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Abstract

There has been little discussion about the consequences of using standardized, rather than unstandardized, segregation

measures when comparing societies with different demographic compositions. This paper explores standardization in a

multigroup setting through an analytical framework that offers a clear distinction between the measurement of overall

and local segregation, embeds existing indices within this framework, and addresses gaps in previous research. The

local approach developed here allows us to focus on the principle of transfers used in the measurement of overall

segregation from a new angle and brings analytical support to the interpretation of the components of standardized

overall measures as the segregation levels of the groups involved. This approach also helps clarify the debate around

the measurement of school segregation since the distinction between local and overall measures, together with

standardization, is key to understanding the relationship between the different proposals. This research also gives

formal support to empirical strategies that compare the distribution of a minority group with that of the remaining

population since they can be viewed as standardized local segregation measures satisfying basic properties. 
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1. Introduction  
As societies grow more diverse—whether in terms of race, ethnicity, or other 

characteristics of individuals—there is an increasing need to measure segregation through 

a framework that involves more than two groups. Since the 1990s, several indicators have 

been developed to quantify overall multigroup segregation (Silber, 1992; Boisso et al., 

1994; Reardon and Firebaugh, 2002; Frankel and Volij, 2011), mainly according to a 

perspective of evenness that focuses on differences in the sorting of demographic groups 

across organizational units such as occupations, schools, and neighborhoods. 

Overall multigroup measures are useful in providing a summary statistic of the 

simultaneous distributional discrepancies that exist among all the demographic groups 

into which society is partitioned (Watts, 1995; Gradín et al., 2015; Kramer and Kramer, 

2018). However, in multigroup contexts, scholars often want to take a step further and 

identify the situation of each demographic group. To this end, some follow the empirical 

strategy of comparing the distribution of a minority group with that of the remaining 

population (Iceberg, 2004; Queneau, 2009; Marcińczak et al., 2016; Maloutas and 

Spyrellis, 2020). Others instead use a reference group (e.g., whites in racial analyses) 

against which each of the other groups is compared (Tomaskovic-Devey and Stainback, 

2007; Rough and Massey, 2014; Intrator et al., 2016). A third strategy is based on pairwise 

comparisons among groups (Reskin, 1999; Mintz and Krymkowski, 2011; Iceland et al., 

2014), which is a cumbersome procedure when many groups are involved and different 

years or territories are explored. Other scholars rely on intuitive interpretations of the 

components of overall multigroup indices that treat these components as if they embodied 

the segregation levels of the groups (Watts, 1995), although this measurement is not 

formalized. Despite these various empirical strategies, so far, there has been no formal 

discussion about their convenience. 

An exception is Alonso-Villar and Del Río (2010), who put forward a formal framework 

to deal with the segregation of a group in a multigroup context. These authors established 

several criteria for the measurement of a group’s segregation, which they called local 

segregation to distinguish it from overall segregation, developed several indicators that 

meet the criteria, and determined the contribution of each group to overall segregation 

based on each group’s segregation level and demographic share. This local approach is 

especially useful for pinpointing the situations of small groups, whose uneven 

distributions across units may have a limited impact on overall segregation, although it 

                             4 / 39



3 
 

seems also helpful for larger groups (Agrawal, 2016; Del Río and Alonso-Villar, 2015, 

2019; Palencia-Esteban, 2019; Azpitarte et al., 2020).1 Furthermore, this local approach 

facilitates comparisons among demographic groups since it enables researchers to 

account more easily for variability across time and space in the segregation levels and 

characteristics of groups using simple econometric techniques (Alonso-Villar et al., 2012; 

Palencia-Esteban and Del Río, 2020). 

Dealing with the segregation of a group requires adapting the principles of segregation 

measurement, which have focused on overall segregation, to this context. The 

abovementioned local indices satisfy scale invariance, according to which if the size of a 

group (e.g., black women) is multiplied by a positive number, the segregation of that 

group remains unaffected provided there is no change to its distribution across units (e.g., 

occupations) or to the relative size of each unit.2 The property of scale invariance may 

result in the belief that the segregation of a group is independent of the size of the group. 

However, as we will discuss in more detail later, the demographic share of a group 

impacts the highest segregation that the group can attain. Thus, for example, if the 

economy has 200 workers and 5 occupations of equal size, a group consisting of 40 

individuals is fully segregated if it is concentrated in occupations with no workers from 

other groups, i.e., (40, 0, 0, 0, 0), which implies that this group has no presence in units 

accounting for 80% of the total population. This scenario is impossible for a group of 80 

individuals because, for such a group to be fully segregated, no group members may be 

found in occupations representing 60% of the total population, i.e., (40, 40, 0, 0, 0). In 

other words, this group is missing from a smaller part of the economy (60% vs. 80%). 

Accounting for this is particularly important when comparing the segregation levels of 

groups of very different relative sizes, exploring the segregation of a growing group over 

time, or in international comparisons when analyzing a group whose relative size varies 

significantly among countries.  

This question is not only relevant in the case of local segregation. The relative size of the 

groups may also determine the maximum value attainable by overall indices. In fact, 

                                                           
1 This approach has also been extended to consider the consequences of segregation for each group (Del 
Río and Alonso-Villar, 2015; Alonso-Villar and Del Río, 2017). Thus, these authors propose several indices 
that assess the occupational sorting of a group taking into account whether the group tends to be 
concentrated in high- or low-paying occupations. They also provide decompositions that allow determining 
the role that occupational segregation plays in explaining earnings differentials among groups. 
2 As discussed later on, this property—adapted from the one used in the measurement of income 
inequality—differs from both the scale invariance proposed by Frankel and Volij (2011) and the 
composition invariance put forward by James and Taueber (1985) in the case of overall segregation. 

                             5 / 39



4 
 

many overall indices are not equal to 1 when there is full segregation. This is the case, 

inter alia, for the Ip index (Silber, 1992), the (unstandardized) Gini index (Alonso-Villar 

and Del Rio, 2010), and the mutual information index (Theil and Finizza, 1971; Frankel 

and Volij, 2011). Reardon and Firebaugh (2002) opted for standardized (or normalized) 

indices between 0 and 1. Making use of disproportionality functions that compare the 

presence of each group in each unit with its share in the economy, these authors derived 

the generalized dissimilarity index, the generalized Gini index, and the Theil information 

theory index. These three indices result from dividing each of the abovementioned 

unstandardized indicators by its maximum value, which is a function of the groups’ shares 

(Reardon and Firebaugh, 2002).3 However, as far as we know, there has been little 

discussion of the consequences of using standardized versus unstandardized measures 

(Mora and Ruiz-Castillo, 2011). 

This paper aims to provide an analytical framework within which the measurement of 

local and overall segregation, standardized and unstandardized, can be formally 

addressed. This enables the clarification of previous discussions in the literature that arise 

from a lack of distinction between the overall and local approaches when exploring the 

consequences of standardization. For this purpose, this paper: a) develops standardized 

local segregation indices, which allows completion of the picture; b) links these measures 

with existing standardized overall segregation measures; and c) enhances the 

understanding of existing segregation measures by providing a local/overall 

(un)standardization framework within which these measures can be embedded.   

Our research allows not only a deeper exploration into the measurement of a group’s 

segregation but also a better understanding of some of the standardized overall 

segregation measures assessed by Reardon and Firebaugh (2002). It also throws new light 

on the debate about measurement of school segregation (Gorard and Taylor, 2002; Allen 

and Vignoles, 2007) and offers support to some of the empirical strategies used in the 

literature to deal with the situation of a group (Watts, 1995; Iceberg, 2004; Queneau, 

2009; Marcińczak et al., 2016; Maloutas and Spyrellis, 2020). 

In undertaking this research, we use the local segregation curve (Alonso-Villar and Del 

Río, 2010), which helps to interpret the relationship that exists between a group’s size 

and its maximum segregation. We define standardized local segregation indices, evaluate 

                                                           
3 These authors developed another overall segregation index, based on the squared coefficient of variation. 
In this case, the maximum depends not on the group’s weights but on the number of groups. 
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them against a set of properties, and establish the conditions under which the ranking 

provided by local segregation curves is consistent with that of the standardized local 

indices. We then reflect on what standardized local measures show us about overall 

measures, and we embed existing measures within this categorization. Finally, we offer 

an illustration of the new measures through the case of the occupational segregation of 

white women in U.S. metropolitan areas.  

2. The Local Segregation Approach 

Although segregation involves the relationships among the distributions of all groups 

across units, an adequate measurement of each group’s degree of unevenness allows for 

a better understanding of the phenomenon. Local segregation measures satisfying 

desirable properties allow for not only identification of each group’s situation but also 

explanation of the measurement of overall segregation. This section presents this 

approach and extends some properties previously proposed in the literature.  

2.1 Measuring a Group’s Segregation 

Let g be one of the N mutually exclusive groups of society (g=1,…,N). g
jc  denotes the 

number of individuals of group g in unit j (j=1,…,J), jt  is the number of total individuals 

in that unit ( g
j jc t≤ ), g g

j
j

C c=∑  is the group’s size, and j
j

T t=∑  is total population. 

If group g represents, for example, 20% of the total population ( 0.2
gC

T
= ) and is evenly 

distributed across units, one would expect it to account for 20% of the population in each 

unit j ( 0.2
g
j

j

c
t

= ). Or equivalently, if unit j accounts for, say, 5% of the population (

0.05jt
T
= ), it would be “fair” to find 5% of the group in that unit ( 0.05

g
j
g

c
C

= ). As long as 

the group is overrepresented in some units and underrepresented in others, the group is 

unevenly distributed. This is precisely the idea behind the local segregation curve 

(Alonso-Villar and Del Río, 2010), which shows how far the distribution of the group 

across units is from even distribution (according to which the weight of the group in each 
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unit, 
g
j

j

c
t

, should equal its weight in society, 
gC

T
; or equivalently, 

g
j
g

c
C

 equals jt
T

).4 Note 

that this curve differs from the well-known segregation curve discussed in Duncan and 

Duncan (1955). 

To build the local segregation curve of group g, first, we must rank the units in ascending 

order of the ratio 
g
j

j

c
t

. Then, the cumulative proportion of total individuals is plotted on 

the horizontal axis, while the cumulative proportion of group’s g individuals is plotted on 

the vertical axis. Namely, if we denote by i
j

i j

t
T

τ
≤

≡∑  the proportion of individuals who 

are in the first j units, the segregation curve at point jτ  is 

( )

g
i

i jg
j g

c
S

C
τ ≤=

∑
, 

which represents the proportion of group’s g individuals in these units. If the group were 

evenly distributed across units, this curve would be equal to the 45º line. As long as the 

group is underrepresented in some units and overrepresented in others, the curve departs 

from that line, approaching the horizontal axis. This tool can be used to compare different 

scenarios. Thus, if one curve dominates another (i.e., no point of the former curve lies 

below the latter curve and does at some point lie above, as is the case of Sg relative to Sg* 

in Figure 1), we can say that the group is less segregated in the first case than in the 

second.  

Local segregation curves are very useful to illustrate the effect of a group’s size on its 

maximum segregation level. As mentioned above, the maximum segregation of a group 

is attained when it is fully concentrated in units with no members of other groups.5 Let 

us assume, without loss of generality, that a group is fully segregated in one unit.6 Figure 

1 illustrates this situation as the case of a group that accounts for 20% of the population. 

                                                           
4 There has been some debate in the literature about whether the distribution of a group across units should 
be compared to the distribution of total population. However, note that since 

 g g g g
j j j jc t C T c C t T= ⇔ = , comparing g g

jc C to jt T is the same as comparing g
j jc t  to gC T . 

5 Note that, in the real world, full segregation may not be possible because the size of the units may not fit 
with the group’s size. 
6 The property of insensibility to proportional subdivisions ensures that we can focus on cases in which the 
group is concentrated in one unit of size equal to that of the group because distributions of maximum 
segregation across several units would be equivalent to this. 
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The curve of maximum segregation, denoted by Sg*, is equal to 0 up to the unit in which 

the group is fully concentrated (i.e., at point 1
gC

T
− ) and jumps to 1 when that unit is 

aggregated with the previous ones (i.e., when the cumulative proportion of population is 

1), thereby rendering a straight line between these two points. 

 
Figure 1. Two examples of local segregation curves 

Alonso-Villar and Del Río (2010) proposed several local segregation indices—adapted 

from well-known inequality measures—to quantify the extent to which a local 

segregation curve diverges from an even distribution of the group across units (the 45º 

line). These indices are Dg, Gg, 1
gΦ , and g

αΦ  (with 0,1α ≠ )—which includes the local 

index 2
gΦ  based on the squared coefficient of variation—and their maximum values are 

labelled, respectively, Dg*, Gg*, *
1
gΦ and *g

αΦ (see Table 1).7 

                                                           

7 Index 
0

/
ln  

/
g j j

g g
j j

t t T

T c C
Φ =

 
 
 

∑ can only be used if the group appears in all units, i.e., if 0g
jc >  for all  

j. For this reason, we will not define a standardized version of this index. 
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The index Dg measures the highest vertical distance of the curve to the 45º line. Along 

with its graphical interpretation, this index has a very intuitive meaning: when multiplied 

by 100, it represents the percentage of group g individuals who would have to switch 

units for the group to have zero segregation while keeping the size of units unchanged. 

This index was initially proposed by Moir and Shelby Smith (1979) in a binary context 

to explore labor segregation by gender, although its properties in a multigroup context, 

together with its relation to the local segregation curve, were not explored until Alonso-

Villar and Del Río (2010). It has been extensively used to explore school segregation, 

where is usually called Gorard’s index (Gorard and Taylor, 2002; Croxford and Raffe, 

2013). The Gg index is equal to twice the area between the local segregation curve and 

the 45º line. The generalized entropy family offers a different index depending on a 

parameter, α . The value of α  accounts for both the group’s underrepresentation in units 

(i.e., the lower part of the local segregation curve) and its overrepresentation (the upper 

part of the curve). The lower (larger) the value of α , the more sensitive the index is to 

the group’s underrepresentation (overrepresentation).  

These local indices are related to overall segregation indices. Thus, the weighted average 

of local indices Dg, Gg, 1
gΦ  and 2

gΦ  (with weights equal to the groups’ shares) are, 

respectively, equal to the Ip index (Silber, 1992), the unstandardized overall Gini index, 

which we denote here by Gu (Alonso-Villar and Del Rio, 2010), the mutual information 

index, M (Theil and Finizza, 1971; Frankel and Volij, 2011), and the unstandardized 

overall index based on the squared coefficient of variation, which we denote by Cu.8   

It is important to note that, although overall indices can be decomposed by groups in 

several ways, the components of such decompositions may not necessarily be good 

measures of the groups’ segregation. For example, the mutual information index can be 

written as the weighted average (with weights equal to the groups’ shares) of the 

difference between the entropy of the distribution of the population across units and the 

entropy of each group (Frankel and Volij, 2011). However, the difference between 

entropies is not a sensible local segregation indicator because its minimum value is not 

attained when the group is distributed across units in the same manner as the total 

population is—the difference can take negative values—nor does it satisfy the property 

of insensibility to proportional subdivisions—the entropy is sensitive to the number of 

                                                           
8 Cu is the unstandardized version of Reardon and Firebaugh’s (2002) C index divided by 2. 
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units. On the contrary, the indices Dg, Gg, and g
αΦ  are truly local segregation measures 

because they satisfy a wide range of desirable properties, as we discuss below. 

2.2 Properties for Measuring Local Segregation 

To determine whether these indices are suitable for measuring a group’s segregation, we 

list some basic properties proposed in the literature, put forth new properties (which are 

useful when dealing with standardization), and determine whether our local measures 

satisfy them.  

Let ( ),g gc tΘ  be a local segregation measure, where cg is the vector representing the 

number of individuals of group g in each unit j ( g
jc ) and t is the vector indicating the 

number of individuals in each unit j ( jt ). Alonso-Villar and Del Río (2010) established 

several properties that any unstandardized local segregation measure should verify.9 

a) Size Invariance, which signifies that if we multiply both the number of individuals 

of the group and the number of total workers in each unit by a positive number, 

the segregation of the group does not change. Namely, if 'g g
j jc cλ=  and 'j jt tλ=  

for any 0λ >  and 1,...,j J= , then ( ) ( )', ' ,g g g gc t c tΘ = Θ . 

b) Scale Invariance refers to the fact that the group’s segregation does not change if, 

in each unit, the number of individuals of the group is multiplied by a positive 

number and the total number of individuals is multiplied by another (whenever 

these changes are compatible). Namely, if 'g g
j jc cλ=  and 'j jt tβ=  for 1,...,j J=  

(where 0λ > , 0β > , and g
j jc tλ β≤ ), then ( ) ( )', ' ,g g g gc t c tΘ = Θ .10 

                                                           
9 These properties are adapted from the income-inequality measurement, where a high level of consensus 
about basic properties exists. Following this approach, the segregation level of group g can be defined as 

the inequality level of a fictitious distribution 

1

1 1

1 1

 individuals  individuals

( ,..., ,..., ,..., )

J

g gg g
J J

J J

t t

c cc c
t t t t
 

with T individuals. 

10 Note that this property differs from the scale invariance proposed by Frankel and Volij (2011) to measure 
overall rather than local segregation since these authors require that the index remain unaltered when all 
groups increase by the same proportion in all units. It also differs from the composition invariance put 
forward by James and Taueber (1985), which requires that overall segregation does not change when the 
number of individuals of a group is multiplied by a constant factor in each unit, a criterion not free of 
controversy (White, 1986; Reardon and Firebaugh, 2002; Fosset, 2017). The scale invariance criterion used 
in this paper keeps the essence of the one used in the measurement of income inequality, a property widely 
accepted in that field (although other approaches, as in the case of absolute and intermediate inequality, 
also exist). 
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c) Symmetry, which means that if the units are permuted, the segregation of the group 

remains unaltered. Namely, if ( )'g g
j jc cΠ=  and ( )'j jt tΠ= , where ( (1),..., ( ))JΠ Π  is 

a permutation of units (1,..., )J , then ( ) ( )', ' ,g g g gc t c tΘ = Θ . 

d) Insensitivity to Proportional Subdivisions of units, i.e., the segregation level of 

the group does not change if a unit is split into several units of equal size with 

identical number of individuals of the group. Namely, assuming for the sake of 

simplicity that we split the last unit in K>0 units, if 'g g
j jc c= and 'j jt t=  for any 

1,..., 1j J= − , and '
g

g J
J i

cc
K+ =  and ' j

j i

t
t

K+ =  for 0,..., 1i K= − , then 

( ) ( )', ' ,g g g gc t c tΘ = Θ . 

e) Sensitivity to Disequalizing Movements (type I): Disequalizing movements of the 

group between equally-sized units, the size of which does not change after that 

movement (i.e., if a unit with a lower number of individuals of the target group 

than another loses some of those individuals in favor of the latter, other things 

being equal) increase the group’s segregation.11 Namely, if 'g g
i ic c d= −  and 

'g g
h hc c d= + , where i and h are two units such that g g

i hc c<  and i ht t= , whereas 

'g g
j jc c=  for ,j i h≠ , then ( ) ( )', ,g g g gc t c tΘ > Θ . 

As these authors proved, properties (b) to (e) are very important because render an index 
gΘ  consistent with the dominance criterion given by the local segregation curves (this is 

analogous to what happens when using the Lorenz curves to measure income inequality, 

a tool widely accepted in the field). In other words, a local segregation curve dominates 

another if, and only if, for any local segregation index gΘ  that satisfies scale invariance, 

symmetry, insensitivity to proportional divisions, and sensitivity to disequalizing 

movements type I, gΘ  is lower in the former case than in the latter.  

Note that alternative definitions of sensitivity to disequalizing movements may be 

articulated depending on how strictly we conceive of the circumstances under which we 

expect segregation to increase. This is why we put forth two new properties here: 

f) Sensitivity to Disequalizing Movements (type II): Disequalizing movements of the 

group between one unit and another unit with a higher representation of the group 

                                                           
11 In Alonso-Villar and Del Río (2010) this property appears as “movement between groups.” 
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(i.e., if the group’s representation diminishes in the former unit and rises in the 

latter), while the size of these units do not change, produce an increase in the 

group’s segregation. Namely, if 'g g
i ic c d= −  and 'g g

h hc c d= + , where i and h are 

two units such that 
g g
i h

i h

c c
t t
< , whereas 'g g

j jc c=  for ,j i h≠ , then 

( ) ( )', ,g g g gc t c tΘ > Θ .  

g) Sensitivity to Disequalizing Movements (type III): Disequalizing movements of 

the group between one unit and another unit with a higher representation of the 

group (i.e., if the group’s representation diminishes in the former unit and rises in 

the latter), whereas the sizes of these units change accordingly, result in an 

increase in the group’s segregation. Namely, if 'g g
i ic c d= − , 'g g

h hc c d= + , 

'i it t d= − , and 'h ht t d= + , i and h being two units such that 
g g
i h

i h

c c
t t
< , whereas 

'g g
j jc c=  and 'j jt t=  for ,j i h≠ , then ( ) ( )', ' ,g g g gc t c tΘ > Θ . 

The question we now pose is whether properties (f) and (g) are too restrictive or, instead, 

commonly fulfilled. Propositions 1 and 2 reveal that these new properties, which allow 

us to compare more scenarios than does property (e), are not difficult to satisfy. In fact, 

as Corollary 1 shows, many local indices meet them.   

Proposition 1. If a local segregation index ( ),g gc tΘ  satisfies insensitivity to 

proportional divisions and sensitivity to disequalizing movements type I, then it also 

fulfills sensitivity to disequalizing movements type II. 

Proof. See Appendix A.  

Proposition 2. Any local segregation index ( ),g gc tΘ  consistent with the dominance 

criterion given by the local segregation curves satisfies sensitivity to disequalizing 

movements type III. 

Proof. See Appendix A.  

Corollary 1. The indices gG  and g
αΦ  satisfy size and scale invariance, symmetry, 

insensitivity to proportional divisions, and sensitivity to disequalizing movements type I, 
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type II, and type III. Index Dg fulfills size and scale invariance, symmetry, and insensitivity 

to proportional divisions. 

Proof. See Appendix A. 

3. A New Proposal: Standardized Local Segregation Measures 

As mentioned earlier, the maximum segregation level of a group is not independent of 

the group’s size. The reason is that when a group is small, it can be absent from units that 

account for a large share of total population, whereas this situation is impossible for large 

groups. How, therefore, is it possible to compare two groups that differ in terms of relative 

size but are distributed across units in the same way? Here we explore a procedure that 

measures the segregation of a group accounting not merely for how the group is 

distributed across units, but also the maximum segregation attainable by the group.  

3.1 Standardized Local Segregation Measures  

We here develop several standardized local indicators, globally denoted by ( ),g gc tΘ , 

defined as the quotient between a local segregation index, ( ),g gc tΘ , and the value of that 

index when the group is fully segregated,  *gΘ . Namely, ( ) ( )
*

,
,

g g
g g

g

c t
c t

Θ
Θ =

Θ
 . This 

approach squares with the measurement of overall segregation put forward by Reardon 

and Firebaugh (2002) in that we divide the index by the maximum segregation level, 

although in our case segregation refers to a group (say, black women) rather than to 

overall segregation (say, by gender and race). 12 

To measure the segregation of a group we propose using 1 , n,  d , ag g g gD G αΦ Φ


  , shown in 

Table 1, which are obtained dividing 1 , an, , d g g g gD G αΦ Φ , respectively, by their 

maximum values ( * * * *
1 , and , ,g g g gD G αΦ Φ ). Imposing this standardization yields a 

                                                           
12 When standardizing an index dividing it by its maximum, scholars use a theoretical maximum that does 
not account for the units but instead approximates the “actual” maximum existing in each empirical case 
(consequently, the actual distribution of maximum segregation may vary depending on the index used). 
This theoretical maximum takes the groups’ weights as given (unlike the absolute maximum reached if the 
shares of the groups and units were not fixed). Standardizing indices using the absolute maximum would 
ensure a common reference, which would facilitate comparability. In empirical analyses, however, it seems 
more sensible to take the share of the groups as given.   
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maximum value of indices 1 , n,  d , ag g g gD G αΦ Φ


   that is always 1, which facilitates 

comparisons among different groups or a group across time and space. 

Making use of the interpretation of Dg mentioned above, gD  may be thought of as the 

proportion of group g individuals who must transfer among units to attain 0 segregation 

divided by the proportion who must move if the group were fully segregated. 

Corollary 2 shows the properties fulfilled by these standardized indices. 

Corollary 2. The indices gG  and g
αΦ  satisfy size invariance, symmetry, insensitivity to 

proportional divisions, and sensitivity to disequalizing movements type I, type II, and type 

III. The index gD  fulfills size invariance, symmetry, and insensitivity to proportional 

divisions. 

Proof. See Appendix A.  

The next theorem demonstrates the relationship that exists between the dominance 

criterion associated with the local segregation curves and the standardized indices.  

Theorem. If the local segregation curve of a group dominates that of another group 

whereas the opposite holds for the curves of maximum segregation, then segregation will 

be lower in the first case than in the second for any standardized local segregation index 

( ) ( )
*

,
,

g g
g g

g

c t
c t

Θ
Θ =

Θ
 , where ( ),g gc tΘ  satisfies scale invariance, symmetry, 

insensitivity to proportional divisions, and sensitivity to disequalizing movements type I.13 

Proof. See Appendix A. 

Note that the properties that we require gΘ  meet are the properties that render these 

indices consistent with the dominance criterion established by Alonso-Villar and Del Río 

(2010). Accordingly, it follows that if the local segregation curve of a group is above 

another (i.e., the former dominates the latter) and the ranking is the reverse for these 

groups’ curves of maximum segregation, we need not calculate any gΘ  index (included 

in the set of indices established in the theorem) because all of them would lead to the 

same conclusion: segregation is lower for the first group. 

                                                           
13 If there is dominance in one case and the curves are equal in the other case, the theorem still holds. 
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Finally, it follows from the next proposition that to determine whether the curve of 

maximum segregation for a group dominates that of another group we need only know 

these groups’ demographic shares. 

Proposition 3. The local segregation curve of a group associated with that group’s 

maximum segregation dominates that of another group if, and only if, in the former case 

the group accounts for a larger share of the population than it does in the latter. 

Proof. See Appendix A. 

3.2 Relation Between Standardized Local and Overall Segregation Measures 

In their 2002 paper, Reardon and Firebaugh derived several standardized overall 

measures using the notion of disproportionality (i.e., the overrepresentation and 

underrepresentation of groups in units), and assessed them against James and Taeuber’s 

(1985) criteria. As Table 2 shows, these overall indices, D,14 G,15 H,16 and C,17 can be 

decomposed, respectively, in terms of standardized local indices, 1 2 , , , and g g g gD G Φ Φ   , in 

such a way that overall segregation is the weighted average of the local segregation of the 

groups involved.  

  

 

                                                           
14 D is equivalent to that proposed by Morgan (1975) and Sakoda (1981). To build D, Sakoda (1981) drew 
inspiration from an expression like gD , although the segregation of a group was not explored. Note that D 

is also the Ip index divided by its maximum (
*
p

p

D
I

I
= ; * *

g

g

g

p

C

T
I D= ∑ ). 

15 G is the unstandardized overall Gini index (Alonso-Villar and Del Río, 2010), Gu, divided by its 

maximum (
*
u

u

G
G

G
= ; **

g

g

g
u

C

T
G G= ∑ ). 

16 H is the mutual information index, M, divided by its maximum (
*

M
H

M
= ; * *

1

g
g

g

C
M

T
= Φ∑ ).  

17 C is the quotient between an unstandardized overall index based on the squared coefficient of variation, 

Cu, and its maximum ( *
u

u

C
C

C
= ; *

2
* 2

g

g

g
u

C
C

T
= Φ∑ ). 
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To illustrate this in the case of four demographic groups (white women, white men, non-

white women, and non-white men), Table 3 shows (standardized and unstandardized) overall 

and local occupational segregation in Los Angeles.18 We see that 28% of workers (1,728,771) 

would have to be reallocated across occupations to have no segregation (Ip index). However, 

this number is not equally split among the groups. As Dg indicates, 25% of non-white men 

would have to switch occupations to be evenly distributed (579,597), and this percentage 

rises to 31% for white women (284,270).19  

Table 3. Local and overall segregation in Los Angeles 

 
Index D shows that, to have zero segregation in Los Angeles, the number of workers who 

would have to be reallocated across occupations (1,728,771) represents 38% of those who 

would have to be reallocated in case of maximum segregation. gD  reveals that although the 

unstandardized segregation of non-white men is not especially high, its degree of unevenness 

may be judged as high ( 0.4gD = ) when taking into account its maximum segregation
*( 0.64)gD = .  

                                                           
18 Los Angeles is one of the metropolitan areas included in the empirical section. We chose it because it has a 
sample large enough to explore these four groups using a detailed occupational classification.    

19 Given that 
g

g
p

g

CI D
T

=∑ , the contribution of each group to overall segregation (
g

gC
D

T
) also depends 

on its size. Although white women are more unevenly distributed than non-white men, the contribution of white 
women to overall segregation is half that of non-white men due to its smaller size. 
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This example shows the utility of standardized (local and overall) measures since they allow 

us to compare each scenario with the worst possible scenario. In any case, one should bear 

in mind that, although some of the most popular overall segregation measures are 

standardized (Jahn et al., 1947; Duncan and Duncan, 1955; Theil and Finizza, 1971; Reardon 

and Firebaugh, 2002), the debate on standardization has not been settled. In fact, due to its 

decomposability properties, the unstandardized mutual information index, M, is preferred by 

some scholars to the standardized one, H (Mora and Ruiz-Castillo, 2011; Elbers, 2020). 

3.3 What Does the Local Segregation Approach Show Us About Overall 

Segregation? 

The relationships that exist among local and overall segregation indices, summarized in Table 

4, allows us to expand our knowledge of the measurement of overall segregation, as we now 

demonstrate.  

First, the properties of the local segregation indices help us understand whether the principle 

of transfers, proposed by James and Taeuber (1985) in the binary case, can be relaxed when 

measuring multigroup overall segregation. Reardon and Firebaugh (2002) proved that the 

information theory index, H, is the only one of the four standardized overall indices 

mentioned above that verifies this principle in a multigroup context (i.e., the only one that 

always decreases when an individual in a group moves to a unit where the group has a lower 

representation). This is why these authors recommend the use of H to measure multigroup 

overall segregation.  

However, they also question “whether the violation of the principle of transfers seriously 

undermines the non-H indices, or instead is of little practical consequence in most research 

applications” (p. 58). In light of the local segregation approach shown here, that H is alone, 

among these standardized overall indices, in verifying the principle of transfers does not seem 

too problematic. As we have shown, both G and C can be generated via standardized local 

segregation indices satisfying sensitivity to disequalizing movements type III (which is the 

principle of transfers applied to the segregation of each group). This suggests that, unlike D, 

in the case of G and C, the violation of the principle of transfers does not undermine its 

essence. The idea is that, when using G and C, we cannot ensure that the reduction in overall 

segregation arising from an equalizing movement of individuals in a group (from one unit to 
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another) does more than offset the possible rise in segregation derived from the impact of the 

changes in the size of those units on other groups (especially if those groups are highly 

overrepresented in the unit of origin and underrepresented in the unit of destination).20  

In our opinion, to require that equalizing movements in a group reduce overall segregation 

(as happens with H and M) seems a requirement that we can waive whenever the 

corresponding local indices do satisfy sensitivity to disequalizing movements type III. 

Second, the well-known dissimilarity index can be interpreted as the proportion of minority 

members that would have to be reallocated across units to be evenly distributed divided by 

the proportion that would have to move in the case of complete unevenness (Jakubs, 1979; 

Massey and Denton, 1988). Our approach shows that if we standardize Dg, the segregation 

of the minority group equals that of the majority group when 2N =  ( 1 2D D=  ) and, therefore, 

the index of dissimilarity can be expressed as 1 1 2 2 1 2D w D w D D D= + = =   

  .21 Consequently, 

the dissimilarity index can be interpreted as a standardized local segregation measure ( gD ). 

Our analysis also highlights the symmetry that the standardization of Dg brings to the (local) 

segregation measurement when 2N = . This clarifies the discussions about the measurement 

of school segregation in the U.K. (Gorard and Taylor, 2002; Allen and Vignoles, 2007; 

Johnston and Jones, 2010; Gorard, 2011; Watts, 2013) since it allows placement of Gorard’s 

index and the dissimilarity index in this local/overall (un)standardization framework, the 

former being the unstandardized local index gD . 

 

  

                                                           
20 This rationale can be extended to the corresponding unstandardized measures (Gu and Cu against M).  
21 Note that the dissimilarity index is equal to the generalized dissimilarity index when 2N =  (Reardon and 
Firebaugh, 2002).  
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Third, independently of the number of groups, the values of gD , gG , and 2
gΦ  are the same 

for group g and its complement. Therefore, these local indices equal, respectively, the 

dissimilarity index, the traditional Gini index, and the C index in the two-group case.22 In 

other words, in multigroup contexts, the dissimilarity index, the Gini index, and the C index 

can be used to compare a group with its complement since they can be interpreted as 

standardized local segregation indices which satisfy basic properties.23 

Fourth, the revised index of isolation, I1, proposed by Bell (1954)—also known as the 

correlation ratio—can be interpreted as a standardized local segregation index since 

1 2( ) ,  g=1,...,NgI g =Φ ∀ . This elucidates the discussion offered in Massey and Denton (1988) 

about the nature of this index since although it was originally proposed to deal with exposure, 

it can also be used to deal with a group’s segregation from an evenness perspective.  

4. An Illustration: Occupational Segregation of White Women in U.S. 

Metropolitan Areas 

To illustrate the similarities and differences between standardized and unstandardized local 

segregation measures, we examine the occupational segregation of white women in the 

largest metropolitan areas in the U.S. We choose this group because it has a large presence 

in all large metropolitan areas while its demographic weight differs notably across them.  

We use the 2012-16 American Community Survey (ACS) provided by the IPUMS-USA 

(Ruggles et al., 2017). We select the 51 metropolitan areas (MAs) with more than 1 million 

inhabitants (based on the 2010 census). White women are identified on the basis of the 

information reported by the interviewees about their gender and race/ethnicity, considering 

only those women who are white and non-Hispanic.  

                                                           
22 Note that, when 2N = , 1 1 2 2 1 2G w G w G G G= + = =   

   and 1 21 2 1 2

2 2 2 2
ˆ ˆw wC = + = =Φ Φ Φ Φ    . However, this does 

not apply to other indices (H and 1
gΦ  do not coincide because, in general, 1 2

1 1Φ Φ≠  ). 
23 This is in line with the method developed by Reardon and Firebaugh (2002) to derive overall multigroup 
segregation measures from dichotomous measures.  
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Our occupational classification distinguishes among 458 categories, which allows us to 

measure segregation in a highly precise way.24  For each MA we calculate 12 local 

segregation indices (6 unstandardized and 6 standardized): Dg ( gD ), Gg ( gG ), and g
αΦ ( g

αΦ ) 

for α = 0.1, 0.5, 1, and 2. For simplicity, the presentation focuses on indices Dg and gD , 

referring to the others only when necessary.  

Figure 2 plots the index Dg against the share of white women in each MA (this share ranges 

between 14.6% in Miami and 42.3% in Pittsburgh). Boston, Minneapolis, and Washington, 

D.C., are among the MAs in which white women have the lowest segregation, whereas in 

Houston, San Jose, Memphis, and New Orleans they have the highest segregation. Although 

the group’s size does not determine its segregation level (compare, for example, Memphis 

and Washington), the chart shows a negative relationship between unevenness and size (the 

pattern is similar for the other indices). 

 
Figure 2. Population share of white women and index Dg 

                                                           
24 The purpose of this illustration is to discuss what standardization brings to the analysis. As usual in empirical 
analyses, the quality of the estimates depend on the data. Several proposals have been developed in the literature 
to address the bias arising from sample-based estimates (Allen et al., 2015; Mazza and Punzo, 2015; Fossett, 
2017; Reardon et al., 2018), a topic beyond the scope of this paper. 
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How do we assess the occupational sorting of white women when taking into account the 

maximum unevenness they can face? To do this, we compare Dg and gD  (Figure 3).25 

The dotted lines represent the mean values of the indices. Washington is among the MAs in 

which white women have the lowest overrepresentation and underrepresentation in 

occupations, whether we use standardized and unstandardized measures. According to Dg, 

the percentage of white women in Washington who must switch occupations in order for the 

group to be evenly distributed is slightly above 25%. On the other hand, gD = 0.33, i.e., the 

number of white women in this MA who must change occupation represents 33% of all white 

women who must move in case of maximum segregation.26 This suggests that the segregation 

of white women in Washington is far from reaching its maximum level. 

 

 Figure 3. Values of the indices Dg and gD  

                                                           
25 Table A1 in Appendix B provides the corresponding values, together with the share of white women. Figure 
A3 shows the other indices. 
26 In Washington, Dg*=0.77, i.e., if white women were completely segregated, 3 out of 4 would have to change 
occupations to achieve an even distribution. 
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The remaining indices used in this study lead to the same conclusion: Washington has a low 

level of segregation (Figure A3). Moreover, Washington has a lower level of segregation 

than other MAs for the wider range of indices consistent with the dominance criterion 

provided by the theorem presented in Section 3. Thus, for example, Figure 4 shows that 

Washington’s local segregation curve dominates that of New Orleans, while the opposite 

obtains for the curves of maximum segregation, thereby ensuring a lower level of segregation 

for white women in Washington for all the indices consistent with the dominance criterion 

(standardized or not).27  

 

Figure 4. Local segregation curves (actual and maximum), Washington and New Orleans 

New Orleans and Memphis represent cases that stand in opposition to Washington because 

they have high levels of segregation regardless of the approach followed (Figure 3). 

Moreover, this is so although the three cities have a similar share of white women workers.  

Boston and Minneapolis share with Washington a low unstandardized segregation (

0.25gD = ). However, this figure represents around 40% of the maximum value of the index, 

                                                           
27 Other large MAs having a similar position in the ranking with indices Dg and gD include Chicago, Seattle, 
Denver, Phoenix, and Detroit (Figure 3). According to most of the (standardized and unstandardized) indices, 
all these cities have intermediate levels of segregation. 
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which means these cities have an intermediate rather than a low position in the ranking based 

on gD . How do we interpret this? On the one hand, Dg shows that the three MAs have 

something in common: 1 out of 4 white women working there must change occupation for 

this group to have in each occupation the same weight it has in the corresponding MA. On 

the other hand, gD  allows us to take a step further by accounting also for the size of the 

group; this reveals that segregation is a more acute phenomenon in Boston and Minneapolis 

than it is in Washington. This is so because the 25% of white women requiring occupation 

changes to achieve no segregation represents a higher proportion of total workers (or jobs) 

in the labor markets of the former cities (10% vs. 6%).  

Pittsburgh stands out as a paradigmatic case. The relatively low value of Dg (=0.27) in this 

area represents almost half of the maximum segregation attainable by the group. Pittsburgh 

is therefore the MA with the highest standardized segregation of the country according to 

index gD (=0.47). Indices 1 2and, ,   g ggG Φ Φ
   go in the same direction (Figure A3). However, 

according to 0.1
gΦ , New Orleans is the MA with the highest value. This is because 0.1

gΦ  

focuses much more on the intensity of underrepresentation (i.e., the lower part of the local 

segregation curve), embodied in 0.1
gΦ , than on the group’s size. This underrepresentation is 

higher in New Orleans than in Pittsburgh (white women are virtually absent from occupations 

that account for 6% of total employment in the former whereas this group accounts for less 

than 2% in the latter).  

Our analysis also shows that standardization affects the various indices of the generalized 

entropy family differently. If α is close to zero, the rankings given by g
αΦ  and g

αΦ  are very 

similar (Figure A3). For 0.1α = , the Spearman’s rank-order correlation is 0.86. However, 

when α is high, the value of g
αΦ  is strongly affected by the group’s size given that 

*g
αΦ  

decreases dramatically when the size increases (Figure A2) and this effect dominates over 

the differences in g
αΦ .28 This explains the negative correlation (-0.55) that exists between 

2
gΦ  and 2

gΦ  (Figure A3). 

                                                           
28 Recall that the higher the value of α, the more the index focuses on the overrepresentation of the group. 
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In light of these findings, standardizing the indices of the generalized entropy family with 

2α >  does not seem recommendable since the ranking they provide is strongly affected by 

the relative size of the group. However, indices with a low value of α ( 0.5α < ) could be 

useful if one is especially interested in the underrepresentation of the group in occupations. 

The remaining indices, 1,  ,  and g g gD G Φ , share a common pattern. They have very small 

(negative) correlations with their standardized versions (-0.03, -0.2, and -0.18, respectively), 

which suggests that standardization in these cases brings a certain balance between 

unevenness and distance to maximum segregation. 

In light of this, are white women in Pittsburgh highly concentrated in some occupations (as 

most standardized indices suggest), or is the segregation of this group below average and, 

especially, smaller than in New Orleans (as the unstandardized indices display)? If we look 

at the extent to which the occupational sorting of white women departs from evenness, we 

see that Pittsburgh exhibits an intermediate-low level, whereas New Orleans is among the 

MAs with the highest values. However, when taking into account the maximum segregation 

of the group in each MA, we assess the situation in Pittsburgh as harsher than in the remaining 

areas.  

5. Final Comments 

To be evenly distributed, a group that represents x percent of the total population should 

account for x percent of the individuals in each unit. For this to be the case, the distribution 

of the group across units should be equal to the distribution of the total population across 

these same units. As long as these two distributions depart from each other, the group is said 

to be segregated and this phenomenon can be computed using any unstandardized local 

segregation measure already proposed in the literature. 

However, the fact that a given percentage of individuals in the group has to change units to 

be evenly distributed may be judged as problematic depending on the maximum segregation 

the group can attain, an issue already pointed out by Jahn et al. (1947, pp. 293-294) several 

decades ago: “If ten per cent of the population of a city is Negro, then each census tract would 

be expected to have a Negro population of approximately ten per cent. […] The major 

disadvantage of this score is that it can vary without controlled limits. This defect can be 
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surmounted by expressing the differences between observed and expected numbers of 

Negroes as a proportion of the differences which would obtain if there were "complete 

segregation."” 

This paper has taken a step further by exploring standardization in an analytical framework 

that offers a clear distinction between the measurement of overall and local segregation, 

embedding existing indices within this framework, and addressing gaps in previous research. 

The standardized local segregation indices developed here have several desirable properties, 

are related to the local segregation curves, and are consistent with existing standardized 

overall segregation indices, given that the latter can be written as the weighted average of the 

standardized local segregation of the groups involved. 

This local approach allows a deeper exploration into the properties that overall measures 

should satisfy, as is the case of the principle of transfers  used in a multigroup context 

(Reardon and Firebaugh, 2002), and brings analytical support to the interpretation of the 

components of overall measures in terms of the segregation levels of the incumbent groups 

(Watts, 1995). It also helps clarify some of the debate around the measurement of school 

segregation (Alles and Vignoles, 2007; Gorard, 2011) since the distinction between local and 

overall measures, together with standardization, is key to understanding the relationship 

between the different proposals. Our framework also gives formal support to some of the 

empirical strategies used so far to deal with the situation of target groups. Thus, the 

dissimilarity index, the Gini index, and the correlation ratio used to compare a group with 

the remaining groups seem suitable to measure that group’s situation since they are actually 

standardized local segregation indices satisfying basic properties. 

This paper has widened the debate on standardization. Our analysis shows that standardized 

indices quantify segregation from an angle significantly different from unstandardized 

indices, and this is the case whether we use local or overall measures. Unstandardized 

measures associated with disproportional functions account for the distance between the 

distribution of the groups across units and the egalitarian distribution—according to which 

the presence of each group in each unit must equal the expected value assigned by its weight 

in the economy. On the contrary, standardized measures quantify the proximity of the former 

distribution to the distribution of maximum segregation. We claim that standardized local 
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(respectively, overall) indices can be especially useful in empirical studies that involve 

groups (respectively, societies) of highly different relative sizes (respectively, 

composition)—as is the case of our illustration—since they allow for greater comparability  

by providing a frame of reference within which the group’s unevenness can be assessed. Our 

research contributes to the literature by offering an analytical framework within which all of 

this local/overall (un)standardization debate can be embedded. 
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Appendix A 

Maximum values of the indices. To obtain *gD and *gG , use the graphical interpretation 

(Figure 1). As for *g
αΦ  ( 0,1α ≠ ), note that if the group is fully segregated
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Proof of Proposition 1. Assume that i and h are two units such that 
g g
i h

i h

c c
t t
< . Taking into 

account that ( ),g gc tΘ  satisfies insensitivity to proportional divisions, the segregation of 

group g remains the same if i and h are split into ti and th subunits (of size 1 each), where the 

former subunits each account for 
g
i

i

c
t

 “individuals” of group g and the latter for 
g
h

h

c
t

. 

If 
i h

d
t t

 “people” of g leave one of the subunits of i to move to one of the subunits of h, the 

segregation of g will increase, given that the two subunits have the same size and the index 

satisfies the property of disequalizing movements type I. Reiterating this for all other subunits 

of h, we will have a sequence of th disequalizing movements type I between units of the same 

size, which leads to a higher segregation for g (a total of 
i

d
t

 individuals of g are moving from 

a subunit of unit i to h). If we repeat this process for any other subunit of unit i, eventually, 

i
i

dt d
t
=  individuals will have switched from i to h. 

Therefore, a transfer of d individuals of group g from i to h, which does not alter the size of 

these units,29 can be expressed as a sequence of disequalizing movements type I between units 

of the same size, which signifies a rise in the level of segregation of g. Once more employing 

                                                           
29 This implies that an equal number of individuals from other groups has moved in the opposite direction. 
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the insensitivity to proportional divisions, the segregation of g is the same in the case of either 

having these small subunits or aggregating them to give rise to  i and h. 

Proof of Proposition 2. Assume that i and h are such that 
g g
i h

i h

c c
t t
<  and that d  people ( g

id c<

) are transferred from i to h without replacement, i.e., 'g g
i ic c d= − , 'g g

h hc c d= + , 'i it t d= − , 

and 'h ht t d= +  (no changes in the other units, i.e., 'g g
j jc c=  and 'j jt t= for ,j i h≠ ). Let us 

assume, without loss of generality, that i is the unit in which g has the lowest representation 

and h is the next unit in the ranking (Figure A1).  

First, we prove that, at point it d
T
−

 , the post-transfer curve is below the other, making use 

of simple trigonometric analysis.30 We need only prove that tan( ) tan( )α β> . Note that 

tan( )

g
i
g

i

c
C
t
T

α = , tan( )

g
i

g

i

c d
C

t d
T
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−

=
− , and that tan( ) tan( ) g

i it cα β> ⇔ > . Given that in i the 

group’s representation is below that in h, then 1
g
i

i

c
t
< . 

 
Figure A1. The segregation curve before (solid line) and after transfers (dash line) 

                                                           
30 If g

id c= , it is trivial to prove that the curve after the transfer is below the other. 
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Second, we must show that, at point it
T

, the curve after the transfer is below (or equal to) the 

other. If we denote by x the difference between the curve after the transfer at point it
T

 and 

g
i

g

c d
C
−

, then tan( )

g
h

g

h

c d
x C
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T T
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+
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C C
−

+ ≤  because g
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Proof of Corollary 1. It follows from Theorem 1 in Alonso-Villar and Del Río (2010) and 

Propositions 1 and 2. 

Proof of Corollary 2. This follows from the fact that the unstandardized versions of these 

indices satisfy the corresponding properties and the standardized indices are obtained through 

the former by dividing them by a constant.  

Proof of Theorem. If the local segregation curve in case A dominates that in B, any index 

( ),g gc tΘ  satisfying scale invariance, symmetry, insensitivity to proportional divisions, and 

sensitivity to disequalizing movements type I will have a lower value in case A than in B 

(Alonso-Villar and Del Río, 2010; Theorem 1). For the same reason, *gΘ  is higher in B than 

in A given that the curve of the former dominates that of the latter. Therefore, 

( ) ( )
*

,
,

g g
g g

g

c t
c t

Θ
Θ =

Θ
  is higher in A than in B. 

Proof of Proposition 3. If one group has a larger share of the population than another group, 

the curve of maximum segregation will be equal to 0 up to a point that is lower than that of 

the other group and after that point the curve will be above the other (Figure 1). This means 

that the curve of the larger group dominates that of the smaller. 

The other implication can be easily proved by proof by contradiction.  
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Figure A2. Maximum local segregation ( * * * * * *
0.1 0.5 1 2,  ,  ,  ,  ,  and g g g g g gD G Φ Φ Φ Φ ) 
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Appendix B 

Table A1. Population share of white women and indices Dg and gD  in each MA 

 

 Segregation indices 
Population share of 

white women 
Metropolitan Areas ranked by gD  gD  

gD  
g*D  

Columbus, OH 0.2475 0.3926 0.6304 37.0 
Minneapolis-St. Paul-Bloomington, MN-WI 0.2488 0.4109 0.6055 39.4 
Boston-Cambridge-Newton, MA-NH 0.2508 0.3968 0.6321 36.8 
Washington-Arlington-Alexandria, DC-VA-MD-WV 0.2559 0.3308 0.7736 22.6 
Baltimore-Columbia-Towson, MD 0.2565 0.3626 0.7074 29.3 
Tampa-St. Petersburg-Clearwater, FL 0.2610 0.3832 0.6811 31.9 
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.2622 0.3907 0.6711 32.9 
Sacramento--Roseville--Arden-Arcade, CA 0.2625 0.3625 0.7242 27.6 
Buffalo-Cheektowaga-Niagara Falls, NY 0.2626 0.4423 0.5936 40.6 
Hartford-West Hartford-East Hartford, CT 0.2631 0.4076 0.6455 35.4 
Rochester, NY 0.2638 0.4408 0.5984 40.2 
St. Louis, MO-IL 0.2650 0.4211 0.6292 37.1 
Louisville/Jefferson County, KY-IN 0.2663 0.4316 0.6171 38.3 
Indianapolis-Carmel-Anderson, IN 0.2664 0.4228 0.6301 37.0 
Cleveland-Elyria, OH 0.2668 0.4194 0.6360 36.4 
Cincinnati, OH-KY-IN 0.2672 0.4400 0.6073 39.3 
Seattle-Tacoma-Bellevue, WA 0.2682 0.3917 0.6847 31.5 
Denver-Aurora-Lakewood, CO 0.2699 0.4012 0.6728 32.7 
Nashville-Davidson--Murfreesboro--Franklin, TN 0.2716 0.4224 0.6428 35.7 
Pittsburgh, PA 0.2718 0.4713 0.5767 42.3 
Orlando-Kissimmee-Sanford, FL 0.2722 0.3595 0.7572 24.3 
Portland-Vancouver-Hillsboro, OR-WA 0.2739 0.4305 0.6364 36.4 
Providence-Warwick, RI-MA 0.2742 0.4568 0.6003 40.0 
Milwaukee-Waukesha-West Allis, WI 0.2749 0.4287 0.6412 35.9 
Richmond, VA 0.2752 0.3895 0.7065 29.4 
Austin-Round Rock, TX 0.2759 0.3754 0.7349 26.5 
Atlanta-Sandy Springs-Roswell, GA 0.2774 0.3626 0.7651 23.5 
Kansas City, MO-KS 0.2775 0.4381 0.6335 36.6 
Jacksonville, FL 0.2782 0.4000 0.6956 30.4 
Chicago-Naperville-Elgin, IL-IN-WI 0.2790 0.3857 0.7233 27.7 
Detroit-Warren-Dearborn, MI 0.2795 0.4191 0.6671 33.3 
San Francisco-Oakland-Hayward, CA 0.2809 0.3516 0.7989 20.1 
Raleigh, NC 0.2816 0.4025 0.6996 30.0 
New York-Newark-Jersey City, NY-NJ-PA 0.2824 0.3695 0.7643 23.6 
Phoenix-Mesa-Scottsdale, AZ 0.2851 0.3979 0.7165 28.3 
Salt Lake City, UT 0.2867 0.4362 0.6573 34.3 
Charlotte-Concord-Gastonia, NC-SC 0.2952 0.4204 0.7021 29.8 
Las Vegas-Henderson-Paradise, NV 0.2962 0.3768 0.7861 21.4 
San Diego-Carlsbad, CA 0.2970 0.3782 0.7853 21.5 
Virginia Beach-Norfolk-Newport News, VA-NC 0.2974 0.3990 0.7453 25.5 
Miami-Fort Lauderdale-West Palm Beach, FL 0.2987 0.3497 0.8540 14.6 
Oklahoma City, OK 0.3011 0.4434 0.6791 32.1 
San Antonio-New Braunfels, TX 0.3013 0.3600 0.8370 16.3 
Dallas-Fort Worth-Arlington, TX 0.3044 0.3984 0.7640 23.6 
Birmingham-Hoover, AL 0.3050 0.4401 0.6930 30.7 
Los Angeles-Long Beach-Anaheim, CA 0.3059 0.3594 0.8513 14.9 
New Orleans-Metairie, LA 0.3212 0.4360 0.7367 26.3 
Memphis, TN-MS-AR 0.3257 0.4220 0.7718 22.8 
Riverside-San Bernardino-Ontario, CA 0.3281 0.3911 0.8389 16.1 
San Jose-Sunnyvale-Santa Clara, CA 0.3350 0.3954 0.8472 15.3 
Houston-The Woodlands-Sugar Land, TX 0.3366 0.4090 0.8231 17.7 

 

                            38 / 39



37 
 

 

  

  

 
Figure A3. Standardized versus unstandardized local segregation indices in each MA  
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