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Abstract

This paper provides a robust and operational definition of ”oppor-
tunity equalization” when applied to alternative societies. Societies are
described as collections of distributions of outcomes (i.e., lotteries), one
such distribution for every group. We envisage the problem of comparing
these societies from the view point of an ethical observer placed behind a
veil of ignorance with respect to the group in which he/she could fall if
he/she were to be born in this society. Using axioms of choice under ambi-
guity, we show that the ranking of societies of this ethical observer can be
viewed as resulting from the comparison of the expectation of some func-
tion of the lottery, assuming an equal probability of falling in every group.
Moreover, the function of the lottery can be written as the transformation
of some expectation of its consequences under some concave function. We
provide a criterion for comparing societies that coincide with the unanim-
ity of all rankings that would command agreement among these ethical
observers when they exhibit aversion to inequality of opportunity. The
criterion happens to be a conic extension of the zonotope inclusion crite-
rion. We provide various interpretations of this general criterion as well as
some illustrations of its possible use, notably in the Indian context where
we perform a detailed comparison of the various religious communities of
this country in terms of the cross-gender inequality of educational oppor-
tunities. We also identifies the elementary transformations that lie behind
the criterion in the two-group cases when it is applied to societies with
the same average opportunities.
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1 Introduction

Equalization of opportunities is considered to be an important social objective
by many. In the US, opinion surveys conducted by the Pew research center1

have consistently found in the last 25 years an agreement by 90% of the respon-
dents on the fact that “our society should do what is necessary to make sure
that everyone has an equal opportunity to succeed”. A common interpretation
of this ”equal opportunity to succeed ” ideal is through the requirement that the
individuals’ probabilities (chances) of reaching outcomes of interest be indepen-
dent from morally irrelevant characteristics such as skin color, gender, national
origin, family background, sexual orientation, etc. This of course requires an ap-
propriate identification of what those morally irrelevant characteristics are. But
even leaving aside this question, the consensual ideal of an equal opportunity
to succeed is a rather poor guide to policy making. For it only indicates what is
the destination - equal opportunity - without providing any insight on the way
to get there. An example may illustrate this point.

Figure 1 below illustrates the cumulative share of Indian males and females
reaching each of the seven ordered level of education reported in the 68th round
of the Indian NSSO. Levels are ranked from illiteracy (level 1) up to tertiary
education (level 7). An exhaustive description of the data is in section 4. Our
focus is on two distinct communities, defined by religion belonging: that of
Buddhists and that of Sikhs. In both communities, women and men do not
have an “equal opportunity to succeed” in education. In particular, women have
consistently lower chances of attaining any of the highest educational categories
compared to men. As such, women enjoy smaller educational opportunities than
men. A form of inequality of educational opportunities prevails in both Sikh
and Buddhist communities.

Yet, one may want to go beyond the mere observation that educational
opportunities are unequally distributed across genders, in order to make com-
parative statements on the extent by which gender inequality in educational
opportunities differs in the two considered communities. To put it more com-
pactly, one may want to define “opportunity equalization” rather than the mere
zero-one “equal/unequal opportunity”. In Figure 1 for instance, it could seem
that educational opportunities faced by men and women, clearly unequal in both
the Sikh and the Buddhist community, are “more unequal” in the latter than in
the former. Indeed, the (cumulative) distribution of educational opportunities
among Buddhist women is stochastically dominated at the first order by the
distribution of educational opportunities faced by Sikh women. Sikh women are
therefore less at risk than Buddhist women of not getting an education level
above any threshold that one may consider. Moreover an opposite first-order
stochastic dominance holds between Buddhist and Sikhs men. While each of
these two groups of men faces better educational opportunities then its women
counterpart, the Buddhist group has an even better advantage than the Sikh
one. Indeed, the educational opportunities faced by Buddhist men dominates at
the first order by those faced by the Sikh men. Hence the non-favored group -
women - is less favored in the Sikh than in the Buddhist community while the
favoured group - men - is less favoured in the Sikh than in the Buddhist com-
munity. Since the average - over men and women - distribution of educational

1see e.g. https://www.pewresearch.org/2011/03/11/the-elusive-90-solution.
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Figure 1: Educational opportunities for men and women in the Buddhist and
the Sikh communities, India, 2012 (Source: 68th round of the Indian NSSO).

opportunities in the two communities is quite - albeit not perfectly - similar, it
seems tempting indeed to conclude that the inequalities of educational oppor-
tunities between men are women are, in India, more important in the Buddhist
than in the Sikh community.

The contribution of this paper is to provide a theoretically justified, robust
and implementable definition of “opportunity equalization”. Our approach rides
on the idea that there are many morally arbitrary variables - gender in the above
example - that impact unduly on individuals’ destiny. Our approach views ac-
cordingly an equalization of opportunities as a reduction of the discrepancies
in the probabilities of achieving whatever outcome of importance - education
in the above example - faced by individuals for whom these morally arbitrary
variables take different values. The different combinations of values taken by
these morally irrelevant variables in the population lead to a partition of this
population into groups of individuals for which these variables take the same
value. These groups are often referred to as types in the economic literature on
equality of opportunities surveyed by Roemer and Trannoy (2016). Opportunity
equalization hence consists in equalizing the probabilities of achieving the out-
comes of relevance to individuals among groups. This of course requires a notion
of what it means for two distributions of probabilities to be “more equal” than
two others. The current paper provides an operational and reasonably robust
such definition.

Before detailing this definition, we find useful to contrast our approach with
the abundant economic literature on equality of opportunity surveyed in Roemer
and Trannoy (2016). This literature stems from the widely discussed Dworkin
(1981) cut between the characteristics that affect the destiny of an individual
for which an individual should be held responsible and the morally irrelevant
ones that determine the various types that the individual can have. The main
creed of this literature is that equalization of opportunities should be concerned
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with equalizing outcomes among individuals for whom the “responsibility char-
acteristics” are the same. However, no attempt should be made to equalize
outcomes when the differences in those outcomes can be shown to result from
the “free” exercise of responsibility. Our approach departs from this equality
of opportunity literature based on the Dworkin (1981) cut by taking no stance
whatsoever on the question of whether or not individuals are responsible for
some of their characteristics. Responsibility plays actually no role whatsoever
in our approach, even though one may hold the view that individuals in each
group are “responsible” for their success in the life (defined in our approach by
their probability of achieving whatever outcome of relevance).

Another important difference between our approach and those of the litera-
ture surveyed in Roemer and Trannoy (2016) is that we provide a definition of
opportunity equalization, while many contributions to the inequality of opportu-
nity literature are interested in defining -somewhat binarily - either inequality
or (perfect) equality of opportunity. Moreover, most of the contributions to
the literature that define opportunity equalization either ride heavily on the
Dworkin (1981) cut (like for example Peragine (2004)), or do so by means of
decomposition of total outcome inequality (measured by some specific index)
into within group inequality and between group inequality (see e.g. Ferreira
and Gignoux (2011)), with between-group inequality defined, in the tradition of
Shorrocks (1984), with respect to the groups’ mean outcomes. However focusing
on group mean outcome does not account for the possible varying riskiness of
these outcomes across groups. The contribution to the literature that appears
to be the closest to what is done herein is Andreoli, Havne, and Lefranc (2019),
which investigate a robust inequality of opportunity criterion to rank societies.
This criterion is shown to be implemented by sequential assessments of an eth-
ical measure of distance between lotteries attributable to different types. As
such, the criterion emphasizes inequalities between lotteries whereas neglect-
ing the role of improvements in opportunities. The criterion is robust, in the
sense that it requires agreement on a well-defined class of preferences about the
extent at which ethical distance between every pair of distributions decreases
across configurations, as well as agreement on the ranking of lotteries in each
configuration. The criterion we study explicitly considers the trade-off between
inequality and improvements in opportunities, it does not impose an ordering
of the groups and it refines the pairwise comparison of lotteries by explicitly
considering the correlations between types distributions.

Our definition of opportunity equalization stands on the view point of an
ethical observer who is behind a (thick) veil of ignorance with respect to the
group she/he might fall in if she/he were to born in a given society. How
would such an ethical observer compare the various possible societies ? Us-
ing results from decision theory under objective ambiguity - and in particular
Gravel, Marchant, and Sen (2011) and Gravel, Marchant, and Sen (2012) - one
can provide arguments for such an ethical observer to do these comparisons on
the basis of a uniform expected utility criterion. Such a criterion evaluates any
list of groups distributions of opportunities by a three-step procedure. In the
first step, a utility level is assigned to every conceivable outcome so that each
group becomes identified by an expected utility of achieving those outcomes. In
a second step, a utility level is assigned to the expected utility of every group
by some utility function. In the third step, a uniform expected utility is calcu-
lated for the society under the (uniform) assumption that every group is equally
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likely. Of course there are many such uniform expected utility ethical observers,
as many as there are logically conceivable ways to assign utility levels to each
outcome, and to assign (in the second step) utility to expected utility of these
outcome. If one makes the additional assumption that an ethical observer dis-
likes inequality of opportunity in the sense of preferring a society in which the
same average distribution of opportunities is observed in every group to one
where the average is unevenly distributed among groups, one can obtain the ad-
ditional restriction that the utility function used to evaluate the expected utility
of outcome of every group is a concave function of this expected utility. But this
still leaves quite many criteria to consider. The main theoretical contribution
of this paper is to provide an empirically operational test that enables one to
identify when one distribution of opportunities among groups is better than an-
other for all such ethical observers. The test, explained in detail in the paper,
is the inclusion of the quasi-ordering extended zonotopes uniquely associated
to the compared societies. The zonotope set of any list of probability distri-
butions is the set of all Minkowski sums of those probability distributions (see
e.g. Koshevoy (1995), Koshevoy (1998)). A quasi-ordering extended zonotope
is a zonotope set that has been enlarged by a specific collection of translations
that capture the assumptions made about the ranking of outcomes faced by
members of the groups. Our approach is, indeed, quite general in that respect.
If outcomes are completely ordered - as assumed in the education example given
above - then the enlargement of the zonotope is made by translations that cor-
respond to all possible ways to generate first order stochastic dominance on the
distributions. If at the other extreme, the outcome are not ordered at all, then
the zonotope is not enlarged at all and the test amounts to checking for the
simple zonotope inclusion. Between these two extremes, our approach handles
any incomplete quasi-ordering of the outcomes by enlargements of the zonotope
that are specific to the quasi-ordering assumed. While the extended zonotope
inclusion test is theoretically implementable with any number of groups, its ac-
tual implementation may sometimes be difficult, and may not always lead to
an empirical testing criterion. However, we able to provide a finite, feasible test
for the general criterion for the specific case in which there are only two groups
(for example men and women).

We also put our criterion to work by comparing the religious communities in
India in terms of gender inequalities of educational opportunities. We also ap-
praise to what extent the noticeable improvements in educational opportunities
offered to Indians in the last thirty years has been associated with a reduction
of gender educational opportunities in the different religious communities. For
this purpose we use two rounds of data from the Employment-Unemployment
survey of the Indian National Sample Survey (NSS) database, corresponding to
survey years 1983 and 2011-12

The plan of the remaining of the paper is as follows. The next section de-
scribes the general setting in which we define the notion of opportunity equal-
ization and provides a foundation to it though the view point of an ethical
observer placed behind the veil of ignorance. Section 3 presents the operational
extended zonotope criterion and establishes its equivalence with the ranking
of societies made by all opportunity inequality averse uniform expected util-
ity ethical observer. It also indicates how this criterion can be associated with
specific elementary transformations and can be easily implemented in the two-
group case. Section 4 presents the result of the empirical implementation of the
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criterion to appraise inequality of educational opportunities between men and
women and Section 5 concludes.

2 A general framework appraising equalization
of opportunities.

We are interested in comparing societies on the basis of their performances in
equalizing opportunities among some exogenously given - but possibly variable
across societies - groups of individuals. These groups can be based on religion,
race, gender, family background, etc. Our approach to appraising equality of
opportunities does not enquire about the origin of these groups. We neither as-
sume that the number of such groups is the same across societies. For instance,
we may consider societies formed by one group only. Our approach would then
view such one-group societies as achieving (trivially) perfect equality of oppor-
tunities. The opportunities offered to a group in a society are described by the
ex ante probability of achieving any relevant outcome faced by a member of the
group. We assume specifically that there are k such outcomes. We hence in
general depict a society p as an n(p)× k row-stochastic matrix:

p =

 p11 ... p1k
... ... ...

pn(p)1 ... pn(p)k


where pij , for i = 1, ..., n(p) and j = 1, ..., k denotes the probability that an
individual from group i achieves outcome j in society p and n(p) denotes the
number of groups in p. For any society p, we denote by pi the distribution of
probabilities (opportunities) associated to group i in such a society and by p its
(symmetric) average distribution of opportunities defined by:

p =
1

n(p)

n(p)∑
i=1

pi.

The set of all conceivable societies, in which there are k possible outcomes, is
denoted by S:

S :=
⋃
n≥1

(
∆k−1)n , where ∆k−1 :=

x ∈ Rk : xj ≥ 0 ∀j,
k∑
j=1

xj = 1

 .

We can view the outcomes {1, ..., k} as anything that individuals have reason
to value and that are observable somehow. Examples would include income
categories, or education levels. They may also be combinations of, say, health
and education levels. Hence, the general approach that we propose does not
require the outcomes to be completely ordered. We may even take the extreme
point of view that they are not ordered at all. For example, we may care about
the distribution, among say males and females, of the opportunities of entering
in the army. In such an case, there would be only two outcomes (joining the army
and not joining the army) which are not ordered in an obvious way. Formally
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we suppose that there exists an quasi-ordering2 ≥QO of the set of outcomes
{1, ..., k} with the interpretation that j ≥QO h for any two distinct outcomes h
and j in {1, ..., k} if and only if j is “better” for an agent than h. An extreme
form of incomplete ordering would be the case, discussed earlier, where none
of the outcomes can be compared with one another. Let us denote by ≥∅ this
empty quasi-ordering. At the other extreme, one could of course have the case,
very much discussed in the equality of opportunity literature surveyed in Roemer
and Trannoy (2016), of a complete ordering of outcomes (based for example on
income), that we denote by ≥C .3 But intermediate cases between these two
extremes are certainly possible. For example, outcomes could be combinations
of two binary (e.g. taking values 0 or 1) indicators of well-being such as health
(variable 1) and education (variable 2).4

Alternative societies are to be compared by an ethical observer, agreeing
with the quasi-ordering ≥QO, and who is placed behind a “veil of ignorance”
as to the group to which he (she) would belong if he (she) was to live in the
considered societies. We assume that such ethical observer uses the ordering
%, with asymmetric and symmetric factors � and ∼ respectively to compare
these societies. We interpret the statement p % q as meaning “The ethical
observer would weakly prefer being born in society p than in society q”. A
similar interpretation is given to the statements p � q (strict preference) and
p ∼ q (indifference). Since the ordering % is defined on the whole set S, it is
in particular defined on the set ∆k−1 of all conceivable one-group societies and,
therefore, of all probability distributions over the k outcomes.

We focus on ethical observers evaluating societies using an ordering % that
can be represented as follows: there exists a function Ψ : ∆k−1 → R such that,
for all societies p and q in S, one has:

q % p⇐⇒
n(q)∑
i=1

Ψ(qi)

n(q)
≥
n(p)∑
i=1

Ψ(pi)

n(p)
. (1)

An ordering satisfying this property could therefore be thought of as resulting
from the comparisons of the average evaluation of the lotteries offered by two
compared societies for some evaluation function, under the assumption that the
ethical observer is equally likely to fall in any group. Notice that formula (1)
defines a family of social criteria, with as many members as there are logically
conceivable functions Ψ. Following Gravel, Marchant, and Sen (2012), we refer
to any ranking that satisfies (1) for some function Ψ as to a Uniform Expected
Utility (UEU) ranking of societies. This name comes from the decision under
ignorance context in which this family was studied. Indeed, any ranking of
societies that is numerically represented by (1) for some function Ψ can be
though of as resulting from the comparison of the expected utility of the various
lotteries offered by the societies, under the (uniform) assumption that the ethical

2A quasi-ordering R on X is a reflexive (i.e. xRx) and transitive (i.e. xRy and yRz imply
that xRz) binary relation on X. It is called an ordering if it is also complete (i.e. xRy or
yRx for any x, y ∈ X).

3It will be (without loss of generality modulo a permutation) uniquely defined by k ≥C k−1
≥C .... ≥C 2 ≥C 1 (outcomes are ranked in increasing order in the set {1, ..., k}).

4In such a setting, where the outcomes would be (0, 0), (0, 1), (1, 0) and (1, 1), a plausible
quasi-ordering ≥QO could be (1, 1) ≥QO (0, 1) ≥QO (0, 0) and (1, 1) ≥QO (1, 0) ≥QO (0, 0)
(leaving the outcomes (0, 1) and (1, 0) incomparable).
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observer assigns an equal probability to belonging to every group. Proposition 5
in appendix (Section 6.1) recalls a result of Gravel, Marchant, and Sen (2012),
stating that the subset of orderings which can be represented by such utility
functions is characterized by a series of classical axioms, namely anonimity,
continuity, averaging and independence (see Axioms 1-4 in Section 6.1).
This proposition does not restrict much the function Ψ. A somewhat natural
restriction would be to require the ranking of one-group societies - for which
the issue of disparities of opportunities among groups vanishes - to obey the
well-known VNM axiom (see Axiom 5 in Section 6.1). It can be shown (see
Proposition 6 in Section 6.1) that, if we additionally assume this axiom holds,
then the function Ψ in (1) can be written as follows:

Ψ(π1, ..., πk) = Φ

(
k∑
h=1

πhuh

)
(2)

for some real numbers u1, ..., uk and some function Φ : R −→ R. In this spec-
ification, the real numbers u1, ..., uk are interpreted as the utility evaluations,
made by the ethical observer, of the various outcomes. Hence the expression
in brackets, constructed with these numbers, can be seen as the expected util-
ity associated to the lottery (π1, ..., πk), and the function Φ can be seen as a
transformation of this expected utility into some magnitude, which reflects the
attitude of the ethical observer with respect to ambiguity. Since the quasi-
ordering ≥QO of the set of outcomes {1, ..., k} is universally accepted, it must
be the case that any list of utility numbers (u1, ..., uk) ranks the set {1, ..., k} of
outcomes in a way compatible with ≥QO. In more technical terms, any list of
utility numbers must belong to the set U≥QO ⊂ Rk, where

U≥QO = {(u1, ..., uk) ∈ Rk : j ≥QO h =⇒ uj ≥ uh, ∀j, h ∈ {1, ..., k}} (3)

For instance, the quasi-order ≥∅ does not restrict whatsoever the familiy of lists
of utility numbers whiile, at the other extreme, the quasi-order ≥C significantly
restricts this family by limiting the lists of utility numbers (u1, ..., uk) that
appear in Expression (2) to those who are weakly increasing with respect to the
ordered outcomes.5

Ethical observers who rank societies behind a veil of ignorance may be dis-
tinguished according to what could be called “aversion to inequality of opportu-
nities”. Intuitively, aversion to inequality of opportunities would correspond to
a preference for societies who exhibit no disparity of opportunities - say because
they are made of one single group - over societies who exhibit some disparity of
opportunities among their different groups. This suggests the following notion
of comparative aversion to inequality of opportunities among ethical observers.

Definition 1 Given two orderings %1 and %2 on S , we say that %1 exhibits
at least as much aversion to inequality of opportunity as %2 if, for every lottery
ρ ∈ ∆k−1 and society p ∈ S, we have ρ %2 p =⇒ ρ %1 p. 6

5The “extreme” sets U≥∅ and U≥C are given by U≥∅ = Rk and U≥C = {(u1, ..., uk) ∈
Rk : u1 ≤ u2 ≤ ... ≤ uk}.

6If ρ in ∆k−1, we abuse notation by denoting also by ρ the one group society in which all
members face the distribution ρ of opportunities.
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In words, an ethical observer who compares societies by means of the binary
relation %1 exhibits at least as much aversion to inequality of opportunities as
another who bases his/her comparisons on %2 if any preference that the later
will have for a society with no inequality of opportunities (as compared to any
reference society) would also be endorsed by the former. It is not difficult to
see that this notion of “comparative aversion to opportunity inequality” can
translate, when expressed for UEU rankings, into a statement of “comparative
concavity” applied to the function Ψ of Expression (1). Specifically, the following
proposition can be established (see Gravel, Marchant, and Sen (2012) for a
proof).

Proposition 1 Let %1 and %2 be two orderings on S which can be represented
as per (1) for some functions Ψ1 and Ψ2 respectively. Then %1exhibits at least
as much aversion to inequality of opportunity as %2 if and only if there exists
some increasing and concave real function Φ such that, for every p ∈ ∆k−1, one
has Ψ1(p) = Φ

(
Ψ2(p)

)
.

Hence, for comparisons of societies made by a UEU criterion, the statement
“has more aversion to opportunity inequality” as can be translated into “has
a more concave evaluation function as”. While this is reminiscent of standard
definition in the context of standard inequality measurement, there is an im-
portant difference. In the usual income inequality setting, there is a (natural)
benchmark to define “neutrality to income equality”. An ethical observer con-
cerned about distributions of incomes is usually considered as being neutral
vis-à-vis income equality if it considers as equivalent all income distributions
that have the same per capita income. Given this benchmark, it is standard to
define someone has exhibiting aversion to inequality “in the absolute” if this
person exhibits more aversion to income inequality than a person who is neu-
tral to inequality. In the current setting, we are not aware of the existence of
a well-accepted standard of neutrality toward equality of opportunities. One
such benchmark could be to consider as equivalent all societies which distribute
among their groups the same (symmetric) average probability distribution over
outcomes. If one agrees with this standard of neutrality with respect to equality
of opportunities, then one could define an ethical observer as exhibiting aversion
to inequality of opportunities whenever the observer has more aversion to in-
equality of opportunities than an observer who exhibits neutrality with respect
to equality of opportunities. Formally, this would amount to define neutrality
and aversion with respect to equality of opportunities as follows.

Definition 2 Le % be an ordering on S.

(i) % is said to exhibit neutrality with respect to equality of opportunities if
for any two societies p and q in S such that p = q, one has p ∼ q.

(ii) % is said to exhibit aversion to inequality of opportunity if there exists
some ordering %0 , exhibiting neutrality to inequality of opportunity, such
that % exhibits at least as much aversion to inequality of opportunity as
%0.

It can be proved that an ordering exhibits neutrality to inequality of opportunity
if and only if it is represented by a multilinear function (see Proposition 7
in appendix). Combining this observation with Proposition 1, we obtain the
following
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Proposition 2 An ordering % on S exhibits aversion to inequality of opportu-
nity if and only if can be represented as per (2), with a concave function Φ.

In the light of proposition 2, we now introduce the dominance criterion between
pairs of societies, capturing the fact that all utilitarian ethical observers exhibit-
ing aversion to inequality of opportunity would unanimously rather be born in
one than in the other.

Definition 3 Given a quasi-order on outcomes ≥QO, we say that q dominates

p for the ≥QO-UEU inequality averse dominance, denoted by q %QOUEU p, if

1

n(q)

n(q)∑
i=1

Φ

(
k∑
h=1

qihuh

)
≥ 1

n(p)

n(p)∑
i=1

Φ

(
k∑
h=1

pihuh

)
(4)

for all increasing and concave functions Φ : R→R and all list of numbers
(u1, ..., uk) ∈ U≥QO .

3 An operational definition of opportunities’ equal-
ization

3.1 The criterion in the general case

In the rest of the paper we assume that the societies we compare contain the
same number of groups: n(p) = n(q) = n. The family of functionals for which

inequality (4) must be checked in order to establish whether or not q %QOUEU p
is large. Given any two societies, it would therefore be a very exhausting (if not
impossible) task of verifying whether one is better than the other for all such
UEU criteria. In this section, we identify an operational criterion that enables
this verification.

From a mathematical point of view, it can be checked that U≥QO is a non-
empty closed convex cone for any antisymmetric quasi-ordering ≥QO of the set

{1, ..., k}. The dual cone7 relative U≥QO , which is denoted by U≥QO
∗ , is defined

by:

U≥QO
∗ = {(v1, ..., vk) ∈ Rk :

k∑
j=1

vjuj ≥ 0 for all (u1, ..., uk) ∈ U≥QO} (5)

We observe that U≥QO
∗ = {0k} if and only if ≥QO= ≥∅. If outcomes cannot

be compared, then the only vector v that is dual to the set of all logically con-
ceivable lists of k numbers - that is Rk - is the zero vector. Another observation
that can be made about the dual cone U≥QO

∗ is that all the k−tuples (v1, ..., vk)
that it contains have their components that sum to 0. We state this formally as
follows.

Remark 1 Let (v1, ..., vk) ∈ U≥QO
∗ for some quasi-ordering of ≥QO {1, ..., k}.

Then v1 + ...+ vk = 0.

7which is the negative of what Rockafellar (1970) p. 121 calls the polar of U≥QO
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The dual cone associated to U≥QO has an intuitive interpretation. It is the
set of all changes in the probability distribution over outcomes that increase
expected utility for all utility functions compatible with the underlying quasi-
ordering. In plain English, it is the set of all clear improvements in the op-
portunities of achieving the outcomes as (possibly) incompletely ordered by the
quasi-ordering. This interpretation is supported by the fact that the sum of
these changes is zero and, as a result, they produce a new probability distribu-
tion over outcomes which cumulates to 1, just like the initial distribution. What
exactly these changes in the distribution are depends of course of the precise
definition of the quasi-ordering.

The operational definition of opportunity equalization that we propose makes an
important use of the Zonotope set Z(p) ⊂ Rk+ associated to any society p ∈ S,
and defined by:

Z(p) =

z = (z1, . . . , zk) : z =

n(p)∑
i=1

θipi, θi ∈ [0, 1] ∀i = 1, . . . , n

 (6)

A closely related set has been used by Koshevoy (1995) (see also Koshevoy
and Mosler (1996)) to define a criterion called by this author Lorenz majoriza-
tion. We use this zonotope set to define what we call Quasi-Ordering Extended
Zonotope (QOEZ) dominance between two societies as follows.

Definition 4 We say that q dominates p for the ≥QO- extended Zonotope

dominance criterion, which we write as q %QOZ p , if and only if

Z(q) + U≥QO
∗ ⊆ Z(p) + U≥QO

∗ .

While QOEZ dominance may be difficult to verify in general; we will soon
provide an empirical finite test for it in the important case where there are
only two groups. Koshevoy and Mosler (2007) have also proposed, in a different
context, a somewhat similar test based on the inclusion of suitably extended
Zonotope sets.

We now establish the following main equivalence between the ranking of
two societies as per QOEZ dominance and the ranking of those societies agreed
upon by all opportunity-inequality averse UEU ethical observers who compare
outcomes by means of the quasi-ordering ≥QO.

Theorem 1 The two following statements are equivalent:

(i) q %QOZ p;

(ii) q %QOUEU p.

As mentioned above, this theorem may be considered too general for prac-
tical purposes. For one thing, it rides on a quasi-ordering ≥QO of outcomes on
which little is known a priori. We will give below a more ready-to-use version
of the theorem in the two natural (but extreme) cases, namely empty and com-
plete orderings. An additional difficulty raised by Theorem 1 is the uncountably
infinite size of the set U≥QO of lists (u1, ..., uk) of utility numbers compatible

with ≥ with respect to which the “dual cone” U≥QO
∗ of changes (v1, ..., vk) in
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the distribution - that must be added to the Zonotope sets before checking for
inclusion - is defined. How can one identify in practice the dual cone of an un-
countably infinite set ? In the following proposition, we alleviate this difficulty
by showing that for any uncountably infinite set U≥QO of lists (u1, ..., uk) of
utility numbers compatible with ≥QO, there is a finite set of lists of utility num-
bers (each actually taken in the pair {0, 1}) that generates exactly the same

dual cone U≥QO
∗ . Hence, this proposition simplifies the computational problem

of finding the appropriate dual cone that is relevant for the implementation of
the criterion. The proposition that we establish is the following.

Proposition 3 We have

U≥QO
∗ =

v ∈ Rk :

k∑
j=1

vjuj ≥ 0 ∀ (u1, ..., uk) ∈ U≥QO ∩ {0, 1}k
 .

Another simple, but interesting, implication of the dominance of one society
by another in terms of the QOEZ dominance criterion is the dominance of the
average distribution of opportunities of the dominating society over that of the
dominated one by all list of utility numbers compatible with ≥QO. In effect,

Remark 2 Suppose that q %QOZ p. Then q− p ∈ U≥QO
∗ .

As mentioned above, it may be useful to interpret Theorem 1 in the two
extreme cases where no outcomes are comparable, and where all outcomes are
ordered as per their rank in the set {1, ..., k}.

We start with the first case. Combining standard results on one dimensional
inequality measurement and Theorem 3.1 in Koshevoy and Mosler (1996), we
establish the following result.

Proposition 4 Suppose that p = q. Then the two following statements are
equivalent:

(i) Z(q) ⊂ Z(p);

(ii) q %∅UEU p.

We now turn to the case, typically considered in the equality of opportunity
measurement literature, where all outcomes are ordered from the worst (1) to
the best (k). In that case, the lists of utility numbers (u1, ..., uk) ∈ Rk over
which a unanimity is looked for are those lists that satisfy u1 ≤ u2 ≤ ... ≤ uk.
Exploiting the result of Proposition 3, we can limit our attention to those lists
of numbers lying in the set {0, 1} that satisfy these inequalities. The dual cone
of the set of those lists of 0 and 1 bears a close connection with the notion of
first order stochastic dominance applied to the distributions of outcomes.8

We now observe, thanks to Proposition 3, that the dual cone of the set U≥C

can be taken to be the set of changes (v1, ..., vk) in the distributions of opportu-
nities that produce first order stochastic improvements over the distributions of
opportunities to which they are applied. Specifically, using Proposition 3, one
can observe the following.

8For any two distributions p and q ∈ ∆k−1, we say that q first order stochastically domi-
nates p, denoted q %1st p, if and only if one has:

∑k
h=j qh ≥

∑k
h=j ph, for any j = 1, ..., k
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Remark 3 U≥C
∗ = {v ∈ Rk :

∑k
j=1 vj = 0,

∑k
g=h vg ≥ 0 for h = 2, ..., k}.

The connection between %CZ and 1st-order stochastic dominance is not surpris-
ing from an intuitive point of view. Any ethical observer who agrees on the
complete ranking of the outcomes also agrees on the fact that a relation of
stochastic dominance between two groups indicates that the dominating group
has better opportunities than the dominated group (a similar observation is
made in Andreoli, Havne, and Lefranc (2019)). As a result, any such ethical ob-
server - at least when he or she dislikes opportunity inequalities - would like to
reduce the dispersion between those two distributions provided that the reduc-
tion of the dispersion does not modify the average distribution of opportunities
in the two groups. Observe also that introducing a complete ordering of the out-
comes immediately introduces a trade-off between opportunity equalization and
overall opportunity improvement (through first-order stochastic dominance). In
effect, any distribution of opportunities between n groups whatsoever, no mat-
ter how unequal it is, would be considered better by the ≥C- extended Zonotope
dominance criterion than the perfectly equal (but abysmal) distribution of op-
portunities in which every individual in every group is sure to end up in the
worst outcome (1). In the other direction, any distribution of opportunities
would be considered worse than the egalitarian ideal distribution of opportuni-
ties in which everyone in every group is sure to end in the best possible outcome
(k).

3.2 Elementary operations

An alternative understanding of the ≥QO- extended Zonotope dominance crite-
ria (for various specifications of ≥QO) can be obtained from the identification
of the elementary transformations in the distributions of opportunities among
groups that underlie them. While we do not identify exactly all these elemen-
tary transformations in the general n-groups case - see however the results of
the next subsection concerning two-group societies - we can at least identify
some of them. We start with the following one, also identified by Kolm (1977)
in the more general setting of multidimensional inequality measurement.

Definition 5 (Uniform averaging) We say that q is obtained from p through
a uniform averaging operation if there exists an n × n bistochastic9 matrix b
such that q = b.p

This operation consists in uniformly averaging the various distributions of out-
comes of the different groups. Specifically, if q is obtained from p through a
uniform averaging operation, then for every group i, the probability qih that
someone from that group achieves outcome h is a weighted average of the prob-
abilities that people from the different groups in p achieve that outcome. This
averaging is “uniform” in the sense that, for any group i, the weights used in
the calculation of the average do not depend upon the outcome. To illustrate
this point, consider the societies p, p′ and p′′ that distribute opportunities of

9A bistochastic matrix is a nonnegative matrix where all rows and all columns sum to one.
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achieving three outcomes between two groups as follows:

p =

outcome 1 outcome 2 outcome 3
group 1 1/4 1/12 2/3
group 2 2/3 1/4 1/12

p′ =

outcome 1 outcome 2 outcome 3
group 1 17/48 1/8 25/48
group 2 9/16 5/24 11/48

p′′ =

outcome 1 outcome 2 outcome 3
group 1 11/24 1/8 5/12
group 2 11/24 5/24 1/3

Observe that the average probability of achieving the three outcomes in the
three societies is the same (namely (11/24, 1/6, 9/24). In both societies p′ and
p′′, it can be observed that the probability that a member of a group will achieve
a given outcome is a weighted average, over the two groups in society p, of the
probabilities that the same outcome will be achieved. Hence, both p′ and p′′ are
obtained from p as a result of an averaging operation. However only society p′

results from p out of a uniform averaging operation that uses the same weights
- namely 3/4 and 1/4 for group 1 and 1/4 and 3/4 for group 2 - for determining
the probability of achieving any outcome. The property of uniform averaging
has been shown by Kolm (1977) - in the context considered by this author
where the objects distributed among groups are consumption bundles rather
than probability distributions over outcomes - to be equivalent to the ranking of
distributions of consumption bundles that would be made by summing all Schur-

concave functions. Since the function G defined by G(p) =

n∑
i=1

Φ

(
k∑
h=1

pihuh

)
is concave and symmetric (across groups) if Φ is concave, it is therefore Schur-
concave.10 Hence, thanks to the result by Kolm (1977), and irrespective of
the ordering of outcomes, any uniform averaging operation would be considered
worth doing by any ethical observer considered in this paper.

The second elementary operation that we consider is what we call an bi-
lateral equalizing transfer. Contrary to uniform averaging - which does not use
information on the ranking of the outcomes - the operation of bilateral equaliz-
ing transfer rides heavily on such an information. The formal definition of such
a transfer is as follows.

Definition 6 (Equalizing transfer) We say that q is obtained from p through
a bilateral equalizing transfer if there exist indices i1, i2, i′1 and i

′

2 ∈ {1, ..., n}
and v ∈ U≥QO

∗ such that:

qi′1 = pi1 + v, qi′2 = pi2 − v, pi2 − pi1 − v ∈ U
≥QO
∗

and pj = qj for all j /∈ {i1, i2, i′1, i′2}.

In words, a bilateral equalizing transfer is an operation that improves (through
some change v) a distribution of opportunity in a group and that deteriorates

10A function h : A ⊂ Rk → R is Schur-concave if for every a ∈ A, and every bistochastic
matrix b ∈ Rk×k, h(b.a) ≥ h(a)
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(through the same v applied in opposite direction) a distribution of opportuni-
ties in another group in the case where the distribution of opportunities in the
latter group is unambiguously better than that of the other group from the view
point of the quasi-ordering ≥C or equivalently, thanks to Donaldson and Wey-
mark (1998), of all complete rankings of outcomes whose intersection is ≥C . It
is intuitively clear that such a reduction in the “expected-utility gap” between
the two distributions - provided that it is done in a way that does not affect
the average distribution of opportunities in the society - would be recorded fa-
vorably by an opportunity-averse ethical observer who evaluates those expected
utilities through a (uniform) expectation of a concave function. We observe that
such a transformation only concerns two distributions of opportunities in each
of the two societies (and leaves the other distributions faced by the other groups
unchanged). Hence, by comparison with the uniform averaging operation which
concerns the totality of the matrix, a bilateral equalizing transfer, as its name
suggests,is a local operation that concerns only two rows of each of the matrices
under comparison.

In order to illustrate this transformation in the case of an incomplete ranking
of the outcomes, consider the binary health-education example given earlier
where the outcomes are (0, 0), (0, 1), (1, 0) and (1, 1) and the quasi-ordering
≥QO is (1, 1) ≥QO (0, 1) ≥QO (0, 0) and (1, 1) ≥QO (1, 0) ≥QO (0, 0) ( (0, 1)
and (1, 0) being incomparable). Assume that there are only two groups, and
consider the two distributions:

p =

(0, 0) (0, 1) (1, 0) (1, 1)
group 1 1/2 1/6 1/6 1/6
group 2 1/4 1/4 1/4 1/4

and:

q =

(0, 0) (0, 1) (1, 0) (1, 1)
group 1 7/16 19/86 1/6 19/86
group 2 5/16 7/32 1/4 7/32

The first observation is that the distribution of probabilities of achieving the
four outcomes in group 1 provides a lower expected utility than that of group
2 in society p. This can be seen by the fact that, for any of the two complete
rankings of the four outcomes that are consistent with ≥QO, the distribution
of outcome in group 2 first order stochastically dominate that in group 2. The
second observation is that the move from p to q has been done by improving
the probability distribution of group 1 by the vector v = (−1/16, 1/32, 0, 1/32)
and deteriorating the probability distribution by the corresponding vector −v =
(1/16,−1/32, 0, 1/32). Observe that these two “balanced” offsetting changes in
the distributions of outcomes have preserved the dominance of group 2 over
group 1 from . Yet, the spread of that difference has shrunk, and this carefully
constructed shrinking is appraised favorably by an opportunity-inequality averse
UEU ethical observer.

The last elementary operation that we discuss is not related to reducing
inequalities of opportunities. It is rather concerned with improving those op-
portunities for some, or all, of the groups (up to a permutation of some of the
groups, thanks to the anonymity principle). Specifically, we define as follows the
notion of an anonymous and unanimous expected utility improvement.
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Definition 7 (Expected Utility Improvement) We say that q is obtained
from p through an anonymous and unanimous expected utility improvement if
there exists a one-to-one function π : {1, ..., n} −→ {1, ..., n} such that for every

i ∈ {1, ..., n}, there exists vi ∈ U
≥QO
∗ for which one has:

qπ(i) = pπ(i) + vi

In words, q is obtained from p through an anonymous and unanimous ex-
pected utility improvement if one can finds a permutation of the groups such that
every thus permuted group in q as a weakly better distribution of opportunities
than the corresponding group in p when appraised by the expectation over any
list of utility numbers compatible with the underlying quasi-ordering. An anony-
mous and unanimous expected utility improvement reduces to an anonymous
and unanimous first-order stochastic increment in the case where the ranking
of outcomes is complete. Any such anonymous and unanimous expected util-
ity improvement will be appraised favorably by any ethical observer considered
herein. In the following lemma, we establish formally that performing a fa-
vorable transfer or a uniform averaging are also elementary operation that are
considered worth doing by those same ethical observers.

Lemma 1 If q is obtained from p through either a uniform averaging or a
favorable transfer then q %QOUEU p.

3.3 Equalizing opportunities between two groups

The criteria of opportunity equalization discussed in the preceding sub-section
are general and work for any number of groups. However, the operational crite-
rion of QOEZ dominance may be considered somewhat difficult to interpret and
to use in practical applications, even thought it can be implemented through
some computer algorithm. As it turns out, the difficulty is significantly allevi-
ated when there are only two groups (for example females and males) among
which opportunities are equalized. Indeed, in this case, we can implement QOEZ
dominance by the finite, and somewhat simple, procedure of “majorization”, by
each of the two distribution of opportunities of the dominating society, of some
weighted average of the two distributions of the dominated society. To under-
stand this procedure, consider the family F≥QO of sets whose elements form a
chain with respect to the quasi-ordering ≥. This family is formally defined by:

F≥QO = {J ⊂ {1, ..., k} : h ∈ J and j ≥QO h =⇒ j ∈ J}

This family is closely related to the dual cone U≥
QO

∗ of the quasi-ordering the
≥ which can indeed be defined, thanks to Proposition 3, by:

U≥QO
∗ =

{
v ∈ Rk :

k∑
h=1

vh = 0 and
∑
h∈J

vh ≥ 0 for all J ∈ F≥QO

}
(7)

The family F≥QO is important because it provides the complete (and finite)
list of sets of outcomes whose increases in the likelihood are indisputably per-
ceived as improving opportunities. For example, if the quasi-ordering ≥ is taken
to be ≥C(the case where the outcomes are completely ordered), the family
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F≥QOwould consist in the (anti) cumulated lists of outcome {k}, {k−1, k},...,{1, 2, ..., k}
used to check for first order stochastic dominance. For any probability distri-
bution p ∈ ∆k−1, and any J ∈ F≥QO , we let p(J) denote the “cumulated”

probability of achieving an outcome in that set defined by p(J) =
∑
j∈J

pj . The

majorization procedure that we propose as a test for ≥- extended Zonotope
dominance between two-group societies works as follows. For any two such so-
cieties, one first checks if the average distribution of opportunities is better in
one society than in the other for all expected utility criteria compatible with
the quasi-ordering of outcomes. If no such dominance is observed, then we know
from Proposition 1 that the two societies cannot be compared by QOEZ domi-
nance and the test is over. If, on the other hand, such a dominance is observed,
then the society with the dominating average is a candidate for being a domi-
nating society as per our criterion. To verify that it is indeed so, one looks, for
each of the two distributions of opportunities in the (possibly) dominating so-
ciety, at the mixtures of the two distributions of opportunities in the (possibly)
dominated society that yield the same probability of reaching outcomes in some
members of F≥QO . There may not be any such mixture in which case one con-
cludes in the absence of dominance. If there are, however, such mixtures, then
the verdict of dominance would be obtained if each of the two distributions of
opportunities in the (possibly) dominating society dominates at least one such
mixture of the two distributions in the dominated society.
The following theorem describes this procedure and shows its equivalence to
QOEZ dominance

Theorem 2 Suppose that n = 2. Let Λi (for i = 1, 2) be defined by11

Λi = {1} ∪ {λ ∈ [0, 1] : ∃J ∈ F≥QO s.t. qi(J) = λp1(J) + (1− λ)p2(J)}.

Then q %QOZ p if and only if q−p ∈ U≥QO
∗ and there are λi ∈ Λi (for i = 1, 2)

such that q1−(λ1p1 +(1−λ1)p2) ∈ U≥QO
∗ and q2−(λ2p1 +(1−λ2)p2) ∈ U≥QO

∗ .

It may be useful to appreciate the simplicity of the procedure described by
this theorem through an example of two societies made of two groups where the
dominance of one society over the other is not immediately apparent.

Example 1 Consider the two following societies:

p =

1 2 3 4
group 1 16/36 4/36 6/36 10/36
group 2 13/36 3/36 12/36 8/36

and

q =

1 2 3 4
group 1 16/36 2/36 8/36 10/36
group 2 13/36 5/36 9/36 9/36

11Adding value 1 to this set might seem arbitrary there; the reason for doing so will be
made clear in the proof of Theorem 2. One could alternatively decide to add 0 instead of 1,
and modify the proof accordingly. Note that these two sets are then finite and non-empty.
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Assume that the quasi-ordering of outcomes is the complete ordering ≥C .
Observe that

q − p =
1

72
(0, 0,−1, 1) ∈ U≥QO

∗ ,

which means that q2 + q1 = p2 + p1 + v, where v = 1
36 (0, 0,−1, 1). In (al-

most) plain English, the distribution q stochastically dominates the distribu-
tion p. Hence q is possibly a society that dominates society p for the cri-
terion q %QOZ p. Let us use the procedure described in Theorem 2 to ver-
ify that this is indeed the case. The family F≥C here is defined by F≥C =
{{1, 2, 3, 4}, {2, 3, 4}, {3, 4}, {4}}. The sets Λ1 and Λ2 are therefore respectively
defined as the union of the singleton {1} and the sets of solutions, in the [0, 1]
interval, of the following equations:

10/36 = λ1110/36 + (1− λ11)8/36⇒ λ11 = 1

18/36 = λ1216/36 + (1− λ12)20/36⇒ λ12 = 1/2

20/36 = λ1320/36 + (1− λ13)23/36⇒ λ13 = 1

for Λ1 and of the equations:

9/36 = λ2110/36 + (1− λ21)8/36⇒ λ21 = 1/2

18/36 = λ2216/36 + (1− λ22)20/36⇒ λ22 = 1/2

23/36 = λ2320/36 + (1− λ23)23/36⇒ λ23 = 0

for Λ2. We thus have Λ1 = {1/2, 1} and Λ2 = {0, 1/2, 1}. Since q1 1st-order

stochastically dominates p1, we have q1−(λp1+(1−λ)p2 ∈ U≥
QO

∗ for λ = 1 ∈ Λ1.
One can also observe that

q2 =

(
26

72
,

10

72
,

18

72
,

18

72

)
1st order stochastically dominates the mixture of p1 and p2 given by:

p1
2

+
p2
2

=

(
29

72
,

7

72
,

18

72
,

18

72

)
Hence q %CZ p.

Remark 4 Interestingly, this example also provides insights concerning the el-
ementary operations discussed in the preceding section. We can use it to prove
that the three aforementionned operations are not the only ones that underlie the
notion of opportunity equalization discussed herein. Indeed, it is not possible to
go from p to q by a finite sequence of Uniform averaging, bilateral equalizing
transfers and Anonymous expected utility improvements. That no equalizing
transfers can be performed to go from p to q is clear since none of the two
distributions of opportunities p1 and p2 first order stochastically dominate the
other. One can also see that no uniform averaging operation, however small,
can be done. Indeed, for any λ ∈ [0, 1[, q1 − (λp1 + (1− λ)p2) /∈ U≥C

∗ . This is
so because the probability of achieving the worst outcome for the first group in
society q is strictly larger than any mixture of the probabilities of achieving that
worst outcome the two groups in society p (q11 = 16/36 > λ16/36+(1−λ)13/36
for all 0 ≤ λ < 1). Finally, we can show that there is no margin to perform
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an anonymous and unanimous utility improvement however small on the initial
society p in a way that preserve dominance of q over the transformed p. See
the appendix for the proof.

Hence, while the three elementary transformations of the distributions of op-
portunities discussed in the preceding are considered worth doing by the criteria
considered here, they are not the complete list of such transformations.

There is, however, a particular - but theoretically important - case where
some of those elementary transformations coincide with the QOEZ dominance
criterion. This case is when the two societies offer the same average opportunities
to the two groups, and only differ in the inequality with which this common
average opportunity is split between the two groups. In this case, and when
of course there are two groups, then QOEZ dominance actually coincides with
the possibility of going from the dominated to the dominating distribution by
a finite sequence of equalizing transfers and uniform averaging operations. The
following theorem establishes that fact. specifically prove in this subsection the
following theorem.

Theorem 3 Suppose that n = 2 and p = q. The three following statements are
equivalent:

1. q is obtained from p through a uniform averaging or an equalizing transfer;

2. q %QOUEU p;

3. q %QOZ p.

The equivalence established in Theorem 3 between the domination of a two-
group society by another in terms of the ≥- extended Zonotope criterion and the
possibility of going from the dominated to the dominating society by either an
equalizing transfer or a uniform averaging operation when the average distribu-
tion of opportunities is the same provides a simple way to check for dominance
in that case. This is at least so if one focuses on the case where the outcomes
are completely ordered and where, as a result, the dual cone of the set of lists of
utility numbers (u1, ..., uk) that are increasing with respect to outcomes is the
set of changes v that generates a first-order dominance between distributions. In
that case, one can observe the following (obtained as an immediate consequence
of Theorem 3)

Remark 5 Suppose that p = q and n = 2. Assume that either p1 %1st p2 or
p2 %1st p1. Consider the indexing i1 and i2 of the two groups such that pi2 %

1st

pi1 . Then q %CZ p if and only if pi2 %
1st qi1 %

1st pi1 and pi2 %
1st qi2 %

1st pi1 .

This remark leads itself to a very simple test of opportunity equalization in
the two-group case, at least when the average distribution of opportunities is
the same, and when one group in one society is stochastically dominated by the
other. The test amounts to verifying if, in the other society, the distributions of
opportunities of two groups lie “in between” those of the two groups in terms
of first order stochastic dominance.

In the next section, we shall use this test to analyze the inequality of edu-
cational opportunities in India between men and women both across religions,
cast groups and over time.
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Category Education level Equivalent years of education
1 Illiterate 0
2 Literate without formal schooling Not Applicable
3 Below primary less than 4
4 Primary 4
5 Middle but below secondary 5 to 10
6 Secondary but not graduate 11 to 15
7 Graduate and above 16 or more

Table 1: Rough equivalence between education levels and years of education

4 Empirical Illustration

India is characterized by a significant and quite astonishing by Western stan-
dards - cross-gender inequalities in educational attainment. Females, as com-
pared to males, are more likely to be over-represented at the bottom of the
education distribution and under-represented at the top. However these in-
equalities between genders also happen to vary across different social strata
based on religion to which Indians belong. In this section, we put the criteria
developed in the previous section to appraise the inequality of educational op-
portunity between men and women considering two religious communities - Sikh
and Buddhist. We also investigate, over a span of three decades, to what extent
the improvement in average educational opportunity in both these communities
has been accompanied by a reduction in gender opportunity gaps.

Although neither Buddhism nor Sikhism are followed by majority of the In-
dians, they are two of the ancient religions in India. According to the census of
2011 India is home to over 20 million Sikhs and 8 million Buddhists. To illus-
trate the educational opportunity gap among genders across religious societies
in India we have taken data from two rounds of National Sample Survey (NSS)
database. In particular we consider the earliest and the latest available rounds
of the Employment-Unemployment schedule of NSS that corresponds to the
survey years 1983 (the 38th round) and 2011-12 (the 68th round), respectively.
Information on education is recorded for every member of the household in the
above mentioned surveyed. We however limit our illustration to all Indian adults
aged between 20 to 50 years so as to focus on the prime working age population
of the country. For the sake of comparability across the two rounds of data we
have regrouped the given education levels in 7 mutually exclusive and exhaus-
tive groups, where illiteracy is considered as the worst possible level and having
a graduate degree or above is considered as the best one. To give an idea of the
educational categories in India we provide in Table 1, the (roughly) equivalent
years of education that is common to the pan-Indian education system12.

Figure 2 draws the cumulative density of the average educational opportuni-
ties over genders, separately for the Buddhists and the Sikhs for the time span of

12However notice that we are unable to provide this assessment for the second category -
‘literate without formal schooling’. In addition to formal schooling, various literacy programs
are common in India, which we want to keep as a separate category so as to distinguish
‘literacy’ from ‘illiteracy’.
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Figure 2: Improvement in education among Buddhists and Sikhs, India (1983-
2012)

1983-2012. Two things are immediately noticeable from this figure. First that
the overall educational opportunity is significantly better in 2012 than that of
1983 for both the religions. Second, educational opportunities of Buddhists
and Sikhs nevertheless remain close to each other over this three decades. In-
deed the two-sample t-test rejects any statistically significant difference in mean
educational levels of the two religions for either time period.

The top row of Table 2 reports the population share of females and males, sep-
arately for the two religious communities and for the two different time frames.
India is yet to achieve a balanced share of males and females in either reli-
gious groups even in 2012. But Table 2 further reveals that the educational
profile of either religion is not independent of the sexual identity of a person.
While a significant share of both Sikh and Buddhist population was illiterate in
1983, the share of illiterate females outweigh that of males in either religions.
This discrimination across genders is still present in 2012 as well, with partic-
ularly striking difference among the Buddhists. Indeed in 2012, while 16% of
total Buddhist population are illiterate female Buddhists, only 9% are illiterate
male Buddhists. On the other hand the share of graduates in either religion is
abysmally low even in 2012, but a bit more worse for females. While it reflects
on the presence of opportunity gap in education between genders in either reli-
gion, we want further to see in which religion this gap is more severe. We aim to
answer this question applying the theory developed in this paper, in particular,
testing the statement as proposed in Remark 5.

Figure 3 plots the cumulative density function of the levels of education sepa-
rately for the two genders of the two religions (hence a total of four types in the
parlance of the related literature), where the left-hand side panel corresponds to
the older survey round of 1983 and the right-hand side panel draws the same for
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Sikh Buddhist
1983 2011-12 1983 2011-12

Female Male Female Male Female Male Female Male
Population share → 0.47 0.53 0.48 0.52 0.49 0.51 0.46 0.54

Illiterate 0.32 0.28 0.15 0.13 0.34 0.21 0.16 0.09
Primary 0.0.05 0.0.07 0.08 0.08 0.05 0.11 0.07 0.10

Secondary 0.02 0.04 0.10 0.14 0.01 0.04 0.09 0.14
Graduate and above 0.005 0.009 0.02 0.03 0.003 0.01 0.02 0.03

Table 2: Sample summarya

aThe table reads as - During 1983, 47% (53%) of the total Sikh population was female
(male) and 32% (28%) of the total Sikh population are illiterate females (males).

(a) India 1983 (b) India 2012

Figure 3: Educational opportunity gap between genders across Buddhists and
Sikhs

2012. Apparently from the visuals we can see that the opportunity gap between
men and women are present in either religious communities over the entire span
of the study (1983-2012). But in either of the survey years, the pair of educa-
tional distributions (for the two genders) in the Sikh community are contained
within the pair of distributions of the Buddhist community. The formal test
of first order stochastic dominance as proposed by Davidson and Duclos (2000)
indeed confirms the dominance of Buddhist men over the Sikh men at order one
in both survey years and for all levels of educations described above. Whereas
on the other hand the null of first order stochastic dominance of Sikh women
over Buddhist women can not be rejected.

Table 3 presents the first order stochastic dominance results for comparing ed-
ucational opportunities between each different pairs of the four types, separately
for the two survey years13. Some features are noteworthy from this schematic ta-

13The null of first order stochastic dominance of males over females is tested by the difference
in their respective empirical distributions at all levels of education. The test statistic for

education level j and groups (r, r′) is -
ˆF (j,r)− ˆF (j,r′)√

ˆV (F (j,r))
Nr

+
ˆV (F (j,r′))

N
r′

. The statistical inference is

drawn on the basis of the union-intersection criteria proposed by BishFornThist92 that rejects
the dominance of group-r over group-r′ if at least one of the test statistics are significantly
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ble. First of all, females never dominate their male peers, but Buddhist females
had the worst educational opportunity. On the other hand Buddhist males are
the most advantageous group among the four discussed here and remain so over
a span of three decades. Secondly, denoting first order stochastic dominance
by � we can rank the four types as follows - Buddhist males � Sikh males �
Sikh females � Buddhist females. Therefore following the statement of Remark
5, we can say that the educational opportunity is more ‘equalized’ among the
Sikhs than among the Buddhists. Third and probably the most policy-relevant
observation is that, although the average educational opportunity (over men
and women) improved significantly from 1983 to 2012 for both religions, the
above mentioned ranking did not change, which indicates that the gender gap
in educational achievement remain a more severe issue for the Buddhists in spite
of the overall development in education.

max width=
Buddhist Buddhist Sikh Sikh

Male Female Male Female
5*1983 Buddhist Male - � �

Buddhist Female � - � �
Sikh Male � � - �

Sikh Female � � � -
5*2012 Buddhist Male - � �

Buddhist Female � - � �
Sikh Male � � - �

Sikh Female � � � -

Table 3: Dominance table (order one)a

aWhere � denotes first order stochastic dominance of row over column and � denotes that
row does not dominate column at order one

5 Conclusion

TO BE PROVIDED
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6 Appendix

6.1 Axiomatic foundations

We provide the missing details on the axioms characterizing the set of orderings
that can be represented as in (2). We start by identifying the four axioms of %
that characterize the UEU family of social rankings. In line with the discussion
above, the first axiom requires the social ranking to be anonymous. That is, the
names or the natures of the groups do not matter for appraising the disparity of
opportunities between groups in a society. Hence all societies offering the same
distributions of outcomes among the same number of groups are normatively
equivalent. We state formally this axiom as follows.

Axiom 1 (Anonymity) For every society p ∈ S and all n(p)×n(p) permutation
matrix π, one has π.p ∼ p.

The second axiom imposed on % is a continuity condition that concerns the
comparison of a one-group society vis-à-vis any other. This axiom requires that
the strict ranking of a single lottery associated to a one-group society vis-à-vis
any other society should be robust to “small” changes in the probabilities of
achieving any given outcome. Its formal statement is as follows.

Axiom 2 (Continuity) For every society p ∈ S, the sets B(p) = {ρ ∈ ∆k−1 :
ρ % p}, W (p) = {ρ ∈ ∆k−1 : p � ρ} are both closed in Rk.

The next axiom is called averaging in Gravel, Marchant, and Sen (2012).
In the current context, the axiom evaluates what happens to the disparity of
opportunities in a given society when the number of groups is enlarged. It says
that if the disparity of opportunities in the added groups is better (worse) than
what they are in the initial society, then the addition of those groups improves
(deteriorates) the disparity of opportunities. It says also, conversely, that if a
society loses (gains) from identifying new groups with specific distributions of
outcome among their members, then this can only be because the distribution
of outcomes within those groups is worse (better) than that already present in
the original society. This axiom is formally stated as follows.

Axiom 3 (Averaging) For all societies p and q in S, we have p % q ⇔ p %
(p,q)⇔ (p,q) % q. 14

When applied to an ordering, the Averaging axiom implies several other
properties. One of them is the axiom called “replication equivalence” by Black-
orby, Bossert, and Donaldson (2005) (p. 197) in the somewhat different context
of population ethics. This axiom states that, for societies where every group
faces the same opportunities, the number of those groups does not matter.
This property is rather natural in the context of equalizing opportunities. If all
groups in a society were offering the same opportunities, then the number of
those groups would be irrelevant. We state formally this property as follows.

14If p is a society in (∆k−1)m and q is a society in (∆k−1)n, we denote by (p,q) the society
in (∆k−1)m+n where the m first groups face the opportunities associated to the matrix p and
the n last groups face the opportunities associated to q (in the corresponding order).
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Condition 1 (Irrelevance of the number of groups in case of equal opportuni-
ties) For every lottery ρ ∈ ∆k−1 and every society p ∈ S such that pi = ρ for
all i = 1, ..., n(p), one has p ∼ ρ.

This condition is implied by averaging if % is reflexive. The proof of this
claim is left to the reader.

The next, and last, axiom that requires the ranking of any two societies with
the same number of groups to be robust to the addition, to both societies, of a
common distribution of opportunities. That is to say, the ranking of any two
societies with the same number of group should be independent from any group
that they have in common. Formally, this axiom is stated as follows.

Axiom 4 (Same number group independence) For all societies p, p′ and p′′ in
S such that n(p) = n(p′), (p,p′′) % (p′,p′′) if and only if p % p′.

It can be checked that any UEU ranking satisfies anonymity, continuity,
averaging and Same Number Group Independence. Gravel, Marchant, and Sen
(2012) (see also Gravel, Marchant, and Sen (2011)) have established the converse
implication. Hence, one has:

Proposition 5 Let % be an ordering on S satisfying anonymity, continuity,
averaging and same number expansion consistency. Then % is a UEU social
ordering. Furthermore, the function Ψ of Expression (1) is unique up to a
positive affine transformation, and is continuous.

Axiom 5 (VNM for One-Group societies) For every lotteries p, p′ and p” ∈
∆k−1 and every number λ ∈ [0, 1], p % p′ if and only if λp + (1 − λ)p′′ %
λp′ + (1− λ)p′′.

It is then immediate to obtain the following result (see e.g. Proposition 6 in
Gravel, Marchant, and Sen (2012)).

Proposition 6 Let % be an ordering on S satisfying anonymity, Continuity,
Averaging, Same Number Group Independence and VNM for One-Group Soci-
eties. Then % is a UEU social ordering and the function Ψ of Expression (1)
can be written as per Expression (2) for some function Φ : R→ R and some list
of k real numbers u1, ..., uk.

When applied to a UEU ranking of societies, the definition of neutrality with
respect to equality of opportunities (Definition 2 (i)) implies that the function
Ψ that represents such a ranking as per Expression (1) is linear. We state this
formally as follows.

Proposition 7 Let % be an ordering on S that can be represented as per (1)
for some functions Ψ. Then % exhibits neutrality with respect to equality of
opportunities if and only if, for every lottery p ∈ ∆k−1, one has

Ψ(p) =

k∑
j=1

βjpj , for some real numbers β1, ..., βk.
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6.2 Proofs

Proof of Remark 1. Let C be the vector sub-space of Rk, generated by the
vector (1, ..., 1). Observe that C is a convex cone, and is contained in U≥QO .

Thus, by standard results, U≥QO
∗ ⊂ C∗ =

{
(v1, ..., vk) ∈ Rk :

∑k
j=1 vk = 0

}
.

�

Proof of Theorem 1. We first show that Statement 2 implies Statement 1

and, therefore, that Z(q)+ U≥QO
∗ ⊆ Z(p)+ U≥QO

∗ . For this sake, it is sufficient

to show that, for any θ ∈ {0, 1}n, there exists v ∈ U≥QO
∗ and λ ∈ [0, 1]n such

that:
n∑
i=1

θiqi =

n∑
i=1

λipi + v. (8)

Note that since
∑k
j=1 vj = 0 (by Remark 1) and pi and qi both belong to ∆k−1,

we necessarily have
∑n
i=1 λi = m, where m = #{i : θi = 1}. Hence, by re-

indexing the distributions qi (for i = 1, ..., n) in such a way that θi = 1 for
i = 1, ...,m, Expression (8) can equivalently be written as:

1

m

m∑
i=1

qi =

n∑
i=1

λi
m

pi +
1

m
v.

Let the set D be defined by:

D := q − Co{p1, ..., pn}

What we need to show is that D∩ U≥QO
∗ 6= ∅. Suppose by contradiction that

D∩ U≥QO
∗ = ∅. Since D is a polytope (Rockafellar (1970), p. 12) and U≥QO

∗ is a
closed convex cone, one can conclude from Theorem 2 at p. 80 of Berge (1959)

that there are vectors (d∗1, ...d
∗
k) ∈ D and (v∗1 , ...v

∗
k) ∈ U≥QO

∗ such that:(
k∑
h=1

(d∗h − v∗h)2

)1/2

= min
(d1,...,dk)∈D,(v1,...,vk)∈U

≥QO
∗

(
k∑
h=1

(dh − vh)2

)1/2

by continuity of the euclidian norm, and using the fact that the set D× U≥QO
∗

on which it is minimized can be made compact by taking a suitable intersection

of U≥QO
∗ with some closed ball in Rk. Define the vector (v̂1, ..., v̂k) by v̂h = v∗h−d∗h

for h = 1, ..., k. Then the hyperplane passing through (v∗1 , ...v
∗
k) and orthogonal

to (v̂1, ..., v̂k) strongly separates D and U≥QO
∗ in the sense that:

inf
(v1,....,vk)∈U

≥QO
∗

k∑
h=1

vhv̂h ≥
k∑
h=1

v∗hv̂h > sup
(d1,...,dk)∈D

k∑
h=1

dhv̂h (9)

Since (0, ..., 0) ∈ U≥QO
∗ one must have that:

0 ≥
k∑
h=1

v∗hv̂h
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Moreover since (λv∗1 , ..., λv
∗
k) ∈ U≥QO

∗ for every number λ > 0, one must also
have that:

k∑
h=1

v∗hv̂h ≥ 0

Indeed, assuming
∑k
h=1 v

∗
hv̂h < 0 would be contradictory, after taking a suitably

large λ, with the strict inequality (9). These two last inequalities enable therefore
one to rewrite Inequality (9) more precisely as:

inf
(v1,....,vk)∈U

≥QO
∗

k∑
h=1

vhv̂h ≥ 0 > sup
(d1,...,dk)∈D

k∑
h=1

dhv̂h (10)

By the first of these two inequalities, we conclude that (v̂1, ..., v̂k) belongs to

the dual cone of the set U≥QO
∗ , which is itself the dual cone of the set U≥QO .

By the bipolar theorem for convex cones (see for example Theorem 14.1 in

Rockafellar (1970)), it therefore follows that the dual cone of U≥QO
∗ is U≥QO so

that (v̂1, ..., v̂k) ∈ U≥QO . Now since Statement 2 of the theorem holds, we know
that the inequality

n∑
i=1

Φ

(
k∑
h=1

qihuh

)
≥

n∑
i=1

Φ

(
k∑
h=1

pihuh

)

holds for all concave Φ and all lists of real numbers (u1, ..., uk) ∈ U≥QO . By the
Hardy-Littlewood-Polya theorem (see for example Berge (1959), p. 191), this is
equivalent to the requirement that the list of n numbers(

k∑
h=1

q1huh, ...,

k∑
h=1

qnhuh

)

Lorenz dominates15 the list of n numbers(
k∑
h=1

p1huh, ...,

k∑
h=1

pnhuh

)

for all list of real numbers (u1, ..., uk) ∈ U≥QO . In particular this is true for
(û1, ..., ûk), and thus there exists an indexing i1(û), ..., in(û)16 such that

k∑
h=1

pi1(û)hûh ≤
k∑
h=1

pi2(û)hûh ≤ ... ≤
k∑
h=1

pin(û)hûh

and
m∑
i=1

k∑
h=1

qihûh ≥
m∑
j=1

k∑
h=1

pij(û)hûh. (11)

15Given two vectors a,b in Rk, we say that b Lorenz dominates a if
∑k
g=h bπb(g)

≥∑k
g=h aπa(g), where π : {1, ..., k} → {1, ..., k} is bijective and such that aπa(1) ≤ ... ≤ aπa(k)

and bπb(1) ≤ ... ≤ bπb(k).
16(which depends of course upon the k-tuple (û1, ..., ûk))
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However, by the second inequality of Expression (10),we have (remembering the
definition of D):

0 >

k∑
h=1

qhûh −
k∑
h=1

pihûh (12)

for all i = 1, ..., n. It follows therefore from Inequalities (11) and (12) that:

k∑
h=1

pihûh >

k∑
h=1

qhûh ≥
1

m

m∑
j=1

k∑
h=1

pij(û)hûh, for i = 1, ..., n,

which is not possible. This concludes the proof of the first implication.

Let us now prove the reverse implication. Suppose that Statement 1 of the
Theorem holds and pick any (u1, ..., uk) ∈ U≥QO . We must show, using again
the Hardy-Littlewood-Polya theorem, that the list of n numbers(

k∑
h=1

q1huh, ...,

k∑
h=1

qnhuh

)

Lorenz dominates the list of n numbers(
k∑
h=1

p1huh, ...,

k∑
h=1

pnhuh

)
.

Without loss of generality (since the ranking of societies induced %QOZ is anony-
mous), we can write the indices of the rows of the two matrices q and p in such
a way that the two lists are increasingly ordered so that

k∑
h=1

q1huh ≤ ... ≤
k∑
h=1

qnhuh and

k∑
h=1

p1huh ≤ ... ≤
k∑
h=1

pnhuh.

Hence, we need to show that for any n0 ≤ n− 1,

n0∑
i=1

k∑
h=1

p1huh ≤
n0∑
i=1

k∑
h=1

q1huh

Since statement 1 of the theorem holds, we know that there exists v ∈ U≥QO
∗

and θ1, ..., θn ∈ [0, 1] which can be in such a way that
∑n
i=1 θi = n0 ≤ n such

that:
n0∑
i=1

qi =

n∑
l=1

θlpl + v
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It thus follows that:

n0∑
i=1

k∑
h=1

q1huh =

n∑
j=1

θh

k∑
h=1

pjhuh +

k∑
h=1

vhuh

≥
n∑
j=1

θh

k∑
h=1

pjhuh (since v ∈ U≥QO
∗ )

≥
n0∑
j=1

θj

k∑
h=1

pjhuh +

n∑
g=n0+1

θg

k∑
h=1

pn0huh (rows are ordered)

=

n0∑
j=1

θj

k∑
h=1

pjhuh +

n0∑
j=1

[1− θj ]
k∑
h=1

pn0huh (since

n∑
j=1

θi = n0)

≥
n0∑
j=1

θj

k∑
h=1

pjhuh

as required. �

Proof of Proposition 3. The fact that

U≥QO
∗ ⊆

(v1, ..., vk) ∈ Rk :

k∑
j=1

vjuj ≥ 0 ∀(u1, ..., uk) ∈ U≥QO ∩ {0, 1}k


directly follows from the fact that U≥QO ∩ {0, 1}k ⊂ U≥QO .

We now prove the reverse inclusion. Consider any (v1, ..., vk) satisfying

k∑
h=1

vh = 0

and
∑k
j=1 vjuj ≥ 0 for all (u1, ..., uk) ∈ U≥QO ∩ {0, 1}k. We must show that it

satisfies also
∑k
j=1 vjuj ≥ 0 for any (u1, ..., uk) ∈ U≥QO . Consider therefore any

such (u1, ..., uk) ∈ U≥QO . By continuity of the map (u1, ..., uk) 7→
∑k
j=1 vjuj ,

we may assume without loss of generality that uh 6= ui for any two distinct h
and i in {1, ..., k}. Let j : {1, ..., k} −→ {1, ..., k} be a one-to-one function such
that such that uj(1) < uj(2) < ... < uj(k). We have:

k∑
j=1

vjuj =

k∑
h=1

vj(h)uj(h) =

k∑
h=2

vj(h)(uj(h) − uj(1)) , (13)

since

k∑
h=1

vh = 0 . Using Abel decomposition formula, one can alternatively write

this equality as:

k∑
j=1

vjuj =

k∑
h=2

(uj(h) − uj(h−1))
k∑
g=h

vj(g)

Now, for any h = 2, ..., k, let wh ∈ {0, 1}k be defined by:

whj(g) := 0 if g < h and,

:= 1 if g ≥ h
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We observe that, for any h ∈ {2, ..., k}, (whj(1), ..., w
h
j(k)) ∈ U

≥QO . Indeed, if

l >QO g for two distinct outcomes g and l in {1, ..., k}, then ul > ug by defini-
tion of (u1, ..., uk) ∈ U≥QO . Given h, three cases are possible:
(i) l < h. In this case, one has whj(g) = 0 = whj(l) from the definition of wh.

(ii) g < h ≤ l. In this case, whj(g) = 0 < 1 = whj(l) holds from the definition of

wh and the required weak inequality whj(g) ≤ w
h
j(l) is also satisfied.

(iii) h ≤ g < l. In this case whj(g) = 1 = whj(l) holds from the definition of wh.

Hence, in all the three cases, the required weak inequality whj(g) ≤ whj(l) is

satisfied. Since (whj(1), ..., w
h
j(k)) ∈ U

≥ ∩ {0, 1}k for any h = 2, ..., k, we have∑k
g=1 vj(g)w

h
j(g) =

∑k
g=h vj(g) ≥ 0 for any such h. But this implies that

∑k
h=2 vj(h)(uj(h)−

uj(1)) ≥ 0 for any such h which, thanks to Equality (13), establishes the result.
�

Proof of Remark 2. Suppose that q %QOZ p and, as a result, that Z(q) +

U≥QO
∗ ⊂ Z(p) + U≥QO

∗ . Since in particular
∑n
i=1 qi ∈ Z(q) + U≥

QO

∗ , there is a

collection of n numbers θ1, ..., θn in the [0, 1] interval and a vector v ∈ U≥QO
∗

such that:
n∑
i=1

qi =

n∑
i=1

θipi + v.

or, writing this equality for outcome j :

n∑
i=1

qij =

n∑
i=1

θipij + vj .

Summing over all outcomes, and exploiting the fact that
∑k
j=1 vj = 0 (Remark

1) and
∑k
j=1 pij =

∑k
j=1 qij = 1 for any i) one has:

n∑
j=1

n∑
i=1

qij = n =

n∑
i=1

θi

n∑
j=1

pij +

n∑
j=1

vj =

n∑
i=1

θi

which implies that θi = 1 for all i. Hence:

n∑
i=1

qi =

n∑
i=1

pi + v

and
n∑
i=1

qi −
n∑
i=1

pi = v ∈ U≥QO
∗

as required. �

Proof of Proposition 4. Observing that the inequality

n∑
i=1

Φ

(
k∑
h=1

qihuh

)
≥

n∑
i=1

Φ

(
k∑
h=1

pihuh

)

for all concave Φ and all lists of real numbers u1, ..., uk is equivalent, thanks
to the Hardy-Littlewood-Polya theorem (see for example Berge (1959) p. 191),
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to the requirement that the list of n numbers

(
k∑
h=1

q1huh, ...,

k∑
h=1

qnhuh

)
Lorenz

dominates the list of n numbers

(
k∑
h=1

p1huh, ...,

k∑
h=1

pnhuh

)
for all list of real

numbers u1, ..., uk. This latter requirement is in turn equivalent to the require-
ment that the matrix q price majorizes (using Kolm (1977) terminology) the
matrix p for all “price” vectors (u1, ..., uk). Koshevoy (1995) (Theorem 1) proves
that the fact for a matrix q ∈Rnd to price majorize a matrix p ∈ Rnd is equiv-
alent to observing:

Z(q) =

{
z ∈ Rk+1 : z =

n∑
i=1

θi

(
1

n
, qi1, ..., qik

)
, θi ∈ [0, 1] ∀i = 1, . . . , n

}

⊆

{
z ∈ Rk+1 : z =

n∑
i=1

θi

(
1

n
, pi1, ..., pik

)
, θi ∈ [0, 1] ∀i = 1, . . . , n

}
= Z(p)

Observe that the set Z(a) (for any matrix a ∈ Rnd) defined in Koshevoy (1995)
is somewhat similar to the set defined in Equation 6 above, with the exception
that it takes the Minkowski sums over the “population share extended” vectors
(1/n, pi1, ..., pik) rather than over the vectors (pi1, ..., pik) themselves. Hence we
only need to prove that Z(q) ⊆ Z(p) is equivalent to Z(q) ⊆ Z(p) to complete
the argument. The fact that Z(q) ⊆ Z(p) implies Z(q) ⊆ Z(p) is obvious. To
establish the other direction assume that Z(q) ⊆ Z(p). This means that for
any list of numbers θ1, ..., θn in the [0, 1] interval, one can find a list of numbers
θ′1, ..., θ

′
n in the [0, 1] interval such that

n∑
i=1

θiqi=

n∑
i=1

θ′ipi

Observe that this equality implies that for any j = 1, ..., k one has:

n∑
i=1

θiqij=

n∑
i=1

θ′ipij

Summing these equalities over all j yields (exploiting the fact that the proba-
bility distributions lie in ∆k−1):

n∑
i=1

θi

k∑
j=1

qij =

n∑
i=1

θi =

n∑
i=1

θ′i

k∑
j=1

qij=

n∑
i=1

θ′i

But this implies that for any for any list of numbers θ1, ..., θn in the [0, 1] interval,
one can find a list of numbers θ′1, ..., θ

′
n in the [0, 1] interval such that;

n∑
i=1

θi

(
1

n
, qi1, ..., qik

)
=

n∑
i=1

θ′i

(
1

n
, pi1, ..., pik

)
That is, this implies that Z(q) ⊆ Z(p) holds, as required. �
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Proof of Lemma 1. For uniform averaging, we simply observe that the func-
tion Ψ : ∆k−1 → R defined, for every (s1, ..., sk) ∈ ∆k−1 by:

Ψ(s1, ..., sk) = Φ

(
k∑
h=1

shuh

)

is concave if Φ is concave irrespective of what the real numbers (u1, ..., uk) are.
Hence, by virtue of Theorem 3 in Kolm (1977),

n∑
i=1

Φ

(
k∑
h=1

qihuh

)
≥

n∑
i=1

Φ

(
k∑
h=1

pihuh

)

if there exists a bistochastic matrix n ×n bistochastic matrix b such that q =
b.p.
Assume now that (u1, ..., uk) ∈ U≥QO and that q results from from p through
a favorable transfer as per Definition 6. We must show that

n∑
i=1

Φ

(
k∑
h=1

qihuh

)
≥

n∑
i=1

Φ

(
k∑
h=1

pihuh

)
.

Since all rows others than i1 and i2 in the matrix p and others than i′1 and i
′

2

in the matrix q are unaffected by the change, we have:

n∑
i=1

Φ

(
k∑
h=1

qihuh

)
≥

n∑
i=1

Φ

(
k∑
h=1

pihuh

)
⇐⇒

Φ

(
k∑
h=1

qi′′huh

)
+ Φ

(
k∑
h=1

qi′2huh

)
≥ Φ

(
k∑
h=1

pi′huh

)
+ Φ

(
k∑
h=1

pi2huh

)
(14)

We now observe that the vector

(
k∑
h=1

qi′′huh,

k∑
h=1

qi′2huh

)
Lorenz-dominates the

vector

(
k∑
h=1

pi′huh),

k∑
h=1

pi2huh

)
. Indeed, one has:

k∑
h=1

pi′huh ≤
k∑
h=1

pi2huh −
k∑
h=1

vhuh =

k∑
h=1

qi′2huh ≤
k∑
h=1

pi2huh

and:
k∑
h=1

pi′huh ≤
k∑
h=1

pi1huh +

k∑
h=1

vhuh =

k∑
h=1

qi′1huh ≤
k∑
h=1

pi2huh

Inequality (14) then follows from the Hardy-Littlewood-Polya Theorem. �

Proof of Theorem 2. Using the reasoning in the proof of Proposition 2, one
can observe that if n(p) = n(q) = 2, the statement q %QOZ p is equivalent to

the requirement that q − p ∈ U≥QO
∗ and that there exist θ1 and θ2 ∈ [0, 1] such
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that q1 − (θ1p1 + (1− θ1)p2) ∈ U≥QO
∗ and q2 − (θ2p1 + (1− θ2)p2). Since these

θ1 and θ2 may belong respectively to Λ1 and Λ2, this establishes one direction
of the implication.
For the other direction, it is sufficient to prove that the statement q %QOZ p

implies the existence of λ1 ∈ Λ1 such that q1 − (λ1p1 + (1 − λ1)p2) ∈ U≥
QO

∗

(the argument being similar for λ2). If q1 − p1 ∈ U
≥QO
∗ , then one selects λ1 =

1 ∈ Λ1 and the proof is over. If q1 − p1 /∈ U≥QO
∗ , then we know that since

q1−(θ1p1+(1−θ1)p2) ∈ U≥QO
∗ for some θ1 ∈ [0, 1], there exists some v1 ∈ U

≥QO
∗

such that:
q1 = θ1p1 + (1− θ1)p2 + v1

Let D(q1) denote the (compact) set of distributions of opportunities that are
weakly dominated by q1, with respect to the quasi-order, defined by:

D(q1) = {x ∈ ∆k−1 : q1 − x ∈ U
≥QO
∗ }

Consider the continuous map x : [0, 1]→ [0, 1] defined by:

x(t) = tp1 + (1− t)p2

Since q1 − p1 /∈ U
≥QO
∗ one has that x(1) /∈ D(q1) while x(θ1) ∈ D(q1). Let θ1 be

defined by:
θ1 = max{t ≥ θ1 : x(t) ∈ D(q1)} (15)

We then have θ1 ∈ [θ1, 1[ and x(θ1) ∈ D(q1). We therefore have:

q1 = θ1p1 + (1− θ1)p2 + v1

for some v1 ∈ U
≥QO
∗ . Also observe that v1 must be such that

∑
j∈J

v1j = 0 for

some J ∈ F≥QO . Indeed, using Expression (7), assuming that
∑
j∈J

v1j > 0 for all

J ∈ F≥QOwould imply the possibility of increasing a bit the t above θ1 while
maintaining x(t) in the set D(q1) in the maximization described by Expression

(15), and will therefore be contradictory. Hence for the set J where
∑
j∈J

v1j = 0,

one has q1(J) = θ1p1(J) + (1− θ1p2(J) and this completes the proof. �

Proof of Remark 4. Let the transformed society p′ be defined by p′1 = p1+w1

and p′2 = p2 + w2 for some w1, w2 ∈ U≥C
∗ . We claim that if q %CZ p′ then

w1 + w2 = 0 . Suppose indeed that:

q1 − (θ1p
′
1 + (1− θ1)p′2) ∈ U≥C

∗ , q2 − (θ2p
′
1 + (1− θ2)p′2) ∈ U≥C

∗

and
q2 + q1 − (p′1 + p′2) ∈ U≥

QOC

∗ .

Then it follows that θ1 = 1, as we have seen in the argument that we just
made about the impossibility of performing a uniform averaging. This implies
that q1 − p1 − w1 ∈ U≥C

∗ , that is 1
36 (0,−2, 2, 0) − w1 ∈ U≥C

∗ . Secondly q2 −
(θ2p1 + (1− θ2)p2) = 1

36 (−3θ2, 2− θ2,−3 + 6θ2, 1− 2θ2). This vector belongs
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to U≥C
∗ if and only if θ2 = 1/2 and it is then equal to 1

72 (−3, 3, 0, 0). To sum
up we have:

1

36
(0,−2, 2, 0)− w1 ∈ U≥C

∗ ,
1

72
(−3, 3, 0, 0)− 1

2
(w1 + w2) ∈ U≥C

∗

and
1

36
(0, 0,−1, 1)− (w1 + w2) ∈ U≥C

∗ .

Now w1 + w2 = (a, b, c, d) is by assumption an element of U≥C
∗ . The condition

1
36 (−3, 3, 0, 0) − (w1 + w2) ∈ U≥C

∗ implies that c = d = 0. On the other hand

the condition 1
36 (0, 0,−1, 1) − (w1 + w2) ∈ U≥C

∗ implies that a = b = 0. Thus
w1 + w2 = 0 and, actually, w1 = w2 = 0. �

Proof of Theorem 3. The fact that Statement 1 implies Statement 2 has
been proved (for any number of groups) by Lemma 1 while the implication of
Statement 3 by Statement 1 has been established by Theorem 1. We therefore
only need to prove that Statement 3 implies Statement 1. Suppose therefore
that q %QOZ p.

First consider the case where p2 − p1 ∈ U
≥QO
∗ .17 Then

Z(p) + U≥QO
∗ ⊆ {θp1 + v : θ ∈ [0, 2], v ∈ U≥QO

∗ }.

Since q %QOZ p we have:

q1 = θ1p1 + v1; q2 = θ2p1 + v2,

where θ1, θ2 ∈ [0, 2] and v1, v2 ∈ U
≥QO
∗ . Now, q1 and q2 being both in ∆k−1

and v1 and v2 having both their components summing to zero, we must have
θ1 = θ2 = 1. As a result q1 = p1 + v1 and q2 = p1 + v2. Since p1 + p2 = q1 + q2
we have p2 = p1 + v1 + v2. Hence:

q1 = p1 + v1, q2 = p2 − v1 and p2 − p1 − v1 = v2 ∈ U
≥QO
∗

which means that q has been obtained from p through a favorable transfer.

Consider now the case where neither p2−p1 ∈ U
≥QO
∗ nor p1−p2 ∈ U

≥QO
∗ . Since

Z(q) + U≥QO
∗ ⊆ Z(p) + U≥QO

∗ and both q1 and q2 ∈ Z(q) + U≥QO
∗ , there are

numbers θ11, θ11, θ21 and θ22 ∈ [0, 1] satisfying θ11+ θ12 = θ21 + θ22 = 1 such that:

q1 = θ11p1 + θ12p2 + v1 and q2 = θ21p1 + θ22p2 + v2,

for some v1 and v2 ∈ U
≥QO
∗ . Since p1 + p2 = q1 + q2 we then have:

v1 + v2 = q1 − θ11p1 − θ12p2 + q2 − θ21p1 − θ22p2
= p1 + p2 − θ11p1 − θ12p2 − θ21p1 − θ22p2
= (1− θ11 − θ21)(p1 − p2). (16)

Now, since neither p2 − p1 ∈ U
≥QO
∗ nor p1 − p2 ∈ U

≥QO
∗ while v1 + v2 ∈ U

≥QO
∗ ,

17The case where p1 − p2 ∈ U
≥QO
∗ is similar.
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the only way by which Equality (16) can hold is if (1 − θ11 − θ21) = 0 and, as a
result, v1 + v2 = 0. Setting in that case θ1 = θ11 = θ21, we must therefore have:

q1 = θ1p1 + (1− θ1)p2; q2 = (1− θ1)p1 + θ1p2

so that q = m.p for the bistochastic matrix m =

[
θ1 1− θ1

1− θ1 θ1

]
. Hence q can

be obtained from p through a uniform averaging operation in that case. �
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