fitted Singh-Maddala distribution.) 

 

weibullfit (Cox and Jenkins 2007b): fits by ML the 2-parameter Weibull distribution. 

Restricting γ=1 gives the exponential distribution; γ=2 gives the Rayleigh distribution. 

(qweibull: quantile-quantile plot for data vs fitted Weibull distribution.) 

(pweibull: probability plot for data vs fitted Weibull distribution.) 

 

dirifit (Buis et al. 2006): fits by ML the 2 parameter Dirichlet distribution. 

 

Graphical diagnostic tests 

 

qqplot3 (Linden 2014): quantile-quantile plot comparing an empirical distribution, particularly 

its tails, against quantiles of a reference distribution, allowing weights and by-variables. 

(qqplot: basic command, without weights and by-variables. 

qnorm: quantile-quantile plot comparing a distribution, particularly its tails, to a reference 

normal distribution (aka, probit plotting)) 

 

ppplot (Cox 2004): probability-probability plot comparing an empirical cumulative distribution, 

particularly its center, to a reference distribution. 
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(pnorm: probability plot comparing a distribution, particularly its center, to a reference normal 

distribution) 

 

extreme plot, pp qq return density: PP & QQ plots following extreme estimation 

 

hillp (Scotto 2001): creates the Hill plot, with estimates of the Pareto 1 coefficient on the vertical 

axis, and the share of top income observations on which the coefficient was estimated on the 

horizontal axis (with confidence interval). 

 

hangroot (Buis 2007): hanging rootogram comparing an empirical distribution to the best-fitting 

reference parametric distribution. 

 

dpplot (Cox 2002): plots density probability plots for an empirical distribution given a reference 

distribution. 

 

ggtax (Gonzalez Rangel 2013): creates a graph of the estimated generalized-gamma shape and 

scale parameters, against other generalized-gamma family models (including lognormal, 

exponential and Weibull). 

 

glcurve (Jenkins and Van Kerm 2004): draw the Generalised Lorenz curve, and generate GL 

ordinates 

 

Other diagnostic tests 

 

powerlaw (Brzezinski 2014b): detecting power law or Pareto-like behavior in empirical data using 

model fitting, goodness of fit and model selection tests (Clauset et al. 2009). 

available at: http://coin.wne.uw.edu.pl/mbrzezinski/software/ 

rpec (Brzezinski 2014c): robust Pareto error criterion for choosing the scale parameter (x0) of 

Pareto 1 distribution. 

nrpec (Brzezinski 2014c): non-robust Pareto error criterion for choosing the scale parameter (x0) 

of Pareto 1 distribution. 

qpfit (Cox 2007): quantile and probability plot commands for assessing the fit of specific 

distributions, namely the Dagum, generalised beta (second kind), lognormal and Singh-

Maddala 

 

ksmirnov: one- or two-sample Kolmogorov-Smirnov test of the equality of distributions. 
 

lrtest GEV: likelihood ratio test of Gumbel vs. unrestricted extreme-value model following 

extreme estimation 
 

compsta (Brzezinski 2014c): test of the computational stability of estimation using perturbation 

tests 

 

Appendix 2. An illustration of alternative estimators for distribution functions 
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One major reason for considering the parametric modeling of the top tail of income 

distributions is that the empirically observed distributions suffer from various measurement 

problems or incomparability across samples or survey waves. The highest incomes are to a large 

extent excluded from household surveys, because the households are not identified on the sampling 

frame – and therefore are not selectable – or have a probability of being selected, but for one reason 

or another end up excluded. This could be simply due to a low probability of selection, accounting 

for their rareness and the inadequate oversampling of the relevant demographic group. Secondly, 

unit and item nonresponse tend to be high in this group, as is underreporting and post-survey 

topcoding by statistical agencies. 
The parametric models are applied to imperfect, empirical income distributions, and the 

specific functional forms and parameter values must be estimated and assessed. To this end, a 

number of estimators have been proposed to fit the distribution functions presented in the main 

text. The aim of this short and non-exhaustive review is to make readers aware of the variety of 

estimation approaches, and provide some key references. 

Hill (1975) proposed a maximum-likelihood estimator of the Pareto 1 coefficient (see also 

Quandt 1966; Schluter and Trede 2002:155). For fixed k, this estimator Hk,n converges in 

distribution to a gamma distribution as n → ∞. Huisman et al. (2001) proposed a weighted version 

of Hill’s estimator correcting it for its small sample bias. A robust estimator of the Pareto 

coefficient was proposed by Cowell and Victoria-Feser (1996ab, 2007). ML ‘Optimal b-robust 

estimator’ (ML-OBRE) places an upper limit on the score function to make the estimation robust 

to the presence of high values (Victoria-Feser and Ronchetti 1994; Doğru and Arslan 2015). 

Brzezinski (2013, 2016) and Jenkins (2017) review alternative estimators for the Pareto 

coefficient. 

Mahdi and Cenac (2006) compared three methods for estimating the logistic and Rayleigh 

distributions – the maximum likelihood, the moment and the probability weighted moment 

methods. Hippel et al. (2012) proposed a ‘best-of-breed’ model selection criterion, which chooses 

the best fitting model among the extended generalized gamma, power normal and power logistic 

families. 

McDonald and Ransom (1979ab, 2008) identified and evaluated three estimators for the 

estimation of GB and gamma models on grouped-records data. Pearson minimum chi-squared 

estimators (asymptotically equivalent to the method-of-scoring maximum-likelihood estimators, 

and generalizations of estimators minimizing the sum of squared differences between the predicted 

and observed probabilities. On decile-grouped data, the scoring and minimum chi-squared 

estimators were found to perform similarly, and outperformed the least-squares estimators in terms 

of sample bias, variance, and mean squared error. 

 

Appendix 3. Diagnostic tests 

 

There are three types of diagnostic tests available to distinguish parametric forms for the 

modeling of the top tail of income distributions. One, standard confidence-interval based tests can 

help assess goodness of fit of stand-alone models or estimation approaches. These tests can also 

assess the relative fit of multiple models nested in one another, as well as the relative fit of models 

estimated on different subsamples. Two, graphical tests can help to evaluate visually any 

deviations in model fit from known yardsticks. Three, simulations on well understood (synthetic 

or uncontaminated) data can help evaluate the relative performance of alternative models or 

estimators, and their robustness to various experimental designs of data contamination. The 

following sections present some of the commonly used tests and their results. 
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Confidence-interval based tests 

To test whether empirically observed data are consistent with a particular smooth parametric 

function, we must assess the deviations of the empirical data from the predicted pattern of 

dispersion. The available model selection criteria include sum of squared errors, sum of absolute 

errors, log-likelihood value, likelihood ratios, the Pearson chi-squared, Kolmogorov-Smirnov, 

Cramér-von Mises, and Anderson-Darling statistics, and others. These are briefly introduced 

below. The likelihood ratio, equal to twice the difference between the unrestricted and restricted 

model likelihoods, is distributed as chi-squared with degrees of freedom equal to the parameter 

restrictions. 

The Pearson chi-squared can be computed as χ2 = ∑
(𝑂𝑖−𝐸𝑖)

2

𝐸𝑖
𝑖=1…𝑚 , where O and E are the 

observed and expected shares of observations in each quantile i=1…m, respectively. This statistic 

provides a consistent rejection criterion in large samples, but results in false non-rejections in small 

samples, and is sensitive to the delineations of quantiles i (Stephens 1986). Model selection criteria 

such as the Akaike information criterion (AIC = 2𝑘 − 2 log(𝐿)) can also be used for pairs of nested 

models. The Kolmogorov-Smirnov statistic compares the observed cumulative density of all order 

statistics with that estimated under a parametric form, the Cramér-von Mises statistic evaluates the 

squared deviations between these cumulative densities, and the Anderson-Darling statistic assigns 

greater weight to the tails. 

Regression-based tests rely on coefficient standard errors (t and F tests) and measures of model 

fit (R-squared, AIC, BIC, Wald F, likelihood ratio, and Lagrange multiplier tests).8 When the 

parametric distributions are fitted by maximum likelihood, the required test statistics are available. 

In other cases, such as when parameters are on a boundary of the allowed parameter space, testing 

can be done using standard errors obtained by bootstrapping the estimation procedures (Cowell 

and Flachaire 2015:50–51; McDonald and Xu 1995:144). 

To discriminate among nested models, including between the Singh-Maddala, the Dagum and 

the GB2, the parameter restrictions can be tested simply by looking at the corresponding parameter 

standard errors. However, confidence-interval tests based on asymptotic behavior perform poorly 

in small samples or in distributions with heavy tails as is common with income distributions 

(Cowell and Flachaire 2015:52–56). 

Clauset et al. (2009) proposed a statistical framework for testing whether the data are consistent 

with the Pareto behavior, relying on maximum-likelihood fitting methods and goodness-of-fit tests 

based on the Kolmogorov–Smirnov statistic and likelihood ratios. 

 

Graphical tests 

One problem with data-reduction approaches such as relying on logarithmic transformations 

of distributions, or replacing full distributions with distributional statistics is that they lose sight of 

the true dispersion of original observations, particularly those in the extreme tails, where data are 

sparse and the fit is likely weakest. These extreme observations may also influence the estimates 

obtained under any fitted curves. As far back as a century ago, Lorenz (1905:217) criticized tests 

of Pareto’s power-law property and complained that “logarithmic curves are more or less 

                                                      
8 These tests are valid for comparing nested models, except for nested distributions with parameters on the boundary 

of the allowed parameter space, which violate the regularity conditions necessary to invoke the Wald and likelihood-

ratio properties even asymptotically. McDonald and Xu (1995:139–140) discuss the appropriate estimation 

approaches for the alternative cases, including maximum likelihood, method of moments, and maximum product 

spacing. 
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treacherous,” suppressing any deviations in the original variables. Cirillo (2013) raised similar 

criticisms in regard to various graphs relying on logarithmic transformations, because they 

downplay the effect of outliers. These criticisms also apply to using distributional statistics in place 

of the full Lorenz curve. This section reviews the existing methods for testing the shape of income 

distributions. Like with distributional statistics, the selection depends on one’s needs and on the 

part of income distribution of special interest. 

Dombos (1982) provided an early review of available graphical diagnostic tools. A good start 

is to review the density histograms or kernel density plots compared to reference parametric 

distributions. Chauvel (2016) proposed what he called isographs showing the diversity of local 

inequality along the income scale. He writes: “The isograph presents the slope of the ‘Fisk Graph’ 

(Fisk, 1961:176) that is indeed a logit-log transformation of the Pen’s parade (Pen, 1971:49–59), 

a transformation of the cumulative distribution function graph.” Chauvel also reviews the shape of 

the density functions of distributions (strobiloids), and the evolution in them over time. 

Another set of graphical tools is based on the so-called Zipf law (Gabaix 1999), proposing that 

one should find a linear relationship between log(rank order) and log(frequency) among the 

relevant range of incomes. Under the Pareto distribution, we should find a linear relationship 

between the logarithm of the proportion of individuals with income greater than a threshold and 

the logarithm of the threshold itself. This suggest a graphical test of the validity of this property. 

The plot of the log of incomes on the x-axis and the log of the survival function (log(1-CDF)) 

on the y-axis, known as the Pareto diagram (Cowell 2011) or Zipf plot (Cirillo 2013) is among the 

most commonly used diagnostics. Pareto QQ-plot, {-log(1-F(xi)) ; log xi}, has also been 

commonly used, but this plot performs poorly at distinguishing related distributions such as the 

lognormal and the Pareto (Cirillo 2013). The PP-plot, also referred to as the probability plot, shows 

the predicted versus actual values of the cumulative densities under various lower thresholds. The 

tightness of the estimated curve around the 45° line indicates goodness of fit. 

Relative density plots juxtapose a best-fitting reference distribution function against the 

observed distribution. If the empirical distribution exactly follows the reference distribution, the 

plot will be a uniform density. 

Jenkins (2017) used various graphical (and confidence-interval based) tools – the Zipf plots, 

mean excess plots, Zenga (1984) curves, and Hill plots (Drees et al. 2000) – to test Pareto 1 against 

Pareto 2 on an empirical income distribution. Mean-excess plots show the mean income above a 

threshold for various thresholds. For Pareto, the graph is a positively-sloped straight line above a 

lower threshold. Ghosh and Resnick (2010) used the mean-excess plots to diagnose several 

candidate functions in the generalized Pareto family. Zenga curves show a transformation of the 

Lorenz curve above a certain threshold. For Pareto distributions the Zenga curve is positively-

sloped (and the more heavy-tailed the distribution, the higher the curve), while for a lognormal 

distribution, the curve is flat. Hill plots show the (Pareto) top-income index estimated across 

different delineations of top incomes, with various lower thresholds. 

Similarly, generalized Pareto curves (Fournier 2015) show how the inverted Pareto 

coefficients (the ratio between the average income above a threshold, and the threshold income) 

evolve with varying thresholds in terms of income percentiles. Pareto distributions, the 

Champernowne distribution, the Sech2 distribution and the Singh Maddala distribution have a 

generalized Pareto curve with b>1 as one approaches the top end. On the contrary, lognormal, the 

three-parameter lognormal distributions, the gamma and the generalized gamma distributions and 

the Weibull distribution have a generalized Pareto curve with b=1 as one approaches the top end. 
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The Cullen and Frey (1999) graph, showing the degree of kurtosis on one axis, and the square 

of skewness on the other, indicates the departure of observations from a confidence interval.9 

Cirillo (2013) and Jenkins (2017) illustrate a number of graphical (and confidence-interval 

based) tests of the Pareto 1 versus the Pareto 2 models. Araar and Duclos (2013) review various 

graphical methods including differences between Lorenz curves, and differences between the so-

called Foster-Greer-Thorbecke (FGT) cumulative-density curves plotted against income level 

expressed relative to the poverty line (Foster et al. 1984). 
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