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Abstract

Wealth surveys tend to underestimate wealth concentration at the top due to the missing rich problem. I propose a new

way of improving the credibility of wealth surveys by making them consistent with tabulated income tax data. This is

possible with the harmonized triannual Household Finance and Consumption Survey (HFCS), which collects data on

both income and wealth. I achieve consis- tency by calibrating survey weights using the income part of HFCS. I apply

the calibration method of Blanchet, Flores, and Morgan (J Econ Inequal 20(1):119- 150, 2022) in a new context and

propose a new, intuitive way to determine the merging point where the calibration starts. I then use the calibrated

weights with HFCS wealth values. Tested on Austria, calibration aligns the survey totals closer to the National Accounts,

with wealth inequality increasing in the second and third survey waves. I also find a strong downward bias in the

Austrian HFCS income distribution. Following the calibration, I test other top tail adjustments: replacing the survey top

tail with a Pareto distribution and combining the data with a magazine rich list.
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the ”missing rich” problem. I propose a new way of improving the credibility of
wealth surveys by making them consistent with tabulated income tax data. This
is possible with the harmonized triannual Household Finance and Consumption
Survey (HFCS), which collects data on both income and wealth. I achieve consis-
tency by calibrating survey weights using the income part of HFCS. I apply the
calibration method of Blanchet, Flores, and Morgan (J Econ Inequal 20(1):119-
150, 2022) in a new context and propose a new, intuitive way to determine the
merging point where the calibration starts. I then use the calibrated weights with
HFCS wealth values. Tested on Austria, calibration aligns the survey totals closer
to the National Accounts, with wealth inequality increasing in the second and
third survey waves. I also find a strong downward bias in the Austrian HFCS
income distribution. Following the calibration, I test other top tail adjustments:
replacing the survey top tail with a Pareto distribution and combining the data
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1 Introduction

Wealth inequality is a challenge for countries worldwide, yet its exact level can only be
estimated. As opposed to income, household wealth is typically not taxed and therefore
not recorded. One way to estimate wealth inequality is by using wealth surveys, but
those suffer from the ”missing rich” problem (Lustig, 2019). Since wealth distribution
is highly skewed to the right, the richest households may not be adequately represented
in the survey. They are less likely to participate (Kennickell, 2019) and even if they
do, they may underreport their true wealth more often or leave sensitive questions
unanswered.

I propose a novel method that increases the credibility of wealth surveys by making
their income distribution consistent with income tax data. This is possible thanks to
the triannual Household Finance and Consumption Survey (HFCS), which covers 23
European countries in its last wave and collects data on both income and wealth. I
achieve consistency by applying the calibration method of Blanchet et al (2022b) to the
income part of the survey. As only survey weights are adjusted, they can then be used
together with the wealth data to estimate wealth inequality. Within the calibration
framework, I propose a new method to determine where the merging should start,
which is based on a visual comparison of survey and tax income distributions.

A large body of literature aims to mitigate the missing rich problem in wealth
surveys (see e.g., Kennickell et al, 2022, for an overview). One stream combines wealth
surveys with external data sources: Vermeulen (2014, 2018) replaces the survey’s top
tail with a Pareto distribution estimated from survey observations combined with the
Forbes World’s Billionaires List (the Pareto distribution may also be estimated using
survey data alone, without the rich list [Eckerstorfer et al, 2016; Hlasny and Verme,
2018]). Subsequent research extends this work by using more detailed national rich lists
(Bach et al, 2019), by scaling up different asset classes to match the National Accounts
totals (Vermeulen, 2016; Waltl, 2022), by exploring different estimators of the Pareto
coefficient (Waltl and Chakraborty, 2022), by using a more flexible Generalized Pareto
distribution (Kennickell, 2021; Disslbacher et al, 2020), or by determining a non-
arbitrary lower bound of the Pareto distribution (Eckerstorfer et al, 2016; Brzeziński
et al, 2020).

However, there is no consensus on the optimal approach. The quality of magazine
rich lists with opaque methodology may be contested, as may be the choice of the
Pareto estimation technique. Results can be sensitive to both these factors (Kennickell
et al, 2022). Perhaps also due to such limitations, the World Inequality Database
prefers the income capitalization method as a starting point for their wealth inequality
estimates (Alvaredo et al, 2021).1

My method improves the representation of high-income households in a wealth
survey, insofar as their income is recorded in the tax statistics. It makes use of a
high-quality external source, income tax data, and does not depend on arbitrary
assumptions. It also results in a data set of identical shape as the original, with only
the weight column changed. Any analysis performed on the original HFCS data can
thus be extended to the calibrated sample without complication. In addition, calibra-
tion has the potential to mitigate the problem that different countries use different (if
any) strategies for oversampling of the rich in HFCS, which hinders their comparabil-
ity. If the oversampling is of high quality and leads to a representative sample at the
top of the income and wealth distributions, the impact of calibration will be minimal.

1The income capitalization method uses more reliable tax data on capital income. It scales each category
up to match the aggregate value of the corresponding asset class in the National Accounts’ household balance
sheet. Assets that do not generate taxable income flows may then be imputed from surveys (e.g., Garbinti
et al, 2021). The income capitalization method requires income tax microdata and assumes a constant rate
of return for each asset class across wealth groups.
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In contrast, a significant effect can be expected if no oversampling strategy whatso-
ever has been implemented. Calibration also preserves the main socio-demographic
characteristics of the survey.

I test the method on Austrian data and find that calibration aligns the survey
totals closer to the official macroeconomic statistics. Top 1 % wealth shares increase
from 26 % to 37 % in 2014 and from 23 % to 27 % in 2017. In 2011, even though
calibration increases the net worth of the top 1 %, the denominator (i.e., total wealth)
increases even more, leading to a slightly negative impact. An oversampling strategy
was employed in the 2011 wave, which led to a smaller discrepancy between the survey
and tax income distributions. At the same time, calibration highlights the issue of
insufficient coverage at the top, where only a few survey observations determine the
top wealth shares. This leads to large standard errors of survey estimates both before
and after calibration. As part of my merging point algorithm, I find a large downward
bias in the Austrian HFCS income distribution, which starts as early as before the 80th

percentile. This bias is much larger than in the EU Statistics on Income and Living
Conditions (EU-SILC) data, which I also show.

After calibration, I combine my adjustment with those in the literature. I replace
the survey top tail with a Pareto distribution and combine the data with a magazine
rich list. The inclusion of the rich list in the Pareto estimation has the largest impact.
The top 1 % share increases to around 40 % in all three years and the impact of survey
weight calibration is negligible. This is because the rich list ”dominates” the objective
function of the Ordinary Least Squares (OLS) Pareto estimator and its quality is
therefore crucial. If the rich list is incorrect, so will be the top shares. Fitting a Pareto
tail using only survey data, without the rich list, produces erratic results. They have
very large standard errors and are sensitive to the choice of the estimation method as
well as the lower bound of the Pareto distribution. Calibration is suitable especially
when the rich list is considered unreliable and when it is desirable to preserve all
properties of the survey dataset for subsequent analysis.

The drawback of the presented wealth survey calibration method is shared with
most existing adjustments: its limited theoretical foundation. It cannot be guaranteed
that ”fixing” the income distribution will also correct the entire bias in the wealth
distribution. In the Austrian context, the ”fixing” relates mainly to households with
high labor and self-employment income, since this income is well captured in the
income tax statistics. The rich with low taxable income or with capital income taxed
at source remain missing even after calibration, just like when applying the income
capitalization method. Standard errors remain high, which can only be mitigated by
increasing the number of surveyed rich households. The proposed method is thus
another exercise in ”the art of the possible” (Sen, 1997). Ideally, a similar exercise
would be incorporated directly into the survey design: high-income households would
be oversampled based on income tax records and their survey weights computed to
ensure their representativeness of the high-income strata. This would not only ensure
consistency of survey and tax income distributions, but also increase the absolute
number of surveyed rich households. An approach along these lines has recently been
applied to the fourth wave of the Italian HFCS (Barcaroli et al, 2021).

In addition to proposing a new method for improving wealth surveys, I make one
contribution to the income calibration framework of Blanchet et al (2022b, hereafter
BFM). I construct a new method to determine the merging point, which is the opti-
mal percentile from which calibration should start. While I share the aim of BFM to
preserve the continuity of the new income density, my approach relies on a (perhaps
more intuitive and informative) graphical comparison of survey and tax income distri-
butions. In the context of the HFCS, such comparison is an interesting external check
of the survey’s quality. In contrast to BFM, my method may also lead to more than
one candidate merging point, giving researchers more flexibility. In a Monte Carlo sim-
ulation, my method performs comparably or better, depending on the specification.
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Moreover, it does not rely on the assumption of a monotonically decreasing survey
to tax density ratio and is not sensitive to the choice of the lower bound from which
the tax data are considered reliable. However, my method is more computationally
demanding and less suitable when the merging point should be above the 99th per-
centile. The latter disadvantage can nevertheless be mitigated by using more granular
income brackets.

The remainder of the paper is organized as follows. Section 2 introduces the data
that I use to apply the method: wealth surveys, income tax data and rich lists. I also
discuss the main income and wealth concepts. The methodological Section 3 describes
the survey weight calibration and the adjustments to the top of the wealth distribution.
In Section 4, I report the results, including those of a Monte Carlo simulation that
evaluates the new merging point algorithm. Section 5 concludes.

2 Data and main concepts

2.1 Wealth surveys

The wealth surveys to be corrected come from the triannual Eurosystem Household
Finance and Consumption Survey (HFCS), which is harmonized and coordinated by
the European Central Bank (ECB). While the first wave in 2010 covered 15 euro area
countries, the fourth wave will include all 19 euro area countries as well as Croatia,
Hungary, Poland, and for the first time also the Czech Republic. Questions regard-
ing assets, liabilities, consumption and savings are collected at the household level,
which is the main unit of analysis. The HFCS also collects data on seven main cate-
gories of income, three at the individual level (wages, pensions and self-employment
income) and four at the household level (real estate income, income from financial
investment [i.e., interest and dividends from publicly traded companies], income from
private business, and other income [which includes capital gains]). Income is recorded
as gross, including taxes and contributions to social insurance paid by employees. The
income tax data have to be carefully matched with these concepts to ensure accu-
rate calibration. For wealth inequality measurement, I use the net wealth concept of
the HFCS: For each household, it is the sum of their real assets (real estate, vehicles,
valuables and self-employment businesses) and financial assets (e.g., deposits, mutual
funds, bonds and shares; excluding public and occupational pension plans) minus its
liabilities.

The main issue with wealth (as well as income) surveys is that they may not capture
well the top of the distribution. Lustig (2019) calls this the ”missing rich problem”,
while BFM refer to the ”non-sampling error”. First and foremost, it has been observed
that when approached by the interviewer, wealthier households are more likely to
refuse to participate (Kennickell, 2019; Kennickell and Woodburn, 1999). One obvious
reason is the opportunity costs: While the median interview length in HFCS countries
is rarely below 40 minutes (in Austria, for example, it is 55 minutes), the reward
is mostly symbolic (for example, the Czech Statistical Office rewards participating
households with commemorative coins with a total face value of approximately 5 euro).
Second, the rich may not answer questions regarding asset classes or income types
they consider sensitive. In this case their value is imputed five times, leading to five
dataset replicates for each HFCS wave. A third source of bias arises if the rich are
more prone to underreport wealth, which may happen especially in the case of offshore
wealth that is strongly concentrated at the top (Alstadsæter et al, 2019). In addition,
surveys may be plagued with ”sampling error” (Blanchet et al, 2022a), meaning that
the number of rich households in the survey is too small to produce accurate results
(as demonstrated, for example, by Eckerstorfer et al, 2016).

To mitigate the missing rich problem, most HFCS countries oversample the
wealthy. The most precise oversampling method would utilize individual data from tax
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registers to determine the ”rich” strata in the population. Alternatively, oversampling
can be based on income in a given geographic area, street address, dwelling charac-
teristics or even electricity consumption. Austria, the country analyzed in this paper,
oversampled Vienna in the first wave, but did not record any oversampling strategy in
waves 2 and 3. Vermeulen (2018) finds a correlation between the oversampling strat-
egy and the number of wealthy respondents in the net sample: ”In practice, successful
oversampling leads to many wealthy households in the sample, all with relatively low
survey weights” (Vermeulen, 2018, p. 362). Consequently, I note that oversampling
reduces the bias of wealth inequality estimates not so much because the richest are
sampled more (this mainly reduces the variance, although small sample bias may also
be an issue [Taleb and Douady, 2015]), but because the rich strata are more accurately
defined and the adjustment of survey weights for non-response can be more specific.

Figure 1 reports two survey statistics that serve as a proxy for survey quality:
the oversampling rate and the (net) sample size relative to the total population. The
oversampling rate is based on the number of survey households in the top 10 % of the
survey wealth distribution. In a simple random sample all weights would be equal,
the number of such households would be 10 % and the oversampling rate 0 %. In
HFCS countries other than Austria the median oversampling rate is 46 % in the third
wave. This means that the top 10 % of the wealth distribution consists of 14.6 %
survey households, indicating the existence of a meaningful oversampling strategy. In
contrast, Austria only records a small and positive oversampling rate in the first survey
wave (when Vienna was oversampled), after which the statistic even turns negative.
The number of survey households that constitutes the top 10 % is only 8.5 % in the
third wave.
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Fig. 1 Oversampling rate and net sample size relative to the population in HFCS. Values for Austria
are compared with the median of the remaining HFCS countries that participated in all three survey
waves. Values are averaged over implicates.

While the oversampling rate indicates a decline in the quality of the Austrian
HFCS, the relative sample size gives the opposite impression. It increases by 23 %
(0.015 p.p.) between the first and second waves, and grows slightly even in the third
wave. One can thus expect lower variance of the inequality measures in the second
and third waves. However, the sample size still remains smaller than the median of
the remaining HFCS countries.
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Calibration must also take into account the potentially different time periods for
which income and wealth data was collected. In the Austrian case, as in most other
countries, the reference period for wealth information was the time of interview. Survey
fieldwork could span a period of two calendar years, in which case I assign wealth
data to the year in which fieldwork predominantly took place. In contrast, data on
income was collected for a preceding calendar year. As a result, the first HFCS wave
in Austria contains income data for 2009 and wealth data for 2011. For the second
wave the income data is for 2013 and wealth data for 2014, and for the third wave
the respective years are 2016 and 2017. To assess the quality of the HFCS income
distribution, I compare it with the EU Statistics on Income and Living Conditions
(EU-SILC) data for the respective reference years.

2.2 Tax data

Data from income tax returns represents the ”true” income distribution in the weight
calibration process. It is not perfect and may be incomplete due to tax evasion, tax
exemptions or withholding of certain taxes at source. For the income types that are
included in the tax returns, this data nonetheless represents the best available infor-
mation about their distribution. Tax data are typically published in a tabulated form:
The population that files tax returns is divided into income brackets, and each bracket
lists information on the number of people and their total or average income. A com-
plete income distribution can be obtained using the Generalized Pareto interpolation
method of Blanchet et al (2022c).

For Austria, tabulated tax data are published annually in the Integrierte Statistik
der Lohn-und Einkommensteuer (Statistics Austria, 2016). However, taxes from cap-
ital investment income, including capital gains, are withheld at source and typically
not recorded in tax returns.2 Based on the documentation, I match tax data with
wages, pensions, self-employment income, real estate income and public transfers in
the survey. As the tax unit in Austria is the individual, I split real estate income and
public transfers in the survey (recorded at the household level) equally between adult
household members aged 20 and over. In addition, tax data are reported net of social
contributions (Jestl and List, 2020), which are part of the gross income concept in the
survey. Following Blanchet et al (2022a), I estimate and deduct social contributions
from survey data where appropriate, based on rates recorded by the OECD.3

2.3 Rich lists

Rich lists provide information about the very top of a country’s wealth distribution.
By suitably combining them with wealth survey data, one can ”anchor” (Vermeulen,
2018) the top of the distribution and estimate the wealth of those ”too poor to be in
the rankings, but too rich to be in the survey” (Blanchet, 2016). Austrian rich lists
are compiled by Trend magazine. They have 100 entries, but an exact wealth estimate
is assigned only to the first 60 of them. I follow Eckerstorfer et al (2016), Appendix
III and adjust the rich list so that each entry represents one household rather than
a family or clan. For example, the top entry in all studied years lists the Piëch and
Porsche families, which Eckerstorfer et al (2016) divide into seven households.

2Exceptions exist for foreign capital income or for realized capital gains offset with realized capital losses
in the same period; however, this is likely to be a small part of total capital gains income.

3For wages, I use rates recorded in the annual OECD Taxing Wages publication, for pensions I use the
OECD Pensions at a Glance publication and for self-employment income the OECD Tax Statistics. In
addition, I set the limit for maximum social security contributions from self-employment (17,793 euro in
2016) as the limit for the total contributions of an individual.
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3 Methodology

The core of the presented method lies in adjusting survey weights to impose consistency
of the survey’s income distribution with the tax data. I follow the reweighting approach
of BFM, but propose a new method to determine the merging point – the percentile
from which consistency is imposed. The new weights are then used with sampled
households’ wealth to estimate top shares.

3.1 Income distribution calibration

3.1.1 The calibration formula

Survey weight calibration, as applied by BFM, consists of several steps. First, the tax
data are divided into many brackets based on fractiles: From 0 to 0.99, from 0.99 to
0.999, from 0.999 to 0.9999 and from 0.9999 to 0.99999. Survey observations are then
matched to these brackets. The tax data usually cover only part of the population, in
which case the lowest bracket starts at a higher percentile than 0 and the left-bounded
interval where the tax data are reliable is referred to as the trustable span. In simple
terms, the goal of calibration is that weights of survey observations that are matched
to a bracket sum up to the tax population size of that bracket. BFM describe it as
a ”histogram approximation”; it is essentially a scaling up (or down) of histogram
bins of survey data to match their tax counterpart. As it is generally not desirable to
approximate the entire tax distribution, only brackets above the predefined merging

point are calibrated. I discuss the choice of the merging point in Section 3.1.2.
After matching survey observations to fractile-based brackets, I merge brackets

where the number of corresponding survey observations is below x. In this case, cal-
ibration would either not be possible at all (if the number of matched observations
is 0) or the weight adjustment would be too large. For similar reasons, brackets are
merged if the ratio of survey to tax frequencies is below 1/y or above y. BFM choose
x = y = 5, which I follow. These parameters reflect a trade-off between calibration
accuracy and survey distortion. The new weights that satisfy the defined conditions
are obtained by solving the linear calibration problem:

min
w1,...wn

n
∑

i=1

(wi − di)
2

di
s.t.

n
∑

i=1

wixi = t, (1)

where di is the original weight and wi the new weight of individual i; n is the
number of surveyed individuals. xi is a k-dimensional vector characterizing individual
i and t is a k-dimensional vector of corresponding population totals from an external
source. For example, assume k is the number of fractile brackets obtained in the
previous step and x1i is a dummy variable denoting whether individual i belongs to
the highest bracket. The condition

∑n

i=1 wix1i = t1 means that the calibrated weights
of individuals in the highest bracket will sum up to the population total from the tax
data, t1. The remaining k − 1 conditions are constructed accordingly.

Thanks to the flexibility of linear calibration, other conditions can be imposed on
the calibrated weights by expanding the vectors xi∀i and t. Like BFM, I preserve
the main socio-demographic characteristics of the survey population: age, gender and
household size distribution, as well as total population size. An infinity of solutions will
generally satisfy these conditions, and Equation 1 is solved by one which minimizes
the χ2 distance between the original and new weights. As long as all the constraints
are neither incompatible nor perfectly collinear, Equation 1 has a closed-form solution
(BFM, equation 5). In addition, no new weight should be lower than 1, which I enforce
with a simple algorithm.4

4If the linear calibration leads to some weights lower than one, I repeat the process but add conditions
that these weights must be equal to one. If the problem remains, meaning that some other observations now
have a weight lower than 1, I correct weights from the first iteration directly by setting them to one and
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One specific problem arises in the presented application: While income is recorded
at the individual level in surveys and in Austrian tax data, wealth is only recorded at
the household level. Original HFCS weights are the same for the household as well as
for each household member, but that will no longer be the case once individual weights
are calibrated to the tax data. One solution would be to use individual members’
average weight as the household weight, but if I then move back from household to
individual weights assuming the same weight for each household member, tax and
survey income distributions will no longer be consistent. Instead, I add m−1 additional
linear constraints for each m-member household so that the difference between each
pair of household members’ weights is equal to zero.

3.1.2 Optimal merging point

The merging point is the fractile from which merging of the survey and tax data
begins. It is, in principle, possible to start the calibration as soon as the tax data
are available. However, as BFM argue, this would unnecessarily distort the survey,
which should be corrected only once the bias at the top starts. BFM propose a new
approach to determine the merging point with the aim of preserving the continuity of
the density function. Their method is based on a theoretical framework and applied
by comparing the ratio of survey and tax densities with the ratio of survey and tax
cumulative distribution functions. They assume that the ratio of survey to tax density
is monotonically decreasing, presumably to avoid multiple solutions to their algorithm.

I propose a new way of choosing the merging point while also aiming to pre-
serve the continuity of the calibrated density function. The starting point is a visual
comparison of tax and survey frequencies at different percentile-based brackets, illus-
trated in Figure 2 using Austrian third-wave HFCS data. As the income intervals
are computed using tax data, the tax frequency is constant and equal to 1 % of the
population. In contrast, survey observations are matched to these brackets and the
frequency may thus be higher than 1 % (if a bracket is overrepresented in the survey)
or lower (if it is underrepresented). In what follows, I work with an adaptive kernel
estimator of the survey density (Cowell and Flachaire, 2015) with a Gaussian kernel
and extended to incorporate survey weights (Buskirk, 1998). I integrate it over each
bracket’s income interval and multiply the integral by the population total, obtaining
a smoother frequency estimate for each bracket.5

I search for the best rather than optimal merging point: I test each percentile and
observe whether the new, calibrated survey distribution can be considered continuous.
The test statistic is the absolute distance between the frequency where merging begins
(equal, by construction, to the tax frequency) and the frequency at the neighboring
bracket which was not calibrated. The latter frequency, however, is not simply equal
to the original survey frequency, but is adjusted so that the population total remains
the same. This adjustment is assumed to be uniform for all brackets below the merging
point.

A straightforward choice for the merging point would be the percentile for which
the test statistic, that is, the distance between the two neighboring frequencies, is
lowest. This is indeed correct if the ratio of survey to tax density is monotonically
decreasing (as assumed by BFM) and the frequencies thus cross only once. However,
if the relationship between the densities is more complex, there may be more merging
points leading to a visually continuous density.

I propose the following algorithm for choosing candidate merging points: Consider
all percentiles for which the test statistic is lower than 3% of the tax frequency – in

adjusting (i.e., slightly decreasing) all other weights to keep the population total constant. BFM instead
use an iterative method described in Singh and Mohl (1996).

5To produce informative results, this integration requires the tax distribution to be reasonably smooth
as well. This will be the case if the tabulated income tax data are interpolated using the Generalized Pareto
interpolation method of Blanchet et al (2022c).
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this case, the new density can be considered visually continuous. Consider also all
percentiles with test statistic lower than 130 % of the minimum value – this condition
guarantees at least one candidate merging point if no percentile satisfies the first
condition. Finally, disregard percentiles where a neighboring percentile has a lower
test statistic – in this case, that neighboring percentile is clearly preferred. If the first
condition does not identify any merging point, it is a warning sign that there might
be an issue with the data.6 The algorithm should always be accompanied by a visual
inspection of tax and survey frequencies, which is informative on its own.

I illustrate the merging point choice in Figure 3, using the same data as in Figure
2. Setting the trustable span to start at the 30th percentile, the algorithm identified
two candidate merging points: percentiles 0.56 and 0.74; both with the test statistic
below 3 % of the tax frequency. In general, all candidate merging points should be
considered. For example, a graphical comparison may reveal uneven oversampling at
the top where the top 2-5 % is overrepresented but the top 2 % underrepresented. In
that case, one may want to correct also the overrepresentation of the top 2-5 %. But
my general recommendation, which I also apply, is to choose the highest candidate
merging point; in the illustrative case this will be percentile 0.74. This corresponds to
the goal of correcting the survey distribution only once the downward bias at the top
starts.

Comparing my optimal merging point method to the algorithm of BFM, I argue
that my method should be considered due to its intuitiveness and simplicity. It avoids
the assumption of a monotonically decreasing survey to tax density ratio and, further-
more, allows for an informative visual comparison of frequencies. It is also more flexible
thanks to the possibility of more candidate merging points. On the other hand, the
method of BFM allows for the merging point to be above the 99th percentile. If the fre-
quency comparison suggests this could be the case, my method can be easily extended
to more granular frequency brackets (e.g., 1/2 or 1/4 of a percent). I describe and
illustrate this extension in Appendix A, where I also note that the BFM merging point
can be sensitive to the choice of the trustable span, which is arguably undesirable.

6For example, concepts in tax and survey data may not be correctly matched. Or tax data may only
cover a fraction of the population (at the top) that is too small. In the latter case, BFM extrapolate the
ratio of survey to tax density for percentiles not covered.
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Fig. 3 Choosing the optimal merging point. 0.56 and 0.74 are two candidate merging points, each
leading to a visually continuous density after calibration. I choose 0.74 as the optimal one as it is the
highest. Same dataset as in Figure 2.

As the aim of the two methods is the same (i.e., preserving the continuity of the
density function), they can lead to similar results. That is also the case with the
Austrian data used to illustrate my method in Figures 2 and 3: My method leads to
a merging point at the 74th percentile, just like the method of BFM. An additional
comparison based on simulated datasets is provided in Section 4.1.

3.1.3 HFCS-specific adjustments

As the HFCS data are provided in five dataset replicates due to the imputation of
missing values, my method must be adjusted to take this into account. Rather than
estimating a potentially different optimal merging point for each replicate, I estimate
one merging point based on the average test statistic of each percentile.7 A further
issue concerns surveyed individuals who are young but exhibit relatively high incomes.
When top wealth or income shares are reported in the literature, the unit of analysis is
usually adult individuals, frequently defined as aged 20 or over (Alvaredo et al, 2021).
However, if a survey records younger high-income individuals, excluding them will not
lead to an accurate comparison of tax and survey distributions (as they likely also
file tax returns). On the other hand, constructing the fractile-based brackets from the
entire population will unnecesarily widen these brackets. I therefore choose to treat
young individuals with income above the threshold of 10,000 euro as adults. This does
not lead to any conceptual issues as I study the inequality of wealth, which is reported
at the household level. However, if one was interested in income inequality estimates
of adult individuals, ”young rich” people should be removed from the adult population
after calibration, as they would be if one had perfect tax microdata.

7Another possibility is to apply the maxi-min criterion (Wald, 1945; Eckerstorfer et al, 2016), which in
this context means choosing the percentile for which the maximum (i.e., worst) test statistic across five
implicates is the lowest.
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3.2 Existing wealth survey adjustments: The Pareto tail

3.2.1 Fitting a Pareto tail

One approach to mitigate the ”missing rich” error is to replace the top of the survey
wealth distribution with a Pareto distribution. Monte Carlo simulations have shown
that this approach can decrease or even eliminate bias caused by the more likely
non-response of the wealthy (Vermeulen, 2018) as well as decrease error resulting
from a small sample size (Eckerstorfer et al, 2016). In brief, the method consists of
setting a wealth threshold, estimating a Pareto coefficient from survey observations
above that threshold (optionally including individuals from a rich list) and replacing
the population these observations represent with a Pareto distribution. For a more
exhaustive overview of wealth survey adjustment methods, see Kennickell et al (2022).

Pareto coefficient α

The Pareto distribution is characterized by the following complementary cumulative
distribution function (ccdf) and density:

P (X > w) =
(wmin

w

)α

(2)

f(w) =

(

αwα
min

wα+1

)

, (3)

where wmin is the threshold at which the Pareto distribution starts and α is the
Pareto coefficient, α > 0. Vermeulen (2018) shows how to extend estimators of the α
parameter from simple random samples to surveys where observations are weighted
and not i.i.d. The maximum likelihood estimator of α that takes into account complex
survey weights can be defined as

α̂MLE =
n− 1

n

[

n
∑

i=1

Ni

N
ln

(

wi

wmin

)

]

−1

, (4)

where n is the number of survey respondents with wealth above threshold wmin, Ni

is the survey weight of respondent i, wi their wealth and N =
∑n

i=1 Ni is the top tail
population to be replaced. Vermeulen (2018) calls this the pseudo-maximum likelihood
estimator. Note that if all weights are equal to 1, the estimator becomes a maximum
likelihood estimator that is minimum-variance unbiased in a simple random sample
and when wmin is known (Rytgaard, 1990). The extension means that observations
that represent more households have a larger impact on the estimate.

The second approach to estimating Pareto coefficient α exploits the property
that a Pareto distributed sample approximately follows a straight line on a log-rank
log-wealth graph. The relationship can be derived by replacing the complementary
cumulative distribution (Equation 2) by its empirical counterpart and manipulating it:

N(wi)

N
≈

(

wmin

wi

)α

(5)

ln

(

N(wi)

N

)

≈ −α ln

(

wi

wmin

)

, (6)

where N(wi) is the population (i.e., the sum of survey respondents’ weights) with
wealth at or above wi.

An estimate of α can be obtained from Equation 6 with a linear regression, but it
will be biased. Intuitively, the source of this bias is that for a continuous distribution

P (X > w) = P (X ≥ w). The empirical ccdf can thus be represented by both N(wi)
N

and N∗(wi)
N

, where N∗(wi) is the population with wealth strictly above wi. Gabaix
and Ibragimov (2011) show that in a simple random sample (i.e., when all weights
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are one and all observations i.i.d), bias can be removed by subtracting 1/2 from an
observation’s rank, which in the present notation corresponds to taking the average of
N(wi)

N
and N∗(wi)

N
. Wildauer and Kapeller (2019) propose to keep this correction also

in the complex survey setting, which I do as well. A similar correction is applied by
Vermeulen (2018), but the difference is that the correction of Wildauer and Kapeller
(2019) allows estimating α without the intercept. This improves the fit of the Pareto
line to the data because the intercept does not enter the estimated Pareto distribution.
I denote this estimator α̂OLS .

Vermeulen (2018) shows in a Monte Carlo simulation that with survey data alone,
the maximum likelihood estimator generally performs better than the OLS estimator:
Its estimates of α tend to be closer to the truth and with a slightly lower variance,
especially in the presence of oversampling. On the other hand, the weighted maximum
likelihood estimator is insensitive to adding a rich list to the survey data, since each
rich list entry has a weight of only 1. Pareto coefficients based on survey data combined
with a rich list are therefore estimated only using α̂OLS .

Wealth threshold wmin

There is a trade-off in setting wmin, the threshold where the Pareto tail starts. By
setting it too low, there is a risk of dealing with observations that are not high enough
to be well approximated by a Pareto distribution. By setting wmin too high, the
sample size is decreased, leading to higher variance of α̂. One way to determine the
threshold is a visual inspection of the data, by observing where the log-rank log-wealth
relationship appears to be linear (e.g., Cowell, 2011a) or where van der Wijk’s law
appears to hold (e.g., Bach et al, 2019).8 Vermeulen (2018) sets three thresholds at
0.5, 1 and 2 million euro and reports results for all three values.

A non-arbitrary method to determine wmin was proposed by Clauset et al (2009)
and applied to HFCS data by Eckerstorfer et al (2016) and Brzeziński et al (2020). It
consists of estimating a Pareto coefficient for many thresholds and selecting the one
where the data provide the best fit to the estimated Pareto distribution. Clauset et al
(2009) choose the Kolgomorov-Smirnov (KS) goodness-of-fit test: The KS test statistic
is the maximum absolute distance between the empirical and estimated cumulative
distribution functions (or, equivalently, the complementary cumulative distribution
functions). The threshold for which the KS statistic is lowest is then chosen as wmin.
Eckerstorfer et al (2016) use a conceptually similar Cramér–von Mises test.

I considered applying the KS statistic to determine wmin for the benchmark results
but found that it fails to identify obvious deviations from a Pareto tail at the very top
of the distribution. I show this in Figure 4 using the first implicate of Austrian 2011
data. The application of the KS method to this dataset leads to a very low optimal
threshold at 275,000 euro, covering the top 25 % of Austrian households. However, a
visual inspection of the log-rank log-wealth relationship reveals a visible break from
the Pareto straight line at around 1.5 million euro (corresponding to the top 4 % of
households). The KS test misses the break due to the graph’s logarithmic scale, which
I illustrate in Figure 4 on the first and fifth largest survey observations. The difference
between the largest observation’s empirical complementary cumulative distribution
function and the one fitted at wmin = 275, 000 is only 0.0027. I compare this with
the value for the fifth largest observation, which is visibly closer to the Pareto line
but has a higher difference between ccdfs of 0.0045. The maximum difference between
the two ccdfs at this threshold, which is the KS statistic, occurs much lower in the
distribution. Therefore, observations at the top would not influence the KS statistic
for the 275,000 threshold even if they were further away from the Pareto line.

8Van der Wijk’s law is a property of the Pareto distribution that average wealth above any wealth
threshold is a constant multiple of that threshold (Cowell, 2011b).
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Due to deviations from the straight line even above 1,500,000 euro, the KS statistic
at this threshold is still larger than at 275,000 euro. This is because the ccdfs for the
KS test are computed only from the top tail population, i.e., the ccdf at the threshold
is always 1. For this reason, Figure 4 is only illustrative; the included values relate to
the difference of ccdfs of the entire population.
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Fig. 4 Estimating the Pareto distribution at different thresholds. 275,000 euro is the optimal thresh-
old according to the Kolgomorov-Smirnov test. The blue and green lines illustrate how the KS statistic
is evaluated for two observations at the top. Because of the logarithmic scale, visual deviations from
the Pareto line at the top are not accounted for sufficiently in the KS test. Data: HFCS, Austria
2011, first implicate, calibrated weights.

I experimented with adjusting the setup of the KS test but it did not produce
reliable results. First, I tried comparing the logarithms of ccdfs in the KS test, which
corresponds more closely the graphical comparison in Figure 4. Second, I compared
ccdfs at the top computed from the entire population rather than just from the top
tail. Each of these adjustments (as well as both in combination) led to implausibly
high estimates of optimal thresholds, always near the top of the range of tested values,
even if only a small number of survey observations were left.

As neither the approach used by Clauset et al (2009) nor any subsequent adjust-
ments produced estimates of the Pareto threshold that would be consistent with the
log-rank log-wealth graph, I resort to setting wmin based on a visual examination of
the distribution. As a result, the benchmark estimates for all three years are based on
a threshold of 1.5 million euro and I also report the sensitivity of results to setting the
threshold at 1 and 2 million euro. Clauset et al (2009) recommend that the number
of observations from which the Pareto distribution is estimated be at least 50, other-
wise the sampling error may be too high. This is satisfied in Austrian data for 2011
and 2017, but not for 2014, with only 39 to 45 observations above the 1.5 million euro
threshold, depending on the implicate. However, given the visual fit to the data, I pro-
ceed with this threshold nonetheless and report results under alternative thresholds
in Appendix C.

Finally, I note that judging the Pareto tail based on its fit to the data may be
problematic in principle. If one believes that the data are biased due to differential
non-response, it is difficult to justify that the best Pareto tail is the one that fits
these biased data. The same argument applies to methods evaluating whether the
Pareto distribution is the right distribution to fit. As I explain in Section 3.2.2, the
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rationale for combining survey data with rich lists is that the latter ”anchors” the
Pareto distribution which would otherwise be biased due to differential non-response
in the former. In the context of Figure 4, there is a possibility that the break from the
Pareto line is due to biased survey data and that the Pareto distribution estimated at
the 275,000 euro threshold would in fact fix the bias rather than create it. However,
as I estimate the Pareto tail using data that have been (at least partially) corrected
by calibration, I consider my approach justified.

3.2.2 Adding rich lists

Estimating the Pareto distribution from the combination of survey data and lists of
wealthiest individuals is conceptually simple: The rich list observations are appended
to the survey with a weight of 1.9 α̂MLE is not a suitable estimator of the Pareto
coefficient because of how it weighs the observations: The rich list entries’ weight
of 1 means that their influence on the estimate is minimal. In contrast, in α̂OLS

survey weights are only accounted for indirectly, in the rank of observations, and each
observation enters the OLS minimization problem with equal relevance. Moreover,
since rich list wealth values are extremely large, they will ”dominate” the objective
function which OLS minimizes (even though they are evaluated as logarithms). I
illustrate this point in Figure 5 on the same Austria 2011 dataset as in Figure 4: The
Pareto line estimated at the 1.5 million euro threshold is now aligned with the Pareto
line estimated at wmin = 275, 000, even though survey observations above 1.5 million
euro are not.

Consequently, the quality of rich lists is fundamental for the reliability of wealth
inequality estimates. If the rich list is incorrect, so will be the wealth inequality
estimates even if there was no bias in the survey data.
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Fig. 5 Estimating the Pareto distribution from survey data combined with a rich list. Once the rich
list is included in the estimation, it becomes the main determinant of the slope of the Pareto line.
Data: HFCS, Austria 2011, first implicate, calibrated weights.

9To preserve the original population size, I also decrease the weight of each survey observation by a small
constant. This has no impact on the results.
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3.2.3 The Pareto population

Once the Pareto distribution at the top is fully characterized (with or without utilizing
the rich list in the estimation), the final question is how to draw the population that it
represents. One can obtain top tail wealth directly, using the expected value times the
population size at the top. When only part of the top tail belongs to the population
of interest (e.g., the top 1 %), conditional expected values may be used. I believe
that this approach is used by Vermeulen (2018) because I obtain identical results for
Austrian first wave data which are also analyzed in his work.

In this paper, I apply a different approach: I construct a new, synthetic survey
population consistent with the Pareto distribution. This approach is used in some
form by Bach et al (2019) and Brzeziński et al (2020). In addition to being intuitive, it
is also less sensitive to extreme values because as the Pareto coefficient tends to one,
the expected value tends to infinity. In general, however, the results achieved using
either of the two methods will be very similar, since resampling is essentially numerical
integration (Dalitz, 2016). I construct a synthetic population which has an empirical
ccdf identical to the Pareto one. Synthetic population’s size follows from the survey: It
is the sum of weights of survey observations with wealth above the Pareto threshold.
When a Kolgomorov-Smirnov goodness-of-fit test is applied to this population, the
resulting statistic is 0, the lowest possible.

As a final step of drawing the Pareto population, I replace observations at the
very top with corresponding values from the rich list when it is used in the Pareto
estimation. This can further prevent implausibly large values at the top but contains
a small complication: The largest non-replaced synthetic household may have higher
wealth than the poorest household on a rich list. The difference is generally not very
large (if this problem is present at all) and I disregard it, implicitly assuming that the
journalists may have omitted some households when compiling the rich list.

3.2.4 Variance estimation

To estimate the sampling error component of variance, replicate bootstrap weights
are provided in the HFCS dataset. The bootstrap procedure involves sampling with
replacement from different population strata and adjusting replicate weights in the
same manner as in the original survey (European Central Bank, 2020). The problem
in the present context is that these weights are not suitable for variance estimation
if I use the new, calibrated weights. There is not enough information to replicate
the bootstrap procedure; mainly it is unknown how to divide survey observations
into population strata. I therefore replicate it only partially, using the same Rao-Wu
rescaled bootstrap (European Central Bank, 2020, Section 7.2) but working with the
entire population as the only stratum and not performing any additional adjustments.
I create 500 new bootstrap weights for each set of weights. For the non-calibrated
weights, I can compare the standard errors of top 1 % share estimates based on the
provided weights with those based on my replication. In all studied years, the difference
is less than 2 % (0.2 percentage points) when the top share is computed using survey
data alone and less than 9 % (1.1 percentage point) when a Pareto tail is fitted using
α̂MLE .

In addition to sampling error, total variance must take into account variance due
to missing values, which are imputed five times. For this, I apply the formula by
European Central Bank (2020, Section 7.3).
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4 Results

4.1 Monte Carlo simulation: The optimal merging point

In Section 3.1.2, I developed a new method to determine the merging point, i.e., the
percentile where the calibration of survey and income tax data starts. I presented a
different framework than BFM but with the same aim of preserving the continuity of
the new, calibrated density function. Because the goal is the same, the two methods
can lead to the same or similar results, as was the case for the illustrative dataset in
Section 3.1.2. Here I present a more systematic comparison using simulated Monte
Carlo data.

The setup of the Monte Carlo simulation largely, but not entirely, follows BFM. A
population of 9 million is obtained by taking the exponent of a draw from standard
normal distribution (which corresponds to a lognormal distribution). In each itera-
tion, 1 % of the population is sampled. The probability of response is 50 % until the
90th percentile and then decreases linearly with rank until nearly reaching 0 %. The
probability of misreporting is 20 % until the 95th percentile and then increases linearly
with rank until almost 100 %. The distribution of misreported income is again lognor-
mal but independent of the true income. In addition, the true income distribution is
recorded in the income tax data and available in an aggregated tabulated form.10

The deviation from the setup of BFM lies in the tax data quality. The tabulated tax
data in my setup are accurate for the entire distribution, while BFM assume accuracy
only from the 90th percentile onward and a downward bias until that point. I discuss
the sensitivity of results to this change later in this Section.

I perform 1,000 iterations of the setup and apply both merging point approaches
to the simulated data. My approach is applied in two variants which differ in handling
situations with more than one candidate merging point. The first variant, denoted
K, is the one I describe in Section 3.1.2 and apply in the empirical part: I determine
candidate merging points, i.e., percentiles for which the test statistic is considered low,
and, if there are more than one, I choose the highest candidate merging point. In the
second variant, denoted Kdirect, I proceed directly with the percentile which has the
lowest test statistic.

Table 1 reports the results. Had the non-response profile of the population been
publicly known, the hypothetical researcher should set the merging point at the 90th

percentile. Such merging point would correct the bias at the top in its entirety while
minimizing the survey distortion below this point. The benchmark method K generally
identifies the merging point closer to the 90th percentile. In 43.5 % of simulations, the
K optimal merging point was between percentiles 0.89 and 0.91, while the estimator
of BFM, denoted BFM, was within this range in 29 % of simulations. On the other
hand, my method located the merging point at percentile 0.92 in two iterations of the
simulation, in which case it did not correct the entire bias.

Table 1 Distribution of optimal merging point estimates.

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 32.1 38.9 29.0 0.0 100
K 15.4 40.9 43.5 0.2 100
K direct 85.9 11.2 2.9 0.0 100

Note: Table 1 reports the share of merging point estimates which fall
within each range. The bias is set to start at percentile 0.9 in the Monte
Carlo simulation.

10Defining the income brackets of the tabulated tax data introduces a degree of arbitrariness into the
simulation. I define reasonably fine brackets of size 0.2 from income values 0 to 2, of size 0.4 from income
values 2 to 6.2, complemented by 5 brackets at the top with lower bounds at income values 7, 8, 10, 12,
and 15.
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The Kdirect method, which directly chooses the percentile with the lowest test
statistic, performed poorly. Intuitively, this is due to the the simulation’s setup in
which there is no differential bias in the survey nor in the tax data below the 90th

percentile. Consequently, the two densities could cross multiple times due to sampling
error in the survey, leading to many candidate merging points. This result highlights
the need to consider all candidate merging points, as discussed in Section 3.1.2.

Figure 6 illustrates the results by plotting different optimal merging point
approaches against each other. The BFM and K methods are visually similar, with
the exception of several cases where the BFM merging point lies around the 15th

percentile. One potential explanation is that the tabulated (and subsequently inter-
polated) income tax data are not accurate at the bottom of the distribution. In any
case, the K method is not sensitive to such an issue. Comparing the K and K direct

methods, it is apparent that the K direct method serves as a lower bound to the K

merging point. This follows from the definition of the two approaches, where K direct

is defined as the candidate merging point with the lowest test statistic, and the K

merging point is the largest candidate merging point.
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Fig. 6 The correlation of optimal merging point approaches. For visualization purposes, only 300
simulations are shown.

Merging point choice only impacts income inequality estimates to a small degree:
The correlation coefficient between the top 1 % shares based on K and BFM merging
points is 0.999. For the Gini coefficient the figure is slightly lower (0.953) because Gini
considers the entire distribution. This merging point irrelevance is due to assumptions
that the tax distribution is accurate everywhere and that the survey is not systemat-
ically biased below the 90th percentile. These assumptions may not hold in real life
and I still consider it desirable to aim for as low a survey distortion as possible, which
in this setup means a merging point at the 90th percentile. Finally, it was already
established by BFM that the estimates themselves are significantly closer to the true
value and with less variance than the original survey estimates.

In this simulation, I assume that the tabulated tax data accurately represent the
entire distribution. BFM instead assume that they are downward biased up until the
top 10 %. Under this assumption, the K and BFM methods perform comparably.
However, I consider this assumption quite extreme because it implies that the unbi-
asedness of survey and tax data overlaps at precisely one point, the 90th percentile.
When the survey and tax data are unbiased over a larger interval, say from the 70th

to the 90th percentile, my method will again tend to estimate the merging point closer
to the optimal value, which is the 90th percentile. Detailed results of Monte Carlo
simulations under these alternative assumptions are provided in Appendix B.
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4.2 Empirical data

4.2.1 Survey and tax income distributions

The merging point approach developed in this paper allows for an intuitive visual
comparison of survey and tax distributions. This is shown in Figure 7, where I also
include the income distribution of the EU-SILC survey. While the main aim of HFCS is
to record the distribution of wealth, EU-SILC is the benchmark EU survey for income.
The comparison of Austrian EU-SILC and HFCS income distributions is nevertheless
striking: EU-SILC fits the tax data quite well (albeit not perfectly as it appears to
overrepresent several percentiles near the top). In contrast, the downward bias in
HFCS is observable as early as before the 80th percentile.
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Fig. 7 A comparison of survey (EU-SILC, HFCS) and tax distributions. Percentile-based brackets
are computed using the HFCS adult population size. Reference years for income and wealth differ in
HFCS. HFCS data are averaged over implicates.

Austria is a country with no recorded oversampling strategy in the second and
third waves and with a basic oversampling of Vienna in the first wave. Indeed, the
first-wave survey appears to have the best fit to the income tax data, although the
EU-SILC distribution remains superior. Another important difference is the sample
size. The HFCS distribution is based on 4,140, 5,074 and 5,223 adult individuals
in the first, second and third waves, respectively. The corresponding sample sizes
in the Austrian EU-SILC data are more than twice as large, between 10,500 and
11,000.11 EU-SILC also takes labor, pension and unemployment income data from
public registers (Heuberger et al, 2013), which eliminates the bias arising from the
untruthful reporting of these variables.

The comparison of survey and tax densities, which is part of my optimal merg-
ing point approach, constitutes an informative external check of HFCS data quality.
The main aim of HFCS is to measure wealth and not income, but if the wealth dis-
tribution is captured correctly (which cannot be checked externally), then the income

11As explained in Section 3.1.3, the sample size referred to in this paragraph consists of individuals aged
20 or over, as well as younger individuals with income over the threshold of 10,000 euro.

18

                            20 / 37



distribution should be as well. Figure 7 strongly suggests that this is not the case with
Austrian HFCS data.

4.2.2 Coverage ratios

Coverage ratios express the aggregate value of a wealth or income concept in a survey
as a percentage of the corresponding total in the official macroeconomic statistics,
the National Accounts. Totals in the National Accounts are obtained by combining
various administrative and other data sources, and are thus perceived to be of higher
quality than totals in the survey. However, the net wealth concept in the HFCS does
not have a highly comparable counterpart in the National Accounts.12 I compute
coverage ratios for Austria using two wealth concepts adopted from EG-LMM (2020).
The narrow financial wealth concept consists of deposits, bonds, listed shares, mutual
funds, minus liabilities. These are assessed by EG-LMM (2020) to have high conceptual
comparability. The adjusted broad wealth concept additionally includes unlisted shares,
dwellings, or the value of self-employment businesses, but the conceptual comparability
between the survey and the National Accounts is lower.

Figure 8 shows coverage ratios in the Austrian HFCS before and after calibration
(without any Pareto adjustment). Calibrating survey weights generally puts the survey
total closer to the National Accounts. The impact of calibration is the smallest in the
first wave, when the coverage ratio of the broad wealth concept increases from 88 %
to 102 %. This suggests that the oversampling of Vienna in the first wave has helped
to achieve a more representative survey sample, at least in terms of total wealth. In
contrast, the largest impact occurs in the second wave, when the calibrated survey
even exceeds its National Accounts counterpart: the coverage ratio of the broad wealth
concept rises from 79 % to 122 %. The difference from the ideal ratio of 100 % thus
remains approximately constant in absolute terms. Calibration increases the coverage
ratio also of the narrow financial wealth concept, although it still remains notably
undercovered. Overall, the results support the claim that calibration can improve the
reliability of wealth surveys.
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Fig. 8 Coverage ratios before and after calibration. Coverage ratios compare the survey totals with
those in the National Accounts. Wealth concepts are adopted from EG-LMM (2020). Values are
averaged over implicates.

12The most problematic components are dwellings and land, parts of non-listed business wealth, and
consumer durables (see e.g. Waltl, 2022, Appendix A).
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4.2.3 New wealth inequality estimates

Figure 9 illustrates the impact of calibration on the wealth distribution, which is the
smallest in the first Austrian survey from 2011, when Vienna was oversampled. In that
first wave, the downward bias of the survey income distribution is the smallest, as
shown in Figure 7 in Section 4.2.1. In addition, there appears to be a weak correlation
between top income holders in the survey (whose weights have been increased) and top
wealth holders in 2011. In contrast, income calibration visibly increases survey weights
of wealthy families in 2014 and 2017, as would be expected given the hypothesised
underrepresentation of the rich. The distribution shifts to the right, meaning that esti-
mated wealth is larger for each rank at the top (for example, 10−3, which corresponds
to a household in the top 0.1 %). Figure 9 also reveals the issue of insufficient coverage
at the top, where only a few survey observations represent the wealthiest households.
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Fig. 9 Wealth distribution (complementary cumulative distribution function) based on original and
calibrated weights. Data: HFCS, average over implicates. Figures for all five implicates are provided
in Appendix D.

The impact of calibration on the Pareto tail estimation is highlighted in Figure 10
using Austrian 2017 data. The Pareto line estimated using calibrated weights is shifted
to the right, implying larger inequality. In addition, the Pareto line for the calibrated
weights starts at a lower rank than for the original weights, even though the wmin

threshold is the same. This is because calibration has increased the population size
above the threshold, meaning that the tail to be replaced is larger. This is encouraging
because if the probability of response starts to decline below the Pareto threshold, the
size of the top tail will originally be underestimated, biasing the results (Westermeier,
2016). When the list of the wealthiest individuals is included, the difference in the
slope of the Pareto tail becomes negligible: the rich list ”dominates” the OLS objective
function, as explained in Section 3.2.2.

Table 2 presents a systematic comparison of the top 1 % wealth share estimates
based on different weights and methods. As reported in the first column, survey weight
calibration increases the top 1 % wealth share from 25.5 % to 36.6 % in 2014 and from
22.8 % to 27.3 % in 2017. In 2011, even though calibration increases the net worth
of the top 1 %, the denominator (i.e., total wealth) increases even more, leading to a
decrease in the top 1 % share from 23.2 % to 21.5 %. All these values, especially the
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Fig. 10 Pareto distribution estimation. Data: HFCS, Austria 2017, average over implicates.

top share in 2014 with calibrated weights, are associated with a high level of uncer-
tainty quantified by the bootstrap standard errors. In general, the precision of survey
estimates depends on survey design: whether the sample size is sufficiently large and
whether the wealthy are among the respondents in adequate numbers. Consequently,
the observed drop in inequality between 2014 and 2017 could be due to measurement
issues. A similar decrease is found in the German HFCS data, with the Deutsche
Bundesbank suggesting such an explanation.13

Fitting a Pareto tail using survey data alone, without the rich list, leads to erratic
results. They are sensitive to the choice of the estimation method and have large
standard errors, likely due to the small number of wealthy households in the Austrian
HFCS survey. As I report in Appendix C, the results are also sensitive to the choice
of the estimation threshold wmin. Using the α̂MLE estimator, the impact of Pareto
tail estimation is visible mainly in 2011 and in 2014 with calibrated weights. In 2014
with original weights and in 2017, the impact is smaller and there is even a slight
decrease in the estimated top 1 % wealth share. The small sensitivity of estimates to
the Pareto tail without a rich list is not unique to Austria, as reported in (Vermeulen,
2018, Table A3).14 Including the rich list in the Pareto estimation confirms what is
apparent in Figure 10: The top 1 % share increases and variance is almost eliminated.
The increase is quite large, even compared to results based on calibrated weights. The
only exception is the year 2014, where the survey with calibrated weights leads to
similar results as the Pareto tail with a rich list. The drop in variance is optimistic but
only to the extent that the rich list can be trusted. As explained in Section 3.2.2, if the
rich list is not reliable, it will bias the results even if the survey data were accurate.

In Table 3, I present calculations of the Gini coefficient, which are broadly in line
with the top 1 % shares. The impact of survey calibration is again positive in 2014 and
2017 and small and negative in 2011. The impact of Pareto fitting does not change
either since it is the same Pareto tail that is being fitted. The Gini coefficient is a

13”In the wave 2017 it appears, in particular, that business assets in the top tail of the distribution were
under-recorded. In addition, fewer very wealthy households participated in the survey compared with the
survey waves in 2010 and 2014” (Deutsche Bundesbank, 2019; Albers et al, 2022).

14For completeness, I list reasons why my Pareto estimates may differ from those in Vermeulen (2018)
even when non-calibrated weights are used and the wmin threshold is the same. First, after estimating the
Pareto tail, I create synthetic households for the top tail rather than working with (conditional) expected
values – see Section 3.2.3. Second, α̂OLS is estimated using a regression without intercept, which provides
a better fit in the log-rank log-wealth graph. Third, due to calibration, I must work with my own bootstrap
weights rather than those provided by HFCS – see Section 3.2.4.
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Table 2 Top 1 % share estimates.

Survey Pareto Pareto Pareto
+ Survey + Survey + Survey

MLE OLS + Rich list

2011, original weights 23.2 32.1 29.2 41.3
(7.3) (18.5) (16.5) (1.3)

2011, calibrated weights 21.5 29.3 26.9 39.6
(7.2) (17.8) (16.2) (0.9)

2014, original weights 25.5 24.1 28.7 39.9
(8.0) (12.8) (15.8) (1.2)

2014, calibrated weights 36.6 47.6 53.8 38.4
(14.9) (29.2) (32.6) (1.3)

2017, original weights 22.8 20.8 23.7 44.0
(5.8) (5.1) (7.1) (0.9)

2017, calibrated weights 27.3 26.4 29.3 43.0
(6.8) (12.0) (12.0) (0.8)

Note: Pareto threshold 1.5 million euro. Bootstrap standard errors in parentheses. Results for dif-
ferent thresholds are provided in Appendix C

more robust measure than the top 1 % share and the differences between methods
are generally lower, as are the standard errors. In Appendix C, I provide the top 1 %
share estimates for different thresholds, namely 1 million euro and 2 million euro. The
sensitivity of Pareto estimates to the threshold choice is quite high, the only exception
again being the inclusion of the rich list.

Table 3 Gini coefficient estimates.

Survey Pareto Pareto Pareto
+ Survey + Survey + Survey

MLE OLS + Rich list

2011, original weights 76.2 78.7 77.7 81.9
(4.0) (6.8) (6.3) (1.9)

2011, calibrated weights 75.0 77.2 76.4 81.0
(4.3) (7.0) (6.6) (1.9)

2014, original weights 73.1 72.6 74.3 78.4
(3.0) (4.7) (5.8) (0.9)

2014, calibrated weights 76.7 80.9 83.2 77.6
(6.0) (11.0) (12.2) (1.2)

2017, original weights 73.0 72.3 73.4 80.6
(2.2) (2.0) (2.7) (0.8)

2017, calibrated weights 74.8 74.7 75.8 80.7
(2.7) (4.6) (4.5) (0.9)

Note: Pareto threshold 1.5 million euro. Bootstrap standard errors in parentheses.

Estimates based on calibrated weights tend to exhibit larger standard errors than
those based on original weights. This is because calibration includes one additional
source of uncertainty: imputed missing values in the income part of the survey. Vari-
ance in the original estimates, on the other hand, is only due to sampling and due to
imputed wealth values. It is a positive sign that standard errors tend to decrease with
each HFCS wave, suggesting that imputed missing values are becoming less of a con-
cern. In Appendix D, I provide the log-rank log-wealth graphs for all five implicates,
in which the only difference is the imputed missing values.
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5 Conclusion

The problem of the missing rich in wealth surveys prevents their use for reliable
wealth inequality estimates. This paper contributes to the existing body of literature
that seeks to improve surveys using external sources and statistical adjustments. I
develop a new approach that makes wealth surveys consistent with income tax data, a
high-quality external source. The method avoids arbitrary assumptions to the extent
possible, preserves the main socio-demographic characteristics and keeps the survey
structure intact.

I apply the new method to three waves of the Austrian Household Finance and
Consumption Survey, combined with the tabulated tax data. Calibration increases
wealth inequality estimates in the second and third waves of the survey: the top 1 %
wealth share rises from 26 % to 37 % in 2014 and from 23 % to 27 % in 2017. The
effect is small and negative in the first wave, where the top 1 % share declines from
23 to 22 %. A potential explanation for this small effect is the existence of an (albeit
basic) oversampling strategy in the first wave, which should reduce the missing rich
problem. In contrast, there was no oversampling strategy recorded in the subsequent
two waves. My merging point algorithm also reveals a strong bias in the Austrian
HFCS income data when compared with the tax distribution and even with another
survey, EU-SILC.

Combining my method with other estimation techniques, I find that fitting a Pareto
tail produces results that are sensitive to the estimation method and the Pareto lower
bound. While including a rich list eliminates these issues, this is because the rich list
overshadows the survey data and ”dominates” the estimation of the Pareto coefficient.
Any errors in the rich list thus have direct consequences for the inequality estimates.

Application of the presented calibration method consists of three main steps. First,
income tax data must be carefully matched with the income concepts in the survey.
This involves considering the definition of the tax unit, the types of income included
in the tax data, or whether taxes or social security contributions have been deducted.
Adjustment may also be made to the tax data themselves, but they should remain
continuous, as will be the case if interpolation is applied to tabulated data. Once the
income concepts are harmonized, the second step is to apply the calibration method
of BFM to the survey’s income distribution. This only changes survey weights, not
the reported income, and makes the income distribution in the survey consistent with
the tax data. I use my own algorithm to determine the optimal merging point from
which calibration should start. This algorithm includes an intuitive visual comparison
of the survey and tax income distributions. Finally, the newly calibrated weights can
be used along with the recorded wealth data to estimate wealth inequality.

The presented method can be useful for researchers who work with surveys to study
the top of the wealth distribution (e.g., Garbinti et al, 2021; Palomino et al, 2022).
In my optimal merging point algorithm, I also propose a visual comparison of survey
and tax income densities that can be utilized in research on how these distributions
differ (e.g., Yonzan et al, 2022; Bartels and Metzing, 2019). A key prerequisite for the
successful application of my method is the availability of reliable income tax data and
the correct matching of this data to income concepts in the survey.
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Appendix A Extension of the merging point
algorithm to more granular frequency
brackets

In some cases, especially when the merging point is presumed to be near the top of the
income distribution, it may be desirable to use narrower frequency brackets than those
based on percentiles. I illustrate such extension using Austrian EU-SILC data. Figure
A1 introduces the dataset. The survey kernel density follows the tax density quite
closely until around the 90th percentile, after which it starts to appear ”bumpy” as
the income intervals underlying each bracket become larger. Although the survey and
tax distributions cross at around the 97th-98th percentile, my optimal merging point
algorithm does not identify any candidate merging points there. This is because while
the algorithm aims to preserve the continuity of the density function, the distribution
was not visually continuous even before the calibration.
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Fig. A1 Tax and survey frequencies. Gaps in the survey kernel distribution suggest more granular
frequency brackets are desirable.

Figure A2 shows how to make the comparison of survey and tax distributions more
informative and suitable for my optimal merging point algorithm. I apply the Gener-
alized Pareto interpolation to the tax data again, creating finer brackets of the size
1/4 of a percent. All the other steps of the merging point method, including the algo-
rithm for choosing candidate merging points, remain the same as in the original setup.
Narrowing the bracket size solves the problem of the survey kernel density’s ”bumpi-
ness”. The merging point algorithm now identifies a candidate merging point at the
98th percentile, more specifically at its first quartile. In contrast, the largest candidate
merging point using the standard bracket size was the 94th percentile, in addition to
the 90th and 75th percentiles. Researchers wishing to calibrate this illustrative dataset
can thus choose between four candidate merging points, all of which lead to a visually
continuous density after calibration.

When the approach of BFM is applied to this dataset, it exhibits sensitivity to
the choice of the trustable span, i.e., the left-bounded interval on which the tax data
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Fig. A2 Comparing tax and survey distributions using more granular frequency brackets. Y-axis
scale in the bottom graph is 4 times lower than in the top graph. Same dataset as in Figure A1. Small
random noise is added to the survey distribution in the bottom graph to ensure confidentiality.

are considered reliable.15 My method does not suffer from this issue (of course, the
trustable span must remain large enough to include the candidate merging point),
which is another reason why it should be considered an alternative to the merging
point algorithm of BFM.

15For example, if the trustable span (ts) starts at percentile 0.4, the optimal merging point (omp) is the
percentile 0.42. If ts starts at 0.5, omp is 0.76; if ts starts at 0.6, omp is 0.97.
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Appendix B Monte Carlo simulation: Alternative
scenarios

In my benchmark simulation in Section 4.1, I have deviated from the setup of BFM by
assuming that the tabulated tax data accurately represent the entire distribution. Here
I report results of two Monte Carlo simulations which assume that the tax data are
biased. These two simulations are conducted using the population size of 1 million due
to computational demands associated with using the benchmark 9 million population.
I report the sensitivity to the population size in the third simulation.

For the first specification, bias is introduced by multiplying each tax bracket by a
coefficient that is 0 until the 50th percentile and then increases linearly with rank until
the 90th percentile, at which it reaches and sustains the value of 1. This is in line with
the simulation in BFM and the results are reported in Table B1. The difference between
the three optimal merging point approaches, BFM, K and K direct, is minimal.

Table B1 Distribution of optimal merging point estimates: Tax

data biased until the 90th percentile

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 0.0 0.0 86.8 13.2 100
K 0.0 0.0 85.5 14.5 100
K direct 0.0 0.0 85.6 14.4 100

Note: Table B1 reports the share of merging point estimates which
fall within each range. This scenario reflects the assumption of BFM
whereby there is a downward bias in the tax data up until the 90th

percentile.

The second setup instead assumes that the bias exists only until the 70th percentile
(the bias is modeled analogously to the previous simulation). Table B2 reports the
results. Once there is a larger interval on which the survey and tax data have no
systematic bias, the results become in line with my benchmark specification: The K

method identifies the merging point near the optimal value, the 90th percentile, more
often than the BFM method. The K direct method again performs the worst.

Table B2 Distribution of optimal merging point estimates: Tax

data biased until the 70th percentile

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 16.9 41.3 37.9 3.9 100
K 6.1 42.2 45.2 6.5 100
K direct 43.3 43.7 11.9 1.1 100

Note: Table B2 reports the share of merging point estimates which fall
within each range. This scenario assumes that the tax data are biased
until the 70th percentile and accurate afterwards.

Finally, I report the sensitivity of results to the population size. The Monte Carlo
simulations in this Appendix are computed using a population of 1 million, which
is much less than the 9 million population in BFM. Population size determines the
gross sample size, which is 1 % of the total. The smaller population was chosen due
to computational demands of my method, which relies on integrating the survey’s
adaptive kernel density over each percentile-based bracket. Using the benchmark setup
(i.e., with unbiased tax data), I run two new simulations with population size of 1
and 2 million, respectively. Results are compared in Table B3. When the population
size is increased, the performance of both methods generally tends to improve, but
the K method remains superior. This suggests that the results are not sensitive to the
population size.
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Table B3 Distribution of optimal merging point estimates:
Changing the population size

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 1 mil. 59.6 26.4 13.5 0.5 100
K 1 mil. 6.0 42.5 45.1 6.4 100
K direct 1 mil. 86.7 10.1 3.2 0.0 100

BFM 2 mil. 52.1 27.1 20.6 0.2 100
K 2 mil. 6.0 39.1 51.1 3.8 100
K direct 2 mil. 88.0 9.5 2.2 0.3 100

BFM 9 mil. 32.1 38.9 29.0 0.0 100
K 9 mil. 15.4 40.9 43.5 0.2 100
K direct 9 mil. 85.9 11.2 2.9 0.0 100

Note: Table B3 reports the share of merging point estimates which fall
within each range. Three scenarios are compared, differing only in the
population size. All simulations assume unbiased tax data.

Appendix C Top 1 % wealth share estimates with
different Pareto thresholds

Table C4 Top 1 % shares with different thresholds, Pareto MLE
estimates.

Survey 1 mil. 1.5 mil. 2 mil.

2011, original weights 23.2 37.9 32.1 30.3
(7.3) (22.3) (18.5) (16.8)

2011, calibrated weights 21.5 39.3 29.3 29.3
(7.2) (24.6) (17.8) (17.4)

2014, original weights 25.5 22.3 24.1 31.2
(8.0) (7.4) (12.8) (23.4)

2014, calibrated weights 36.6 33.5 47.6 64.4
(14.9) (18.8) (29.2) (39.1)

2017, original weights 22.8 21.9 20.8 23.1
(5.8) (4.1) (5.1) (9.2)

2017, calibrated weights 27.3 28.3 26.4 30.1
(6.8) (9.9) (12.0) (17.7)

Note: Bootstrap standard errors in parentheses.
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Table C5 Top 1 % shares with different thresholds, Pareto OLS
estimates.

Survey 1 mil. 1.5 mil. 2 mil.

2011, original weights 23.2 33.3 29.2 27.8
(7.3) (19.8) (16.5) (15.2)

2011, calibrated weights 21.5 32.7 26.9 26.0
(7.2) (21.4) (16.2) (15.7)

2014, original weights 25.5 25.1 28.7 34.7
(8.0) (9.6) (15.8) (23.9)

2014, calibrated weights 36.6 36.8 53.8 66.9
(14.9) (20.6) (32.6) (41.4)

2017, original weights 22.8 23.0 23.7 25.6
(5.8) (5.1) (7.1) (10.7)

2017, calibrated weights 27.3 29.3 29.3 32.6
(6.8) (10.1) (12.0) (16.3)

Note: Bootstrap standard errors in parentheses.

Table C6 Top 1 % shares with different thresholds, OLS + rich
list estimates.

Survey 1 mil. 1.5 mil. 2 mil.

2011, original weights 23.2 41.2 41.3 40.8
(7.3) (1.0) (1.3) (1.9)

2011, calibrated weights 21.5 39.3 39.6 38.9
(7.2) (0.8) (0.9) (1.6)

2014, original weights 25.5 41.5 39.9 38.0
(8.0) (0.6) (1.2) (2.3)

2014, calibrated weights 36.6 39.5 38.4 37.6
(14.9) (0.7) (1.3) (2.2)

2017, original weights 22.8 44.8 44 41.8
(5.8) (0.6) (0.9) (1.5)

2017, calibrated weights 27.3 43.1 43 41.9
(6.8) (0.6) (0.8) (1.5)

Note: Bootstrap standard errors in parentheses.
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Appendix D Differences between implicates
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Fig. D3 Wealth distribution (complementary cumulative distribution function) based on original
and calibrated weights. Data: HFCS, First wave.
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Fig. D4 Wealth distribution (complementary cumulative distribution function) based on original
and calibrated weights. Data: HFCS, Second wave.
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Fig. D5 Wealth distribution (complementary cumulative distribution function) based on original
and calibrated weights. Data: HFCS, Third wave.
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