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Abstract

I study income poverty indices in a framework considering two poverty lines: one absolute line capturing subsistence

and one relative line capturing social exclusion. In this framework, a set of basic axioms à la Foster and Shorrocks

(1991) characterizes the class of hierarchical indices. This is a class of additive indices for which the poverty contribution

of any individual depends on both her income and the income standard in her society. The key feature of hierarchical

indices is to grant some form of precedence to absolutely poor individuals. These indices always consider that an

absolutely poor individual is poorer than an individual who is only relatively poor, regardless of the income standard in

their respective societies. Classical indices are not hierarchical, except in trivial cases. As a result, they yield debatable

poverty comparisons of societies having different income standards.
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1 Introduction

There are two different approaches to income poverty measurement: the
absolute and the relative approach. An individual is deemed absolutely
poor if her income is insufficient to cover her subsistence needs, e.g. being
sufficiently nourished or wearing clothes. In a first approximation, the real
cost of subsistence does not depend on standards of living. Therefore, the
absolute poverty threshold does not dependent on the income standard of
the considered society. This is for instance the approach underlying the ex-
treme poverty line of the World Bank, whose threshold is $1.9 per person
per day (Ferreira et al., 2016). In turn, an individual is deemed relatively
poor if her income is so much smaller than the income standard in her
society that she is at risk of social exclusion.1 The real cost of social par-
ticipation evolves with standards of living. Therefore, the relative poverty
threshold depends on the income standard of the considered society. For
instance, most OECD countries use a relative threshold that corresponds
to a given fraction of mean or median income.

Unsurprisingly, the main critic raised against any of these two ap-
proaches is to ignore either subsistence or social exclusion. On the one
hand, any absolute poverty threshold becomes less and less relevant for
the identification of the socially excluded as the income standard grows.
On the other hand, relative poverty measures often ignore the increase in
individual resources that results from growth. Importantly, if a country’s
growth is such that the income of its poorest citizens becomes sufficient to
cover their subsistence needs, its poverty has arguably been reduced, even
if these individuals are still socially excluded. Relative measures do not
acknowledge such poverty reduction.

There is a need for income poverty measures combining both absolute
and relative poverty. Many policymakers, such as the World Bank and the
European Commission, aim at reducing both absolute and relative poverty
(World Bank, 2015; European Commission, 2015). For such policymakers,
using two separate poverty measures, one absolute and one relative, is not
a solution. The reason is that two measures would often yield opposing
poverty evaluations, in which case no conclusion can be drawn. Such op-
posing evaluations happen for instance when the income of poor individuals
grow, but not as fast as their society’s income standard.

The research efforts aimed at combining absolute and relative poverty
mostly focus on the design of new poverty lines (Foster, 1998; Ravallion
and Chen, 2011; Jolliffe and Prydz, 2017). This strand of research has
proposed poverty lines whose threshold depends on the income standard,
but is less sensitive to the income standard than the threshold of a rela-
tive line. These new lines have the potential to better identify the poor,
but they cannot resolve on their own all the limitations associated with
poverty measures of either approaches. Importantly, new lines cannot re-
solve the serious limitation that relative poverty measures should decrease
when poor individuals become able to cover their subsistence needs. This

1 See Ravallion (2008) for a review of the normative foundations of the relative
approach to poverty.
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limitation is not so much a problem of whom should be identified as poor,
but rather a problem of how poor individuals are compared across societies
with different income standards. These inter-personal comparisons primar-
ily rely on the index with which a poverty measure is constructed. Indeed,
a poverty measure is defined with two components: a poverty line and a
poverty index (Sen, 1976). Poverty indices, like the head-count ratio or the
poverty-gap ratio, aggregate the contributions to poverty of all individuals
in a distribution. The properties of standard poverty indices have been
extensively studied under the assumption that the poverty line is absolute
(Zheng, 1997). Surprisingly, the properties of poverty indices combined
with non-absolute poverty lines have never been rigorously studied. Un-
fortunately, when combined with a poverty line whose threshold depends
on the income standard, standard indices provide highly counterintuitive
poverty comparisons (Decerf, 2017).

The following example illustrates the counterintuitive comparisons as-
sociated with standard indices when comparing Bangladesh and Colombia
in 2015. The poverty measure considered is the head-count ratio below the
maximum threshold for two poverty lines: the extreme line and the rela-
tive line used by the World Bank.2 Bangladesh has a much smaller income
standard than Colombia and their relative thresholds are respectively $2.4
a day and $5.5 a day. As these two countries have the same fraction of rela-
tively poor individuals (29%), this measure considers that they have equal
poverty.3 This comparison is highly debatable given that 15% of the popu-
lation is extremely poor in Bangladesh, against only 5% in Colombia. This
debatable comparison is due to the head-count ratio. Under this index, an
extremely poor individual earning less than $1.9 a day in Bangladesh has
the same poverty contribution as a Colombian whose income is just below
the relative threshold in Colombia, i.e. $5.5 a day. Importantly, this prob-
lem is not solved when using depth-sensitive indices such as the poverty
gap ratio. As shown by Decerf (2017), standard FGT indices (Foster et al.,
1984) can make the problem even worse: they implicitly consider that some
extremely poor in Bangladesh are less poor than some only relatively poor
in Colombia (see illustration in Section 4).

In this paper, I study poverty indices based on two poverty lines: one
absolute line and one relative line. The main contribution is a result char-
acterizing the class of indices satisfying a set of basic axioms à la Foster
and Shorrocks (1991). The indices characterized are additive, i.e. they
sum the contributions to poverty of all individuals in a distribution. In
this class, individual contributions depend on both own income and the
income standard. The contribution function determines the inter-personal
comparisons that the index makes across different societies. Crucially, the
inter-personal comparisons are constrained by the axioms: an absolutely

2 The relative line used by the World Bank is the Societal poverty line proposed by
Jolliffe and Prydz (2017). The Societal line is defined as zr(y) = 1 + 0.5y, where y

denotes median income in $ a day.
3 The source of data is Povcalnet: the online tool for poverty measurement developed

by the Development Research Group of the World Bank. This tool can be found here:
www.iresearch.worldbank.org/PovcalNet.
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poor individual must contribute more to poverty than an individual who is
only relatively poor, regardless of the income standard in their respective
societies. I call these indices hierarchical because they grant this form of
precedence to the absolutely poor. Hierarchical indices avoid the counter-
intuitive comparisons illustrated in the above example. Standard indices
are not hierarchical when the absolute threshold is strictly positive.

The main result emphasizes the double role played by poverty indices.
The choice of a poverty index determines two different aspects of the
poverty measure: its “prioritization” and its inter-personal comparisons.
The first aspect concerns the trade-offs made by the measure between the
incomes of different poor individuals living in the same society. These
trade-offs determine to whom an extra unit of income should be given if
the objective is to yield the largest poverty reduction. I call this aspect
the “prioritization” inherent to the measure. This well-known aspect has
been extensively studied in the literature surveyed by Zheng (1997). The
second aspect, which has been much less studied, concerns the implicit
inter-personal comparisons that the measure makes across societies with
different income standards. As illustrated in the above example, standard
indices perform debatable comparisons when combined with a relative line.
My main result shows that their debatable inter-personal comparisons are
ruled out by a set of basic properties that indices should satisfy when com-
bined with two poverty lines.

The second contribution is an impossibility result showing that hierar-
chical indices violate basic “prioritization” properties when the two poverty
lines cross each other, i.e. when the two lines have the same threshold for
some value of the income standard. In particular, hierarchical indices vio-
late the requirement that a progressive balanced transfer among two poor
individuals should not increase poverty. This result reveals that one cannot
demand too much from an index when both the absolute and relative as-
pects of income poverty have to be taken into account. It is not possible for
an index to simultaneously perform meaningful inter-personal comparisons
and provide a defensible prioritization. I shortly discuss three ways out of
this impossibility.

The paper is organized as follows. A succinct literature review is pro-
vided in Section 2. I present the framework in Section 3. I characterize the
family of hierarchical indices in Section 4. I expose an impossibility result
for these indices in Section 5. I make some concluding remarks in Section
6.

2 Literature review

The literature on income poverty measurement studies indicators – called
poverty measures – that rank income distributions as a function of poverty.
Any poverty measure is composed of two elements: a poverty line and an
index. In his groundbreaking paper, Sen (1976) proposes a framework
allowing to study the properties inherent to these indices. Following Sen,
many authors have proposed particular families of indices and characterized
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their properties. Among other proposals are the indices studied by Foster
et al. (1984), Foster and Shorrocks (1991), Kakwani (1980), Chakravarty
(1983) or Duclos and Gregoire (2002). The major results derived in this
literature are reviewed in Zheng (1997). This paper extends this literature
by departing from the assumption that poverty indices are combined with
an absolute line.

A small literature launched by Atkinson and Bourguignon (2001) in-
vestigates indices that combine the absolute and relative aspects of income
poverty. Atkinson and Bourguignon (2001) suggest to use two poverty
lines, an absolute line capturing subsistence and a relative line capturing
social exclusion. They propose a family of additive indices – which are
not hierarchical – but do not study their properties. The same holds for
Anderson and Esposito (2013). Finally, Decerf (2017) considers a different
framework with one absolute threshold and one “hybrid” relative line whose
threshold is everywhere above the absolute threshold. He starts from the
assumption that being absolutely poor is worse than being relatively poor
and proposes a particular hierarchical index. There are two key differences
between Decerf (2017) and this paper. First, the higher severity associated
to absolute poverty status is not assumed but derived from fundamental
properties. Second, the two lines studied in this paper are different because
they cross each other, i.e. they have the same threshold for a given income
standard. This definition of the two lines is more in line with the literature
and its implementation requires making fewer normative assumptions. De-
cerf (2017) shows that, when the relative line crosses the absolute line, his
index entirely disregards the relative aspect of income poverty. In a recent
follow-up paper, Decerf and Ferrando (2020a) show that income poverty
has been halved in the developing world over the period 1990-2015, even
when accounting for relative poverty.

The design of appropriate absolute or relative poverty lines is still an
active area of research (Foster, 1998; Ravallion and Chen, 2011, 2019; Allen,
2017). This paper does not contribute to such design. Rather, my starting
point is to consider two poverty lines that cross each other, a premise in
agreement with this strand of literature.

3 The framework

Let an income distribution y = (y1, . . . , yn(y)) be a list of non-negative
incomes. The number of individuals in distribution y is denoted by n(y).

Two poverty lines are considered. Each of these two lines defines a
different poverty status. First, there is an absolute line whose threshold
defines the minimal income necessary to cover an individual’s subsistence
needs. Its absolute threshold is denoted by za ≥ 0. The set of individuals
who qualify as absolutely poor in distribution y is Qa(y) = {i ≤ n(y) | yi <
za or yi = 0}.4

Second, there is a relative line whose threshold defines the minimal

4 For the particular case za = 0, this definition implies that individual i is absolutely
poor if yi = 0. This convention allows Theorem 1 to cover the particular case za = 0.
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income necessary to be able to participate in social life. The relative poverty
threshold is a function of the income standard y = f(y). In line with
applications, the income standard is either mean income or median income.
In the former case f(y) = 1

n(y)

∑
yi and in the latter case f(y) = ym, where

m denotes the index attached to the median earner in distribution y.5 The
relative line is defined by its threshold function

zr(y) = b+ sy,

where s ∈ (0, 1) defines the slope of the relative line and b ∈ [0, za(1 − s)]
defines the lower bound to social participation costs. The line zr is strongly
relative when b = 0 and weakly relative when b > 0 (Ravallion and Chen,
2011). As I impose that b ≤ za(1 − s), the relative threshold is weakly
smaller than the absolute threshold when the income standard takes value
za. Importantly, this restriction implies that the two poverty lines cross
(i.e. have equal thresholds) at a level of income standard yc defined as

yc =
1

s
(za − b),

which is such that yc ≥ za. This crossing property is necessary for the
impossibility result established in Theorem 2. Let Z denote the set of
acceptable threshold functions. The set of individuals who qualify as rel-
atively poor in y is Qr(y) = {i ≤ n(y) | yi < zr(y)}. Figure 1 illustrates
several pairs of poverty lines.

yi

ȳc

za

zr

ȳ

yi

ȳc

za

zr

ȳ
b

yi

za

zr

ȳ

(a) (b) (c)

Figure 1: Several pairs of absolute and relative poverty lines.
(a) Positive absolute threshold and strongly relative line. (b) Positive ab-
solute threshold and weakly relative line. (c) Null absolute threshold and
strongly relative line.

Together, an individual is poor if her income is below the upper contour
of the two lines, which is

z(y) = max{za, zr(y)}.

The set of individuals who qualify as poor in y is Q(y) = Qa(y)∪Qr(y). The
number of poor individuals and the number of absolutely poor individuals
are respectively denoted by q(y) and qa(y). The sets of absolutely poor

5 If y is sorted in non-decreasing order y1 ≤ · · · ≤ yn, then m = 1
2 (n+ 1) if n is odd

and m = 1
2n if n is even. This definition of the median when n is even is without loss

of generality as the proofs can be easily adapted if m is instead defined as m = 1
2n+ 1.
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and relatively poor individuals need not be disjoint. The set of individuals
who qualify as only relatively poor in y is Q(y)\Qa(y). The number of only
relatively poor in y is q(y)− qa(y).

Letting N = {n ∈ N|n ≥ 4}, the set of income distributions considered
is6

Y =
{
y ∈ ∪n∈NR

n
+ | y ≥ za and y > 0

}
.

This set excludes distributions whose income standard is smaller than the
absolute threshold. This restriction is necessary for Theorem 1 to hold
when the income standard is median income. Also, this restriction implies
that the income of poor individuals is smaller than the income standard,
i.e. yi < y for all i ∈ Q(y).

A poverty index is a real-valued function P : P → R+ that ranks
income distributions using the two poverty lines as parameters. In general,
a poverty index has a domain of definition P = Y ×R+ ×Z. However, the
results can be derived when assuming that the two poverty lines are given.
As it makes the results more general,7 I adopt the following much narrower
domain of definition

P = Y × {(za, s, b, f)}.

The poverty in distribution y is simply denoted by P (y). For any two
distributions y and y′, there is strictly more poverty in y than in y′ if
P (y) > P (y′), and weakly more if P (y) ≥ P (y′).

4 Hierarchical poverty indices

I study which indices should be used when comparing poverty in different
income distributions. The particularity of the framework is the presence of
a second poverty line whose threshold depends on the income standard. The
properties I impose on indices acknowledge this presence in two ways. First,
the relevance of each of the two poverty lines is established in a separate
focus axiom. Second, several properties are restricted to the comparison of
income distributions that have equal income standards.

The particularity of poverty indices is that only the situation of poor in-
dividuals matters to poverty comparisons. This property that distinguishes
poverty indices from other kinds of normative indices, e.g. inequality or
mobility indices, is traditionally encapsulated in a focus axiom. This axiom
requires that the exact income of individuals earning more than the poverty
threshold is irrelevant to some extent. The extent to which their income
is irrelevant depends on the poverty status considered. As I consider two
kinds of poverty, I impose two separate focus axioms. Each focus axiom is
specific to the particular need captured by its associated line.

An individual is absolutely poor if her income is insufficient to meet her
subsistence needs. Traditionally, the minimal income necessary to cover

6 The requirement y ≥ za does not exclude y = 0 when za = 0.
7 The results obtained on the narrower domain also constrain indices defined on the

larger domain.

7

                             9 / 39



subsistence needs is assumed to be independent of the income of non-poor
individuals. Absolute Focus requires that, when all poor individuals are
absolutely poor, the exact income earned by non-poor individuals is irrel-
evant. This axiom is a weakening of the classical focus axiom.

Absolute Focus. For all y, y′ ∈ Y with n(y) = n(y′) and Qa(y) = Q(y) =
Qa(y

′) = Q(y′), if yi = y′i for all i ∈ Qa(y), then P (y) = P (y′).

In contrast, the focus axiom associated to the relative line does not com-
pletely disregard the income of non-poor individuals. The income necessary
for an individual to meet her social participation needs depends on the in-
come standard. In turn, the income standard depends on the income of
non-poor individuals. Relative Focus requires that, when all poor individ-
uals are relatively poor, the exact income earned by non-poor individuals
is irrelevant only as long as the income standard is unchanged.

Relative Focus. For all y, y′ ∈ Y with n(y) = n(y′), Qr(y) = Q(y) =
Qr(y

′) = Q(y′) and y = y′, if yi = y′i for all i ∈ Qr(y), then P (y) = P (y′).

The classical monotonicity property requires that poverty is reduced
when a poor individual earns an additional amount of income. Weak
Monotonicity adds the precondition that the other poor individuals are
not affected. This precondition is guaranteed by restricting monotonicity
comparisons to distributions that have the same income standard.

Weak Monotonicity. For all y, y′ ∈ Y with n(y) = n(y′), Q(y′) ⊆ Q(y)
and y = y′, if yj < y′j for some j ∈ Q(y) and yi = y′i for all i ∈ Q(y′)\{j},
then P (y) > P (y′).

Subgroup Consistency is a standard axiom requiring that, if poverty
decreases in a subgroup while it remains constant in the rest of the distri-
bution, overall poverty must decline. Sen (1992) questioned the desirabil-
ity of this axiom by arguing that the incomes in one subgroup may affect
poverty in another subgroup. Foster and Sen (1997) recommend not to use
this axiom when the index aims at capturing relative aspects of poverty.
I subscribe to this point of view. The issue becomes transparent once the
channel through which one subgroup affects the other is modeled. In this
framework, the incomes in a subgroup impact the income standard, which
in turn affects poor individuals in another subgroup. When a poverty line
is relative, it is thus not always meaningful to extrapolate the judgments
made on a subgroup to the whole population. Weak Subgroup Consistency
restricts such extrapolations to distributions for which the subgroups have
the same income standard. In such cases, the income standard of a sub-
group is equal to the income standard of the entire distribution and poverty
judgments made on the subgroup are meaningful for the entire distribution.

Weak Subgroup Consistency. For all y1, y2, y3, y4 ∈ Y with n(y1) =
n(y3), n(y2) = n(y4) and y1 = y2 = y3 = y4, if P (y1) > P (y3) and
P (y2) = P (y4), then P ((y1, y2)) > P ((y3, y4)).

The remaining three auxiliary axioms are standard. Symmetry requires
that individuals’ identities do not matter. Working with sorted distribu-
tions is therefore without loss of generality.
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Symmetry. For all y, y′ ∈ Y with n(y) = n(y′), if y′ = y · πn(y)×n(y) for
some permutation matrix πn(y)×n(y), then P (y) = P (y′).

Symmetry implies that individual preferences are irrelevant to the poverty
index. This property generates little debate when only the level of own in-
come appears in preferences. If preferences are monotonic, then monotonic
indices do not override individual preferences. When both the level of own
income and the relative situation matter, the monotonicity of preferences
does not entirely define individual preferences and Symmetry explicitly re-
quires to completely disregard these preferences. This form of paternalism
can be defended on the ground that it prevents poverty indices from giving
priority to individuals that are more other-regarding.8

Next axiom requires indices to be continuous in incomes. Such conti-
nuity requirement is important in empirical applications in order to avoid
that measurement errors have an excessive impact on poverty judgments.
Weak Continuity requires indices to be continuous in all incomes, but only
for distributions whose income standard is larger than the income standard
at which the two lines cross.

Weak Continuity. For all y ∈ Y with y > yc, P is continuous in y.

In the absence of any restriction, the continuity property would be in-
compatible with the above axioms. As shown in Lemma 2 in Appendix 7.1,
indices that are continuous on the whole domain Y cannot simultaneously
satisfy Absolute Focus and Weak Monotonicity when za > 0.

Finally, Replication Invariance specifies how to compare poverty across
distributions of different population sizes. If a distribution is obtained by
replicating another distribution several times, then the two distributions
have equal poverty. Formally, for any k ∈ N, the k−replication of a distri-
bution y is the distribution y×k = (y, . . . , y) for which n(y×k) = kn(y).

Replication Invariance. For all y ∈ Y and k ∈ N, we have P (y) =
P (y×k).

Lemma 1 shows that not all of these axioms are independent.

Lemma 1. If the income standard is either mean income or median in-
come, and if P satisfies Absolute Focus, Weak Subgroup Consistency and
Symmetry, then P satisfies Relative Focus.

Proof. See Appendix 7.2. �

As Relative Focus is implied by the other axioms, it can be dropped
from the statement of Theorem 1 (see below). This theorem states that
these axioms jointly characterize the family of hierarchical poverty indices.

8 For an illustration of the issue, consider two poor individuals living in the same
society. Assume that individual 1 has a smaller income than individual 2 but individual
2 has preferences that are more affected by relative income than the preferences of
individual 1. If individual preferences matter for the poverty index, it could be that
the contribution to poverty of individual 2 is larger than that of individual 1. Hence,
individual 2 is considered more poor than individual 1. Such conclusion is debatable
given that both individuals would agree that individual 2 is better-off than individual
1.
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Definition 1 (Hierarchical poverty indices).
P is a hierarchical poverty index if

P (y) =
1

n(y)

n(y)
∑

i=1

p(yi, y), (1)

where the poverty contribution function p : R+ × [za,∞) → [0, 1] satisfies

(i) p(0, y) = 1 and p(yi, y) = 0 if i /∈ Q(y),

(ii) p is strictly decreasing in its first argument if i ∈ Q(y),

(iii) p is continuous in both its arguments if y > yc,

(iv) p is constant in its second argument if i ∈ Qa(y).

Hierarchical indices are additive indices. Therefore, they sum the poverty
contributions of all individuals in a distribution. As usual, non-poor indi-
viduals contribute zero (i), the contribution of any poor individual is de-
creasing in her income (ii) and the contribution function is continuous on
some domain (iii). More importantly, the contribution of any poor indi-
vidual depends on her income, as for standard additive indices (Foster and
Shorrocks, 1991), but also on the income standard. These two variables
summarize the relevant aspects of a poor individual’s situation. In this
sense, the pair (yi, y) defines the “bundle” consumed by the poor individual
i. The contribution function ranks all the bundles that poor individuals
may consume.9 Therefore, the contribution function implicitly compares
poor individuals across societies with different levels of income standards.

The key feature of hierarchical indices is that they compare poor in-
dividuals living in different societies in a specific way. The constraints
imposed on these comparisons are revealed by a graphical representation
of the iso-poverty map defined by the index. An iso-poverty map is a col-
lection of iso-poverty curves. An iso-poverty curve is the set of bundles
associated to the same poverty contribution. Implicitly, two individuals
whose bundles are on the same iso-poverty curve are deemed equally poor
by the contribution function. Figure 2 shows iso-poverty maps satisfying
the constraints imposed by restriction (iv). This restriction requires that
the contribution of absolutely poor individuals only depends on their own
income. As a result, their iso-poverty curves are flat and do not cross the
absolute threshold. This implies that the bundle of an absolutely poor
individual is always on a lower iso-poverty curve than the bundle of an
individual who is only relatively poor. In other words, an individual who
is absolutely poor must be deemed poorer than an individual who is only
relatively poor, regardless of the income standards in their respective soci-
eties. An extremely poor individual in Bangladesh must be deemed poorer
than an individual who is only relatively poor in Colombia, even if the
income standard in Colombia is larger. I call these indices “hierarchical ”

9 Formally, the contribution function defines a complete ordering on the space of
bundles.
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because they grant a particular form of precedence to the absolute poverty
status. Below the absolute threshold, the relative aspect of income poverty
is irrelevant. It is only when an individual is not absolutely poor that the
relative aspect of her poverty becomes relevant.

yi

ȳc

za

zr

ȳ

bc

yi

ȳc

za

zr

ȳ

bc

b

yi

za

zr

ȳbc

(a) (b) (c)

za za

Figure 2: Iso-poverty maps of hierarchical indices.
Note: The plain lines are iso-poverty curves. (a) Positive absolute threshold
and strongly relative line. (b) Positive absolute threshold and weakly relative
line. (c) Null absolute threshold and strongly relative line.

Importantly, standard poverty indices are not hierarchical when the ab-
solute threshold is strictly positive. Consider for instance the FGT indices
(Foster et al., 1984), which are pervasive in empirical applications. In the
presence of two lines, FGT indices are usually defined as

p̂α(yi, y) =

(

1−
yi

max(za, zr(y))

)α

(2)

where α ≥ 0 is the poverty aversion parameter (Atkinson and Bourguignon,
2001). Equation (2) reveals that the inter-personal comparisons performed
by these indices only depend on the normalized income, i.e. on own in-
come divided by the relevant poverty threshold. Two individuals with the
same normalized incomes are considered equally poor. Coming back to
the example developed in the Introduction, an individual earning half the
poverty threshold in Bangladesh, where z

(
yB
)
= $2.4 a day, is considered

as poor as an individual earning half the poverty threshold in Colombia,
where z

(
yC
)
= $5.5 a day. This comparison is made even if the former is

extremely poor while the latter is only relatively poor. To fix ideas, given
the respective relative thresholds, standard FGT indices implicitly consider
that an individual earning $1.5 a day in Bangladesh is less poor than an
individual earning $3 a day in Colombia. This shows that standard FGT
indices are not hierarchical. I emphasize that it is not a mere theoretical
issue. When they are combined with relative poverty lines, non-hierarchical
indices regularly lead to highly counterintuitive poverty comparisons (De-
cerf, 2017).

It is however possible to define a hierarchical version of FGT indices.
Consider the following family of indices for which the contribution of any
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poor individual i in distribution y is given by1011

pαλ(yi, y) =







(

1− λ yi
za

)α

if yi < za,

(

1− λ− (1− λ) yi−za
zr(y)−za

)α

if za ≤ yi < zr(y),

(3)

where α is the poverty aversion parameter and λ is a parameter tuning the
poverty contribution of an individual earning exactly za. Any index in the
family proposed in Equation (3), which is denoted by Pαλ, is defined by a
pair of values for the two parameters α and λ. As can be easily verified,
when za > 0, Pαλ is a hierarchical index if α > 0 and λ ∈ (0, 1).

Theorem 1. If the income standard is either mean income or median
income, then the following two statements are equivalent.

1. P satisfies Absolute Focus, Weak Monotonicity, Weak Subgroup Con-
sistency, Symmetry, Weak Continuity and Replication Invariance.

2. P is ordinally equivalent to a hierarchical poverty index.

Proof. See Appendix 7.3. �

Theorem 1 has three important implications. First, indices based on
two lines should be additive, which means that they sum individual con-
tributions to poverty. Importantly, this additive separability result is ob-
tained with a weak version of the Subgroup Consistency axiom of Foster
and Shorrocks (1991). This weak version restricts its application to sub-
groups that have the same income standard. As a result, Weak Subgroup
Consistency escapes the critique of Foster and Sen (1997). Surprisingly,
this weak property is sufficient to obtain additive separability and Theo-
rem 1 constitutes a firm foundation for additive indices, provided individual
contributions depend on both own income and the income standard.

Second, because the contribution function depends on both own income
and the income standard, this function implicitly compares poor individ-
uals across societies with different income standards. In other words, the
selection of a poverty index determines the inter-personal comparisons per-
formed by the poverty measure. It is well-known that the selection of a
poverty index determines the trade-offs that the poverty measure makes
between the incomes of different poor individuals living in the same soci-
ety. This aspect, which I call the “prioritization” inherent to the index, has
been widely studied (Zheng, 1997). However, the inter-personal compari-
son aspect is much less studied. Decerf (2017) emphasizes the importance
of these inter-personal comparisons.

The last key implication of Theorem 1 is that poor individuals living
in different societies must be compared in a specific way. An absolutely

10 The expression given in Equation (3) is valid for all poor individuals. However,
when y ≤ yc and yi = za, individual i is non-poor and her contribution is then equal to
zero.

11 When za = 0, the first part of Equation (3) is not well-defined. However, this first
part is irrelevant when za = 0 because no individual has an income yi < 0.
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poor individual must be considered more poor than an individual who is
only relatively poor, regardless of the income standards in their respective
societies. The normative view according to which having absolute poverty
status is more severe than having only relative poverty status is largely
shared. It has been expressed in the literature (Atkinson and Bourguignon,
2001; Decerf, 2017) and is largely shared in the population, as appeared
from questionnaire studies run all over the world by Corazzini et al. (2011).
Theorem 1 provides a normative foundation for this view. As revealed by
the proof, the two axioms that jointly imply the hierarchical structure of
these indices are Absolute Focus and Weak Subgroup Consistency .

Two remarks are in order. First, Theorem 1 still holds in the special
case za = 0, i.e. when the index only considers one (relative) poverty line.
Despites the critics expressed against such widely used additive measures
(Sen, 1992; Foster and Sen, 1997), indices based on a relative line have never
been rigorously studied. This theorem thus provides a normative founda-
tion for additive indices used in combination with a relative line. Second,
Theorem 1 can be extended to relative lines whose threshold function is
not linear. This theorem applies as long as the relative line is continuous
and monotonically increasing with the income standard and its threshold
is always smaller than the income standard.

5 An impossibility result

Theorem 1 places no restriction on the shape that the contribution func-
tion takes for a fixed level of income standard, i.e. no restriction on the
prioritization inherent to the index. The only requirement is that the con-
tribution function decreases continuously in own income. Restrictions on
its shape emerge from axioms constraining how the index must trade-off
the incomes of different poor individuals. I consider two such axioms and
show that, unfortunately, hierarchical indices violate at least one of them
when the absolute threshold is strictly positive.

The first property, Transfer , is a classical axiom requiring that a Pigou-
Dalton transfer taking place between two poor individuals never unambigu-
ously increases poverty.

Transfer. For all y, y′ ∈ Y with n(y) = n(y′), Q(y) = Q(y′) and δ > 0, if
yj − δ = y′j > y′k = yk + δ for some j, k ∈ Q(y), y′i = yi for all i 6= j, k and
y′ = y, then P (y) ≥ P (y′).

As is well-known, poverty indices satisfying Transfer are based on con-
vex contribution functions.

The second property, Strong Monotonicity , considers an increase in the
income of some poor individual. When the income standard is mean in-
come, an increase in the income of a poor individual has opposing effects.
On the one hand, her poverty contribution decreases. This direct effect re-
duces poverty. On the other hand, mean income increases.12 If the poverty

12 Observe that the larger the number of individuals, the lower is the impact of the
increase in income on mean income and, hence, on the poverty contributions of others.
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threshold increases, then the poverty contributions of poor individuals may
increase. Moreover, some individuals who were non-poor might become
relatively poor. Strong Monotonicity requires that these indirect adverse
effects are dominated by the direct effect. Indices satisfying this property
never deem that a policy whose unique impact is to decrease the income of
some poor individuals reduces poverty.

Strong Monotonicity. For all y, y′ ∈ Y with n(y) = n(y′), if yj < y′j for
some j ∈ Q(y) ∪Q(y′) and yi = y′i for all i 6= j, then P (y) > P (y′).

Observe that, when the income standard is median income, last axiom
is equivalent to Weak Monotonicity . The reason is that the income of poor
individuals does not impact median income in the domain of distributions
considered.

Theorem 2 (see below) shows that all hierarchical indices violate Trans-
fer . Moreover, if the income standard is mean income, then hierarchical
indices also violate Weak Monotonicity .

I illustrate the violation of these axioms for a particular hierarchical
index, but the intuition provided is general. Consider P1λ, which is defined
by Equation (3) when assuming α = 1, i.e.

p1λ(yi, y) =







1− λ yi
za

if yi < za,

1− λ− (1− λ) yi−za
zr(y)−za

if za ≤ yi < zr(y),

First, P1λ violates Transfer when the income standard is sufficiently
close to yc, the value for which the two poverty lines have the same thresh-
old. Let individual i be absolutely poor and individual j be only relatively
poor. Transfer implies that a balanced transfer of an amount ǫ from j to
i cannot increase poverty. Given the definition of p1λ, we have

∂p1λ(yi, y)

∂yi
= −

λ

za
and

∂p1λ(yi, y)

∂yj
= −

1− λ

zr(y)− za
.

Thus, when i receives an amount ǫ of income, her contribution to
poverty decreases by ǫ λ

za
, regardless of her exact income. In contrast, when

j reduces her income by an amount ǫ, her contribution increases by ǫ 1−λ
zr(y)−za

,
regardless of her exact income. Transfer is satisfied when the variation in
j’s contribution is smaller than the variation in i’s contribution. The reason
why this axiom is violated is that the variation in j’s contribution depends
on the difference between the two thresholds, whereas it is not the case for
i’s contribution. Provided the income standard is sufficiently close to yc,
the difference between the two thresholds tends to zero, and the variation
in j’s contribution becomes larger than the variation in i’s contribution.

Figure 3 graphically illustrates the issue. This figure shows the con-
tribution function at two different levels of income standards. The con-
tribution of relatively poor individuals depends on the income standard,
while the contribution of absolutely poor individuals is independent of the
income standard. When the income standard is sufficiently close to yc, as
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1

0 zr(y)za
yi

p1λ(yi, y)

1− λ

income standard = y 1

0 zr(y
′)za

yi

p1λ(yi, y
′)

1− λ

income standard = y′

(a) (b)

Figure 3: Hierarchical index P1λ violates Transfer .
Note: (a) At the income standard y, the contribution function is convex.
(b) At the income standard y′, the contribution function is concave.

is the case in panel (b), the contribution function becomes concave in own
income, implying a violation of Transfer .

The violation of Strong Monotonicity is based on a similar intuition.
Consider a distribution with at least one absolutely poor individual and a
second individual who is non-poor but whose income is exactly equal to
the relative threshold. When the income of the absolutely poor increases,
mean income increases. If the income standard is mean income, then the
relative threshold increases and the second individual becomes relatively
poor. Again, the increase in the contribution of the second individual can
be made larger than the decrease in the contribution of the absolutely
poor, provided the relative threshold is sufficiently close to the absolute
threshold.

Theorem 2 shows that all hierarchical indices fail some basic property.

Theorem 2. Let za > 0 and let P be a hierarchical index.

1. If the income standard is either mean income or median income, then
P violates Transfer.

2. If the income standard is mean income, then P violates Strong Mono-
tonicity.

Proof. See Appendix 7.4. �

Theorems 1 and 2 jointly constitute a negative result. One cannot
demand too much from a poverty index when both the absolute and relative
aspects of income poverty have to be taken into account. Any index based
on two poverty lines either ignores the higher severity associated to having
absolute poverty status or fails some basic property. In this sense, any
index must make a trade-off between plausible inter-personal comparisons
and defensible “prioritization”.

There are at least three possible ways to deal with this normative trade-
off. The first way is to escape the impossibility stated in Theorem 2 by
changing the definition of the two poverty lines or the domain of distri-
butions Y . The impossibility holds because the relative line crosses the
absolute line on the domain Y . Decerf (2017) considers a different frame-
work, with two poverty lines that do not cross. The two lines do not cross
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because the relative threshold is assumed to be always larger than the
absolute threshold. In this alternative framework, the hierarchical index
proposed by Decerf (2017) satisfies both Transfer and Strong Monotonic-
ity , even when the income standard is mean income. The problem with
this framework is that it is at odds with the literature considering two
poverty lines. For instance, the Societal poverty line recently adopted by
the World Bank does cross its extreme poverty threshold (World Bank,
2018). Furthermore, even when taking a very low absolute line, as the
extreme line of the World Bank, and a rather high relative line, as the So-
cietal line (Jolliffe and Prydz, 2017), many developing countries have their
income standards smaller than yc.13 Therefore, this first way out is not
always a viable option, and one must then compromise on either plausible
inter-personal comparisons or defensible prioritization.

The second way out is to compromise on defensible prioritization. The
solution here is to use hierarchical indices that satisfy weakenings of Trans-
fer and Strong Monotonicity . This is for instance the route followed by
Decerf and Ferrando (2020b).

The third way out is to compromise on plausible inter-personal compar-
isons. There exist non-hierarchical indices that satisfy both Transfer and
Strong Monotonicity , even when the income standard is mean income. This
is for instance the case of the poverty gap ratio, as defined by Equation (2)
when assuming α = 1.

I believe that the minimal form of precedence granted to absolute
poverty by hierarchical indices is conceptually more fundamental than ag-
gregation axioms such as Transfer or Strong Monotonicity . The reason is
that inter-personal comparisons may relate to the welfare-consistency of
the poverty measure.14 As a result, non-hierarchical indices regularly lead
to debatable poverty comparisons (Decerf, 2017). In contrast, aggregation
axioms relate to the comparisons of gains and losses made by different poor
individuals. Therefore, these axioms “merely” relate to the fairness of the
index. For these reasons, I believe that the second way out is in general
preferable to the third one.

Of course, the particular application one has in mind can influence
the choice between alternative escape routes. The difference between the
inter-personal comparisons performed by standard and hierarchical indices
is large when comparing societies with significantly different income stan-
dards. However, this difference becomes smaller as the distance between

13 Recall that the Societal line is defined as zr(y) = 1+0.5y, where the income standard
is median income. This weakly relative line has a high intercept ($1 a day), implying a
high relative threshold. In 2015, the latest reference year available in Povcalnet data, at
least nine sub-Saharan countries have their Societal threshold below the extreme poverty
threshold.

14 In order to get an intuition, assume that the precedence granted to the absolutely
poor corresponds to individual preferences. Under this assumption, individuals prefer
to have the possibility to satisfy their subsistence needs, even if it comes at the cost
of a worse relative situation. Then, the problem with non-hierarchical indices is that
they sometimes conclude that poverty is reduced even when all poor individuals deem
that their situation has worsened. For instance, this could happen after an inequality-
reducing recession. Such recession may decrease the income of poor individuals below
the absolute threshold while improving their relative situation.
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their income standards is reduced. So, if the application only requires com-
paring societies with similar income standards, then the third route might
be preferable to the second one. This is the for instance the case if one
is interested in the poverty trend of a country that does not experience
growth, or when comparing the poverty in countries sharing similar stan-
dards of living. Yet, for many important applications such as measuring
global income poverty or assessing the poverty trend of a developing coun-
try experiencing significant growth, the second way out seems to offer a
more compelling solution.

6 Concluding remarks

Income inequality has recently attracted increasing attention. Abstracting
from the impacts that inequality may have on behavior, there exists two
main normative reasons why one may care about inequality. The first is
fairness. An ethical observer may prefer more equal distributions of re-
sources. The second is that inequality may have intrinsic value for the
concerned individual. For instance, their preferences may depend on both
their absolute income and their relative income. Alternatively, the so-
cial functionings provided by a given amount of resources may depend
on the society’s income standard (Sen, 1992). The second reason is the
mainstream foundation used to defend relative poverty lines. Any poverty
measure endorsing such foundation must first aggregate the absolute and
relative aspects of income at the individual level and second aggregate in-
dividual contributions over the whole population, as proposed by Atkinson
and Bourguignon (2001). As these authors suggest, taking onboard the
relative aspect of poverty is not only a matter of picking the right poverty
line(s) but also a matter of selecting an appropriate index. Following their
approach, Decerf (2017) stresses the importance of the iso-poverty maps
inherent to poverty measures. In this paper, I show that indices based on
two poverty lines should be based on an iso-poverty map that grants some
precedence to the absolute aspect of income poverty. This result further
emphasizes the key role played by iso-poverty maps, which has been little
studied in the literature.

7 Appendix

7.1 Incompatibility between Absolute Focus, Weak Mono-

tonicity and Continuity

Continuity. For all y ∈ Y , P is continuous in y.

Lemma 2. If za > 0 and the income standard is either mean income or me-
dian income, then no index P satisfies Absolute Focus, Weak Monotonicity
and Continuity.

Proof. Take any y and y′ such that za < y ≤ yc < y′. For any ǫ ∈ [0, za], I
define two distributions yǫ, yǫ

′

∈ Y in the following way: n(yǫ) = n(yǫ
′

) = 4,
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yǫ = y, yǫ
′

= y′, yǫ1 = yǫ
′

1 = za − ǫ and yǫ2 = yǫ3 = yǫ4 and yǫ
′

2 = yǫ
′

3 = yǫ
′

4 . If
the income standard is mean income, this implies that for all i ∈ {2, 3, 4}
we have yǫi =

1
3
(4y − yǫ1) and yǫ

′

i = 1
3
(4y′ − yǫ

′

1 ). If the income standard is
median income, this implies that for all i ∈ {2, 3, 4} we have yǫi = y and
yǫ

′

i = y′. Either way, we have for all i ∈ {2, 3, 4} that yǫi ≥ y and yǫ
′

i ≥ y′,
which implies that i /∈ Q(yǫ) and i /∈ Q(yǫ

′

) because za < y < y′ and
b ≤ za(1 − s). As za > 0, we have for all ǫ > 0 that Q(yǫ) = Qa(y

ǫ) =
Q(yǫ

′

) = Qa(y
ǫ′) = {1} and therefore P (yǫ) = P (yǫ

′

) by Absolute Focus
because yǫ1 = yǫ

′

1 .
Consider the distribution y′′ = (y′, y′, y′, y′), which is such that y′′ = y′

and Q(y′′) = ∅. For ǫ = 0, we have Q(y0) = ∅ because y01 = za ≥ zr(y
0),

and therefore P (y0) = P (y′′) by Absolute Focus. However, for ǫ = 0, we
have Q(y0

′

) = {1} because y0
′

1 = za < zr(y
0′), and therefore P (y0

′

) > P (y′′)
by Weak Monotonicity because y0

′

= y′′ and y0
′

1 < zr(y
0′) < y′′i for all i.

As P (yǫ) = P (yǫ
′

) for all ǫ > 0, we must have P (y0) = P (y0
′

) by
Continuity . This yields the desired contradiction because P (y0) = P (y′′) <
P (y0

′

). �

7.2 Proof for Lemma 1

Consider any two y, y′ ∈ Y with n(y) = n(y′), Qr(y) = Q(y) = Qr(y
′) =

Q(y′) and y = y′, yi = y′i for all i ∈ Qr(y). I must show that P (y) = P (y′)
if P satisfies Absolute Focus, Weak Subgroup Consistency and Symmetry .

If y ≤ yc, then zr(y) ≤ za and we have by assumption that Qa(y) =
Q(y) = Qa(y

′) = Q(y′). By Absolute Focus we have P (y) = P (y′), the
desired result.

I consider the remaining case y > yc. Assume that both distributions
are sorted in non-decreasing order, i.e. y1 ≤ y2 ≤ · · · ≤ yn(y) and the same
for y′. By Symmetry , this assumption is without loss of generality.

If Qr(y) = ∅, then we have P (y) = P (y′) by Absolute Focus. I con-
sider the remaining case Qr(y) 6= ∅. Let yp = (y1, . . . , yq(y)) and ynp =
(yq(y)+1, . . . , yn(y)) be distributions such that y = (yp, ynp) and all individu-
als in yp have their income below zr(y) while all individuals in ynp have their
income above zr(y). Let yp

′

= (y′1, . . . , y
′

q(y)) and ynp
′

= (y′q(y)+1, . . . , y
′

n(y))

be distributions such that y′ = (yp
′

, ynp
′

) and all individuals in yp
′

have
their income below zr(y) while all individuals in ynp

′

have their income
above zr(y). By assumption on y and y′, we have yp = yp

′

.
Consider a distribution xc such that for distributions x = (ynp, xc) ∈ Y

and x′ = (ynp
′

, xc) ∈ Y we have x = y, x′ = y and Qr(x) = Qr(x
′) = ∅. In

words, the distribution xc is used to construct two distributions x and x′

that have the appropriate income standard y and all individuals in x and
x′ are non-poor.

Assume that such distribution xc exists (I prove that it exists below).
By Symmetry we have

P (yp, ynp
′

︸ ︷︷ ︸

y′

, ynp, xc

︸ ︷︷ ︸
x

) = P (yp, ynp
︸ ︷︷ ︸

y

, ynp
′

, xc

︸ ︷︷ ︸

x′

).
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I show that P (y) 6= P (y′) would lead to a contradiction. Consider the
contradiction assumption P (y) > P (y′). As n(ynp, xc) = n(ynp

′

, xc) and
these two distributions have no poor individuals, we have P (ynp, xc) =
P (ynp

′

, xc) by Absolute Focus. Then, the preconditions for Weak Subgroup
Consistency are all met, i.e. n(y) = n(y′), n(x′) = n(x) and y = y′ = x =
x′, P (y) > P (y′) and P (x) = P (x′), and this axioms implies

P (yp, ynp
′

︸ ︷︷ ︸

y′

, ynp, xc

︸ ︷︷ ︸
x

) < P (yp, ynp
︸ ︷︷ ︸

y

, ynp
′

, xc

︸ ︷︷ ︸

x′

),

in contradiction with Symmetry . The alternative contradiction assumption
P (y) < P (y′) leads to a similar impossibility.

Finally, I show that distribution xc exists. Given that y > yc, we have
that y > zr(y) by the assumptions on the two lines: za ≤ yc and s < 1.
If the income standard is median income, then xc can be constructed such
that n(xc) = n(y) and all individuals in distribution xc earn the same
income equal to y. Consider now the case for which the income standard
is mean income. In that case, we have ynp = ynp

′

because y = y′ and
yp = yp

′

. However, we have y < ynp = ynp
′

. As y > zr(y) and there is no
upper limit on the number of individuals in xc, it is clearly possible to find
an appropriate xc for which all individuals in distribution xc earn the same
income a with zr(y) < a < y and x and x′ have mean income equal to y.

7.3 Proof of Theorem 1

The proof that statement 2 implies statement 1 is straightforward and
therefore omitted. A complete proof is provided for the converse implica-
tion for the case in which the income standard is the mean income. Fol-
lowing that proof, I explain how to adapt this proof so as to apply to the
case in which the income standard is the median income.

A. The income standard is the mean income.

Consider any poverty index P satisfying the axioms listed in statement
1. By Lemma 1, P satisfies Relative Focus on top of the axioms listed in
statement 1. The proof that statement 1 implies statement 2 is based on a
version of Gorman’s Theorem on additively separable functions.15 To state
it, I need a preliminary definition.

Separability. Let L = {1, . . . , l}, where l ≥ 3. The function P ∗ : ×l
i=1[0, 1] →

R is separable if for all L̂ ⊆ L with ∅ 6= L̂ 6= L and all u, v, u′, v′ ∈
×l

i=1[0, 1], if ui = vi and u′

i = v′i for all i ∈ L̂ and uj = u′

j and vj = v′j for

all j ∈ L \ L̂, then

P ∗(u) ≥ P ∗(v) ⇔ P ∗(u′) ≥ P ∗(v′). (4)

15 Theorem 2 in Gorman (1968) is more general than the version presented in Theorem
1. For instance, Gorman (1968)’s theorem does not require that each sector be a real
interval. It only requires that each sector has a countably dense subset and is arc-
connected.
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Theorem 1. (Gorman, 1968, Theorem 2) Let L = {1, . . . , l}, where l ≥ 3.
If the function P ∗ : ×l

i=1[0, 1] → R is continuous, strictly increasing in its
arguments and separable, then for any ν ∈ ×l

i=1[0, 1],

P ∗(ν) = F̃

(
l∑

i=1

φ̃i(νi)

)

, (5)

where F̃ and φ̃i are continuous and strictly increasing functions.

Gorman’s Theorem cannot be directly applied here for a number of rea-
sons. First, the function P is defined on a space Y that is not a Cartesian
product of intervals. Second, P need not be continuous everywhere be-
cause Weak Continuity only requires P to be continuous when the income
standard is larger than yc. Third, P need not be strictly increasing in all
of its arguments because all distributions in Y have at least one non-poor
individual and the exact incomes of non-poor individuals are often irrele-
vant by Absolute Focus and Relative Focus.16 Fourth, the arguments of P
need not be separable because changing the value of any income can affect
the value of the income standard, and its value is used in the preconditions
of several axioms. Nevertheless, I show that Gorman’s Theorem plays a
fundamental role in the proof of Theorem 1 because it applies on a subset
of the domain Y .

The proof is organized in five main claims.
In Claim 1, attention is restricted to a subdomain of Y with a fixed

population of size n ≥ 4, a fixed income standard y∗ > yc and for which
no individual has more income than individual n.17 As individual n is
necessarily non-poor, her income has no impact on P by Relative Focus.
This allows me to associate each distribution y in this subdomain with
a distribution in ×n−1

i=1 [0, 1] (with dimension n − 1) and define a function
P ∗ on ×n−1

i=1 [0, 1] whose value at any (n − 1)-dimensional distribution in
its domain is equal to the value of the n-dimensional distribution that
generates it. Finally, I show that P ∗ is additively separable by proving
that P ∗ satisfies the three assumptions of Gorman’s Theorem.

In Claim 2, I show that P ∗ has the same additively separable functional
form as that derived in Claim 1 for any fixed population size larger than
4, but the functions used in it are specific to the particular population size
considered.

Claim 2 applies to each population size separately. In Claim 3, I show
how the functional forms of P for different population sizes are related.
Adapting the reasoning of Foster and Shorrocks (1991) and using Claim 2,
I show that Replication Invariance implies that P is an increasing function

16For example, this is the case for income distributions whose income standard is
smaller than yc or when a progressive balanced transfer takes place between two non-
poor individuals.

17By Weak Continuity, the requirement that y∗ > yc ensures that P is continuous.
By Symmetry, it is without loss of generality to assume that no income exceeds that of
individual n.
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of the average amount that incomes fall below the relative income threshold,
where these shortfalls are measured as a fraction of the threshold.

In Claim 4, I show that P has the same functional form derived in
Claim 3 for any fixed income standard y > yc but with the functions en-
tering its expression specific to the particular income standard considered.

In Claim 5, a particular poverty index P ◦ is defined that has the func-
tional form of a hierarchical index. I first show that for any distribution y
whose income standard is weakly smaller than yc, P ◦ is ordinally equivalent
to the expression for P derived in Claim 4. In this step of the argument,
Absolute Focus plays a fundamental role in extending the expression for
P obtained in Claim 4 to distributions with income standards not in the
domain for which Claim 4 applies. I then show that P ◦ is ordinally equiv-
alent to the expression for P derived in Claim 4 for any distribution whose
income standard is larger than yc. Finally, I show that P ◦ satisfies the four
properties of a hierarchical index. Absolute Focus is once again used in a
fundamental way to show that P ◦ satisfies property (iv) in the definition
of a hierarchical index.

Proceeding more formally, consider any n ≥ 4. As will become clear
below, the minimal size to be able to use Gorman’s Theorem is 4. Let
y∗ be a value of mean income with y∗ > yc. Let Y ∗ denote the subset of
distributions of size n whose mean income is equal to y∗ and for which no
individual has more income than individual n. That is,

Y ∗ = {y ∈ Y |n(y) = n and y = y∗ and yi ≤ yn for all i ≤ n}.

For notational convenience, let z∗ = zr(y) denote the relative threshold
associated with a distribution y with mean income y∗. Because y∗ > yc,
we have by assumption that y∗ > za and, therefore, y∗ > z∗. This in
turn implies that the richest individual is non-poor; that is, yn > z∗ for all
y ∈ Y ∗.

Consider the function D : R+ → [0, 1] defined by

D(w) =







1− w
z∗

if w ∈ [0, z∗],

0 if w > z∗.

Next, consider its “inverse” function D− : [0, 1] → [0, z∗] defined by18

D−(w) = z∗(1− w).

The functions D and D− enter the construction of two mappings, M
and M−, which are then used to define a function P ∗ that satisfies the
assumptions of Gorman’s Theorem. First, M : Y ∗ → ×n−1

i=1 [0, 1] is defined
by

M(y) = (D(y1), . . . , D(yn−1)).

Then, M− : ×n−1
i=1 [0, 1] → Y ∗ is defined by

M−(ν) =

(

D−(ν1), . . . , D
−(νn−1), ny

∗ −
n−1∑

k=1

D−(νk)

)

.

18Strictly speaking, the function D− is not the inverse of D because the range of D−

is a subset of the domain of definition of D.
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The definition of M− is such that M−(ν) ∈ Y ∗ for all ν and, thus,
the distribution M−(ν) has n components. By the definition of its nth

component, M−(ν) has an income standard equal to y∗. Furthermore, its
nth component is the largest because all of its other components are by
definition weakly smaller than z∗ and z∗ < y∗. Consequently, we have
M−(ν) ∈ Y ∗.

The mapping M− and the index P are used to define a function P ∗ :
×n−1

i=1 [0, 1] → [0, 1]. For all ν ∈ ×n−1
i=1 [0, 1], the function P ∗ is defined by

P ∗
(
ν
)
= P (M−(ν)). (6)

The function P ∗ is well-defined because M−(ν) ∈ Y ∗ for all ν ∈ ×n−1
i=1 [0, 1]

and P is defined on all of Y ∗.
For any two y, y′ ∈ Y ∗, I show that

P (y) ≥ P (y′) ⇔ P ∗(M(y)) ≥ P ∗(M(y′)). (7)

To do so, I show that for all y ∈ Y ∗, we have

P
(
y
)
= P ∗(M(y)). (8)

By the definition of P ∗, this is equivalent to P
(
y
)
= P (M−(M(y))) for

all y ∈ Y ∗. Even if some y′ ∈ Y ∗ are such that y′ 6= M−(M(y′)), we still
have P

(
y′
)
= P (M−(M(y′))) for such distributions by properties 2 and 3

established for M and M ′ in Lemma 3.

Lemma 3. The mappings M and M ′ satisfy the following three properties:

1. M and M ′ are continuous,

2. P (y) = P (y′) for any two y, y′ ∈ Y ∗ such that M(y) = M(y′),

3. M(M−(ν)) = ν for all ν ∈ ×n−1
i=1 [0, 1].

Proof. (1) The mapping M is continuous on Y ∗ because function D is
continuous on its domain. The mapping M ′ is continuous on the product
space because function D− is continuous on its domain and so is the nth

component of the distribution M−(ν).
(2) As individual n is non-poor, we have by the construction of M that

M(y) = M(y′) only if Q(y) = Q(y′) and yi = y′i for all i ∈ Q(y). As all
distributions in Y ∗ have the same income standard y∗, whose associated
relative threshold z∗ is such that za < z∗, Relative Focus implies that
P (y) = P (y′).

(3) By construction we have D(D−(w)) = w for all w ∈ [0, 1]. There-
fore, the definitions of M and M ′ imply this property. �

Claim 1. For fixed n ≥ 4 and fixed y∗ such that y∗ > yc,

P ∗(ν) = F̃

(
n−1∑

i=1

φ̃(νi)

)

(9)

for all ν ∈ ×n−1
i=1 [0, 1], where F̃ and φ̃ are continuous and strictly increasing

functions.
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To prove Claim 1, I first show that P ∗ is continuous, strictly increasing
in its arguments and separable, and then appeal to Gorman’s Theorem.

Lemma 4. P ∗ is continuous.

Proof. Because y∗ > yc, by Weak Continuity , P is continuous on Y ∗ ⊆ Y .
Because P ∗(ν) = P (M−(ν)) for all ν ∈ ×n−1

i=1 [0, 1] (by definition) and M−

is continuous on ×n−1
i=1 [0, 1] (property 1 in Lemma 3), P ∗ is continuous. �

Lemma 5. P ∗ is strictly increasing in its arguments.

Proof. Consider any i ∈ {1, . . . , n− 1}, any (ν1, . . . , νi−1, νi+1, . . . , νn−1) ∈
×i−1

j=1[0, 1]×
n−1
j=i+1 [0, 1] and any νi, ν

′

i ∈ [0, 1] with νi > ν ′

i. I show that

P ∗(ν1, . . . , νi−1, νi, νi+1, . . . , νn−1
︸ ︷︷ ︸

= ν

) > P ∗(ν1, . . . , νi−1, ν
′

i, νi+1, . . . , νn−1
︸ ︷︷ ︸

= ν′

).

Let y = M−(ν) and y′ = M−(ν ′). By the construction of the mapping
M−, we have y = y′ and yi < y′i with i ∈ Q(y) and yj = y′j for all
j ∈ Q(y′)\{i}. By Weak Monotonicity , we have P (y) > P (y′), which by
Equation (7) implies that P ∗(ν) > P ∗(ν ′).

Because individual n is never poor on Y ∗, by Relative Focus, the value
of P is independent of the value of yn. Because M does not associate any
argument to individual n, P ∗ is therefore strictly increasing in all of its
arguments. �

Lemma 6. P ∗ is separable.

Proof. Consider any L̂ ⊆ L with ∅ 6= L̂ 6= L. Without loss of generality,
suppose that L̂ = {1, . . . , j}. Let j◦ = (n − 1) − j. Consider any u, v ∈
×j

i=1[0, 1] and any w, t ∈ ×j◦

i=1[0, 1]. I need to show that

P ∗(u, w) ≥ P ∗(v, w) ⇔ P ∗(u, t) ≥ P ∗(v, t).

In order to establish this inequality, I construct four specific distributions
y1

′′′

, y2
′′′

, y3
′′′

, y4
′′′

∈ Y ∩R
3n that satisfy two properties. First, each of them

can be partitioned into three subsets with 3j, 3j◦ and 1 components whose
means incomes are equal to y∗. Second,

P (y1
′′′

) = P ∗(u, w), P (y2
′′′

) = P ∗(v, w),

P (y3
′′′

) = P ∗(u, t), P (y4
′′′

) = P ∗(v, t)
(10)

and
P (y1

′′′

) ≥ P (y2
′′′

) ⇔ P (y3
′′′

) ≥ P (y4
′′′

). (11)

This is done in two steps.

Step 1. In this step, I construct y1
′′′

, y2
′′′

, y3
′′′

, y4
′′′

∈ Y ∩ R
3n that

satisfy (10) and which can be partitioned into three subsets of components
as described above.

Substep 1.1. Let y1, y2, y3, y4 ∈ Y ∗ be defined by setting y1 = M−(u, w),
y2 = M−(v, w), y3 = M−(u, t), and y4 = M−(v, t).
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The next four substeps aim at constructing from y1 a particular income
distribution y1

′′′

with P (y1
′′′

) = P (y1) for which the elements of a partic-
ular partition of y1

′′′

all have their mean income equal to y∗, which is a
precondition for applying Weak Subgroup Consistency .

Substep 1.2. I now partition y1 into three distributions yu, yw and y1n
such that

y1 = (y11, . . . , y
1
j

︸ ︷︷ ︸
= yu

, y1j+1, . . . , y
1
n−1

︸ ︷︷ ︸
= yw

, y1n),

where u = (D(y11), . . . , D(y1j )) and w = (D(y1j+1), . . . , D(y1n−1)). By the
definition of M−, all i /∈ Q(y1) ∪ {n} have income y1i = z∗ and individual
n has income

y1n = ny∗ −

n−1∑

k=1

y1k. (12)

For the distributions yu, yw and y1n, it need not be the case that yu =
yw = y1n = y∗. The next substeps modify yu, yw and y1n so that the resulting
distributions do satisfy these equalities.

Substep 1.3. I now construct a distribution y1
′

that is a 3-fold replication
of y1. Specifically, y1

′

is given by

y1
′

= (y1, y1, y1) = (yu, yw, y1n, y
u, yw, y1n, y

u, yw, y1n).

We have y1
′

= y1 as replication does not affect the mean. By Replication
Invariance, P (y1

′

) = P (y1).

Substep 1.4. Next, I construct a distribution y1
′′

from y1
′

for which
P (y1

′′

) = P (y1
′

) by implementing particular transfers among the three
individuals whose incomes are y1n.

Letting n(u) = j and n(w) = n− (j + 1) denote the respective sizes of
u and w. Three incomes au, aw and ax are defined by setting

au = (3n(u) + 1)y∗ − 3

j
∑

k=1

y1k, (13)

aw = (3n(w) + 1)y∗ − 3

n−1∑

k=j+1

y1k, (14)

ax = 3y1n − au − aw. (15)

It is now shown that au > z∗, aw > z∗ and ax = y∗. Recall that all
non-poor individuals in yu have incomes equal to z∗. Therefore, we have
that 3

∑j

k=1 y
1
k ≤ 3n(u)z∗. Given that y∗ > z∗, it then follows that au > z∗.

The same reasoning shows that aw > z∗. Finally, to show that ax = y∗, I
substitute the expressions for y1n, au and aw in (12), (13) and (14) into (15)
and use the identity n(u) + n(w) + 1 = n.

The distribution

y1
′′

= (yu, yw, au, y
u, yw, aw, y

u, yw, ax)
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is obtained from y1
′

by implementing balanced transfers among the three
non-poor individuals whose income is y1n. As balanced transfers do not
affect the mean, y1

′′

= y1
′

= y∗. As Q(y1
′′

) = Q(y1
′

) and y1
′′

i = y1
′

i for all
i ∈ Q(y1

′

), we have by Relative Focus that P (y1
′′

) = P (y1
′

).

Substep 1.5. I now permute the components of y1
′′

so that the compo-
nents indexed by u precede the components indexed by w which, in turn,
precede the component indexed by x. Let

y1
′′′

= (yu, yu, yu, au, y
w, yw, yw, aw, ax).

By Symmetry , we have P (y1
′′′

) = P (y1
′′

). The distribution y1
′′′

is parti-
tioned into three distributions y3u, y3w and ax as follows:

y1
′′′

= (yu, yu, yu, au
︸ ︷︷ ︸

= y3u

, yw, yw, yw, aw
︸ ︷︷ ︸

= y3w

, ax).

I have already shown that ax = y∗. It follows from (13) and (14) that
y3u = y3w = y∗ as well.

Substep 1.5. Finally, Substeps 1.1–1.5 are repeated for y2, y3 and y4

to obtain the distributions y2
′′′

= (y3v, y3w, ax), y3
′′′

= (y3u, y3t, ax) and
y4

′′′

= (y3v, y3t, ax). In summary, I have shown that

y1
′′′

= (y3u, y3w, ax) with P (y1
′′′

) = P ∗(u, w),

y2
′′′

= (y3v, y3w, ax) with P (y2
′′′

) = P ∗(v, w),

y3
′′′

= (y3u, y3t, ax) with P (y3
′′′

) = P ∗(u, t),

y4
′′′

= (y3v, y3t, ax) with P (y4
′′′

) = P ∗(v, t),

where by construction y3u = y3w = y3v = y3t = ax = y∗. In other words,
these distributions satisfy (10) and all of them can be partitioned into the
requisite sized sets of components whose mean incomes equal y∗.

Step 2. In this step, I show that that the distributions y1
′′′

, y2
′′′

, y3
′′′

and y4
′′′

satisfy (11).

The inequality in (11) can be rewritten as

P
(
(y3u, y3w, ax)

)
≥ P

(
(y3v, y3w, ax)

)
⇔ P

(
(y3u, y3t, ax)

)
≥ P

(
(y3v, y3t, ax)

)
.

It is sufficient to prove that

P
(
(y3u, y3w, ax)

)
≥ P

(
(y3v, y3w, ax)

)
⇒ P

(
(y3u, y3t, ax)

)
≥ P

(
(y3v, y3t, ax)

)

as the converse implication is obtained by the same argument.
Recall that the distributions I am concerned with all have mean in-

come equal to y∗. By assumption, P ((y3u, y3w, ax)) ≥ P ((y3v, y3w, ax)). If
P (y3v) > P (y3u), because P ((yw, ax)) trivially equals P ((yw, ax)), Weak
Subgroup Consistency would be violated.19 Hence,

P (y3u) ≥ P (y3v).

19By construction, we have n(y3u) = n(y3v) ≥ 4.
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Two cases can arise.
Case 1: P (y3u) > P (y3v). In this case,Weak Subgroup Consistency

implies that
P
(
(y3u, y3t, ax)

)
> P

(
(y3v, y3t, ax)

)
.

Case 2: P (y3u) = P (y3v). I show by contradiction that this case is such
that P ((y3u, y3t, ax)) ≥ P ((y3v, y3t, ax)). Assume to the contrary that we
have

P
(
(y3u, y3t, ax)

)
< P

(
(y3v, y3t, ax)

)

Because P (y3u) = P (y3v), Weak Subgroup Consistency implies that

P
(
(y3u, y3t, ax, y

3v)
)
< P

(
(y3v, y3t, ax, y

3u)
)
.

This is a contradiction because the two distributions have equal poverty by
Symmetry .

The two cases establish that P ((y3u, y3t, ax)) ≥ P ((y3v, y3t, ax)). As
noted earlier, this conclusion is sufficient to establish (11). Using the equiv-
alences in (10), it now follows that P ∗ is separable. �

I have shown that P ∗ satisfies the three properties necessary for The-
orem 1, namely that it is continuous, strictly increasing in its arguments,
and separable. Because n ≥ 4, we have that n− 1 ≥ 3 and so function P ∗

has enough arguments to apply Theorem 1. Hence, for all ν ∈ ×n−1
i=1 [0, 1],

P ∗(ν) = F̃
′

(
n−1∑

i=1

φ̃i(νi)

)

,

where F̃
′

and φ̃i are continuous and strictly increasing functions.
The function φ̃i may depend on which value of i is considered. By

Symmetry , P is invariant to a permutation of its first n− 1 arguments on
Y ∗. Because the function D− does not depend on i, it then follows from
the definition of P ∗ that P ∗ is a symmetric function. Therefore, we must
have φ̃i(νi) = φ̃(νi)+g(i) for some functions φ̃ and g. Defining the function
F̃ (x) := F̃

′

(x +
∑

i g(i)), a translation of the function F̃
′

, I conclude that
(9) holds for all ν ∈ ×n−1

i=1 [0, 1] for some continuous and strictly increasing
functions F̃ and φ̃.

This concludes the proof of Claim 1.

Claim 1 is now extended to arbitrary n ≥ 4.

Claim 2. For any n ≥ 4 and fixed y∗ such that y∗ > yc,

P ∗(ν) = F̃n

(
n−1∑

i=1

φ̃n(νi)

)

(16)

for all ν ∈ ×
n(ν)−1
i=1 [0, 1], where F̃n and φ̃n are continuous and strictly in-

creasing functions.20

20In (16), n = n(ν) + 1. For notational simplicity, the dependence of n on ν is
suppressed.
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The expression for P ∗ in (9) is valid for all y ∈ Y for which n(y) is equal
to the specified value of n and y = y∗ for the specified value of y∗ provided
that n ≥ 4 and y∗ > yc. For this value of y∗, the functional forms of F̃ and
φ̃ are therefore dependent on the choice of n. Claim 2 follows from Claim 1
by taking account of this dependence.

Claim 3. For fixed y∗ such that y∗ > yc, for all y ∈ Y for which n(y) ≥ 4
and y = y∗,

P (y) = G




1

n(y)

n(y)
∑

i=1

d(yi)



 , (17)

where G is continuous and strictly increasing and d : R+ → [0, 1] is con-
tinuous and strictly decreasing on [0, z∗] with d(w) = 0 if w ≥ z∗ and
d(0) = 1.

The proof of Claim 3 proceeds in three steps. In the first step, the func-
tions F̃n and φ̃n in (16) are transformed so that any term in the summation
has a value of 0 if the corresponding income is 0. This is done in such a
way that the value of P ∗(ν) is unaffected. This is a harmless normaliza-
tion. In the second step, I modify the reasoning of Foster and Shorrocks
(1991) in order to show that the (transformed versions of) F̃n and φ̃n are
independent of n. In the third step, using the definition of P ∗ in terms of
P given in (6), I show that P has the functional form given in (17) with
the restrictions stated in Claim 3.

Step 1. As a normalization, the following transforms Fn and φn of F̃n

and φ̃n are adopted:

Fn(w) = F̃n

[

w + (n− 1)φ̃n(0)
]

,

φn(νi) = n
[

φ̃n(νi)− φ̃n(0)
]

.

Using these transforms, the expression for P ∗ in (17) may be rewritten as

P ∗(ν) = Fn

(

1

n

n−1∑

i=1

φn(νi)

)

,

where φn(0) = 0.
Let I+(ν) denote the set of i for which νi > 0. By the definition of the

mapping M−, we have I+(ν) = Q(M−(ν)). For any i ≤ n − 1 such that
i /∈ I+(ν), νi = 0 and, therefore, φn(νi) = 0. So, the preceding equation
may be rewritten as

P ∗(ν) = Fn




1

n

∑

i∈I+(ν)

φn(νi)



 , (18)

where Fn and φn are continuous and strictly increasing with φn(0) = 0.

Step 2. In this step, I use Replication Invariance to prove that the
functions Fn and φn do not depend on n.
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For a given y∗ > yc, the set Y and the functions P ∗, M , and M− have
been defined for a fixed value of n. I now need to extend these definitions
so that they apply to all of the relevant values of n. To economize on
notation, I suppress their dependence on n.21

From the previous step, we have φn : [0, 1] → [0, an] with φn(0) = 0
for all n ≥ 4, where an is the largest value that the function φ can attain
when the population size is n. Consider any y ∈ Y ∗ with n(y) = 4 such
that all individuals except perhaps individual 1 are non-poor in y. Hence,
q(y) ≤ 1. Let ν = M(y) = (t, 0, 0). By an appropriate choice of y, t can
take on any value in [0, 1]. Let y×k = (y, . . . , y), which is a k-replication of
the distribution y. Also, let ν ′ = M(y×k) = (t, 0, 0, 0, t, 0, 0, 0, . . . , t, 0, 0).
The distribution ν ′ has 3k−1 zeros and k t’s. The size of ν is n(ν) = 3, the
size of ν ′ is n(ν ′) = 4k−1 and the size of y×k is s, where s = n(ν ′)+1 = 4k.

By Replication Invariance, we have P (y) = P
(
y×k
)
, which by (the

extended version of) (8) is equivalent to P ∗(M(y)) = P ∗(M(y×k)), which
in turn is equivalent to P ∗(ν) = P ∗(ν ′) by the definitions of ν and ν ′.
Letting F = F4 and φ = φ4 and using the fact that φn(0) = 0, it follows
that

P ∗(ν) = F

[
1

4
φ(t)

]

= Fs

[
k

4k
φs(t)

]

= P ∗(ν ′),

for all t ∈ [0, 1]. Rearranging the second equality, I obtain

φs(t) = 4F−1
s

[

F

(
1

4
φ(t)

)]

.

Let Hs(w) = F−1
s (F (w)). The function Hs is continuous and strictly in-

creasing on [0, as]. Using Hs, the preceding equation may be rewritten
as

φs(t) = 4Hs

(
1

4
φ(t)

)

. (19)

If t = 0, (19) implies that Hs(0) = 0 because φ(0) = φ4(0) = 0. Note that
for s = 4, we have H4(w) = F−1(F (w)) = w.

Now consider any y′ ∈ Y ∗ with n(y′) = 4 such that all individuals
except perhaps individuals 1 and 2 are non-poor in y. Hence, q(y′) ≤ 2.
Let ν ′′ = M(y′) = (t, u, 0). By an appropriate choice of y, t and u can take
on any values in [0, 1]. Let y×k′ = (y′, . . . , y′), which is a k-replication of
y′. Let ν ′′′ = M(y×k′) = (t, u, 0, 0, t, u, 0, 0, . . . , t, u, 0). The distribution ν ′′′

k t’s, k u’s and 2k − 1 zeros.
Applying Replication Invariance once again, we have that P ∗(ν ′′) =

P ∗(ν ′′′) and, hence, that F−1
s [P ∗(ν ′′)] = F−1

s [P ∗(ν ′′′)]. Using (18) and (19)
together with the fact that φ(0) = φ(0) = 0, simple algebra establishes
that

Hs

(
1

4
φ(t) +

1

4
φ(u)

)

= Hs

(
1

4
φ(t)

)

+Hs

(
1

4
φ(u)

)

.

With a change of variables, I obtain the following Jensen equation:

Hs(w + w′) = Hs(w) +Hs(w
′).

21Thus, for example, M(y) ∈ ×
n(y)−1
i=1 [0, 1] if y has size n(y) and the domains of P ∗

and M− are ∪l∈N ′ ×l
i=1 [0, 1], where N ′ = {n ∈ N|n ≥ 3}.
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Because Hs is defined on an interval of R and it is continuous and strictly
increasing, all solutions to this Jensen equation have the form

Hs(w) = αsw + βs,

where αs > 0. Because Hs(0) = 0, we have βs = 0.
For any ν ∈ ×4k−1

i=1 [0, 1], by substituting (19) into (18) and using the
definition of Hs, I obtain

F−1[P ∗(ν)] = F−1



Fs




1

4k

∑

i∈I+(ν)

4Hs

(
1

4
φ(νi)

)








= H−1
s




1

4k

∑

i∈I+(ν)

4Hs

(
1

4
φ(νi)

)


 .

Using the fact that Hs(w) = αsw, it then follows that

F−1[P ∗(ν)] =
1

4k

∑

i∈I+(ν)

φ(νi).

Therefore, for any y ∈ Y ∗ with n(y) = s and y = y∗ and its image ν =
M(y), we have

P ∗(ν) = F




1

s

∑

i∈I+(ν)

φ(νi)



 . (20)

Equation (20) is also valid for all n(y) ≥ 4 for which y = y∗, not just for
n(y) = s = 4k for some positive integer k, as the same reasoning as above
can be applied using n(y) and the least common multiple of n(y) and 4.

I now subject φ and F to the transformations ϕ and G, respectively,
defined by setting ϕ(νi) =

φ(νi)
φ(1)

and G(w) = F
(
wφ(1)

)
. Using these trans-

formations in (20), we have for all y ∈ Y ∗ for which y = y∗ and n(y) ≥ 4,

P ∗(ν) = G




1

n(y)

∑

i∈I+(ν)

ϕ(νi)



 ,

where ν = M(y). Furthermore, G and ϕ are continuous and strictly in-
creasing functions and ϕ : [0, 1] → [0, 1] is a bijection with ϕ(0) = 0 and
ϕ(1) = 1. Noting that D(yi) = 0 for any i 6∈ Q(y), the preceding equation
can be written as

P ∗(M(y)) = G




1

n(y)

n(y)
∑

i=1

d(yi)



 , (21)

where G is continuous and strictly increasing and d : R+ → [0, 1] is con-
tinuous and strictly decreasing on [0, z∗] with d(w) = 0 if w ≥ z∗ and
d(0) = 1. By (8), P (y) = P ∗(M(y)). Thus, it has thus been shown that
(17) is satisfied for y ∈ Y ∗
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Recall that for y ∈ Y ∗, all incomes are no larger than the last income
in the distribution y. By Symmetry , this proviso can be dropped. Thus,
the requirement that y ∈ Y ∗ can be replaced by y ∈ Y , which completes
the proof of Claim 3.

Claim 3 is now extended to arbitrary y > yc.

Claim 4. For all y ∈ Y for which y > yc,

P (y) = Gy




1

n(y)

n(y)
∑

i=1

dy(yi)



 , (22)

where Gy is continuous and strictly increasing and dy : R+ → [0, 1] is
continuous and strictly decreasing on [0, zr(y)] with dy(w) = 0 if w ≥ zr(y)
and dy(0) = 1.

The expression for P in (17) presupposes that y = y∗ for some arbi-
trary, but fixed, value of y∗ > yc. The functional forms of G and d in this
equation are therefore dependent of the value of y. Claim 4 follows from
Claim 3 by taking account of this dependence.

To complete the proof of Theorem 1, Claim 4 is used to show that the
index P is ordinally equivalent to a hierarchical poverty index. That is, P
is a strictly increasing transform of an index satisfying (1).

Claim 5. For all y ∈ Y , P is ordinally equivalent to a hierarchical poverty
index.

Consider a fixed value of y∗ for which y∗ > yc. For notational conve-
nience, let d∗ = dy∗ and G∗ = Gy∗ , where dy∗ and Gy∗ are the functions in
Claim 4 for this value of mean income. Let Y c = {y ∈ Y |y > yc} be the
subset of Y on which all distributions have mean income larger than yc.

For all y ∈ Y , let

P ◦(y) =
1

n(y)

n(y)
∑

i=1

p◦(yi, y), (23)

where (i) for all y ∈ Y \Y c, p◦(yi, y) = d∗(yi) for all i ∈ Q(y) and p◦(yi, y) =
0 for all i /∈ Q(y) and (ii) for all y ∈ Y c, p◦(yi, y) = dy(yi). Note that P ◦(y)
has the functional form of a hierarchical poverty index as given in (1). To
prove Claim 5, it is shown that P (y) = G∗(P

◦(y)) separately for y ∈ Y c

and y ∈ Y \Y c, and then it is shown that the poverty contribution function
p◦ used to define P ◦ satisfies the four properties specified in the definition
of a hierarchical poverty index.

Lemma 7. For all y ∈ Y \Y c, P (y) = G∗(P
◦(y)).
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Proof. By definition, any distribution y ∈ Y \Y c is such that y ≤ yc and,
hence, all of its poor individuals (if any) are absolutely poor. Consider
any y ∈ Y \Y c with n /∈ Q(y). Assuming that n /∈ Q(y) is without loss of
generality as all distributions in Y have at least one non-poor individual.
Consider another distribution y′ ∈ Y c constructed from y such that n(y′) =
n(y), y′i = yi for all i ≤ Q(y), y′j = z∗ for all j /∈ Q(y) ∪ {n} and y′n =

n(y)y∗ −
∑n(y)−1

k=1 y′k. By construction, we have y′ = y∗.
By the definition of Y \Y c, Q(y) = Qa(y) because y ≤ yc implies that

za ≥ zr(y). The construction of y′ then implies that Q(y′) = Qa(y
′) =

Q(y) = Qa(y) and y′i = yi for all i ∈ Q(y). By Absolute Focus, we have
P (y′) = P (y).

Because P (y) = P (y′), n(y) = n(y′), Q(y) = Q(y′), y′ = y∗, y′i = yi for
all i ∈ Q(y) and d∗(y

′

i) = 0 for all i 6∈ Q(y), by (22) for y = y∗, we have

P (y) = P (y′) = G∗




1

n(y′)

n(y′)
∑

i=1

d∗(y
′

i)





= G∗




1

n(y)

∑

i∈Q(y)

d∗(yi)



 . (24)

Using the definition of the poverty contribution function p◦ in (23), the
expression on the right-hand side of (24) is G∗(P

◦(y)). �

Lemma 8. For all y ∈ Y c, P (y) = G∗(P
◦(y)).

Proof. By definition, any distribution y ∈ Y c is such that y > yc. Consider
any y ∈ Y c with n /∈ Q(y). Assuming that n /∈ Q(y) is again without loss
of generality. The value of P (y) is given by (22).

I want to show that Gy(w) = G∗(w) for all w ∈ [0, 1). To do this,
it is sufficient to show that this equality holds for all rational numbers in
[0, 1) as then the conclusion that it holds on all of [0, 1) follows from the
continuity of the functions Gy and G∗

Consider any rational number ρ ∈ [0, 1). Because ρ is rational, it can
be expressed as ρ = q

n
with q, n ∈ N, q < n and n ≥ 4. I need to show that

Gy(ρ) = G∗(ρ).
I construct two distributions y′ and y′′ for which y′ = y and y′′ = y∗,

with both distributions having a fraction ρ = q

n
of poor individuals, all of

whom have zero income. The distribution y′ is chosen so that n(y′) = n,
q(y′) = q, y′i = 0 for all i ∈ Q(y′), y′j = zr(y

′) for all j /∈ Q(y′) ∪ {n}

and y′n = n(y′)y −
∑n(y′)−1

k=1 y′k. By construction, y′ = y and, thus, by (22),
we have P (y′) = Gy

(
q

n

)
because dy(0) = 1. The distribution y′′ is chosen

so that n(y′′) = n, q(y′′) = q, y′′i = 0 for all i ∈ Q(y′′), y′′j = z∗ for all

j /∈ Q(y′′)∪ {n} and y′′n = n(y′′)y∗ −
∑n(y′′)−1

k=1 y′′k . By construction, y′′ = y∗

and, thus, by (22), we have P (y′′) = G∗

(
q

n

)
. Furthermore, we also have

Qa(y
′) = Q(y′) = Qa(y

′′) = Q(y′′) and y′i = y′′i for all i ∈ Q(y′). Therefore,
by Absolute Focus, P (y′) = P (y′′) and, hence, Gy

(
q

n

)
= G∗

(
q

n

)
, which is

the desired result.
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Because the functions Gy and G∗ are identical, by Claim 4,

P (y) = G∗




1

n(y)

n(y)
∑

i=1

dy(yi)



 , (25)

where dy is continuous and strictly decreasing on [0, zr(y)], dy(w) = 0 when
w ≥ zr(y) and dy(0) = 1. Letting p◦(yi, y) = dy(yi), the expression on the
right-hand side of (25) is G∗(P

◦(y)). �

Lemma 9. The poverty contribution function p◦ used to define the index
P ◦ satisfies the four properties of a poverty contribution function in the
definition of a hierarchical poverty index.

Proof. Property (i). For y ∈ Y \Y c, p◦(0, y) = 1 because d∗(0) = 1 and
p◦(yi, y) = 0 if i /∈ Q(y) by definition. For y ∈ Y c, p◦(0, y) = 1 because
dy(0) = 1. We also have p◦(yi, y) = 0 if i /∈ Q(y) because dy(w) = 0 when
w ≥ zr(y).

Property (ii). For all y ∈ Y , p◦ is strictly decreasing in its first argument
if i ∈ Q(y) because both d∗ and dy are strictly decreasing on [0, zr(y)].

Property (iii). This property only applies if y ∈ Y c; that is, when
y > yc. For such y, I need to show that p◦ is continuous in both of its
arguments. It is continuous in its first argument because dy is continuous
in yi.

Because P is continuous in y by Weak Continuity and G∗ is continuous,
we also have that P ◦ is continuous in y. The function p◦ does not depend
on the identity of the individual whose income is used in its first argument.
Thus, I can suppose that i 6= n. We can further suppose that yj = yi for
all j 6= n. That is, I can suppose that y = (yi, . . . , yi, yn). We have

P ◦(yi, . . . , yi, yn) =

[
n(y)− 1

n(y)

]

p◦(yi, y) (26)

because individual n is non-poor and, therefore, p◦(yn, y) = 0. Variations
in y are achieved by only varying yn. Because the mean of a distribution
is a continuous function of its arguments and P ◦ is a continuous function,
it follows from (26) that p◦ is continuous in its second argument.

Property (iv). For y ∈ Y \Y c, the function d∗ used to define the value
of the function p◦ does not depend on the mean income. Thus, in this case,
p◦ is constant in its second argument if i ∈ Qa(y).

For y ∈ Y c, I need to show that p◦(w, y) = d∗(w) for all w ∈ [0, za).
Consider any w ∈ [0, za) and any two distributions y′, y′′ ∈ Y c such that
n(y′) = n(y′′), q(y′) = q(y′′) = 1, Qa(y

′) = Q(y′) = Qa(y
′′) = Q(y′′),

y′i = y′′i = w for the only i ∈ Q(y) and the remaining incomes of y′ and
y′′ are such that y′ = y and y′′ = y∗. By Absolute Focus, we have P (y′) =
P (y′′). By Lemma 8 and (23), it then follows that p◦(w, y) = d∗(w), which
is independent of y. �

This concludes the proof of Theorem 1.
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B. The income standard is the median income.

The proof of Theorem 1 when the income standard is the median ym
of the distribution y has the same basic proof strategy as that for the
case in which the income standard is the mean income. For this reason, I
only describe some of the main ways that the proof for the mean income
standard case needs to be modified so as to apply to the median income
standard case.

Recall that it has been assumed that n ≥ 4, so all distributions in Y
are of at least size 4. To establish the analogues of Claims 1–4, attention
is first restricted to distributions in Y with an even number of individuals
for which (i) the value of the income standard y (i.e, the median income)
is a fixed value y∗ and (ii) all individuals i ≤ m have incomes no larger
than individual m and all individuals j ≥ m have incomes no smaller than
individual m.22 Letting E denote the set of positive even numbers, this is
the set

Y ∗

even = {y ∈ Y |n(y) ∈ E, y = y∗, yi ≤ ym ≤ yj for all i ≤ m ≤ j}.

The mapping Mm : Y ∗

even → ×m−1
i=1 [0, 1] is defined by setting

Mm(y) = (D(y1), . . . , D(ym−1)).

A distribution y with size n(y) has an image Mm(y) of size m − 1. By
assumption, any distribution y ∈ Y is such that y ≥ za, and so there are
at most m − 1 poor individuals when the income standard is the median
income. By Relative Focus, the exact incomes of the other individuals
matter only in so far as they help determine the median income ym. The
mapping Mm− : ×m−1

i=1 [0, 1] → Y ∗

even is defined by setting

Mm−(ν) =
(
D−(ν1), . . . , D

−(νm−1), ym, . . . , ym
)
,

which features m+ 1 individuals earning income ym.
The definition of the mapping Mm can be used to explain why initially

only even-sized distributions are considered. If the definition of Mm is
extended so as to also apply to odd-sized distributions, the distributions
y ∈ Y ∗

even and (y, ym) (whose size is n(y)+1) have the same median income
and so would have the same image Mm(y) = Mm(y, ym). However, these
two distributions do not exhibit the same degree of poverty because (y, ym)
has one additional non-poor individual, the individual whose income is ym.
By limiting the domain of the mapping Mm to even-sized distributions,
this issue does not arise.

Once (17) has been established for distributions in Y ∗

even using the me-
dian as the income standard, it can be extended to distributions y ∈
Y \Y ∗

even using Replication Invariance. This is done for all y ∈ Y \Y ∗

even

by setting
P (y) = P (y×2),

22 As for the case of a mean income standard, distributions with a fixed size n (i.e.,
n(y) = n) are considered before those in which n(y) is allowed to vary. Strictly speaking,
when n(y) is allowed to vary, the median individual should be indexed by m(y).
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where P (y×2) is given by (17) because y×2 ∈ Y ∗

even.
When the income standard is the median income, the procedure for

constructing y1
′′′

from y1 in Step 1 of the proof of Claim 1 needs modifying.
In Substep 1.2, y1 is now partitioned into three distributions yu, yw and ya

for which
y1 = (y11, . . . , y

1
j

︸ ︷︷ ︸
= yu

, y1j+1, . . . , y
1
m−1

︸ ︷︷ ︸
= yw

, y1m, . . . , y
1
n

︸ ︷︷ ︸
= ya

),

where u = (D(y11), . . . , D(y1j )), w = (D(y1j+1), . . . , D(y1m−1)) and the m+ 1
incomes in ya are all equal to y1m. I further partition ya into yau and
yaw with n(yau) = n(yu) + 1 and n(yaw) = n(yw) + 1. Recall that, by

definition, m = n(y)
2

when n(y) is even, so n(y) = 2n(yu) + 2n(yw) + 2, as

required. In Substep 1.3, the distribution y1
′

is a 2-replication of y1 (rather
than a 3-replication in the case of the mean income standard). Thus, the
distributions y2u = (yu, yu, yau, yau) and y2w = (yw, yw, yaw, yaw) which are
now used in Substep 1.5 both (i) have at least the minimal size of 4 to be
a distribution in the domain for P and (ii) have a median income equal to
y1m.

Finally, note that the construction of any distribution y for which y = y∗

is simpler when the income standard is the median rather than the mean
because it is sufficient to let yj = y∗ for all j for which m ≤ j ≤ n(y).

7.4 Proof of Theorem 2

Take any hierarchical index P , i.e take any contribution function p that
satisfies the properties stated in Equation (1). As za > 0, we have that
the absolute and relative lines cross at an income standard yc such that
yc ≥ za > 0.

Claim 1 : P violates Transfer .

Consider a value of mean income y∗ = yc + za
2s

, which is such that zr(y
∗) =

3
2
za.

23 I consider two cases.

Case 1: p(za, y
∗) ≥ 1

2
.

This case is such that p(0, y∗) − p( za
2
, y∗) < 1

2
. Indeed, we have that

p(0, y∗) = 1 and p is strictly decreasing in its first argument on [0, zr(y
∗)].

By the continuity of p in its first argument on [0, zr(y
∗)], there exists an

income level r∗ with za < r∗ < zr(y
∗) such that

p(r∗, y∗) < p(za, y
∗)−

(

p(0, y∗)− p
(za
2
, y∗
))

. (27)

Consider now two distributions y, y′ ∈ Y with n(y) = n(y′), Q(y) =
Q(y′) = {1, 2} and whose income standard is equal to y∗. Distribution y is
such that y1 = 0, and y2 = r∗, while distribution y′ is such that y′1 = r∗−za,
and y′2 = za. Distribution y′ is obtained from y by a progressive transfer of

23 When writing zr(y
∗), I slightly abuse notation by denoting the argument of the

threshold function to be the income standard rather than the whole distribution.
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an amount r∗ − za from the relatively poor individual 2 to the absolutely
poor individual 1. As r∗ < zr(y

∗) and zr(y
∗) = 3

2
za, we have r∗ − za < za

2
,

and thus inequality (27) implies that

p(0, y∗)− p(r∗ − za, y
∗)

︸ ︷︷ ︸
∆a

< p(za, y
∗)− p(r∗, y∗)

︸ ︷︷ ︸
∆r

.

∆a captures the decrease in poverty contribution of individual 1 consecu-
tive to the progressive transfer. In turn, ∆r captures the increase in poverty
contribution of individual 2. As the latter is larger, we have by Equation
(1) that P (y′) > P (y), a contradiction to Transfer .

Case 2: p(za, y
∗) < 1

2
.

Let a∗ > 0 be the level of income for which p(a∗, y∗) = 1−p(za, y
∗). We

have 0 < a∗ < za as p is decreasing in its first argument. Let y∗∗ = yc+ a∗

2s
,

which is such that zr(y
∗∗) = za+

a∗

2
. As p is constant in y for all a < za, we

have p(a∗, y∗∗) = p(a∗, y∗). As p is decreasing in its first argument, we have
p(a

∗

2
, y∗∗) > p(a∗, y∗∗). We also have p(za, y

∗∗) = p(za, y
∗) since y∗∗ > yc.

This follows from the fact that (iv) p(a, y) is constant in y for all a < za
and (iii) p is continuous in its first argument when the income standard is
larger than yc. Together, we have that p(za, y

∗∗) > p(0, y∗∗) − p(a
∗

2
, y∗∗).

By the continuity of p in its first argument on [0, zr(y
∗∗)], there exists an

income level r∗∗ with za < r∗∗ < zr(y
∗∗) such that

p(r∗∗, y∗∗) < p(za, y
∗∗)−

(

p(0, y∗∗)− p

(
a∗

2
, y∗∗

))

. (28)

As in case 1, I can construct two distributions y, y′ ∈ Y with n(y) =
n(y′), Q(y) = Q(y′) = {1, 2}, whose income standard is equal to y∗∗, with
y1 = 0, and y2 = r∗∗ and y′1 = r∗∗ − za, and y′2 = za. As r∗∗ < zr(y

∗∗)
and zr(y

∗∗) = za +
a∗

2
, we have r∗∗ − za <

a∗

2
. Therefore, p(r∗∗ − za, y

∗∗) >
p
(
a∗

2
, y∗∗

)
and inequality (28) implies that

p(0, y∗∗)− p(r∗∗ − za, y
∗∗)

︸ ︷︷ ︸

∆a

< p(za, y
∗∗)− p(r∗∗, y∗∗)

︸ ︷︷ ︸

∆r

.

As ∆r is larger than ∆a, we have by Equation (1) that P (y′) > P (y), a
contradiction to Transfer .

Claim 2 : P violates Strong Monotonicity when the relative line is mean-
sensitive.

Take any distribution y ∈ Y with y1 = 0, y2 = za and yj =
1

n(y)−2
(n(y)yc − y1 − y2)

for all j ≥ 3. As the income standard is mean income, we have y = yc. By
construction, only individual 1 is poor in y as zr(y) = b+ syc = za.

Construct distribution yǫ from y by increasing the income of individual
1 to yǫ1 = ǫ where 0 < ǫ < za. This increment implies that yǫ > yc. By
the definition of the relative line, we have zr(y

ǫ) > zr(y) = za. Therefore,
individual 2 is relatively poor in distribution yǫ since yǫ2 = za. Importantly,
individual 2’s contribution p(za, y

ǫ) > 0 is constant in the size of ǫ (this
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follows from properties (iii) and (iv) of p, as explained in Case 2 of Claim
1).

I show that for sufficiently small ǫ, we have P ′(yǫ) − P ′(y) > 0, which
implies that P violates Strong Monotonicity . As individual 2 is non-poor
in distribution y, we have from Equation (1) that

P ′(yǫ)− P ′(y) =
1

n(y)



p(za, y
ǫ) + p (ǫ, yǫ)− p (0, y)

︸ ︷︷ ︸

∆ǫ



 .

By the definition of p, we have p (0, yǫ) = p (0, y) = 1. As p is continuous in
its first argument, there exists an ǫ > 0 such that −∆ǫ < p(za, y

ǫ), which
implies that P ′(yǫ)− P ′(y) > 0, the desired result.
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