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Abstract

The first part of this paper is a brief survey of the approaches to economic inequality based on ideas from statistical

physics and kinetic theory.  These include the Boltzmann kinetic equation, the time-reversal symmetry, the ergodicity

hypothesis, entropy maximization, and the Fokker-Planck equation.  The origins of the exponential Boltzmann-Gibbs

distribution and the Pareto power law are discussed in relation to additive and multiplicative stochastic processes.  The

second part of the paper analyzes income distribution data in the USA for the time period 1983-2018 using a two-class

decomposition.  We present overwhelming evidence that the lower class (more than 90% of the population) is described

by the exponential distribution, whereas the upper class (about 4% of the population in 2018) by the power law.  We

show that the significant growth of inequality during this time period is due to the sharp increase in the upper-class

income share, whereas relative inequality within the lower class remains constant.  We speculate that the expansion of

the upper-class population and income shares may be due to increasing digitization and non-locality of the economy in

the last 40 years.
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The first part of this paper is a brief survey of the approaches to economic inequality based on
ideas from statistical physics and kinetic theory. These include the Boltzmann kinetic equation, the
time-reversal symmetry, the ergodicity hypothesis, entropy maximization, and the Fokker-Planck
equation. The origins of the exponential Boltzmann-Gibbs distribution and the Pareto power law
are discussed in relation to additive and multiplicative stochastic processes. The second part of
the paper analyzes income distribution data in the USA for the time period 1983–2018 using a
two-class decomposition. We present overwhelming evidence that the lower class (more than 90%
of the population) is described by the exponential distribution, whereas the upper class (about
4% of the population in 2018) by the power law. We show that the significant growth of inequality
during this time period is due to the sharp increase in the upper-class income share, whereas relative
inequality within the lower class remains constant. We speculate that the expansion of the upper-
class population and income shares may be due to increasing digitization and non-locality of the
economy in the last 40 years.

I. INTRODUCTION

Inequality is an important, ubiquitous feature of
human society. What is the origin of economic in-
equality? Is it inevitable or avoidable? Are there
common mathematical patterns of inequality? Is
quantitative description of such patterns possible?
These questions have puzzled scientists for centuries.
Lately, in the last 20 years or so, the subject has
moved to the center of public discourse.

Statistical physics and kinetic theory deal with
big statistical ensembles and, as such, are branches
of the applied theory of probabilities. The econo-
physics movement, emerging about 25 years ago
[1, 2], utilizes mathematical methods developed in
these disciplines for probabilistic description of so-
cial ensembles. Several papers in the late 1990s
– early 2000s applied these ideas to economic in-
equality [3–6]. Since then, the volume of such lit-
erature has grown enormously [7–10]. Importantly,
the econophysics approach has attracted attention
of economists and social scientists [11, 12] and is
now debated within these disciplines [13], as well
as in popular media [14, 15]. Physics-inspired ap-
proaches to economic inequality are briefly reviewed
in Sec. II of this paper, particularly for the benefit
of non-physicists.

Then, in Sec. III, these ideas are applied to a quan-
titative analysis of the income distribution data in
the United States for 1983–2018. We use the pub-
licly available data from Publication 1304 by the
Statistics of Income research division of the Internal
Revenue Service (IRS), the United States tax agency

∗ yakovenk@umd.edu
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of societies and economies”

[16]. The earliest year covered by Publication 1304 is
1983, and the latest year currently available is 2018,
while the earlier data are available in Publication
79. Our quantitative study of such a wide historical
range reveals salient trends of inequality evolution in
the United States. The paper ends with Conclusions
in Sec. IV.

II. PHYSICS-INSPIRED APPROACHES TO
ECONOMIC INEQUALITY

This Section briefly outlines mathematical ap-
proaches to economic inequality introduced in the
early econophysics papers [3–6] and subsequently
followed by numerous further extensions. It is not
intended as a comprehensive literature survey, but
rather as a quick summary of the ideas relevant to
our quantitative analysis of income distribution data
presented in Sec. III.

A. The Boltzmann kinetic equation

One approach is based on the Boltzmann kinetic
equation. First, let us consider an ideal gas, where
molecules have kinetic energies ε and experienc-
ing pairwise collisions. The total energy of two
molecules remains constant before and after collision

ε1 + ε2 = ε′1 + ε′2, (1)

while the energy ε1− ε′1 is transferred from the first
to the second molecule.

By analogy, now let us consider a monetary trans-
action between two economic agents, whose money
balances are m1 and m2 [4]. Upon transaction,
the first agent transfers some amount of money ∆
to the second agent in payment for goods or ser-
vices. Then the money balances of the agents be-
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come m′1 = m1 −∆ and m′2 = m2 + ∆, so the sum
is conserved

m1 +m2 = m′1 +m′2. (2)

The conservation of money expressed by Eq. (2) is
nothing but the law of accounting [17]. From the ac-
counting perspective, all monetary transactions are
transfers of digits from one account to another, so
the decrease in one account is equal to the increase
in another. The flow of monetary digits, i.e., the ab-
stract bits of information, between different accounts
constitutes the informational layer of the economy
[17]. It is coupled to another, physical layer of the
economy, which represents counterflow of physical

goods and services in transactions between agents.
In contrast to the monetary digital layer, the items
in the physical layer are not conserved, because they
can be produced, consumed, and destroyed. How-
ever, production of physical items, by itself, does
not change the number of digital monetary units in
the system, because they belong to different layers
and are governed by different rules.

For a statistical ensemble of many interacting eco-
nomic agents, we introduce the probability distribu-
tion P (m, t) of money m among the agents. Its evo-
lution as a function of time t, as a result of monetary
transactions, can be described by the Boltzmann ki-
netic equation [18]

∂P (m, t)

∂t
=

∫∫
dm′ d∆

{
−Γ[m,m′]→[m−∆,m′+∆]P (m, t)P (m′, t) (3)

+Γ[m−∆,m′+∆]→[m,m′]P (m−∆, t)P (m′ + ∆, t)
}
.

Here Γ[m,m′]→[m−∆,m′+∆] is the probability of trans-
ferring money ∆ from an agent with money m to an
agent with money m′ per unit time. This probabil-
ity, multiplied by the occupation numbers P (m, t)
and P (m′, t), gives the rate of transitions from the
state [m,m′] to the state [m − ∆,m′ + ∆]. The
first term in Eq. (3) gives the depopulation rate
of the state m, whereas the second term represents
the reversed process, where the occupation number
P (m, t) increases.

In order to make further progress, different pa-
pers make various assumptions about the structure
of the transition probabilities Γ[m,m′]→[m−∆,m′+∆].
For example, Ref. [5] introduced a model of saving
propensity, where the agents save some fraction of
their money balances before engaging in monetary
transactions described by Eq. (2). Whether such
specific model assumptions are realistic remains an
open question.

Many papers, particularly in this volume, apply
Eq. (3) not to money m, but to assets [3] or wealth
w. Some papers seem to use m and w synonymously,
in which case there is no difference. But more gen-
erally, wealth w = m + ps is a sum of the money
balance m and the monetary value ps of tangible
property, e.g., stocks s, where p is the stock price.
Then, wealth is generally not conserved, because it
may increase or decrease due to a change in price
p, while an agent is not conducting any transactions
at all. For example, during the early COVID cri-
sis in March 2020, many agents stayed passive and
performed no transactions, but trillions of dollars of
their wealth first disappeared and then reappeared
due to changes of stock prices. In contrast, money
balances were largely unaffected by such wild swings.

B. The equilibrium Boltzmann-Gibbs
distribution

Interestingly, a stationary solution of Eq. (3) can
be found without detailed knowledge of the transi-
tion probabilities Γ[m,m′]→[m−∆,m′+∆], if they sat-
isfy the time-reversal symmetry

Γ[m,m′]→[m−∆,m′+∆] = Γ[m−∆,m′+∆]→[m,m′]. (4)

The condition (4) means that the probabilities of
transactions in direct and reversed directions are
equal. The fundamental dynamical equations in
physics do satisfy the time-reversal symmetry. In
contrast, there is no such general requirement in eco-
nomics, e.g., the model [5] with saving propensity
does not have the time-reversal symmetry. Never-
theless, such symmetry may be approximately ap-
plicable in some cases.

In Eq. (3), the probability distribution P (m) is
stationary, dP (m)/dt = 0, when the rates of direct
and reversed transitions are equal, so that the two
terms in the curly brackets cancel each other. This is
called the principle of detailed balance. If the time-
reversal condition (4) is satisfied, then the transition
probabilities Γ cancel out, and the detailed balance
condition becomes

P (m)P (m′) = P (m−∆)P (m′ + ∆). (5)

In the notation of Eq. (2), Eq. (5) has the form
P (m1)P (m2) = P (m′1)P (m′2) and can summarized
as follows. The probability P is multiplicative,
whereas the energy ε or the money m appearing in
the argument of P is additive, due to conservation
laws (1) or (2). A general solution of Eq. (5) is given
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by the exponential Boltzmann-Gibbs distribution [4]

P (m) = c e−m/Tm . (6)

Here the coefficient c = 1/Tm is obtained from
the normalization condition

∫∞
0
dmP (m) = 1,

whereas the money temperature Tm = 〈m〉 =∫∞
0
dmP (m)m is equal to the average money bal-

ance of an agent.

We assume that the boundary condition m ≥ 0 is
imposed, so that debt, which can be interpreted as
a negative money balance, is not permitted. Thus,
m = 0 represents the lowest possible balance of
an agent, analogous to the ground-state energy in
physics. Permitting debt, i.e., negative m, makes
the problem more complicated and potentially un-
stable [17], unless a limit on debt is imposed [4, 19]

The Boltzmann-Gibbs distribution of energy
P (ε) ∝ e−ε/Tε , analogous to Eq. (6), plays a funda-
mental role in the equilibrium statistical physics. In
textbooks on this subject [20], it is usually derived
using other methods, without reference to the dy-
namical kinetic equation (3). In particular, Eq. (6)
can be derived geometrically from the ergodicity hy-
pothesis [21, 22], which postulates that all micro-
scopic configurations of the system consistent with
macroscopic constraints are equally probable.

Alternatively, the Boltzmann-Gibbs distribution

(6) can be obtained by maximizing the entropy of
the system S = −

∫∞
0
dmP (m) ln[P (m)] with a con-

straint on the total money in the system 〈m〉 =∫∞
0
dmP (m)m using the method of Lagrange mul-

tipliers. The entropy S = lnW is the logarithm of
the multiplicity W , which is the number of micro-
scopic realizations of a given distribution P (m) ob-
tained by combinatorial permutations of the agents.
The principle of entropy maximization follows from
the H-theorem proved by Boltzmann [18]. The the-
orem shows that, for the probability distribution
P (m, t) obeying the Boltzmann kinetic equation (3),
the entropy S(t) monotonously increases in time, un-
til it reaches its maximal value at the equilibrium
Boltzmann-Gibbs distribution (6). Time evolution
of global inequality in energy consumption and CO2

emissions per capita was interpreted in Refs. [23, 24]
as a manifestation of entropy increase due to eco-
nomic globalization.

C. The Fokker-Planck equation

When the change ∆ is small for an agent with
money balance m, the integro-differential Boltz-
mann kinetic equation (3) can be reduced the
partial-differential Fokker-Planck equation [18], also
known as the diffusion equation or the Kolmogorov
forward equation,

∂P (m, t)

∂t
=

∂

∂m

[
A(m)P (m, t) +

∂

∂m
B(m)P (m, t)

]
, A = −〈∆〉

dt
, B =

〈∆2〉
2dt

. (7)

The coefficients A and B, known as the drift and
diffusion, are the first and second moments of the
random money balance changes ∆ per time incre-
ment dt.

Assuming the boundary condition m ≥ 0, a sta-
ble stationary solution of Eq. (7) exists only for the
drift in negative direction, 〈∆〉/dt < 0, so that the
coefficient A > 0 is positive. The stationary solu-
tion ∂tP = 0 of Eq. (7) is then obtained by setting
the probability flux, which is the expression in the
square brackets, to zero:

P (m) =
c

B(m)
exp

(
−
∫ m

0

A(m′)

B(m′)
dm′

)
, (8)

where the coefficient c follows from the normaliza-
tion condition

∫∞
0
P (m) dm = 1.

In the simplest case where the coefficients A and
B are constants independent of m, the stationary
distribution (8) is exponential P (m) ∝ e−m/Tm , thus
reproducing the Boltzmann-Gibbs formula (6). Here
the money temperature Tm = B/A is expressed in
terms of B and A similarly to the Einstein relation
between temperature, diffusion, and mobility [18].

A well-known example in physics is the barometric
distribution of gas density P (z) ∝ e−µgz/T versus
the height z in the presence of gravity, where µ is
the mass of a molecule, g is the gravitational ac-
celeration, and µgz is the gravitational energy of a
molecule. The competition between downward drift
due to gravity and spreading around due to diffu-
sion produces the stationary exponential distribu-
tion P (z). It represents a statistical equilibrium, in
contrast to a mechanical one where two forces act-
ing on an object balance each other (like supply and
demand in economics).

D. Applications to income distribution

The Boltzmann kinetic equation (3) is a two-body
equation, in the sense that it involves the probability
distributions P (m, t) and P (m′, t) of two interacting
agents, so it is a nonlinear equation. In comparison,
the Fokker-Planck equation (7) is a one-body equa-
tion, because it only involves P (m, t) for one agent,
so this equation is linear and sometimes called the
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master equation. Coupling between agents is im-
plicitly represented in Eq. (7) by the first and sec-
ond moments of the fluctuations ∆ of the variable
m for a given agent, due to its interaction with the
“environment” consisting of the other agents. Un-
like the two-body approach, the one-body descrip-
tion does not invoke a conservation law explicitly.
Thus, Eq. (7) can be generally applied to all kinds
of stochastic variables, which is widely done in the
literature. For example, the famous Black-Scholes
equation for random fluctuations of stock prices is
based on a version of Eq. (7). A particular version
of Eq. (7) was proposed in Ref. [6] for the distribu-
tion of wealth w.

In the rest of the paper, we switch to the proba-
bility distribution P (r) of income r, instead of the
money balance m. The income r of an agent is the
influx of money per unit time, typically per year, so
it is analogous to the power in physics, if money m
is analogous to the energy. Following this definition,
the income is non-negative, so it satisfies the bound-
ary condition r ≥ 0. The main reason for this change
of focus is that empirical data for income distribu-
tion P (r) are available from government agencies,
whereas empirical data for P (m) are difficult to ob-
tain. Income inequality is widely discussed in the
literature and is an important subject by itself.

Let us treat the income r of an agent as a stochas-
tic variable experiencing random fluctuations ∆ over
a time increment dt. Then the time-dependent
probability distribution of income P (r, t) obeys the
Fokker-Planck equation (7) with the variable m is re-
placed by the variable r. We focus on the stationary
distribution (8), where, again, m is replaced by r.
To make further process, we need to make some as-
sumptions about the drift and diffusion coefficients
A(r) and B(r). Empirical analysis of income dis-
tribution shows that it has a well-defined two-class
structure [25, 26]. The lower class is described by the
exponential Boltzmann-Gibbs function, which was
uncovered in Ref. [27] and then confirmed for the
middle part of income distributions in many coun-
tries [28]. In contrast, the upper class is described
by the Pareto power law [29]. The two-class struc-
ture of income distribution can be rationalized on
the basis of a kinetic approach as follows.

For the lower class, where income comes from
wages and salaries, it is reasonable to assume that
income changes do not depend on income itself, i.e.,
∆ is independent of r. Such a stochastic process is
called additive [26]. Then the coefficients in Eq. (7)
are some constants A0 and B0 independent of r, and
the stationary distribution of income (8) is exponen-
tial, analogous to the Boltzmann-Gibbs distribution
(6)

Padd(r) =
1

T
e−r/T , T =

B0

A0
. (9)

Here the parameter T is the income temperature,

which could be denoted as Tr, but we drop the sub-
script r to shorten notation. It is equal to the mean
income of the lower class: T = 〈r〉add.

In contrast, the upper-class income comes from
bonuses, investments, and capital gains, which are
calculated as percentages. Therefore, for the upper
class, it is reasonable to expect that income changes
are proportional to income itself, i.e., ∆ ∝ r. This is
known as the proportionality principle of Gibrat [30],
and such a stochastic process is called multiplicative
[26]. Then A = ar and B = br2, and Eq. (8) gives a
power-law distribution

Pmult(r) ∝
1

r1+α
, α = 1 +

a

b
. (10)

The multiplicative hypothesis for the upper-class
income was quantitatively verified in Ref. [31] for
Japan, where tax identification data are officially
published for the top taxpayers.

In practice, the additive and multiplicative pro-
cesses may coexist. For example, an employee may
receive a cost-of-living raise calculated in percent-
ages (the multiplicative process) and a merit raise
calculated in dollars (the additive process). Assum-
ing that these processes are uncorrelated, we find
that A = A0 + ar and B = B0 + br2 = b(r2

0 + r2),
where r2

0 = B0/b. Substituting these expressions
into Eq. (8), we find [7, 32]

Pint(r) = c
e−(r0/T ) arctan(r/r0)

[1 + (r/r0)2](1+αi)/2
, (11)

The distribution (11) interpolates between the ex-
ponential law for low r and the power law for high
r, because either the additive or the multiplicative
process dominates in the corresponding limit. A
crossover between the two regimes takes place at
r ≈ r0, where the additive and multiplicative con-
tributions to B are equal. The distribution (11) has
three parameters: the temperature T = A0/B0, the
Pareto exponent αi = 1 + a/b, and the crossover in-
come r0. It is a minimal model that captures the
salient features of the two-class income distribution
[7, 32]. The label i distinguishes the exponent αi in
the interpolated formula (11) from the exponent α
in the simple power law (10) for the purpose of data
fitting, as discussed in Sec. III C. A formula similar
to (11) was also derived by Fiaschi and Marsili [33]
for a microeconomic model effectively described by
Eq. (7). But Eq. (11) was published for the first
time in 1895 in this journal by the statistician Karl
Pearson [34] and is known as the Pearson Type IV
distribution.

Although Eqs. (9), (10), and (11) are derived
from the stationary solution (8) of the Fokker-Planck
equation, in the next Section we treat them as quasi-
stationary and empirically determine how their pa-
rameters evolve over time.
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III. DATA ANALYSIS OF INCOME
DISTRIBUTION IN THE USA IN 1983–2018

A. The two-class fit of the cumulative
distribution function

We use the variable r for annual income, which is
called the adjusted gross income in the IRS Publica-
tion 1304 [16]. Income distribution data are reported
in this publication at fixed income levels. At the high
end, these levels are $100k, $200k, $500k, and $1M
for the years earlier than 2000. Here k denotes thou-
sand dollars, and M million dollars. Starting from
2000, the data for the income levels of $1.5M, $2M,
$5M, and $10M are also reported. At the low end
below $100k, the data are reported at many income
levels. Further technical details about the source
and analysis of the data are provided in Supplemen-
tal Material [35].

Given these fixed income bins set by IRS, we intro-
duce the (complementary) cumulative distribution
function C(r) =

∫∞
r
P (r′) dr′ (CDF), obtained by

integration of the probability density function P (r)
(PDF). The cumulative function C(r) is the frac-
tion of tax returns reporting adjusted gross income
above r in the IRS data. In our paper, we treat the
fraction of tax returns as a proxy for the fraction
of population with income above r. This correspon-
dence is only approximate for several reasons. First,
some tax returns are filed jointly by married cou-
ples, i.e., one tax return per two people. The frac-
tion of joint tax returns has dropped from about 1/2
in 1983 to about 1/3 in 2018. Second, people with
income below a certain threshold are not required
to file tax returns, but many of them do because of
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FIG. 1. The cumulative distribution function C(r) ver-
sus the rescaled income r/T in the USA for 1983–2018.
The main panel is in log-log scale, whereas the inset is
in log-linear scale.

refunds from federal tax withholding and tax credit
incentives. Clearly, the correspondence between the
fractions of population and tax returns is not per-
fect, but it is the best we can do, given the publicly
available IRS data.

The cumulative distribution C(r) is given by the
exponential and power-law functions for the corre-
sponding probability densities (9) and (10):

Cadd(r) = e−r/T , Cmult(r) ∝
1

rα
. (12)

We perform a piecewise fit of the empirical data
to Cadd(r) at the low end and to Cmult(r) at the
high end of income distribution. The IRS publica-
tion reports many data points at the low end, which
makes it easier to determine the income temperature
T from the fits. In contrast, only few data points are
available at the high end, so the Pareto exponent α
is obtained with lower accuracy.

Having determined the temperature T , we visu-
alize the fits in Fig. 1 using the rescaled income
r/T as the dimensionless coordinate on the horizon-
tal axis. Then the CDF curves for different years
collapse on a single curve at the low end of the dis-
tribution. The inset in Fig. 1 shows the data in
the log-linear scale, with the rescaled income r/T in
linear scale on the horizontal axis and CDF in loga-
rithmic scale on the vertical axis. The collapse of the
data points on a straight line in the log-linear scale
indicates that C(r) is, indeed, well described by the
exponential function. For clarity, the data for 1983–
1999 and 2000–2018 are separated in the inset. The
data points for the early 1980s deviate slightly be-
low the exponential line, indicating lower inequality
in those years, but this deviation subsequently goes
away. The upper boundary of the exponential fit
gradually shrinks from r/T ≈ 3.5 in the late 1980s
to r/T ≈ 2.5 by 2000, with data points at the higher
incomes deviating upwards for 2000–2018 in the in-
set.

The main panel in Fig. 1 shows the same data in
log-log scale, where both axes for r/T and CDF are
logarithmic. At the lower end, the data points col-
lapse on the black curve representing the exponential
distribution. At the high end, the data points fall on
straight lines, representing the power law in log-log
coordinates. The slopes of these lines give the Pareto
exponent α. We observe a noticeable decrease in the
Pareto slope from 1983 to 1999, which signals fatten-
ing of the upper tail, but then a narrower variation
of the slope in 2000–2018. While the main panel
in Fig. 1 presents clear data-based evidence for the
two-class society, it also demonstrates the absence
of the “middle class”. There is no objective, com-
monly agreed upon definition of the “middle class”
concept in the economic literature, where different
authors make up their own subjective definitions of
the “middle class”.

As an alternative to the piecewise fit, in Fig. 2 we
show fits of the CDF data for the last ten years 2009–
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2018 to the continuous interpolated function (11) in
log-log scale. We first determine T by fitting the low-
end data as described above. Then we determine the
Pareto exponent αi and the crossover income level
r0 by fitting to Eq. (11). Because of the different
fitting procedure, the value of the Pareto exponent
αi obtained from the interpolated fit is slightly dif-
ferent from the value α obtained from the piecewise
fit.

The crossover point r0 between the exponential
and power-law distributions is indicated in Fig. 2 by
the red star. An alternative crossover point r∗ is
obtained as an intersection (indicated by the small
black circle) of the piecewise exponential and power-
law fits shown by black curves for 2018. The values
of r0 and r∗ are generally different, but rather close.
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FIG. 2. The cumulative distribution function C(r) ver-
sus the rescaled income r/T in the USA for 2009–2018
fitted to the interpolating function (11). The crossover
income r0 of the interpolating fit is indicated by the red
star. The small black circle indicates another crossover
parameter r∗ obtained by piecewise fit.

We perform the piecewise fit and determine r∗ for
all available years. In contrast, the interpolated fit
is performed only for the last ten years 2009–2018,
where it works well. For the earlier years, it does not
work well, because the crossover between the expo-
nential and power-law distributions is less smooth
and more cuspy, as seen in Fig. 1. Moreover, the
lower part deviates downward from the exponential
fit in the early 1980s.

The two-class decomposition allows us to char-
acterization the empirical income distribution by a
small set of fitting parameters. Their values are
shown in Table I for the latest year 2018 and dis-
cussed in subsequent sections, where we visualize the
historical evolution of these parameters.

B. Divergence of the mean and the median
incomes

The dotted curves in the top panel of Fig. 3 shows
the historical evolution of the income temperature
T , as well as the mean 〈r〉 =

∫∞
0
dr r P (r) and me-

dian rmed incomes. All of them increase in time in
nominal dollars, but some of that increase is due to
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FIG. 3. The median rmed and mean 〈r〉 incomes and the
income temperature T , which is the mean income of the
lower class, in nominal dollars (top panel) and divided
by inflation (bottom panel).
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TABLE I. Parameters of the fit for 2018. Notation is explained in the text.

rmed T 〈r〉 r0 r∗ α αi fp fr ft fL G Gtax

$41k $57k $78k $167k $185k 1.42 1.25 4% 34% 58% 22% 60% 82%

inflation. We define the inflation parameter as the
ratio CPI(year)/CPI(1983) of the Consumer Price
Index (CPI) for a given year to the CPI in 1983 [36].
The solid curves in the top panel of Fig. 3 show the
parameters T and rmed taken in 1983 and multiplied
by the inflation parameter for the subsequent years.
The solid curves are close to the dotted curves for T
and rmed, so the increase in nominal dollars of the
income temperature T and the median income rmed

is primarily due to inflation.
The bottom panel of Fig. 3 shows the parame-

ters 〈r〉, T , and rmed divided by the inflation pa-
rameter. Again, we observe that the parameters T
and rmed characterizing the lower class remain ap-
proximately constant over 36 years, when adjusted
for inflation. For the exponential distribution in
Eq. (12), these two parameters are simply propor-
tional: rmed = T ln 2 ≈ 0.7T .

In contrast, the overall mean income 〈r〉 increases
sharply relative to inflation. The divergence between
the income temperature T = 〈r〉add, which is the
mean income of the lower class, and overall mean in-
come 〈r〉, which includes the upper class, points to a
significant increase of inequality in the last 36 years.
As the bottom panel of Fig. 3 shows, these two mean
incomes were approximately equal in 1983, but have
diverged since then. Thus, the growth of inequality
is primarily driven the increase of the upper-class
income relative to the lower class, while the lower-
class income remains approximately constant when
adjusted for inflation.

C. The Pareto exponent and the boundary
between two classes

The top two curves in Fig. 4 show the historical
evolution of the Pareto exponents α, obtained by the
piecewise fits for all years, and αi, obtained by the
interpolated fits for the last 10 years using Eq. (11).
The values of α and αi are slightly different because
they are obtained by different fitting procedures, but
they exhibit similar behavior. We observe a signifi-
cant decrease of the exponent α from 1983 to 2000,
which indicates fattening of the tail. But after 2000,
the exponent α exhibits a “bumpy plateau”, where it
decreases during financial bubbles and increases dur-
ing crashes, but stays approximately constant over-
all. These observations are qualitatively consistent
with the main panel in Fig. 1, as well as Fig. 3, and
indicate that the sharp expansion of the upper class
happened in the 1980s and 1990s, but have slowed
down or saturated after 2000.

The two curves at the bottom of Fig. 4 show the

historical evolution of the crossover incomes r∗ and
r0 separating the lower and upper classes, as illus-
trated in Fig. 2. The former is obtained from the
piecewise fits for all years, while the latter from the
interpolated fits for the last 10 years, and both are
normalized to the income temperature T . The ratio
r∗/T has decreased from about 5 in 1983 to slightly
above 3 in 2018. A particularly sharp drop is visible
around 1986, coinciding with the Tax Reform Act of
the Reagan administration. The decreasing value of
the ratio r∗/T indicates that the exponential part of
the distribution is shrinking, whereas the power-law
part is expanding, which is consistent with the inset
in Fig. 1.

D. The income, population, and tax fractions
of the upper class

Given the boundary r∗ between the two classes,
we can also characterize the upper class by the frac-
tions of its population fp, income fr, and tax paid
ft relative to the total population:

fp =

∫ ∞
r∗

dr P (r), fr =
1

〈r〉

∫ ∞
r∗

dr r P (r),

(13)
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temperature T .
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whereas ft is defined similarly to fr but for the tax
paid rather than income. The historical evolution of
these fractions is shown in the top panel of Fig. 5.
All of these fractions increase in time, indicating ex-
pansion of the upper class. In particular, the lower
curve in the top panel shows that the upper-class
population share fp has increased from less than 1%
in 1983 (when almost the whole income distribution
was close to exponential) to slightly greater than
4% in 2018. The increase in the upper-class pop-
ulation fraction is closely related to the decrease in
the crossover income ratio r∗/T separating the two
classes, as shown by the bottom curves in Fig. 4.

The income fraction fr of the upper class exhibits
the “bumpy plateau” pattern in the top panel of
Fig. 5 for the last 20 years, similarly to the exponent
α in Fig. 4 and the mean income 〈r〉 in Fig. 3. We
observe sharp peaks of the upper-class income share
fr around 2000 and 2017 coinciding with the stock
market and real estate bubbles, followed by crashes
of these bubbles, and then further increase by 2012,
under the quantitive easing policy of the Federal Re-
serve Bank. Clearly, the upper-class income share is
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FIG. 5. Top panel: the fractions of upper-class pop-
ulation fp, income fr, and tax paid ft relative to the
total population. The income fraction fr is deduced di-
rectly from the IRS data, whereas f ′r is calculated from
Eq. (15). Bottom panel: the ratios of these fractions.

closely related to financial bubbles.

The income fraction fr shown in Fig. 5 is deduced
directly from the IRS data, given the income thresh-
old r∗. As a consistency check, we compare it with
the theoretically expected fraction f ′r for the power-
law distribution (10). The expected mean income of
the upper class and the income fraction relative to
the total population are

〈r〉mult =

∫∞
r∗
dr r/r1+α∫∞

r∗
dr/r1+α

=
α

α− 1
r∗, (14)

f ′r = fp
〈r〉mult

〈r〉
= fp

α

α− 1

r∗
〈r〉

. (15)

The upper-class income nominally diverges, f ′r →
∞, when α → 1. When extrapolated from the de-
creasing trend in 1980s and 1990s in Fig. 4, the expo-
nent α could have reached 1 by 2018, but saturated
after 2000 at the “bumpy plateau” of bubbles and
crashed, thus avoiding the singularity.

The expected income fraction f ′r calculated from
Eq. (15) with the parameters from the piecewise fits
is shown in the top panel of Fig. 5 together with fr.
We see that fr and f ′r are very close for most years,
indicating that the power law (10) accounts for all of
the upper-class income. For the recent years, we no-
tice that fr > f ′r, suggesting that the actual upper-
class income may be slightly higher relative to the
power-law extrapolation. The difference between fr
and f ′r could indicate the additional income of oli-
garchy on top of the power law, as proposed for the
wealth distribution in Ref. [37]. However, the differ-
ence in Fig. 5 is too small to be taken as evidence
for oligarchy in income distribution, given the un-
certainty of the fitting parameters.

The ratios of the fractions are shown in the bot-
tom panel of Fig. 5. The middle curve shows the
ratio fr/fp of the income and population fractions.
This ratio stays approximately constant ≈ 10 and
even slightly decreases over time. Comparison with
Eq. (15) for f ′r/fp suggests that the decrease in
r∗/〈r〉 is compensated by the increase in α/(α− 1),
as shown in Fig. 4.

Another indicator is the share of taxes ft paid
by the upper class, relative to its income share fr.
The lower curve in the bottom panel of Fig. 5 shows
a noticeable decrease in ft/fr after the tax reform
of 1986, but then it stays approximately constant
≈ 2. Relatedly, the top panel shows that, after 2000,
the income share fr oscillates roughly between 20%
and 30%, whereas the tax share ft between 40% and
60%. Notably, the upper class paid close to 60% of
taxes in 2018. The top curve in the bottom panel
shows the ratio ft/fp of tax to population fractions
for the upper class. It exhibits a sharp drop around
1986 and then a gradual decrease in the last 10 years.
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E. Lorenz curves and Gini coefficient

Income distribution is commonly characterized by
the Lorenz curve in the economic literature [38]. The
Lorenz curve is defined parametrically in terms of
the two coordinates x(r) and y(r)

x(r) =

∫ r

0

dr′P (r′), y(r) =
1

〈r〉

∫ r

0

dr′r′P (r′).

(16)
Here x(r) is the fraction of the population with in-
comes below r, and y(r) is the total income of this
population, as a fraction of the total income in the
system. When the parameter r changes from 0 to∞,
the variables x(r) and y(r) change from 0 to 1, thus
producing the Lorenz graph in the (x, y) plane. Its
advantage is that all available data are represented
within a finite area in the (x, y) plane, whereas the
upper tail at r →∞ is inevitably truncated in Figs. 1
and 2.

It was derived in Ref. [27] that the Lorenz curve
for the exponential distribution (9) is

y = x+ (1− x) ln(1− x). (17)

When the upper class is present, the Lorenz curve
for the lower class is obtained [26] by multiplying
Eq. (17) by the factor (1− fL) < 1:

y = (1− fL)[x+ (1− x) ln(1− x)]. (18)

The factor (1 − fL) is the fraction of total income
contained in the extrapolated exponential distribu-
tion, whereas fL is the additional fraction of income
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FIG. 6. The IRS data points for the Lorenz curves of in-
come distribution in 1983 (red squares) and 2018 (blue
circles). The solid and dashed curves represent the ex-
ponential, Eq. (17), and rescaled exponential, Eq. (18),
distributions characterizing the lower class. The popu-
lation fp and income fr fractions mark the boundary of
the upper class in 2018. The inset shows the empirical
Gini coefficient in comparison with Eq. (19).

in the upper class. (The subscript L alludes to the
Lorenz curve.)

The red squares and blue circles in Fig. 6 show
the IRS data points for the Lorenz curves of income
distribution in 1983 and 2018. The straight diagonal
line represents the reference case of perfect equality,
so inequality is higher when the data points are fur-
ther away from it. We observe that the Lorenz curve
for 1983 is very close to the solid black curve rep-
resenting Eq. (17) for the exponential distribution.
Moreover, the data points in the middle are slightly
above the solid black curve, indicating lower inequal-
ity than in the exponential distribution. These con-
clusions are consistent with the CDF graphs in Fig. 1
and the observation that 〈r〉 ≈ T for 1983 in Fig. 3.

In contrast, the Lorenz curve for 2018 is shifted
down, signaling an increase in inequality. Most of its
data points, except at the high end, are well fitted
by the rescaled exponential formula (18) shown by
the dashed black curve. This indicates that income
distribution within the lower class remains exponen-
tial, whereas the increase in inequality comes from
the excess share fL of the upper-class income, de-
termined by the intersection of the fit (18) with the
vertical axis.

Also shown in Fig. 6 are the population fp and
income fr fractions of the upper class. Both pa-
rameters fL and fr represent an income share of
the upper class, but they are defined differently. In
Fig. 6, the parameter fr = 34% is the income share
of the top 4% of population, whose income distribu-
tion follows a power law. In contrast, fL = 22% is
the extra income of the upper class relative the expo-
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FIG. 7. The Lorenz curves of tax distribution in 1983
(red squares) and 2018 (blue circles). The black solid
curve represents the exponential distributions, Eq. (17),
for a reference. The population fp and tax ft fractions of
the upper class are indicated for 2018. The inset shows
the tax Gini coefficient.
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nential distribution extrapolated to r → ∞. Thus,
the parameter fL measures a deviation of the actual
income distribution from the purely exponential one.

To characterize inequality by a single number,
the economic literature [38] uses the Gini coefficient
0 ≤ G ≤ 1, defined as twice the area between the
diagonal line and the Lorenz curve. It was shown
that G = 1/2 for the exponential distribution [27],
and

G =
1 + fL

2
(19)

when taking into account the fraction fL of the
upper-class income on top of the exponential distri-
bution [26]. The values of G deduced from the IRS
data are shown by the open circles in the inset of
Fig. 6, where the crosses show the values calculated
by Eq. (19) starting from 1988. The agreement be-
tween the empirical values of G and the formula (19)
in Fig. 6 demonstrates that the increase in income
inequality starting from the late 1980s comes com-
pletely from the growth of the upper income share
relative to the lower class, whereas income inequal-
ity within the lower class itself remains constant and
exponentially distributed.

Besides the overall increase since 1983, the inset
in Fig. 6 exhibits local maxima corresponding to
bubbles in financial markets. The Gini coefficient
G peaks around 1988 during the bubble in Savings
and Loan, around 2000 in the stock market, around
2007 in subprime mortgages, and past 2012 under
quantitative easing. Thus we confirm that the over-
all income inequality, as measured by the Gini co-
efficient, peaks during bubbles in financial markets.
This behavior corresponds to the “bumpy plateau”
already discussed for Figs. 3, 4, and 5.
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The IRS publication [16] also provides information
on the distribution of taxes paid by the population.
In Fig. 7 we show the Lorenz curves for tax revenue
in 1983 and 2018, along with the Gini coefficient for
taxes in the inset. Because of progressive taxation,
where the recipients of higher income are subject to
higher tax rates, the inequality of tax distribution
in Fig. 7 is higher than in Fig. 6 for income distri-
bution, as also exemplified by the higher tax Gini
coefficient. We observe that the tax revenue became
highly concentrated in the upper class by 2018, be-
cause of the relative decrease in the lower-class in-
come due to the overall increase in income inequal-
ity. As shown in Fig. 7, the upper class, consisting
of only about fp = 4% of population, contributed
the fraction ft = 58%, greater than a half, of the
total tax revenue, as also shown by the top curve in
Fig. 5.

To amplify these observations, we show the in-
come and tax shares of the bottom 50% and the
top 1% of population in Fig. 8, as derived from the
Lorenz curves for income and taxes. From 1983 to
2018, the income share of the lower half of popula-
tion has decreased from about 18% to 12%, whereas
the income share of the top 1% of population has
doubled from about 9% to 21%. At the same time,
the sum of their income shares remained approxi-
mately constant, increasing only slightly from 27%
in 1983 to 33% in 2018. For this reason, the two mid-
dle curves in Fig. 8 look somewhat like mirror images
of each other. Thus, the income share increase of the
top 1% of population mostly came from the income
share decrease of the bottom 50% of population.

During the same years, the tax share of the bot-
tom 50% of population has decreased from about
7% to 3%. In 2018, the total tax contribution of the
lower half of the population is almost negligible, be-
cause their total income share is so low. In contrast,
, the tax share of the top 1% of population has dou-
bled from about 20% to 40%. Thus, the majority of
tax revenue now comes from the top few percent of
population, where most of income is concentrated.

A proposal for increasing taxes on the top 1% of
population and incomes above approximately $500k
is currently debated by the Democratic Party of the
United States [39]. The quantitative characteriza-
tion of the two-class structure of income distribution
presented in our paper could provide useful input
for the formulation of a tax policy. In particular, it
would be reasonable to align tax brackets with the
boundary between the two classes.

IV. CONCLUSION

In this paper, income distribution data for the
USA in 1983–2018 is analyzed in terms of a two-class
decomposition, where the lower class is described by
an exponential function, and the upper class by a
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power law, as inspired by statistical physics. The
quantitative characterization of the two classes pre-
sented here may be useful for the formulation of
a tax policy. We observe a sharp increase of in-
come inequality from the early 1980s to the late
1990s, but slower increase or saturation after 2000.
The inequality pattern after 2000 exhibits a “bumpy
plateau” pattern, with ups and downs related to fi-
nancial bubbles and crashes, but an approximately
constant overall level.

The two-class analysis shows that the growth of
inequality originates primarily from the increasing
share of income (fr or fL) in the upper class, rela-
tive to the lower class. At the same time, relative
inequality within the lower class, encompassing more
than 90% of population, remains constant and expo-
nentially distributed. Moreover, the mean income
T of the lower class and the median income rmed

remain approximately constant over 36 years when
adjusted for inflation, whereas the overall mean in-
come 〈r〉 increases relative to inflation. The growing
divergence between the mean and median incomes
is another manifestation of increasing inequality.

Not only does the upper-class income share fr in-
crease, but the fraction fp of population belonging
to the upper class increases too. In a relative sense,
the upper-class population expands (while still re-
maining a small fraction of only about 4% of the
total population), while the lower-class population
shrinks (while still remaining the overwhelming ma-
jority). This happens because the ratio r∗/T of the
crossover income r∗ separating the two classes to the
mean income of the lower class T has significantly
decreased from 1983 to 2018. Thus, the relative in-

come level threshold for getting into the upper class
has decreased.

These empirical observations prompt a descriptive
interpretation. We speculate that the significant in-
crease in the upper-class population fraction fp, as
well as their income fraction fr, is due to digitiza-
tion of the economy in the last 40 years. There was a
rapid proliferation of personal computers during the
1980s, followed by the spread of the Internet and the
World Wide Web in the 1990s, and then by ubiqui-
tous personal mobile devices and a shift to cloud
computing at the present time. This transformation
enabled the creation and relatively easy scaling-up
of digital platforms for highly non-local business op-
erations. In the past, many business were local. For
example, each town had a few local taxi companies,
several local book stores, video rental stores, etc.
Now they are largely displaced by a small number
of national and global network platforms, such as
Uber and Lyft for riding, Amazon for books ini-
tially and then for all kinds of goods, Netflix for
DVD rentals and video streaming, etc. The founders
and owners of such network platforms become super-
rich, because these platforms serve a huge number
of customers, in contrast to the old-fashioned local
businesses. Thus we speculate that the growth of
the upper class is due to the ongoing transforma-
tion of business network topology from local clusters
to highly connected superclusters and global hubs.
In contrast to the one-to-one interaction exemplified
by Eq. (2), networked businesses are characterized
by the one-to-many interaction topology, resulting
in the power law distribution for the upper class.
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