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Abstract

Numerous non-pecuniary variables of interest for inequality assessment are bounded and often represented in terms of

attainments or shortfalls. Inequality measurement for bounded variables suffers from two key challenges: the

consistency problem and the boundary problem. The former occurs when inequality rankings reverse while switching

between attainment and shortfall representations. The latter stems from the existence of a predictable functional

relationship between mean attainment and maximum feasible inequality hindering inequality comparisons across

distributions with different means. Unlike consistency, the boundary problem has not received significant attention in the

literature. We propose two novel classes of normalized inequality measures that are immune to both problems. We

illustrate the empirical relevance ofour approach with cross-country comparisons of inequality in well-established

indicators of education and health. A starkly different picture emerges when traditional inequality indices give way to our

normalized inequality indices.
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Abstract

Numerous non-pecuniary variables of interest for inequality assessment are bounded and often represented
in terms of attainments or shortfalls. Inequality measurement for bounded variables suffers from two key
challenges: the consistency problem and the boundary problem. The former occurs when inequality rank-
ings reverse while switching between attainment and shortfall representations. The latter stems from the
existence of a predictable functional relationship between mean attainment and maximum feasible inequal-
ity hindering inequality comparisons across distributions with different means. Unlike consistency, the
boundary problem has not received significant attention in the literature. We propose two novel classes of
normalized inequality measures that are immune to both problems. We illustrate the empirical relevance of
our approach with cross-country comparisons of inequality in well-established indicators of education and
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1 Introduction

In his seminal contribution, Atkinson (1970) set the foundations of inequality measurement as we know it.
After five decades, the contributions to this burgeoning field of research have expanded in multiple direc-
tions, and ‘inequality’ can arguably be considered one of the most hotly debated topics in an increasingly
globalised world, as witnessed by the popularity of several recent books on the subject (e.g. Piketty, 2015;
Bourguignon, 2017; Atkinson, 2018; Milanovic, 2018). Moreover, the interest in inequality has gone well
beyond the study of monetary distributions. Nowadays scholars and policy-makers alike are particularly
interested in studying the distribution of the non-pecuniary dimensions of well-being (e.g. health and edu-
cation outcomes, or the post-2015 Sustainable Development Goals agenda).

Bounded variables abound.1 Unlike monetary variables, such as income or consumption expenditure, the
majority of non-pecuniary aspects of well-being—such as literacy rates or infant mortality rates—are gauged
by variables that cannot take indefinitely large values. This seemingly unimportant and technical point has
key implications as regards the way in which we measure and interpret ‘inequality’ in the corresponding
distributions. The measurement of inequality for bounded variables poses two specific challenges. While
one has been properly addressed in the literature, the other has been largely neglected. We propose an
approach to inequality measurement with bounded variables that addresses both challenges simultaneously.

The first problem that researchers encounter when studying inequality for bounded variables is the ‘con-
sistency problem’. When a variable is bounded, one may choose to focus either on the distribution of
attainments or the corresponding distribution of shortfalls with respect to the upper bound.2 Many inequal-
ity measures (especially popular relative measures like the Gini coefficient) fail to rank distributions con-
sistently when measurement is switched from attainments to shortfall representations (see, among others,
Micklewright and Stewart, 1999; Kenny, 2004; Clarke et al., 2002; Erreygers, 2009; Lambert and Zheng,
2011; Lasso de la Vega and Aristondo, 2012; Bosmans, 2016). Far from being a mere academic curiosity,
the consistency problem poses several practical challenges to the study of inequality for bounded variables
by precluding recourse to popular tools like the Lorenz curve. Fortunately, a battery of satisfactory solutions
enabling the consistent measurement of inequality with bounded variables has been proposed, e.g. using
absolute inequality measures (Erreygers, 2009; Lambert and Zheng, 2011), indices based on both repre-
sentations (Lasso de la Vega and Aristondo, 2012), or using pairs of weakly consistent indices (Bosmans,
2016).

The second challenge is the ‘boundary’ problem (in some contexts also known as ‘floor-’ and ‘ceiling-
effect’ problems). Whenever a variable is bounded, one can observe a clustering of the distribution as its
mean converges towards any of its bounds. In these situations, the corresponding inequality levels mechani-
cally converge toward zero, simply because there is no room left for further variation. This problem persists
even when the consistency problem is solved using any of the aforementioned solutions. For instance, in
the case of several absolute inequality measures and the absolute Lorenz curve, as the mean of the distribu-
tion increases from the lower bound to the upper bound of the distribution, the level of maximum feasible
inequality first increases and then decreases; making the maximum feasible inequality a non-monotonic
function of the mean. In these circumstances, it is not clear whether studying inequality with a bounded
variable can provide new insights above and beyond what we already know from studying the values of

1Examples include indicators of education, health, political freedom, democracy level, freedom from violence,
happiness, trust, corruption, household or environmental characteristics, access to public services, poverty, socio-
demographic characteristics, etc.

2For instance, improvements in the coverage of public health plans could be assessed via either the percentage of
vaccinated children (an achievement indicator) or the percentage of unvaccinated children (a shortfall indicator).
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the mean alone.3 More generally, for any given consistent inequality measure, maximum feasible inequal-
ity becomes a predictable function of mean attainment, which hinders the disentanglement of ‘mechanical’
changes from inequality dynamics due to socioeconomic phenomena when comparing distributions with
different means.

We propose two new closely-related classes of inequality measures: the so-called classes of normalized in-
equality measures. They satisfy the basic requirements of inequality measurement and are not affected either
by inconsistencies or the boundary problem. Both classes are obtained by combining normalization axioms
with the strong consistency requirement (Bosmans, 2016) and minimum desirable properties (e.g. the trans-
fers principle). The key distinction between these two classes is that one is defined for fixed population,
while the other class is defined for variable population.

Our proposed classes are quite broad. Intuitively, their members are defined as the ratio of two identi-
cal symmetric S-convex functions such that the function in the denominator is evaluated at a distribution
maximising its value and sharing the same mean as the distribution used to evaluate the function in the
numerator, namely the distribution whose inequality is being measured. Hence the normalized indices lie
between zero and one. The admissible functional forms for the symmetric and S-convex function include
(but are not limited to) numerous absolute, relative and intermediate inequality indices. Whenever we use
an inequality index as an admissible functional form, we obtain a new inequality measure quantifying the
observed inequality level as a proportion of the maximum inequality level that could be attained with the
same index evaluated at a hypothetical distribution with the same mean as the observed distribution.

We illustrate the empirical performance of the normalized inequality measures proposed in this paper com-
paring the normalized Gini index against its absolute and relative counterparts, which fail to provide inequal-
ity rankings that are simultaneously consistent and free of the boundary problem. We study the evolution
of cross-country inequality in two indicators of child survival and three indicators of education-level com-
pletion since 1950. As expected, when we use the absolute Gini index we find Kuznets curves, whereby
cross-country inequality initially increases with higher mean attainment and then decreases as the latter
approaches its upper bound. Instead, when we use the relative Gini index, inequality steadily decreases
as mean attainment increases. By stark contrast, the normalized Gini index reports increases in inequality
over the same periods of high mean attainment reaching its upper limit, thereby suggesting that maximum
possible Gini inequality has decreased faster than both absolute and relative Gini inequality. Moreover, the
empirical application clearly illustrates that, unlike the cases of the absolute and relative Gini index, the
value of their normalized version is not a predictable function of the mean.

The rest of the paper proceeds as follows. Section 2 introduces the basic inequality measurement framework
including notation and basic definitions. In sections 3 and 4 we examine, respectively, the challenges of
consistency and boundary problems when measuring inequality with bounded variables. Section 5 presents
two classes of normalized inequality measures that provide consistent inequality comparisons free of the
boundary problem. Section 6 presents the empirical illustration and section 7 concludes.

3This point was already highlighted by Wagstaff (2005) in his study of the concentration index, and discussed by
many others after him (e.g. Erreygers, 2009; Erreygers and Van Ourti, 2011; Wagstaff, 2009, 2011; Prados de la
Escosura, 2021). In this paper we extrapolate some of these ideas to the context of inequality measurement for
bounded variables.
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2 Basic framework for measuring inequality with bounded variables

Let the sets of real numbers, rational numbers and natural numbers be R, Q and N, respectively. The non-
negative and strictly positive counterparts of R and Q are represented by adding to either the subscripts
+ and ++, respectively. Suppose, there are n units of analysis (e.g. people, households, municipalities,
countries, etc.) such that n ∈ N \ {1}. Let x = (x1, . . . ,xn) be an attainment distribution of n units (or an
n-dimensional attainment vector), where xi ∈ [0,U ]⊂R represents unit i’s cardinally measurable attainment
bounded between a lower bound of zero and some fixed positive upper bound U ∈ R++.

We denote the set of all attainment distributions of size n with upper bound U by Xn and the set of all pos-
sible attainment distributions with upper bound U by X := ∪nXn. The arithmetic mean function evaluated
at any x ∈X is denoted by µ(x). Furthermore, let X

µ(x)
n be the set of all attainment distributions of size n

with upper bound U and with the same mean as any x ∈Xn, and X µ(x) be the set of all possible attainment
distributions with upper bound U and with the same mean as any x ∈X .

Now, the following notation will be useful for studying minimum and maximum possible inequality within
our framework. We denote the attainment distribution comprising n ones by 1n, hence for any λ ≥ 0, λ1n

is the constant or egalitarian distribution where all n elements are equal to λ . Next, for some n ∈ N \ {1}
and for some U ∈ R++, let Gn = {U/n,2U/n, . . . ,(n− 1)U/n} denote a set of n− 1 equally-spaced grid
points between U/n and (n− 1)U/n. A distribution x ∈Xn is bipolar whenever for some n′ ∈ N such
that n′ < n, n′ units in x attain the value of U and the remaining n− n′ units attain the value of 0. Clearly,
since n′ ∈ {1, ...,n−1}, for any bipolar distribution x ∈Xn, µ(x) ∈Gn. Likewise, we refer to a distribution
x ∈Xn as almost-bipolar whenever for some n′ ∈ N such that n′ < n, n′ units in x attain the value of U ,
n−n′−1 units in x attain the value of 0, and the leftover unit attains a value of ε = [nµ(x)−n′U ] ∈ (0,U).
Accordingly, let A ⊂X be the set of all possible almost-bipolar distributions; B ⊂X be the set of all
possible bipolar distributions; and let M = A ∪B be the set of all distributions that are either bipolar or
almost bipolar. We assign subscript n to denote the subsets with population size n, i.e., An, Bn, and Mn.
Likewise, we use superscript µ(x) to denote the subsets with the same mean as µ(x), i.e., A µ(x), Bµ(x),
and M µ(x). Finally, we assign both n and µ(x) to denote the subsets with population size n and the same
mean as µ(x), i.e., A

µ(x)
n , B

µ(x)
n , and M

µ(x)
n .

An inequality index I : X →R+ is a continuous real-valued function and is expected to satisfy certain basic
properties (Chakravarty, 2009). The first basic property, anonymity, requires that an inequality index should
not depend on a reordering of attainments across units. Formally, anonymity requires that I(y) = I(x) for
some x,y ∈Xn whenever y = xP, where P is a permutation matrix.4 The second basic property, transfer
principle, requires that a transfer from a richer to a poorer unit, without altering their relative positions,
should decrease inequality (progressive transfer); whereas, alternatively, a transfer from a poorer to a richer
unit should increase inequality (regressive transfer).5 Formally, for some x,y ∈Xn, I(y) < I(x) whenever
y is obtained from x by a progressive transfer and I(y)> I(x) whenever y is obtained from x by a regressive
transfer.6

4A permutation matrix is a square matrix with exactly one element in each row and column equal to 1 and the rest of
the elements are equal to zero.

5Technically, for some x,y ∈Xn, y is obtained from x by a progressive transfer whenever there are two units i, j and
some k > 0 such that yi = xi + k ≤ x j− k = y j and yl = xl for every l 6= i, j. Alternatively, y is obtained from x by a
regressive transfer whenever there are two units i, j and some k > 0 such that yi +k = xi ≤ x j = y j−k and yl = xl for
every l 6= i, j.

6Some of the bounded indicators discussed in this paper are not literally transferable. For instance, we do not consider
‘uneducating’ highly educated individuals and transferring that education to less educated ones. Yet, one can compare
two hypothetical scenarios, e.g. pre- and post-“progressive transfers”, and still judge the latter exhibiting lower
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Finally, we refer to a real valued function f : X → R+ as symmetric whenever f (x) = f (xP) for some
x,y ∈Xn, where P is a permutation matrix. We refer to a real valued function f : X → R+ as strictly
S-convex if, for some x,y ∈Xn, f (y) < f (x) whenever y is obtained from x by a progressive transfer and
f (y)> f (x) whenever y is obtained from x by a regressive transfer (Marshall and Olkin, 1979, p. 53-54).

3 The consistency problem

The consistency problem has received significant attention in the literature on inequality measurement with
bounded variables. Some variables such as mortality or literacy rates, access to basic facilities, etc., can
be represented by either their distance from the lower bound (i.e. as attainments) or, alternatively, by their
distance from the upper bound (i.e. as shortfalls). If x ∈Xn denotes the attainment distribution then we
define the shortfall distribution associated with it as xS = (xS

1, . . . ,x
S
n) ∈Xn with xS

i =U−xi representing i’s
shortfall from the upper bound U . Since there is no a priori reason to prefer one representation (attainment
or shortfall) over the other, the literature has proposed different versions of consistency properties that an
inequality ordering should satisfy.

The first consistency property, perfect complementarity, requires that the value of the inequality index re-
mains unaltered when we switch between attainment and shortfall representations of the same distribution,
i.e., I(x) = I(xS) for any x ∈Xn (Erreygers, 2009). The second one, strong consistency, requires that in-
equality measures should rank pairs of attainment distributions and their shortfall counterparts in a coherent
manner. In other words, the inequality ranking should be robust to alternative representations of the variable.,
i.e., I(x)≤ I(y)⇔ I(xS)≤ I(yS) for any x,y∈Xn (Lambert and Zheng, 2011). Clearly, perfect complemen-
tarity implies strong consistency, but the reverse is not true. The third consistency property, weak consistency
(Bosmans, 2016), is predicated on the realisation that it is possible to find pairs of different inequality in-
dices that produce consistent comparisons as long as one index IA is used for the attainment distribution
and another index IS = φ(IA) is used for the shortfall counterpart, where φ : R+→ R+ is a strictly increas-
ing function. The pair (IA, IS) is jointly weakly consistent if and only if IA(x) ≤ IA(y)⇔ IS(xS) ≤ IS(yS)
for any x,y ∈Xn. For example, if IA(x) is the Gini coefficient evaluated on the attainment distribution x,
then IS(xS) = µ(xS)IA(xS)/[U − µ(xS)] provides a jointly weakly consistent inequality evaluation for the
shortfall distribution.

Some advocates of perfect complementarity and strong consistency (Erreygers, 2009; Lambert and Zheng,
2011; Chakravarty et al., 2015; Seth and Alkire, 2017) suggest using absolute inequality indices (and related
partial orderings).7 However, Lasso de la Vega and Aristondo (2012) showed that strong consistency is
satisfied by a wider class of indices derived from equally weighted generalised means of any inequality
index evaluated at the attainment distribution and the same index evaluated at the corresponding shortfall
distribution. Finally, Bosmans (2016) showed that weak consistency is satisfied by a broad class of pairs
of inequality indices, including relative ones like the Gini coefficient and its respective weakly-consistent
counterpart.8

inequality than the former.
7The value of an absolute inequality index remains unchanged when all attainments are added the same amount, i.e.,
if it satisfies the translation invariance property, whereby I(y) = I(x) for some x,y ∈Xn whenever y = x+λ111n for
some λ ∈ R.

8The value of a relative inequality index remains unchanged when all attainments are altered in the same proportion,
i.e., if it satisfies the scale invariance property, whereby I(y) = I(x) for some x,y ∈Xn whenever y = λx for some
λ > 0.
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4 The boundary problem

Compared to the consistency problem, the boundary problem has received little attention. Generally, the
boundary problem stems from the existence of a predictable functional relation between mean attainment
and maximum feasible inequality (for a given inequality index), which hinders comparisons between distri-
butions of bounded variables with different means. Indeed, when means differ it can be hard to disentangle
the change in inequality due to socioeconomic phenomena (arguably the one we are interested in) from
that due to the predicable relationship between mean attainment and maximum feasible inequality. For in-
stance, in the case of many absolute inequality measures like the absolute Gini and the variance (which are
consistent) when mean attainment converges toward any of the bounds, maximum feasible inequality falls
prompting observed inequality to decrease in turn. In fact, with these absolute inequality measures the rela-
tionship between mean attainment and maximum feasible inequality usually follows an ‘inverted U’ shape
with a global maximum at µ(x) = 0.5U (if the lower bound is equal to 0).

Figure 1: Change in the mean and different absolute inequality measures for cross-country
Hepatitis-B immunization rates
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Notes: The formula for the variance is V (x) = (∑n

i=1[xi−µ(x)]2)/n. The formula for the absolute Gini
index is Ga(x)= µ(x)Gr(x) where Gr is the relative Gini index: Gr(x)= (∑n

i=1 ∑
n
j=1 |xi−x j|)/2µ(x)n2.

The LAG index is equal to LAG(x) = ([Gr(x)−1 + Gr(xS)−1]/2)−1. The LAC index is equal to
LAC(x) = ([CV (x)−1 +CV (xS)−1]/2)−1, where CV (x)≡

√
V (x)/µ(x) is the coefficient of variation.

In order to illustrate the empirical relevance of the boundary problem, figure 1 shows the change in mean
Hepatitis-B immunization rates across countries as well as the changes in various measures of cross-country
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inequality between 1990 and 2012. Data for 150 countries are available at the UNdata website.9 We use four
different consistent inequality measures: two absolute inequality indices—the Variance V and the absolute
Gini coefficient Ga (relative Gini coefficient times the mean); together with two inequality measures from
the class of measures proposed by Lasso de la Vega and Aristondo (2012) (see note in figure 1 for details).
As mean attainment increases from around to 4% in 1990 to around 88% in 2012, the values of all four
inequality measures first increase and then decrease.

Thus, we observe a Kuznets curve relating mean attainment to each of the four consistent inequality measures
over time. Is this type of relationship merely an empirical regularity or a mechanical artefact driven by the
susceptibility of existing inequality indices (consistent or not) to the boundary problem?

In order to explore whether there is a predictable relationship between mean attainment and maximum
possible inequality in the distribution of a bounded variable, first we identify whether such distributions
reflecting maximum inequality for a given mean exist and, if so, what they look like. Then we need to check
whether inequality indices, evaluated at such distributions, change in predictable ways when the mean is
different.

Proposition 1 establishes the existence of a set of maximum-inequality distributions (MIDs) and shows that
the set of MIDs associated to any distribution x ∈ Xn is in fact equal to M

µ(x)
n = X

µ(x)
n ∩M . Based

exclusively on the transfer principle and the anonymity property, such MIDs are defined as the distributions
that maximize inequality among all possible distributions with the same population size n and the same
mean µ(x). Formally, first we need to define, for every x ∈Xn, a partially ordered set (X µ(x)

n ,�) such
that for any pair x,y ∈X

µ(x)
n , (1) y � x, which reads “y is more unequal than x”, if y is obtained from x

through a sequence of regressive transfers with or without additional permutations; and (2) y ∼ x, which
reads “y is as unequal as x” if y is obtained from x only through a sequence of permutations. Then we can
state proposition 1:

Proposition 1 For any n∈N\{1} and for any x∈Xn such that µ(x)∈ (0,U), a set of maximum inequality
distributions M

µ(x)
n =X

µ(x)
n ∩M constituting the maximal elements of the partially ordered set (X µ(x)

n ,�)
exists and the elements of M

µ(x)
n are bipolar when µ(x) ∈Gn or almost-bipolar when µ(x) 6∈Gn.

Proof. See Appendix A1.

As it turns out, the MIDs are either bipolar or almost bipolar. Bipolar distributions consist of units with
values at either the lower bound or upper bound exclusively, with at least one unit at each bound (as oth-
erwise, should all units have the same values, the distribution would be egalitarian). Meanwhile, almost
bipolar distributions consist of all units with either the lower or upper bound value, except for one unit with
an interior value of ε ∈ (0,U). The elements included in M

µ(x)
n are unique up to permutations, that is: given

any two elements x,y ∈M
µ(x)
n , then y = xP for some permutation matrix P. Finally, also note that a set of

MIDs defined in proposition 1 is unique for a given mean and for a given n. In other words, for any two
distributions x,y ∈X

µ(x)
n such that x 6= y, M

µ(x)
n = M

µ(y)
n .

Example 1: Assume U = 1, n= 4 and so G4 = {0.25,0.5,0.75}. Consider the distribution x= (0.1,0.4,0.7,
0.8) with µ(x) = 0.5 ∈G4. In this case, the corresponding set of MIDs M

µ(x)
4 contains all possible permu-

tations of the distribution x̂ = (0,0,1,1), which is bipolar, and clearly µ(x̂) = µ(x) = 0.5. Now consider
a second distribution y = (0.2,0.4,0.7,0.9) with µ(y) = 0.55 /∈ G4. The corresponding MIDs M

µ(y)
4 , in

9https://data.un.org/Data.aspx?q=Hepatitis&d=WHO&f=MEASURE CODE%3aWHS4 117.
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this case, are all possible permutations of the distribution ŷ = (0,0.2,1,1) with µ(ŷ) = µ(y) = 0.55 and
ε = 0.2 ∈ (0,1), but ŷ is almost-bipolar and no further regressive transfers are possible.

Even though MIDs are hypothetical distributions unlikely to be observed in practice, they do represent the
benchmark case of maximum inequality against which we can compare distributions of bounded variables.
The latter’s inequality evaluations cannot be larger than their MID’s as long as an inequality index I satisfies
anonymity and the transfer principle.

Figure 2 shows the relationship between the mean (on the horizontal axis) and the level of inequality for
the corresponding MIDs (vertical axis) using four different inequality measures that satisfy some form of
consistency. For this exercise, we assume that U = 1 and 0 < µ(x) < 1 (when µ(x) ∈ {0,1}, x is an
egalitarian distribution). For simplicity, we assume that the MIDs used to calculate maximal inequality
are bipolar (see further details in subsection 5.2). We choose the strongly-consistent absolute Gini index
(Lambert and Zheng, 2011), the weakly-consistent relative Gini index (Bosmans, 2016), and two strongly-
consistent indices from the class proposed by Lasso de la Vega and Aristondo (2012): the equally weighted
geometric mean (LA0) and Euclidean mean (LA2), respectively, of the relative Gini indices evaluated at
attainment and corresponding shortfall distributions.

Figure 2: The relationship between the mean and the maximum inequality of a bounded variable
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(2012). LA0 is the geometric mean of the (relative) Gini index evaluated at x and the same index evalu-
ated at xS, whereas LA2 is the Euclidean mean of those two indices. Thus LA0(x) =

√
µ(x)[1−µ(x)]

and LA2(x) =
√
[µ(x)2 +(1−µ(x))2]/2.
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How do the selected inequality measures react as the mean increases along the horizontal axis in figure 2 and
we move from one MID to another? Interestingly, the absolute Gini index and the LA0 index first increase,
reach their maximum values at µ(x) = 0.5 and then decrease. By contrast, the LA2 index first decreases,
reaches its minimum value around µ(x) = 0.5 and then increases. Finally, the relative Gini index decreases
monotonically as the mean increases.

Evidently, inequality comparisons of distributions with different means using existing inequality indices
suffer from the boundary problem, unless we control for changes in maximum possible inequality as a
function of the mean. In order to control for the effect of differing means, we propose a simple approach:
for a given distribution and any inequality index, we suggest comparing the observed inequality level against
the corresponding MID’s.

5 The class of normalized inequality indices

Our proposal to solve the boundary problem requires measuring observed inequality as a proportion of the
maximum inequality attainable with a distribution having the same mean attainment, i.e. evaluated at the re-
spective MID. The proposal restores comparability between distributions with different means consistently
across alternative representations. In section 5.1, we characterize the class of normalized inequality indices
assuming fixed population sizes. Then, section 5.2 presents the class of normalized inequality indices for
varying population sizes. Finally, section 5.3 elucidates key differences between the two classes of normal-
ized inequality indices, as well as vis-a-vis non-normalized counterparts, resorting to iso-inequality contours
for Gini indices.

5.1 Normalized indices for fixed population

The crucial property imposed to counter the boundary problem is the maximality principle:

Maximality Principle For any x ∈Xn, I(x) = 1 whenever x ∈M
µ(x)
n .

This is a normalization property requiring that (i) inequality levels can never exceed the value of 1, and
(ii) maximal inequality is attained only whenever x is an MID according to proposition 1 (wherein no
further regressive transfers are feasible). As shown below, the maximality principle ensures that inequality
is measured as a proportion of the maximum level reachable given a mean attainment so that any distribution
different from the corresponding MID obtains an inequality value strictly below 1.

We also introduce the standard equality principle, which requires that I(x) = 0 whenever x = λ1n for any
x ∈Xn and λ ≥ 0. This property ensures that inequality is minimal and equal to zero whenever all units
feature exactly the same value for the indicator, i.e. x1 = · · · = xn. From now onwards, we refer to the
family of inequality indices satisfying the maximality principle and the equality principle in addition to
other desirable properties as the class of normalized inequality indices, which is characterised in theorem 1:

Theorem 1 For any n ∈ N \ {1} and any x ∈Xn, an inequality index I satisfies anonymity, the transfer
principle, the equality principle, the maximality principle and strong consistency if and only if

I(x) =


f (x)− f (x̄)
f (x̂)− f (x̄)

for x 6= x̄

0 for x = x̄
, (1)
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where x̄ = µ(x)1n, x̂ ∈M
µ(x)
n , f : Xn → R++ is a symmetric and strictly S-convex function, and I(x) =

(g◦ I)(xS) where g is a strictly increasing function.

Proof. See Appendix A2.

According to theorem 1, a normalized inequality index I(x) in our proposed class evaluated at distribution x
is equal to any symmetric and S-convex function f (x) evaluated at x, subtracted by its corresponding min-
imum possible value f (x̄) evaluated at x̄, and then normalized by the difference between its corresponding
maximum possible value f (x̂) evaluated at any of its uniquely associated MIDs, namely x̂ ∈M

µ(x)
n , and its

corresponding minimum possible value f (x̄) evaluated at x̄.

All indices in our proposed class conveniently range between zero and one, where the former value is
achieved in the absence of inequality and the latter corresponds to an MID. The value of a normalized
index increases with a regressive transfer and decreases owing to a progressive transfer. A normalized index
satisfies strong consistency as long as the index evaluated at an attainment distribution is a strictly increasing
function of the same index evaluated at its shortfall counterpart, i.e., I(x) = (g◦ I)(xS).

Crucially, numerous functional forms of f are admissible, including (but certainly not limited to) different
classes of relative, absolute, intermediate, super-relative or super-absolute inequality measures.10 For in-
stance, all absolute inequality indices including the variance, the absolute Gini or the members of the class
proposed by Chakravarty et al. (2015) are admissible forms of f . Likewise, some relative indices like the
(relative) Gini index and the coefficient of variation are admissible because they can be decomposed into the
product of an absolute inequality index times a function of the mean.11

Examples

We present a few examples of normalized inequality indices derived from popular inequality measures that
will be applied in the empirical section 6. For convenience of presentation in this section, we refer to the
normalised inequality index corresponding to the admissible form f as f ∗ (instead of I), in order to clarify
that f ∗ is derived from an admissible f . That is, f ∗ is the normalized version of f .

When f is the absolute or the relative Gini index (i.e., f (x) = Ga(x) or f (x) = Gr(x)) then it is easy to check
(see Appendix A5) that

G∗a(x) = G∗r (x) =



Ga(x)U
µ(x)(U−µ(x))

if x 6= x̄ and µ(x) ∈Gn

Ga(x)n2

(n−n′−1)ε +n′(U− ε)+n′(n−n′−1)U
if x 6= x̄ and µ(x) /∈Gn

0 if x = x̄

.12 (2)

Thus, G∗a(x) compares Ga(x) against the maximal inequality value that such index could possibly take for
any distribution with mean equal to µ(x) (which equals µ(x)(U − µ(x))/U when the MID is bipolar, i.e.

10See Bosmans (2016) for a concise and comprehensive typology.
11The admissible forms of f also include the class of indices proposed by Lasso de la Vega and Aristondo (2012) as it

is straightforward to verify that for all indices in their class f (x) = f (xS) for all x and thus I(x) = I(xS) for all x.
12The reader is reminded that n′ < n is the number of units in x attaining U and ε = [nµ(x)−n′U ] (section 2).
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when µ(x) ∈Gn). Remarkably, the normalized inequality indices derived from the absolute and the relative
Gini indices coincide. To simplify notation, such normalized Gini index will be referred to as G∗(x).

We can also derive the normalized versions of the standard deviation ( f (x) = σ(x) =
√

V (x)) and the
coefficient of variation ( f (x) =CV (x) = σ(x)/µ(x)). It is easy to check (see Appendix A5) that

σ
∗(x) =CV ∗(x) =



σ(x)√
µ(x)(U−µ(x))

if x 6= x̄ and µ(x) ∈Gn

σ(x)
√

n√
(n−n′−1)µ(x)2 +n′(U−µ(x))2 +(ε−µ(x))2

if x 6= x̄ and µ(x) /∈Gn

0 if x = x̄

. (3)

Once again, the normalised version of an absolute inequality index and its relative counterpart coincide.
More generally, whenever a(x) is an absolute inequality index and r(x) = a(x)/µ(x) is its relative counter-
part, one can easily check that a∗(x) = r∗(x) for all x ∈Xn.

While all normalized inequality measures are defined in the same way (i.e., as a fraction of the maximal
inequality level that can be reached given a mean attainment and a fixed population size; see Theorem 1),
their explicit mathematical representation differs slightly depending on whether µ(x) ∈Gn or µ(x) /∈Gn. It
is easy to check that, when the decimal precision one is working with is fixed (i.e., numbers are represented
with a precision of k ∈ N decimals, so all numbers with a higher number of decimals are rounded), then for
sufficiently large values of n (more specifically, when n ≥ 10k/U) one always has µ(x) ∈ Gn. When this
happens, the corresponding MID is bipolar, thus leading to more compact formulations for the corresponding
normalized inequality measures and easier calculations (see equations 2 and 3). For instance, in the fairly
common case where k= 2 and U = 1, when n≥ 100 then all MIDs are bipolar (as in our empirical illustration
in section 6).

5.2 Comparing populations with different sizes

At least since Dalton (1920), the most popular answer to the challenge of comparing inequality across dis-
tributions with different population sizes is the population principle, which requires that identical cloning
of all units should leave inequality unaltered (thereby rendering populations with different sizes compara-
ble).13 Formally, the population principle requires that whenever y is obtained from x by a replication for
some x,y ∈X , then I(y) = I(x); where y ∈Xn′ for some n′ = γn and γ ∈ N \ {1} is said to be obtained
from x ∈Xn by a replication, whenever y = (x, . . . ,x), i.e. γ copies of x are repeated one after the other
in y. A normalized inequality measure from the class defined in theorem 1 does not comply with the pop-
ulation principle even when an admissible functional form of f does, because even though the replication
of a bipolar MID is itself an MID, the replication of an almost bipolar MID is not an MID, based on how
proposition 1 defines an MID.14

Therefore if we want our normalized inequality measures to fulfil the population principle we must adopt

13For a more general proposal, see Aboudi et al. (2010).
14For instance, when n = 2 and U = 1, an MID associated to a distribution with mean equal to 0.25 is (0,0.5).

However, the replication (0,0.5,0,0.5) of that MID is not an MID itself. The corresponding MID for a distribution
with n = 4 and with mean equal to 0.25 is in fact (0,0,0,1).
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a different definition of the set of MIDs, one compliant with the population principle. In this section, we
assume that the attainment values take rational number (i.e., xi ∈ [0,U ]∩Q).15 We denote the set of all
attainment distributions, where attainments take rational numbers, by Q and that with the same mean as
x ∈Q by Qµ(x). Proposition 2 establishes the existence of a set of MIDs and shows that the set of MIDs,
associated with all distributions sharing the same mean across all population sizes is, in this case, equal to
Bµ(x) =Qµ(x)∩B. Based on the transfer and population principles combined with anonymity, these MIDs
are defined as the distributions that maximize inequality among all possible distributions with the same mean
but varying population sizes. Formally, we now need to define a different partially ordered set (Qµ(x),�)
such that for any pair x,y: (1) y� x, which reads “y is more unequal than x”, if y is obtained from x through
a sequence of regressive transfers with or without additional permutations and/or replications; and (2) y∼ x,
which reads “y is as unequal as x” if y is obtained from x only through a sequence of permutations and/or
replications. Then, we can state proposition 2:

Proposition 2 For any x ∈Q such that µ(x) ∈ (0,U), a set of maximum inequality distributions Bµ(x) =
Qµ(x)∩B constituting the maximal elements of the partially ordered set (Qµ(x),�) exists and all elements
of Bµ(x) are bipolar.

Proof. See Appendix A3.

According to proposition 2, in a setting compliant with the population principle, only bipolar distributions
maximize inequality. Thus, the Maximality Principle introduced in section 5 must be adapted and rewritten
as follows:

Restricted Maximality Principle For any x ∈Q, I(x) = 1 whenever x ∈Bµ(x).

With this reformulated version of the Maximality Principle, we can now axiomatically characterise the class
of normalized inequality indices compliant with the population principle:

Theorem 2 For any n ∈ N\{1} and for any x ∈Qn, an inequality index I satisfies anonymity, the transfer
principle, the equality principle, the restricted maximality principle, strong consistency and the population
principle if and only if

I(x) =


f (x)− f (x̄)
f (x̂)− f (x̄)

for x 6= x̄

0 for x = x̄
,

where x̄ = µ(x)1n, x̂ ∈Bµ(x), f : Q→ R++ is a symmetric and strictly S-convex function satisfying the
population principle, and I(x) = (g◦ I)(xS) where g is a strictly increasing function.

Proof. See Appendix A4.

Theorem 2 implies that we can construct normalized inequality indices that abide by the population principle
as long as the inequality index for both numerator and denominator (i.e., f ) satisfies the population principle
and we evaluate the chosen inequality index at any bipolar distribution with mean equal to µ(x) in the
denominator of I(x). The ensuing normalized inequality indices satisfy the population principle alongside
all the properties listed in theorem 1.

15The rationality requirement is apparent in the proof of Proposition 2, see Appendix A3. For practical applications
this restriction is inconsequential as it is difficult to conceive reasonable situations where attainment levels should
be irrational numbers.
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5.3 Comparing different approaches

We have characterized two types of normalized inequality indices: those applicable to fixed population sizes
(section 5.1) and those suitable for variable population sizes satisfying the population principle (section 5.2).
Drawing on a simple example, this sub-section explains how these indices relate to each other, as well as to
standard inequality measures proposed in the literature.

The two approaches to measuring normalised inequality (corresponding to the two definitions of MIDs and
their respective classes of indices) bear a large degree of overlap. In fact, the formulae for normalized
inequality indices compliant with the population principle (section 5.2) is identical to the corresponding
formulae for indices suitable for fixed population sizes (section 5.1) whenever µ(x) ∈ Gn.16 As argued
before, when the population size n is sufficiently large and the decimal precision is kept fixed (as is the case
in our empirical illustration as well as in several applications in practice), the condition µ(x) ∈Gn is always
satisfied.

At the other extreme, as n gets smaller, it becomes increasingly unlikely that µ(x) ∈Gn, so the occurrence
of almost bipolar MIDs represents the rule rather than the exception. Indeed, in the extreme case when
n = 2,G2 only has one element (U/2) and the MIDs for all distributions are almost bipolar, except for those
with mean equal to U/2. In this context, it is illustrative to show how the different normalized inequality
measures behave and compare vis-à-vis each other, and with respect to standard inequality measures for the
simplest non-trivial case (i.e., for n = 2). For that purpose, Figure 3 presents the iso-inequality contours of
the absolute Gini index (Ga(x1,x2), panel A), the relative Gini index (Gr(x1,x2), panel B), the normalized
Gini index based on Theorem 1 (i.e., for fixed population; G∗(x1,x2), panel C), and the normalized Gini
index complying with the Population Principle (G∗P(x1,x2), panel D), in the case where U = 1 (Appendix
A6 shows how we arrive at these iso-inequality contours).17

As is well-known, Ga(x1,x2) ∈ [0,0.25] and the iso-inequality contours for Ga(x1,x2) are parallel to the 45◦

line, while Gr(x1,x2) ∈ [0,0.5] and the iso-inequality contours for Gr(x1,x2) are straight lines ‘emanating
from’ (or ‘converging to’) the origin (0,0). In contrast, the iso-inequality contours for the two normalised
Gini indices, G∗(x1,x2) ∈ [0,1] and G∗P(x1,x2) ∈ [0,1], exhibit completely different shapes. In the case of
G∗(x1,x2), all level contours are made of two line segments meeting in the diagonal {(x1,x2) ∈ [0,1]2 | x1 +
x2 = 1}, which, together, connect the points (0,0) and (1,1). Their shapes (though not their corresponding
inequality levels) coincide with the level contours of Gr(x1,x2) when µ(x1,x2) ≤ 1/2 and with those of
Gr(xS

1,x
S
2) when µ(x1,x2) ≥ 1/2 (where xS

1 = 1− x1 and xS
2 = 1− x2, see Appendix A6). In addition, one

has that G∗(x1,x2) = G∗(xS
1,x

S
2). Lastly, the level contours G∗P(x1,x2) = c (where c ∈ [0,1]) are curves that

(i) are symmetrical with respect to the x2 = 1− x1 axis for all c ∈ [0,1] (i.e., G∗P(x1,x2) = G∗P(x
S
1,x

S
2)), and

(ii) they connect the points (0,0) and (1,1) when c≤ 1/2.

As can be inferred from panel C, all the distributions (x1,x2) lying at the border of the unit square maximize
inequality (i.e., they are MIDs) when the latter is measured with G∗(x1,x2). By contrast, panel D shows that,
when the population principle is imposed, only the bipolar distributions, namely (0,1) and (1,0), maximize
inequality. The variegated shapes of the iso-inequality contours when moving from one inequality measure
to another explains the discrepancies that might exist among them – a phenomenon that is clearly illustrated
in the empirical section that follows.

16Readers are reminded of our examples of normalized inequality indices in section 5.1, whose formulae vary depend-
ing on whether µ(x) /∈Gn (i.e., almost bipolar MIDs) or µ(x) ∈Gn (i.e., bipolar MIDs).

17Results remain essentially unaltered when the absolute and relative Gini indices are substituted by the standard
deviation and the coefficient of variation, respectively.
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Figure 3: Iso-inequality contours for the different Gini coefficient (n = 2 and U = 1)
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Notes: The figure is based on n = 2 and U = 1. Ga(x1,x2) in panel A is the absolute Gini index applied to an
attainment distribution. Gr(x1,x2) in panel B is the relative Gini index applied to the same attainment distribu-
tion. G∗(x1,x2) in panel C is the normalised Gini index applied to the attainment distribution for fixed population.
G∗P(x1,x2) in panel in panel D is the normalised Gini index applied to the attainment distribution for variable pop-
ulation.

6 Empirical illustration: Evolution of cross-country inequality in education and health

In order to illustrate the empirical relevance of our proposal, we study the evolution of cross-country in-
equality in three education indicators and two health indicators since 1950. To examine inequality trends
in education, we look at the share of total adult population with at least some primary education, the share
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of total adult population with at least some secondary education and the share of total adult population
with at least some tertiary education. For health inequality we select the under-five survival rate and the
infant survival rate, namely the attainment complements of the respective mortality rates. The education
data come from the Barro-Lee dataset; whereas, the data on mortality rates were obtained from the United
Nations’ Department of Economic and Social Welfare website.18 The three education indicators are rates,
thus bounded between zero and one. For the health indicators, we obtain the survival rates by subtracting
the mortality rates from 1,000 and then normalising the differences by 1,000. Therefore, the survival rates
also lie between zero and one. Education and health indicators’ data are available for 133 and 201 countries,
respectively.19

Figure 4: Changes in the means of selected education indicators and health indicators since 1950

Panel A: Education completion rate Panel B: Survival rate
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Figure 4 shows the change in mean attainments for the education indicators between 1950 and 2010 and for
the health indicators between 1950 and 2015, for every five-year period.20 All global averages display steady
improvements since 1950. Between 1950 and 2010, the mean for the primary completion rate increases from
0.53 to 0.92, the mean for the secondary completion rate rises from 0.12 to 0.76, and the tertiary completion
rate increases from 0.02 to 0.25. Meanwhile, the mean under-5 survival rate increases from 0.80 in 1950 to
0.97 in 2015 and the mean infant survival rate increases from 0.87 in 1950 to 0.98 in 2015.

Panels A1 and A3 in Figure 5 present the trends in absolute Gini since 1950 for all five indicators. Inter-
estingly, absolute cross-country inequality in primary completion rate falls throughout, which is compatible
with the mean attainment in the indicator steadily increasing from above 0.5 since 1950. Similarly, absolute
inequality in the tertiary completion rate rises throughout, which is compatible with the mean attainment in
the indicator increasing from very low levels since 1950 and still remaining below 0.5. By contrast, inequal-
ity in the secondary completion rates rises between 1950 and around 1990, then falling thereafter, which is

18Source of the education data: http://www.barrolee.com/. Source of health data: https://population.un.
org/wpp/Download/Standard/Mortality/.

19Since we report results with a precision of k = 2 decimals, and the variables we are dealing with have an upper
bound of U = 1, the number of observations (n) is large enough to ensure that x ∈Gn for any x ∈Xn, so we can use
the bipolar MIDs when calculating normalized inequality levels.

20The mean attainment does not include population weights. Each country, irrespective of its size, is considered as a
unit with equal importance.
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also compatible with the mean of the indicator surpassing 0.50 around that year. The trends of absolute Gini
indices for the two health indicators are the same as those of inequality in the primary completion rate as
the means lie above 0.50 for the entire period. The relations between mean attainments and absolute Gini
indices are presented in Panels A2 and A4, where each horizontal axis represents mean attainment and the
vertical axis displays the absolute Gini index. The seeming Kuznets-curve relationship between the mean
and absolute Gini index appears to be quite predictable and ‘mechanical’ in our illustration.

Panels B1-B4 in Figure 5 show the evolution of relative inequality measured by the relative Gini index.
In contrast to the different absolute Gini patterns across indicators, relative Gini indices fall throughout as
mean attainments increase steadily for all five indicators (Panels B1 and B3). The relationships between the
mean attainments and relative Gini indices are depicted in Panels B2 and B4. Both absolute and relative
Gini indices follow the pattern predicted for their maximum values in Section 4.

Finally, panels C1–C4 present the trends in normalized Gini indices, G∗.21 Panel C1 shows that, unlike
both absolute and relative Gini indices, the normalized Gini indices register an upward trend for primary
completion rates. Therefore, after we control for the boundary problem, cross-country inequality in this
education indicator does not appear to have fallen, contrary to the trends generated by the absolute and
relative Gini indices. The normalized Gini indices for the secondary completion rate follow the same upward
trend between 1950 and 2010, but the normalized Gini indices for the tertiary completion rate linger between
0.51 and 0.54 for the entire period. Meanwhile, panel C3 shows that the normalized Gini indices for the
under-5 survival rate increase until 2000 and then fall. Similarly, the normalized Gini indices for the infant
survival rate increase until 2000, but then stabilise afterwards. Therefore, our empirical illustration clearly
documents that normalized Gini indices may produce very different inequality trends from their traditional
absolute and relative counterparts.

7 Concluding remarks

The use of standard income inequality measures to study the dispersion of bounded variables poses several
problems. On the one hand, the bounded domain of the variables generate a predictable functional relation
between the mean of a distribution and its maximum inequality levels. For instance, in the case of many
indices, chiefly absolute ones, when the mean approaches either the upper or the lower bound, inequality
mechanically goes to zero. On the other hand, several measures of inequality, e.g. all the relative ones, fail to
rank distributions consistently between the alternatives of attainments and shortfall representations. We pro-
posed a new approach to inequality measurement aimed at solving both problems, consistency and boundary,
simultaneously. Basically, the proposed normalized inequality measures compare observed inequality levels
against the maximum inequality level achievable with the same measure across all hypothetical distributions
having the same mean.22 The normalized inequality indices are strongly consistent (Bosmans, 2016) and
eliminate any mechanical relationship between mean attainment and maximum inequality brought about by
the boundary problem.

As mentioned in the introduction, several solutions have been proposed for the consistency problem, in-
cluding reliance on absolute Lorenz curves and indices (Lambert and Zheng, 2011), generalised means of
indices evaluated at both attainment and shortfall distribution (Lasso de la Vega and Aristondo, 2012) and a
relaxation of the (strong) consistency requirement, partially (Bosmans, 2016) or completely (Kenny, 2004).
Remarkably, our solution represents an alternative to all the aforementioned. By contrast, to the best of our

21Recall that G∗ can be obtained by normalizing either the absolute or the relative Gini index.
22Or same mean and population size when the population principle is not upheld.
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knowledge, many fewer alternative proposals to ours exist to handle the boundary effect. One alternative to
the class of normalized inequality indices may suggest taking the natural logarithm of the bounded variable,
thereby eliminating the lower bound when its value is zero. However, this approach is plagued with serious
problems. To begin with, it would not work when an untransformed value is equal to zero. Meanwhile, if
both bounds were positive, taking logarithms for all values would be feasible, but would not solve the bound-
ary effect (because the two bounds would just be replaced by new bounds). Moreover, if the upper bound
were higher than 1 then logarithmic transformations would compress the dispersion of values between 1
and the upper bound while expanding it for values between 0 and 1, with the concomitant ambiguous effect
on inequality rankings. Worse still, some inequality measures like the variance applied to logarithms of a
variable are known to violate the popular transfer principle (Foster and Ok, 1999). Finally, inequality com-
parisons based on logarithmic transformations of bounded variables would be generally inconsistent. In a
nutshell, the costs and inconveniences of the logarithmic transformation render it an unappealing alternative.

To illustrate the empirical relevance of our methodological proposal, we investigated the extent of cross-
country inequality in selected health and education indicators since 1950, comparing the absolute and
relative Gini indices against their unique normalized counterpart. The normalized Gini index portrays a
dramatically different picture of global dissemination in human development achievements. The absolute
and relative Gini indices point to cross-country inequality reductions in several health and education indi-
cators, but these trends look suspicious in the sense that they are highly correlated with mean attainment
values. More specifically, both absolute and relative Gini-measured inequality decrease as mean attainment
approaches its upper bound. This concern is confirmed by the normalized Gini index, whose trends sug-
gest that global progress in the studied health and education indicators did not follow more conceivably
egalitarian paths.

While our proposed inequality measures successfully address the consistency and boundary problems, there
remain other measurement challenges in the context of bounded variables. For example, Lasso de la Vega
and Aristondo (2012) provide conditions whose fulfillment guarantees robustness of inequality comparisons
to changes in the upper bound. Though admittedly this problem is not that serious when bounds are neither
arbitrary nor expected to change across time and space (e.g. in the case of indicators expressed as percentage
ratios), it is nonetheless worth exploring how our proposed measurement framework could accommodate
this potential concern. This challenge is left for future research. Likewise, future research could explore
partial orderings respecting the consistency and normalization properties that were combined to generate the
normalized inequality indices.
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Appendices

Appendix A1 Proof of Proposition 1

Let us start with an x ∈Xn \M for some n ∈ N \ {1} such that µ(x) ∈ (0,U) (i.e., x is neither bipolar
nor almost bipolar). Given that in the proposition’s partial order (X µ(x)

n ,�), a regressive transfer increases
inequality while a permutation keeps it unaltered and both keep the mean unaltered, we may always perform
a sequence of regressive transfers (with or without additional permutations) until exhaustion to obtain any
element of M that belongs in the set of distributions with the same population size and the same mean,
namely X

µ(x)
n .23

Now, there can be two types of cases: (i) µ(x) ∈Gn and (ii) µ(x) /∈Gn, where Gn = {U/n, . . . ,(n−1)U/n}
is the set of n−1 equally-spaced grid points between 0 and U .

Case (i): Whenever µ(x) ∈Gn, then there exists a natural number n′ ≤ n such that µ(x) = n′U/n. Clearly,
µ(x) = n′×U/n+(n−n′)×0/n. Starting with x, it is possible to have a series of regressive transfers until
a distribution with n′ elements equalling U and n− n′ elements equalling zero is reached. In this case, the
set of MIDs is X

µ(x)
n ∩B.

Case (ii): Whenever µ(x) /∈ Gn, then there exist a natural number n′ ≤ n such that n′U/n < µ(x) < (n′+
1)U/n. In this case, a series of regressive transfers are possible until n′ elements are equal to U and n−n′−1
elements are equal to zero. Note that it is not possible for n′+1 elements to be equal to U because µ(x)<
(n′+ 1)U/n. However, when n′ elements are equal to U , then µ(x) > n′U/n and therefore the remaining
element will have a value of ε = nµ(x)− n′U so that: µ(x) = n′×U/n+(n− n′− 1)× 0/n+ ε/n. It is
straightforward to verify that ε ∈ (0,U). In this case, the set of MIDs is X

µ(x)
n ∩A .

Thus, the maximum inequality distribution (MID) for x is an element in the set X
µ(x)

n ∩(A ∪B) =X
µ(x)

n ∩
M , which by our definition is equal to M

µ(x)
n . Now, whenever x ∈Xn∩M for some n ∈ N \ {1} (i.e., x

is either bipolar or almost bipolar), it can be trivially checked that x ∈M
µ(x)
n . Hence, a set of MIDs for

any x ∈Xn such that µ(x) ∈ (0,U) always exists and constitutes the set of maximal elements M
µ(x)
n of the

partially ordered set (X µ(x)
n ,�).

Appendix A2 Proof of theorem 1

We first prove the sufficiency part. Consider some x∈Xn for some n∈N\{1} and so the set of correspond-
ing MIDs is M

µ(x)
n by proposition 1. We then already know that

I(x) =


f (x)− f (x̄)
f (x̂)− f (x̄)

for x 6= x̄

0 for x = x̄
, (A1)

23Note that each element within x is bounded between 0 and U by definition and so it is not possible to perform further
regressive transfers once the bounds are reached. The proof proceeds in similar line of argument as the proof of
Theorem 1 in Seth and McGillivray (2018).
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where x̄ = µ(x)1n, x̂ ∈M
µ(x)
n , f : Xn → R++ is a symmetric and strictly S-convex function, and I(x) =

(g◦ I)(xS) where g is a strictly increasing function.

We now show that I satisfies the required properties. (i) Since f (x̂)− f (x̄) > 0 because any x̂ ∈M
µ(x)
n

can be obtained from x̄ by a series of regressive transfers and f is strictly S-convex, it follows directly
from the formulation in Equation A1 that I satisfies the equality principle as I(x̄) = 0, and the maximality
principle as I(x̂) = 1 for any x̂ ∈M

µ(x)
n . (ii) Suppose that y ∈Xn is obtained from x such that y = xP,

where P is a permutation matrix. By definition, µ(x) = µ(y), M
µ(y)
n = M

µ(x)
n and ȳ = x̄. Provided f

is symmetric, f (y) = f (x) and also f (ŷ) = f (x̂) for any x̂, ŷ ∈M
µ(x)
n . So, I(y) = I(x). Thus I satisfies

anonymity. (iii) Suppose y′ ∈Xn is obtained from x by a regressive transfer. Again, by definition, µ(x) =
µ(y′), M

µ(y′)
n = M

µ(x)
n and ȳ′ = x̄. Provided f is strictly S-convex, f (y′) > f (x) and so I(y′) > I(x).

Therefore, I satisfies the transfer principle. (iv) We show that I satisfies strong consistency by noting that
(g◦I)(xS)≤ (g◦I)(yS)⇔ I(xS)≤ I(yS) for any x,y∈Xn since g is a strictly increasing function. Moreover,
(g◦ I)(xS) = I(x). Therefore I(x)≤ I(y)⇔ I(xS)≤ I(yS).

Let us now prove the Necessity part. Suppose I satisfies anonymity and the transfer principle. Then, I is
symmetric and S-convex. Given that a monotonically increasing transformation of an S-convex function is
also S-convex, we may write (without loss of generality) I(x) = a f (x)+b for some x∈Xn, where a∈R++,
b∈R and f is some S-convex function. The equality principle requires that I(x̄) = 0, therefore a f (x̄)+b= 0
or b =−a f (x̄). On the other hand, the maximality principle requires that I(x̂) = 1 for any x̂ ∈M

µ(x)
n , thus

a f (x̂)−a f (x̄) = 1 or a = 1/ [ f (x̂)− f (x̄)]. Hence, inserting the values of a and b, we obtain:

I(x) =
f (x)− f (x̄)
f (x̂)− f (x̄)

. (A2)

Finally, drawing on Bosmans (2016, proposition 4) we deduce that if I is strongly consistent then it must be
the case that I(x) = (g◦ I)(xS) where g is a strictly increasing function.

Appendix A3 Proof of proposition 2

Proposition 1 holds for X , hence it also holds for Q ⊂X . Consider an x ∈Qn \M for some n ∈ N\{1}
such that µ(x) ∈ (0,U).24 Then, with proposition 1 we can prove that the MIDs for x are the elements of
Q

µ(x)
n ∩M . Now there are two cases, where we will allow n to vary:

Case (i): First, suppose µ(x) ∈ Gn and µ(x) = (i/n)U for some i ∈ N and 1 ≤ i ≤ n−1. Then, according
to proposition 1, the set of MIDs for x is Q

µ(x)
n ∩B. Now, suppose for some n′ = γn where γ ∈ N \ {1},

y ∈Qn′ is obtained from x ∈Qn by replication. Since x,y ∈Q, clearly µ(y) = (iγ/n′)U = (i/n)U = µ(x).
Again, by proposition 1, the set of MIDs for y is Q

µ(x)
n′ ∩B. Given that the results hold for any n and any γ ,

the set of MIDs for x is Qµ(x)∩B.

Case (ii): Next, suppose µ(x) /∈Gn. Then, according to proposition 1, the set of MIDs for x is Q
µ(x)
n ∩A .

Consider some x̂ ∈Q
µ(x)
n ∩A , where x̂ has n1 elements equal to zero, n−n1−1 elements equal to U and

one element equal to ε ∈ (0,U). Further suppose for some n′ = δn, where δ ∈ N\{1} and δ = λU/ε for
some λ ∈ N, that y ∈Qn′ is obtained from x ∈Qn by replication such that µ(y) ∈ Gn′ . Such replication

24Note that the cases µ(x) = {0,U} are purposefully dismissed from proposition 2.
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is always feasible since ε ∈ Q. Clearly, µ(x) = µ(y) using the same line of argument in the preceding
paragraph. Thus, the set of MIDs for y by proposition 1 is Q

µ(x)
n′ ∩B since µ(y) ∈ Gn′ . We now need to

show that an element in Q
µ(x)
n′ ∩B is more unequal than an element in Q

µ(x)
n ∩A in the partially ordered

set (Qµ(x),�). Let ŷ be obtained from x̂ by replication by the same δ times so that ŷ has δn1 elements
equal to zero, δ (n−n1−1) elements equal to U and δ elements equal to ε . Based on the partially ordered
set (Qµ(x),�), by the population principle, ŷ∼ x̂. Clearly, further regressive transfers are possible in ŷ and
a series of regressive transfers until exhaustion leads to some ẑ ∈Q

µ(x)
n′ ∩B since, by definition, δε = λU .

It follows that, in (Qµ(x),�), ẑ� ŷ and therefore ẑ� x̂. Given that our result holds for an arbitrary n and an
arbitrary δ , the MIDs for x, in this case, are also Qµ(x)∩B.

Finally, suppose x∈Qn∩M , which means that either x∈Qn∩A (i.e., almost bipolar) or x∈Qn∩B (i.e.,
bipolar). Following the same line of argument presented in the two previous paragraphs, it can be shown
that the MIDs for x are again Qµ(x)∩B.

Hence, the set of MIDs for any x ∈Q such that µ(x) ∈ (0,U) exists and is equal to Qµ(x)∩B, which by
our definition is Bµ(x) and constitute the maximal elements of (Qµ(x),�).

Appendix A4 Proof of theorem 2

We first prove the sufficiency part. Applying theorem 1, which holds for Qn ⊂Xn, since it holds for Xn,
we can show that I satisfies anonymity, the transfer principle, the equality principle, and strong consistency.
Now, since f (x̂) > f (x̄) for any x̂ ∈ Bµ(x) because any x̂ ∈ Bµ(x) can be obtained from x̄ by a series
of regressive transfers with or without combinations of replications and permutations, and f is strictly S-
convex, we have I(x̂) = 1; that is, I satisfies the restricted maximality principle. Finally, we prove that I
satisfies the population principle. Let y be obtained from x ∈Qn through a replication. Then, by definition,
µ(x)= µ(y) and so by proposition 2, Bµ(x)=Bµ(y). It is also straightforward to verify that ȳ is a replication
of x̄. Therefore, based on (Qµ(x),�), y ∼ x and ȳ ∼ x̄, and hence f (ȳ) = f (x̄) and f (y) = f (x) because
f satisfies the population principle. Coupled with f (ŷ) = f (x̂) for any x̂, ŷ ∈Bµ(x) and f (x̂)− f (x̄) > 0,
clearly I(y) = I(x). Hence, I satisfies the population principle.

The proof of the necessity part is similar to the proof of theorem 1’s necessity part, with some additional
modifications. If I satisfies anonymity and the transfer principle, then, without loss of generality, I(x) =
a f (x)+b for some x ∈Qn, where a ∈ R++, b ∈ R and f is some S-convex function. Recalling proposition
2, suppose for some n′ = δn, where δ ∈ N \ {1} and δ = λU/ε for some λ ∈ N, that y ∈Qn′ is obtained
from x by replication such that µ(y) ∈Gn′ . Given that I satisfies the population principle, then I(y) = I(x).
It follows that f (y) = f (x) since a > 0 and so f also satisfies the population principle. By the equality
principle, which requires that I(x̄) = 0 where x̄ = µ(x)1n, we obtain a f (x̄)+ b = 0 or b = −a f (x̄). Now,
suppose x̂ is obtained from y by a series of regressive transfers until exhaustion. Then, certainly x̂ ∈Bµ(y)

by proposition 2, since δε = λU and µ(x) = µ(y) by construction. By the restricted maximality principle,
we obtain I(x̂) = 1 and so a f (x̂)− a f (x̄) = 1 or a = 1/ [ f (x̂)− f (x̄)], which leads us to the normalized
formulation. Finally, following the proof of theorem 1, it can be easily verified that if I satisfies strong
consistency then I(x) = (g◦ I)(xS) where g is a strictly increasing function.
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Appendix A5 Derivation of normalized inequality indices

Here we show the derivation of the inequality measures presented as examples in section 5.1. We start with
the formulas relying on bipolar MIDs followed by formulas based on almost bipolar MIDs. The former are
simpler than the latter.

In a bipolar MID x̂, assume that a share s of the population attains the value of 0 and the rest (1− s) the
value of U . Given that µ(x̂) = µ(x), by definition, the following restriction must hold:

µ(x̂) = s×0+(1− s)×U ⇒ (1− s)U = µ(x)⇒ s = 1− µ(x)
U

. (A3)

The absolute Gini index:

Computing the absolute Gini index for x̂ yields:

Ga(x̂) = s(1− s)U. (A4)

Plugging equation A3 into equation A4 and manipulating algebraically yields:

Ga(x̂) =
µ(x)

U

(
1− µ(x)

U

)
U =

µ(x)[U−µ(x)]
U

.

The relative Gini index:

Computing the relative Gini index for x̂ yields:

Gr(x̂) =
s(1− s)U

µ(x)
. (A5)

Plugging equation A3 into equation A5 and manipulating algebraically yields:

Gr(x̂) =
U−µ(x)

U
.

The standard deviation:

Computing the standard deviation for x̂ yields:

σ(x̂) =
√

s[µ(x)]2 +(1− s)[U−µ(x)]2. (A6)

Plugging equation A3 into equation A6 and manipulating algebraically, we obtain:

σ(x̂) =

√[
1− µ(x)

U

]
[µ(x)]2 +

µ(x)
U

[U−µ(x)]2 =
√

µ(x) [U−µ(x)].

The coefficient of variation:

Computing the coefficient of variation for x̂ yields:

CV (x̂) =
σ(x̂)
µ(x̂)

=

√
µ(x) [U−µ(x)]

µ(x)
=

√
U−µ(x)

µ(x)
. (A7)
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Derivation of normalised inequality indices for almost bipolar MIDs

In an almost bipolar MID x̂ we have n′ units in the population with value U , one unit with value 0 < ε <U
and the rest, n−n′−1 with value 0. Moreover, ε = nµ(x)−n′U . For each of the denominators of the indices
mentioned in section 5.1 we get:

The absolute Gini index:

Ga(x̂) =
1

2n2 [(n−n′−1)×1×|0− ε|+(n′)×1×|U− ε|+n′(n−n′−1)×1×|0−U |] (A8)

Simplifying equation A8 we get the denominator of 2 for the almost bipolar case (noting later that the 2 in
the fraction gets cancelled out as it also appears in the numerator’s formula):

Ga(x̂) =
1

2n2 [(n−n′−1)ε +(n′)(U− ε)+n′(n−n′−1)U ]. (A9)

The relative Gini index:

Essentially we get the same formula for the denominator of 2 as in A8 but divided by µ(x) (again, the 2 in
the fraction gets cancelled out as it also appears in the numerator’s formula):

Gr(x̂) =
1

2n2µ(x)
[(n−n′−1)ε +(n′)(U− ε)+n′(n−n′−1)U ]. (A10)

The standard deviation:

σ(x̂) =
√

1
n
[(n−n′−1)(0−µ(x))2 +n′(U−µ(x))2 +(ε−µ(x))2]. (A11)

Simplifying equation A11 we get the denominator of 3 for the almost bipolar case.

The coefficient of variation:

We get the same formula as in A11 but divided by µ(x):

CV (x̂) =
1

µ(x)

√
1
n
[(n−n′−1)µ(x)2 +n′(U−µ(x))2 +(ε−µ(x))2]. (A12)

Finally, for each of the aforementioned indices (for bipolar and almost bipolar MIDs), we compute f (x)/ f (x̂).

Appendix A6 Derivation of iso-inequality contours

When n = 2 and U = 1, the absolute Gini index can be written as Ga(x1,x2) = |x1− x2|/4, where (x1,x2) ∈
[0,1]2. In that case, the iso-inequality contours are straight lines parallel to the 45◦ line. In this setting, the
relative Gini index can be written as Gr(x1,x2) = |x1− x2|/4µ = |x1− x2|/2(x1 + x2). Since this function
is homogeneous of degree 0 (i.e., Gr(λx1,λx2) = Gr(x1,x2) for all λ > 0), the iso-inequality contours are
straight lines emanating from (or converging to) the origin (0,0).

What about the iso-inequality contours for the normalized Gini index that does not comply with the pop-
ulation principle (G∗(x1,x2))? Here, G2 = {1/2}, so there are basically two cases: either µ(x1,x2) ≤ 1/2
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or µ(x1,x2) ≥ 1/2. Case (i): µ(x1,x2) = (x1 + x2)/2 ≤ 1/2. Here, the MIDs associated with (x1,x2) are
{(0,x1+x2),(x1+x2,0)}. When the absolute Gini index is applied to any of those distributions, one obtains
Ga(0,x1 + x2) = Ga(x1 + x2,0) = (x1 + x2)/4. Hence, G∗(x1,x2) = |x1− x2|/(x1 + x2). These are straight
lines emanating from (or converging to) the origin (0,0). Case (ii): µ(x1,x2) = (x1 + x2)/2 ≥ 1/2. Now,
the MIDs associated with (x1,x2) are {(x1 + x2− 1,1),(1,x1 + x2− 1)}. Calculating the absolute Gini in-
dex of any of those distributions yields Ga(x1 + x2−1,1) = Ga(1,x1 + x2−1) = (2− (x1 + x2))/4. Hence
G∗(x1,x2) = |x1− x2|/(2− (x1 + x2)) = |xS

1− xS
2|/(xS

1 + xS
2) (where xS

1 = 1− x1 and xS
2 = 1− x2). These are

straight lines emanating from (or converging to) the point (1,1). Finally, it is easy to prove that the two sets
of iso-inequality contours match at the intersection (i.e., for the set of points {(x1,x2) ∈ [0,1]2|x1 +x2 = 1},
the values of the iso-inequality contours examined in cases (i) and (ii) coincide).

According to theorem 2 and equation 2, the normalized Gini index complying with the population principle
is simply defined as G∗P(x1,x2) = Ga(x1,x2)/(µ(x1,x2)(1− µ(x1,x2))). Manipulating algebraically, one
obtains that G∗P(x1,x2) = |x1 − x2|/((x1 + x2)(2− (x1 + x2))). This is the function from which the iso-
inequality contours shown in Figure 3 panel D are calculated.
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