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Abstract 

This paper explores how the inheritances received influence the distribution of wealth (financial, 

non-financial and total) in four developed −but substantially different− countries: the United 

States, Canada, Italy and Spain. Following the inequality of opportunity literature, we first group 

individuals into types based on the inheritances received. Then, we estimate the between-types 

wealth inequality to approximate the part of overall wealth inequality explained by inheritances. 

After showing that traditional approaches lead to non-robust and arbitrary results, we apply 

Machine Learning methods to overcome this limitation. Among the available computing methods, 

we observe that the random forests is the most precise algorithm. By using this technique, we find 

that inheritances explain more than 65% of wealth inequality (Gini coefficient) in the US and 

Spain, and more than 40% in Italy and Canada. Finally, for the US and Italy, given the availability 

of parental education, we also include this circumstance in the analysis and study its interaction 

with inheritances. It is observed that the effect of inheritances is more prominent at the middle of 

the wealth distribution, while parental education is more important for the asset-poor. 

JEL Codes: C60, D31, D63, G51. 
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1. Introduction 

Wealth inequality is on the rise. Since the publication of Capital in the Twenty-First Century 

(Piketty, 2014), the literature has followed different approaches to explain the causes of this 

persisting trend. For instance, Lusardi et al. (2017) find that those with better financial knowledge 

extract higher profits from their investments. Others, such as Alstadsaeter et al. (2017), claim that 

wealth evasion through tax havens rises the net return to capital of the very rich, allowing them 

to accumulate more wealth. Meanwhile, Zucman (2019) blames the fall in progressive taxation, 

which has hindered the effect of distributional policies. Surprisingly, there is still a large dissent 

on the role that intergenerational wealth transmission through inheritances plays on shaping the 

wealth distribution. This paper contributes to the matter by employing Machine Learning (ML) 

techniques that enlighten how the bequests received affect the individual opportunities to 

accumulate wealth.  

A wide stream of the literature has found that inheritances are to be blamed for a relevant part of 

wealth inequality. Piketty (2011), Piketty and Zucman (2015) and Alvaredo et al. (2017) provide 

empirical evidence on the rising shares of wealth accumulated at the top of the distribution, where 

inheritances are the vehicle driven by the very rich to channel wealth through generations. In the 

same vein, Fessler and Schurz (2018) claim that intergenerational wealth transfers are the largest 

contributors to net wealth inequality. Other authors, such as De Nardi and Yang (2016), Adermon 

et al. (2018), Palomino et al. (2020) and Nolan et al (2020) find similar results after applying 

different econometric techniques and agent-based models.  

However, other empirical evidence puts into question the reliability of these results. Wolff and 

Gittleman (2014) for the United States, Crawford and Hood (2016) and Karagiannaki (2017) for 

the United Kingdom, and Elinder et al. (2018) for Sweden coincide on the equalizing net effect 

that inheritances have upon the wealth distribution. They argue that, as inheritances are more 

equally distributed than wealth, its intergenerational transmission actually provokes a net decrease 

in overall inequality. In the same vein, Boserup et al. (2016) find that, despite inheritances 

increase absolute inequality, this effect is not reflected in relative inequality measures calculated 

at the top of the distribution.  

Given this lack of consensus, we propose a different approach based on the Inequality of 

Opportunity literature. Following Roemer (1993) and Van de Gaer (1993) any economic outcome 

such as wealth, income or health status is the result of the interaction between two sets of factors. 

On the one hand, exogenous factors beyond the individuals’ control, such as sex, parental 

education, race or the inheritances received. They are called circumstances because they are out 

of individuals’ responsibility. By considering different combinations of these factors we can 

divide the population into a set of mutually exclusive and exhaustive groups called types. On the 

other hand, the remaining factors are considered to be endogenous, as they are within the 
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individuals’ set of choices. It is the case, for instance, of the number of hours worked or the 

nutritional habits. They are called efforts.  

Both sets of factors decompose overall inequality in two terms: inequality of opportunity (IOp, 

the component attributed to circumstances) and inequality of effort (IE). The first component is 

found to be undesirable for social justice matters, as this “unfair” inequality cannot be palliated 

by individual choices (Rawls, 1971; Sen, 1980). In addition, the literature has found IOp to have 

a negative effect on economic growth, because hindering individual opportunities for education 

and work causes a misallocation of talent (Marrero and Rodríguez, 2013 and 2019; Bradbury and 

Triest, 2016; Carranza, 2020).   

In this paper we consider inheritances and gifts to be circumstances whose transmission is 

independent from the behavior of the recipient.2 As such, this variable can be used to divide the 

population into types, allowing us to estimate IOp as the between-type component of overall 

wealth inequality. The idea behind this proposal is that the IOp component measures the influence 

of circumstances (in our case, bequests) on the final distribution of wealth. Thus, if overall wealth 

inequality was independent from the inheritances and gifts received, there should be no dispersion 

between types. Otherwise, bequests would have a role on the shape of the observed distribution 

of wealth.  

Wealth is, by definition, a stock variable accumulated through life, so it is affected by life-cycle 

and behavioral dynamics. Clearly, analyzing how inheritances affect consumption, the saving 

paths or capitalization would require behavioral and agent-based models (see De Nardi, 2015). 

However, in this paper, these effects are already included in the final wealth measures under 

consideration, because wealth surveyed at a certain point of life reflects all past decisions and 

exogenous dynamics. Thus, once we control for sex and age, the estimated types allow us to 

measure the aggregate impact of inheritances on the wealth distribution. 

Bearing all this in mind, and before the estimation of the between-type inequality component is 

conducted, an important issue must be solved. The definition of types, essential to calculate the 

between-type inequality component, is straightforward and easy for categorical circumstances 

such as parental education or sex. However, being the value of the inheritances received a non-

linear continuous circumstance, generating types from this variable is difficult. Indeed, our first 

result shows that traditional empirical approaches to measure IOp, such as the ex-ante parametric 

method (Ferreira and Guignoux, 2011), lead to arbitrary and non-robust IOp estimates when ad 

hoc discretizations of inheritances are applied. 

To solve this limitation and generate more objective estimates, we propose the use of Machine 

Learning (ML) algorithms. These computing techniques extract statistical information from the 

                                                            
2 Descendants’ behavior might have an influence on the bequests received, but this case is probably 

impossible to discern with the data available, so we assume that this case is negligible. 
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data, such as their distribution or correlation between variables, limiting the biases introduced by 

the researcher. To date, ML has been used in the IOp framework to select the relevant 

circumstances among a wide range of candidates (Brunori et al. 2019, Brunori et al. 2020, Brunori 

and Neidhöfer, 2020).3 Here, we propose three ML techniques to discretize a (non-linear) 

continuous circumstance, like the inheritances received, generating statistically meaningful types. 

First, we present ChiMerge (Kerber, 1992), a computing technique that is exclusively based on 

the distribution of the variable under consideration (inheritances and gifts received). Second, we 

employ Conditional Inference Trees (Hothorn et al. 2006) which also consider the distribution of 

the outcome variable (wealth), and Random Forests (Strobl et al. 2007) as the bootstrapped 

version of the tree algorithms.  

When comparing these methods, we find that random forests provide the most robust and 

objective measures of wealth IOp. This algorithm performs a non-arbitrary discretization based 

on the relationship between the wealth and the inheritances distributions, also controlling for the 

non linearities inherent to the wealth data. By means of these methods, we analyze how the 

inheritances received condition the opportunities to accumulate total, financial and non-financial 

wealth.  

Our proposal is applied to the United States (US), Canada, Italy and Spain. The data comes from 

the Luxembourg Wealth Survey (LWS), which is one of the most comprehensive databases 

containing information on wealth. In the wealth inequality context, these four developed 

economies present some differences on welfare and fiscal systems that justify their study. On the 

one hand, both south European economies have highly developed welfare state systems based on 

the public provision of services and social security schemes. However, they differ on the fiscal 

treatment to inheritances and wealth. Italy has a national tax (Imposta sulle Successioni e 

Donazioni) ranging between 4% and 8% of the total amount inherited, and a wealth tax on 

different assets held out of the country (Imposta sul valore degli immobile situati all’estero, and 

Imposta sul valore delle Attivita Finanziarie detenute all’estero), while Spain has a heterogeneous 

tax on inheritances (Impuesto de Sucesiones y Donaciones) whose precise application depends on 

the regional administrations, and also an specific wealth tax (Impuesto sobre el Patrimonio). On 

the other hand, both North American economies, Canada and the US, present important 

differences. In the US, the public sector does not guarantee free access neither to sanitation nor 

tertiary education, while the private initiative is prevalent in pension schemes. Interestingly, their 

inheritances tax scheme mixes the Italian and the Spanish models, with a national tax modified 

through conditional deductions with some States also implementing their own taxes and benefits 

schemes (Estate Tax). Meanwhile, Canada has a welfare state system more similar to the 

                                                            
3 A precedent of the definition of types based on statistical information can be found in Li Donni et al. 

(2015). 
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European countries, but has not a specific inheritance tax. None of these two countries has an 

specific wealth tax. 

Because the literature has shown that parental education is a circumstance highly related to wealth 

inequality (Adermon et al., 2018; Palomino et al., 2020), we also consider this variable in addition 

to inheritances. Despite data limitations restrict our analysis for parental education to Italy and 

the US, the differences across these two countries make the analysis of particular interest. While 

the educational system, including tertiary education, is free in Italy, access to university in the US 

is often expensive, being unfordable for many individuals. Thus, the access to higher levels of 

education might probably be strongly dependent on the opportunities defined by previous 

generations. 

We find inheritances to explain around 68% of overall wealth inequality (measured by the Gini 

coefficient) in the US and Spain, with ratios reaching 74.96% (US) or 65.15% (Spain) of financial 

wealth and 66.57% (US) or 76.43% (Spain) of non-financial wealth. Lower rates are found in 

Canada and Italy, where around 40% of overall wealth inequality is explained by this 

circumstance, rising to 56.98% (Canada) and 43.94% (Italy) in financial wealth, and descending 

to 36.57% (Canada) or 38.28% (Italy) in non-financial wealth. Thus, the intergenerational 

transmission of wealth is found to severely condition the overall wealth distribution. In particular, 

we find that financial wealth inequality is more affected by inheritances than non-financial wealth, 

maybe because they act as security nets that allow individuals to face riskier investments. 

Including the parental education in the analysis provides a deeper insight. The share of wealth 

inequality explained by inheritances and parental education does not vary in the US, but in Italy 

the ratios rise to 52.44% for total wealth, 61.63% for financial wealth and 51.51% for non-

financial wealth. This may suggest that the effect of both circumstances can be partially 

overlapped, particularly in the US. To disentangle both effects, we perform a Shapley value 

decomposition (Sastre and Trannoy, 2002; Shorrocks, 2013). Around 20% of any wealth 

distribution in the US can be actually explained by parental education, being the rest attributed to 

inheritances. For Italy, more than 30% of financial wealth inequality is explained by parental 

education, descending the share actually attributed to inheritances to around 25%. In this country, 

total wealth inequality and non-financial wealth inequality are evenly explained by both 

circumstances.  

Finally, we explore whether the effect of the inheritances received is homogeneous along the 

wealth distribution. To do so, we modify the relative weight given to the observations at different 

parts of that distribution by using the Single Parameter Gini index (Donaldson and Weymark, 

1980; Yitzhaki, 1983) for several parameters of inequality aversion. We find that, in the four 

countries analyzed, the inheritances received are more important for the middle and upper tail 

individuals, fostering their opportunities to accumulate higher levels of wealth. The asset poor 
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receive small inheritances, so there are other factors determining inequalities across them. In 

particular, we show that parental education for the US and Italy is highly important for the 

opportunities of people at the bottom of the wealth distribution.  

The article is structured as follows. Section 2 introduces the wealth IOp theoretical framework 

and the ML algorithms employed in the paper. Section 3 describes the LWS database and the 

adjustments applied to the data. In Section 4 we present the main results for inheritances and 

parental education while in Section 5 we explore the effect of these two circumstances along the 

wealth distribution. Finally, Section 6 highlights our main conclusions. 

 

2. IOp measurement and Machine Learnings techniques 

In this section we first present the IOp framework to measure the influence of inheritances on 

wealth inequality, and then justify and explain the implementation of Machine Learning 

techniques to overcome some limitations of traditional IOp approaches. 

 

2.1. The inequality of opportunity approach 

Consider a population of discrete individuals indexed by 𝑖 ∈ {1, … , 𝑁} and a variable w 

characterizing our economic outcome of interest, wealth, whose distribution is a function of the 

set of circumstances faced by the individual, Ci, and the amount of effort exerted, ei, such that 

𝑤𝑖 = 𝑓(𝐶𝑖 , 𝑒𝑖). Circumstances are defined as a finite discrete vector of 𝐽 elements and are assumed 

to be exogenous because they cannot be affected by individual’s choices. Simultaneously, we 

consider effort to be a continuous variable that depends on both, personal decisions and 

circumstances, such that individual wealth can be rewritten as 𝑤𝑖 = 𝑓[𝐶𝑖 , 𝑒𝑖(𝐶𝑖)]. 

Then, the population is divided into 𝑀 exhaustive and mutually exclusive groups, called types, 

∏ = {𝑇1, … , 𝑇𝑀}, such that all individuals belonging to the same type 𝑇𝑚 share the same 

circumstances: 𝑇1 ∪ 𝑇2 ∪ … ∪ 𝑇𝑀 = {1, … , 𝑁}, 𝑇𝑟 ∩ 𝑇𝑠 = ∅, ∀𝑟, 𝑠, and 𝐶𝑖 = 𝐶𝑗 , ∀𝑖, 𝑗|𝑖, 𝑗 ∈

𝑇𝑚, ∀𝑚. 

Because wealth is a continuous variable, a simple way to assess the effect of circumstances (in 

our case, the inheritances received) on overall wealth inequality is to compare the density function 

of w across types. Then, circumstances would have no role on the final distribution of wealth if: 

∫ 𝑤| 𝑇𝑚𝑑𝑇𝑚
= ∫ 𝑤| 𝑇𝑠𝑑𝑇𝑠

, ∀𝑚, 𝑠|𝑇𝑚 ∈ Π, 𝑇𝑠  ∈ Π,                             (1) 

where subscripts m and s indicate two different types.  

Individual circumstances are irrelevant to explain wealth inequality if the distribution of wealth 

across types is the same. In this case the individual’s outcome is independent of her circumstances. 

Otherwise, individual non-responsibility factors are important and contribute to shape the final 



7 
 

distribution of wealth. The problem with this approach is that, in general, comparisons between 

distributions do not fulfill the stochastic dominance property (Atkinson, 1970), because 

distributions can be significantly different and yet cross each other (so no comparison can be 

made). To avoid this problem and break potential ties, a common alternative is to focus on a 

particular moment, typically the mean. Following the ex-ante approach in Van de Gaer (1993) 

circumstances have no role on the final distribution of wealth if:  

𝑤̅𝑠 = 𝑤̅𝑚,      ∀𝑚, 𝑠|𝑇𝑚, 𝑇𝑠 ∈ Π,                                            (2) 

where the mean wealth in a type, 𝑤̅, is the expected wealth value that an individual can get 

conditioned on her type.4 The ex-ante method requires the calculation of a counterfactual 

smoothed distribution 𝑤̂ assigning to each observation the mean wealth of her type. Applying an 

inequality measure 𝐼(·) to this counterfactual distribution gives us the part of overall inequality 

attributed to the set of observed circumstances (absolute IOp). Dividing this measure over total 

inequality reveals the share of overall inequality explained by the set of circumstances (relative 

IOp): 

𝐼𝑂𝑝 𝐴𝑏𝑠 = 𝐼({𝑤̂})                                                                (3) 

𝐼𝑂𝑝 𝑅𝑒𝑙 =
𝐼({𝑤̂})

𝐼({𝑤})
                                                                (4) 

For our analysis we use the Gini coefficient but, for robustness, we also employ the Mean 

Logarithmic Deviation (MLD). The IOp literature has generally leaned towards the MLD, mainly 

because it is the only additively and path independent decomposable inequality index (Foster and 

Shneyerov, 2000). However, we base our main analysis on the Gini coefficient because it is the 

most extended measure on wealth inequality (Cowell and Van Kerm, 2015), so our results can 

easily be compared with the related literature. Moreover, the Gini index has recently been applied 

in the IOp framework by Lefranc et al. (2008), Brunori et al. (2019) and Cabrera et al. (2020) 

among others, highlighting some of their advantages. First, IOp indices measure inequality based 

on the distribution of means across types (equation (2)), so extreme values are by construction 

smoothed. However, the MLD is more sensitive to extreme values than the Gini coefficient, so 

the transformation of the original distribution into the smoothed distribution has a larger effect on 

the former than in the latter inequality index. Consequently, estimates based on the MLD are 

likely to under-estimate wealth IOp. Second, as we want to calculate the size of IOp caused by 

inheritances, we are not particularly interested in decomposing overall inequality into IOp and IE, 

so the Gini index being not additively decomposable is not an issue. 

                                                            
4 A different method, the ex-post approach, compares the average outcome across types for individuals who 

have exerted the same degree of effort, i.e., who belong to the same quantile of the type distribution. We 

have not followed this approach because it requires a strong assumption on the definition of effort. 

Moreover, as explained in Brunori et al (2020), the adaptation of some ML techniques to the ex-ante method 

is straightforward, while that is not the case for the ex-post approach. 
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The main problem we face to analyze the effect of inheritances on the wealth distribution 

−through the IOp framework− lies on the construction of the smoothed distribution 𝑤̂. The 

literature provides several ex-ante methods, but for comparability reasons we lean towards the 

standard method, so we consider the parametric approach proposed by Ferreira and Guignoux 

(2011) (see also Bourguignon et al., 2007).5 This method exploits the reduced form of a loglinear 

OLS regression in which the natural logarithm of the outcome variable is regressed against the 

vector of available circumstances Ci: 

ln(𝑤𝑖) = 𝛼 + 𝜑𝐶𝑖 + 𝜀𝑖 .                                                           (5) 

Assuming that the estimates of 𝜑 are satisfactory, we obtain the smoothed vector 𝑤̂ by fitting the 

parameters of equation (5): 

𝑤̅𝑖 = exp[𝛼̂ + 𝜑̂𝐶𝑖]                                                              (6) 

Notice that when the set of circumstances is defined with discrete or categorical variables, the 

creation of types is straightforward. But when one circumstance is continuous and highly non-

linear, such as the value of the inheritances received (see below), we face a problem. Including 

the circumstance without any previous discretization would produce one type for each possible 

value of that variable, potentially leading to an over fitted regression and producing biased 

estimates (Brunori et al. 2019). On the contrary, discretizing that variable under the ad-hoc criteria 

of the researcher might lead to non-robust results. For instance, taking the quintiles of the 

distribution of inheritances as cutting points can generate rather different smoothed vectors 𝑤̂, as 

non-linearities at the top tail might affect differently the imputed mean values. This can lead to 

quite different between-type inequality measures, impeding accurate comparisons across 

countries or precise policy assessments. To palliate this problem, we propose the use of Machine 

Learning techniques that base the discretization of the continuous circumstance on the statistical 

properties of the wealth distribution.  

 

2.2. Machine Learning and Inequality of Opportunity 

We call Machine Learning to the stream of computing techniques that take information from the 

data, identify patterns and make statistical decisions with the smallest possible human 

intervention. The main idea of these algorithms lies on the motto “let the data talk”, avoiding 

potential biases introduced by researchers such as the selection of variables, the level of 

significance to obtain statistical inference or the way in which we discretize continuous variables. 

Indeed, the discretization problem previously described is not exclusive of the IOp literature, as 

it is highlighted by the use of ML techniques in many divergent fields, such as biomedicine 

                                                            
5 Nevertheless, we have replicated the whole analysis for the non-parametric approach proposed by Checchi 

and Peragine (2010), and all conclusions are similar. 
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(Lutsgarten et al., 2011), genetics (Gallo et al., 2016), the stock market dynamics (Lalithendra 

and Prasad, 2018) and the price of gold (Banerjee et al., 2019).  

To the best of our knowledge, this paper is the first attempt to employ Machine Learning methods 

to correct the discretization problems in the literature on wealth inequality. For this reason, we 

believe it can be useful to present and compare unsupervised and supervised techniques of ML 

discretizing algorithms (Varian, 2014; Mullainathan and Spiess, 2017; Athey and Imbens, 2019).  

On the one hand, unsupervised algorithms consider information streaming only from the variable 

to be discretized, in our case, the value of the inheritances received. For this task, we employ Chi-

based methods, defined as merging processes that start with a pre-defined partition (in our case, 

each value of the continuous variable), removing the cutting points by joining the adjacent 

intervals until some statistical criteria is fulfilled. On the other hand, supervised algorithms take 

into account the relation of the variable to be discretized with the distribution of the dependent 

(in our case, wealth) and other independent variables (for instance, parental education). In this 

context, we use trees and forests as splitting algorithms that subsequently divide the continuous 

variables into discrete categories. Being trees and forests supervised merging methods, they 

present a difference that justifies their separate implementation. While trees are run just once over 

the data, forests can be thought as their bootstrapped version which corrects for potential 

inconsistencies attributed to the data structure. As the underlying mechanism of forests cannot be 

explained without understanding that of trees, we present both. 

 

Chi-based Algorithms 

The ChiMerge algorithm was first proposed in Kerber (1992), and its main idea consists on testing 

whether each interval of the objective continuous variable, also called class, is independent from 

its adjacent intervals. If both intervals are statistically dependent, they are merged; if they are 

shown to be statistically independent, the algorithm considers that they belong to different 

categories, maintaining their separation and discretizing the continuous variable.  

The merging process is effectuated by repeating two consecutive steps. First, the algorithm 

computes the Chi-squared independence test, getting a 𝜒2 value for each pair of adjacent intervals 

(see the Technical Appendix). Second, if the null hypothesis of dependence is not rejected, this 

algorithm merges the pair of adjacent intervals with the lowest 𝜒2 value. The algorithm ends when 

the null hypothesis of dependence is rejected for a given level of significance alpha, discretizing 

the continuous variable by setting the correspondent class as cut point.  After this process, we 

define the statistically-based types and apply the ex-ante parametric method previously described, 

now with a partition based on the distribution of the independent variable. 

For robustness, we have also checked that our results do not vary after employing the Chi2 

algorithm, usually considered to be a robust version of the ChiMerge method (Liu and Setiono, 
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1995). This technique tests the dependence of the intervals with a remarkably low level of 

significance (alpha = 0.5). If the null hypothesis of dependence cannot be rejected at that alpha, 

the algorithm repeats the first step, descending the level of significance by 1%, to alpha=0.49. 

This process is repeated until some selected alpha (0.01) rejects the null hypothesis.  

 

Trees 

Tree algorithms divide a dataset on exhaustive and mutually exclusive groups of observations, 

based on sequential and hierarchical decisions given some statistical criteria. Once all partitions 

are performed, the algorithm imputes to each observation the average value of the objective 

dependent variable considered, conditioned to the group it belongs. Its application to the IOp 

framework is straightforward, as these methods directly generate types based on the distribution 

of the dependent variable across the observed circumstances and, then, assign to each individual 

the mean value of the dependent variable conditioned on her type.  

From the family of tree-based methods we select those based on conditional inference algorithms, 

which have the advantage of not being biased towards splitting only continuous variables, as other 

tree-based techniques (Hothorn et al. 2006). Furthermore, they have been used in the IOp 

framework to select the relevant set of circumstances (Brunori et al. 2019; Brunori et al. 2020; 

Brunori and Neidhöfer, 2020). 

 The functioning of the algorithm can be explained in three consecutive steps: 

1. First, it performs a 𝑡-test on the global null hypothesis of independence for each 

circumstance considered, at some alpha-value of significance. 

𝐻0
𝐶 = 𝐷(𝑤|𝐶) = 𝐷(𝑤)                                                     (7) 

For each circumstance, the algorithm provides a 𝑝-statistic, which needs to be adjusted to avoid 

type I errors. In this paper we apply the Bonferroni correction, quite common for multiple 

hypothesis testing: 6   

𝑝𝑎𝑑𝑗 = 1 − (1 − 𝑝)𝑝                                                           (8) 

The algorithm selects the circumstance with the lowest 𝑝-adjusted value, i.e., the one with the 

strongest association to the dependent variable 𝑤. If 𝑝𝑎𝑑𝑗 > 𝛼, the algorithm stops. Otherwise, it 

continues by setting the selected circumstance as a splitting variable.  

 

2. Once we know that a circumstance is a splitting variable, conditional inference trees 

decide the cutting points. Note that when the variable is binary this step is trivial, as there is 

                                                            
6 Apart from the Bonferroni correction, for robustness, we also followed Genz (1992) and checked our 

results with a Montecarlo adjustment with 10000 iterations.  
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only one way to be split. But, when the variable is continuous, the algorithm needs to test all 

potential partitions. Thus, consider: 

 

𝑤𝑧 = {𝑤𝑖: 𝐶𝑖 < 𝑥}                                                                (9) 

𝑤−𝑧 = {𝑤𝑖: 𝐶𝑖 ≥ 𝑥},                                                            (10) 

 

where 𝑥 defines each possible value in the continuous variable, and 𝑧 the resulting 

subsamples. For every 𝑥, tree algorithms test the discrepancy between both subsamples, 

applying a difference-in-means 𝑡-test and obtaining an associated 𝑝-value. Finally, the 

algorithm selects the splitting point delivered by the smallest 𝑝-value.  

 

3. The whole process is repeated for each resulting subsample until the null hypothesis of 

independence cannot be rejected.7  

The main shortcoming of tree-based algorithms is that their results are highly dependent on 

several factors. One of them is the selected alpha that rejects or accepts the null hypothesis defined 

in equation (7). To reduce this problem and following the spirit of ML techniques, we use an 

endogenously tuned alpha, obtained by the application of K-fold Cross-Validation (see the 

Technical Appendix). This endogenous alpha eliminates the external judgement of the researcher 

on setting a particular level of critical significance. Nevertheless, and following the canonical 

stream in econometrics, we test the robustness of our results by also presenting those for 0.05 and 

0.01. 

Another relevant factor for these algorithms is the data structure, i.e., the number of variables 

included, their correlation or their distribution (Friedman et al., 2009). Imagine the case of two 

highly correlated circumstances, where one delivers a slightly lower 𝑝-value than the other. In 

that case, the other circumstance might disappear from the splitting process, despite being almost 

as important as the selected one. A similar situation would be found when deciding the splitting 

point in step 2, in which the distribution leads to two similar cutting points. As a result, predictions 

inferred directly from trees might be fairly sensitive to alterations in the data structure. Tree 

methods usually perform well in-sample, but using them for out-of-sample inferences may bear 

reasonable doubts, so we need to include a more complete technique in the analysis to reinforce 

the robustness of our results. 

  

                                                            
7 Indeed, every time we test the null hypothesis of independence in the first step we are actually testing 

equality of opportunity, following the same ideas expressed in equation (1) and (2). Rejecting independence 

implies that the distribution of an outcome variable is significantly conditioned by a certain circumstance, 

also rejecting the existence of equality of opportunity (Brunori et al., 2020).  
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Forests  

Conditional inference forests implement bootstrapping ideas into the ML framework.8 The 

algorithm generates a certain number of conditional inference trees, averaging their results. The 

repeated extraction of subsamples guarantees the independence of each tree, so each one provides 

different estimates. In the end, the law of large numbers smooths the discrepancies between the 

constructed trees, providing a distribution consistent with the out-of-sample reality (See Schlosser 

et al., 2019, for a discussion).  

Each tree inside the random forest grows following the same three-step structure previously 

explained. Nevertheless, this algorithm bears some particularities. As related in Brunori et al. 

(2020), three factors determine how these forests grow. First, to control for the exclusion of highly 

correlated independent variables, each tree is generally grown after a random selection of 

circumstances. However, in our case this is not a problem, since we only have the value of the 

inheritances received and, when available, parental education. Second, we need to consider the 

number of trees grown in each forest. For robustness, we have checked the results for 100, 200 

and 500 trees. Finally, same as for conditional inference trees, we apply the method not only for 

the endogenously tuned alpha, but also for values of alpha equal to 0.05 and 0.01. 

 

4. Database and adjustments 

The data comes from the Luxembourg Wealth Study (LWS) Database, provided by the 

Luxembourg Income Survey (LIS) cross-national data center.9 From the available set of countries, 

we present results for Canada (2016), Italy (2014), Spain (2014), and the US (2016), as they are 

those with the most extensive data on inheritances received.10 Another advantage of this selection 

of countries, as said in the Introduction, is that they present quite different welfare and fiscal 

systems.  

Our analysis is based on three different dependent variables. First, non-financial wealth, defined 

as the combined market value of all real estate, non-housing and non-current assets owned by 

household members. Second, financial wealth, expressing the market value of all financial 

                                                            
8 Despite random forests and bootstrapping ideas are similar, they differ on a relevant aspect: the sampling 

process in random forests is performed without replacement because it can lead to biased results, as 

described in Strobl et al. (2007) and Strobl et al. (2009).  
9 LIS is a non-profit organization whose main mission consists on acquiring datasets and harmonizing them, 

easing cross-country comparisons. All the relevant information of the institution and the data can be found 

at https://www.lisdatacenter.org/. 
10 We also tried to include other countries, such as Austria, Norway or the United Kingdom. However, the 

limited number of valid observations with inheritances (less than 10% of the total sample) led us to 

inaccurate results.  

https://www.lisdatacenter.org/
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investments, deposits, cash and the rest of liquid assets reported by the household. Finally, total 

wealth, defined as the sum of the two previous wealth concepts. Distinguishing between the first 

two wealth variables provides an insightful view on the unequal opportunities that people face to 

invest in certain assets, while analyzing total wealth leads to a more comprehensive global 

inequality analysis. All monetary variables are expressed in dollars of 2011, as we use the PPP 

conversion rates provided by the LIS.  

Throughout the whole paper, the unit of analysis is the household, as this is the level at which 

wealth variables are usually reported. Nevertheless, for circumstances and other particular 

variables in our study, such as age and gender, we take the values reported by the household head. 

To make all countries comparable in terms of age, we restrict our final sample to individuals aged 

between 35 and 80 years old.  

Analyzing stock variables such as wealth requires some previous adjustments. First, given the 

well-known right skewness of wealth distributions, we transform the wealth variable by taking 

natural logarithms (recall equation (5)).11 Second, the necessity of using scales of equivalence to 

work with households of different size is unclear. In fact, there is still a heat debate about this 

issue in the wealth inequality literature (Cowell and Van Kerm, 2015). We consider a commonly 

used scale of equivalence, the square root of the number of household members (Buhmann et al. 

1988; Bover, 2010), but all results and robustness checks have also been calculated without 

equivalence of scale adjustments, with no meaningful variations found.  

Third, disposable wealth in the household might be negative or smaller than that reported by 

absolute gross measures, as debts can also be held. However, we are interested on the effect of 

inheritances on wealth accumulation, so incorporating debts to wealth measures might harden the 

interpretation of our results. Accumulating big debts generally requires big collaterals, which are 

often provided by individuals’ parents.12 If net worth was employed, individuals with big debts 

might be located on the wealth distribution at the same position as those with smaller debt and 

wealth levels, thus entangling the actual effect of inheritances and opportunities. Moreover, while 

the Gini index can deal with negative and zero values, the MLD cannot. Employing different 

subsamples would make inaccurate our robustness analysis, and excluding the observations with 

                                                            
11 The logarithmic transformation has an obvious problem when the respondent reports to have zero gross 

wealth. To solve this problem, we add one monetary unit to all observations before taking logarithms. In 

addition, we have also checked results with the hyperbolic sine transformation which is typically used to 

reduce heteroscedasticity and the non-normality of the error term. The results did not change significantly.  
12 Parental assets can be used as collateral for mortgages, easing individuals’ chances to acquire their own 

dwelling, and also to pay high university fees, easing their descendants’ human capital accumulation. 

Unfortunately, we have no data on the current wealth status of the parents, nor the expectations of future 

bequests, to deal with this issue in our analysis.  
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negative values would artificially provoke a sample selection bias.13 Bearing all this in mind, we 

think that gross wealth measures can be more helpful to analyze the effect of inheritances on the 

wealth distribution. Nevertheless, we have also calculated the results for net wealth (using the 

Gini coefficient) by excluding and maintaining the negative observations, confirming that 

estimates only differ by 2-3% from those presented in this paper.14 

Finally, being a woman and having a given age are also relevant circumstances. Both factors are, 

by definition, beyond the individual’s control and strongly associated to the wealth distribution. 

For instance, the gender wealth gap in Europe varies from a lower bound set around 27% in 

Slovakia to the upper bound set around 48% in Greece, finding countries such as France (44%), 

Austria (45%), and Germany (47%) in between (Sierminska et al. 2010; Schneebaum et al., 2018). 

In addition, wealth is by nature strongly related to life cycle dynamics. Therefore, to compare 

households whose heads differ in their gender and age we must adjust our dependent variable. 

Following Palomino et al. (2020), the adjustment is three-fold. First, we control by the gender of 

the household head. Second, we center the logarithm of wealth at the age of 65 which is, on 

average, the moment in which people retire and start de-investing. Small changes on that centering 

point, ranging 63-67 years old, have also been applied without finding remarkable differences on 

the resulting wealth distributions. Third, we consider the possible interaction between both 

factors, age and gender. To this end, the following regression is proposed:15 

ln(𝑊𝑖) = 𝛼 + 𝛽𝐹𝑖 + ∑ 𝛾𝑛(𝐴𝑖 − 65)𝑛

4

𝑛=1

+ ∑ 𝛿𝑛𝐹𝑖(𝐴𝑖 − 65)𝑛 + 𝜀𝑖

4

𝑛=1

,                    (11) 

where the dummy variable 𝐹𝑖 is 1 when the household heads is a woman and 𝐴𝑖 expresses the age 

of the household head. The forth-degree specification represents the life-cycle non-linear 

dynamics on wealth, as suggested in Solon (1992) (see also Palomino et al., 2018). 

Table 1 deploys the summary statistics for age and gender. Overall, the mean age ranges between 

50 and 60, with standard deviations surrounding the 16-17 years. Moreover, we observe that our 

samples are evenly distributed by gender.  

 

 

 

 

 

                                                            
13 Excluding negative values in net wealth reduces our sample by around 5% in Canada, Italy and Spain 

and 8% in the US, 
14 The results for net wealth are available from the authors upon request. 
15 The results for these regressions across countries and wealth measures are available from the authors 

upon request. 
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Table 1. Summary statistics for the discrete variables. 

CANADA (N=3,627) 

Variable Mean Sd 

Age 50.93 19.67 

Gender 0.51 0.50 

 

ITALY (N=4,142) 

Variable Mean Sd 

Age 62.76 17.36 

Gender 0.56 0.39 

 

SPAIN (N=4,792) 

Variable Mean Sd 

Age 55.99 16.44 

Gender 0.52 0.33 

 

US (N=3,325) 

Variable Mean Sd 

Age 54.69 18.30 

Gender 0.52 0.39 

   

Note: Sd represents the standard deviation and the dummy variable gender is 1 for women.  

 

Adjusted wealth (𝑊𝑎𝑑𝑗,𝑖) is obtained after extracting the estimated coefficients from equation (11) 

as follows: 

ln(𝑊𝑎𝑑𝑗,𝑖) = ln(𝑊𝑖) − 𝛽̂𝐹𝑖 − ∑ 𝛾̂𝑛(𝐴𝑖 − 65)𝑛

4

𝑛=1

− ∑ 𝛿̂𝑛𝐹𝑖(𝐴𝑖 − 65)𝑛

4

𝑛=1

.                 (12) 

Table 2 presents the summary statistics for the three wealth dependent variables after the 

adjustment, our main circumstance of analysis (inheritances) and parental education. US 

households are, on average, the wealthiest, but the high value of the standard deviation highlights 

large inequality levels of wealth. Indeed, we find the US to be the most unequal country for the 

three wealth variables under consideration, reaching 80.3, 91.6 and 82.2 Gini points for total, 

financial and non-financial wealth, respectively. Italy and Spain have Gini coefficients for total 

and non-financial wealth at around 60 points, while Canada seems to be lying somewhere in 

between the European and the US economies. 
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Table 2. Summary statistics of the continuous variables (after adjustments). 

CANADA (N=3,627) 

Variable Mean Sd Gini MLD 

Total 379,048 605,423 70.66 1.51 

Financial 72,068 268,456 83.70 2.61 

Non-financial 306,962 554,043 74.90 1.91 

Inheritances 46,938 216,652 92.26 1.38 

 

ITALY (N=4,142) 

Variable Mean Sd Gini MLD 

Total 272,602 510,148 59.00 0.89 

Financial 31,354 177,073 73.96 2.21 

Non-financial 241,248 491,171 60.61 1.01 

Inheritances 19,346 139,091 93.89 1.03 

 

SPAIN (N=4,792) 

Variable Mean Sd Gini MLD 

Total 303,548 494,644 59.24 0.98 

Financial 46,718 216,145 84.13 2.47 

Non-financial 256,830 506,785 60.20 1.33 

Inheritances 34,790 186,521 88.55 1.25 

 

US (N=3,325) 

Variable Mean Sd Gini MLD 

Total 1,697,203 1,104,777 80.28 1.85 

Financial 426,507 653,076 91.60 3.24 

Non-financial 1,270,696 1,127,253 82.17 2.44 

Inheritances 9,348 302,239 95.24 1.55 

Note: Sd represents the standard deviation. All monetary values are expressed in dollars of 2011, after using the LIS 

PPP adjustment. The categories of parental education are: 1 (Illiterates), 2 (Basic studies), 3 (Basic secondary), 4 

(Upper secondary), 5 (University). 

 

Bequests are not orthogonal to other circumstances. For instance, parental education has been 

shown to be a good proxy of ascendants’ social status which reflects other aspects of wealth 

accumulation, such as human and social capital intergenerational transmission (Nordblom and 

Ohlsson, 2010, Adermon et al., 2018; Palomino et al., 2020). To perform the most comprehensive 

possible analysis and disentangle the potential overlapping effects between both circumstances, 

inheritances and parental education, we also consider the latter into the analysis. Unfortunately, 

as said in the Introduction, parental education is only available for Italy and the US. For these two 

countries, we first use only the inheritances received as a circumstance, so the results can be 

compared with those obtained for Spain and Canada. Then, we also include the highest parental 

education level achieved by any parent. Table 3 shows that, on average, U.S. citizens have more 

educated parents than their Italian counterparts. A Shapley value decomposition permits us to 
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estimate the contribution of each circumstance to overall inequality and size the potential 

overlapping term.16  

 

Table 3. Summary statistics of parental education. 

 Mean Sd 

Italy (N=4142) 2.14 0.99 

U.S. (N=3325) 3.46 1.01 

Note: Sd represents the standard deviation and the categories of parental education are: 1 (Illiterates), 2 (Basic 

studies), 3 (Basic secondary), 4 (Upper secondary), 5 (University).  

 

5. Empirical results 

This section employs the IOp framework to explore how inheritances affect wealth inequality in 

the US, Canada, Italy and Spain. To begin with, we estimate IOp following the Ferreira and 

Guignoux (2011) methodology after applying several ad-hoc discretizations over the value of 

inheritances received. These results are shown to be arbitrary because each partition of the 

continuous circumstance (inheritances) provides quite different estimates of wealth IOp. This 

empirical fact confirms the convenience of implementing ML techniques to generate non ad hoc 

types. For this reason, the role of inheritances is estimated later with the ML techniques explained 

in Section 2.  

Table 4 deploys absolute and relative IOp measures with several ad-hoc discretizing points over 

the value of the inheritances received. First, we split the variable at 0$, generating a type with 

individuals who have not inherited anything, and another with those who have inherited any 

positive bequest. Second, we generate three types: one for those who have not inherited at all and, 

for those who inherit, we divide the subsample by the median value of the bequests received. 

Third, we generate four types, dividing those who inherit by terciles. Finally, we consider the case 

for which it is only relevant to receive a big amount of wealth. We split the variable in two: those 

above the 75th percentile of inheritances, and the rest. Many other different discretional cuts have 

also been checked, only to confirm their sizable differences and arbitrariness.  

 

 

 

 

 

                                                            
16 The Shapley value decomposition is the only decomposition method that solves the tension between 

marginality and additivity (See Sastre and Trannoy (2002), Rodríguez (2004) and Shorrocks, 2013).  
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Table 4. IOp measures with ad-hoc discretizations (Gini). 

CANADA Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

> 0$ 19.68 26.78 17.56 27.85% 32.00% 23.44% 

Median 23.13 36.05 19.92 32.73% 43.07% 26.60% 

Terciles 29.80 44.52 26.50 42.17% 53.19% 35.38% 

P75 24.24 38.91 22.20 34.31% 46.49% 29.64% 

       

ITALY Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

> 0$ 17.14 16.84 17.81 29.05% 22.77% 29.38% 

Median 17.43 15.80 18.92 29.54% 21.36% 31.22% 

Terciles 22.68 23.19 24.14 38.44% 31.35% 39.83% 

P75 13.92 18.04 14.85 23.59% 24.39% 24.50% 

       

SPAIN Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

> 0$ 26.11 27.59 33.23 44.07% 32.79% 55.20% 

Median 25.00 21.73 32.24 42.20% 25.83% 53.55% 

Terciles 35.43 33.30 43.58 59.81% 39.58% 72.39% 

P75 15.23 13.29 19.39 25.71% 15.80% 32.21% 

       

US Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

> 0$ 26.74 32.10 33.75 33,31% 35,04% 41,07% 

Median 28.12 39.18 29.94 35,03% 42,77% 36,44% 

Terciles 37.92 49.27 41.89 47,23% 53,79% 50,98% 

P75 25.76 39.44 21.03 32,09% 43,06% 25,59% 

       

Note: IOp measures calculated with the ex-ante parametric Ferreira and Guignoux (2011) approach, with different 

ad-hoc discretizations over the continuous circumstance (inheritances).  

 

Results in Table 4 show that IOp estimates are quite sensible to the researcher’s decision on how 

the different types should be generated. For instance, relative non-financial wealth IOp in Spain 

range between 32.21% and 72.39% of overall inequality, with remarkable differences prevailing 

in the other countries and wealth definitions. Therefore, it is observed that applying subjective 

ad-hoc criteria leads to arbitrary wealth IOp estimates, hindering accurate cross-country 

comparisons. Indeed, when analyzing absolute financial IOp, taking the median cutting point sets 

Italy as the country with more equality of opportunities (15.80 Gini points), followed by Spain 

(21.73), Canada (36.05) and, finally, the US (39.18). Nevertheless, when we set the third quartile 
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as the discretizing point, Spain shows the lowest absolute IOp, followed by Italy, Canada and the 

US.  

Our results also highlight an intrinsic characteristic of the ex-ante approach. By construction, 

including more types leads to higher IOp estimates, as it artificially generates more inequality 

(Ramos and Van de Gaer, 2016). Considering continuous non-linear circumstances deeps into 

this problem, as every additional cut increases the number of types. This explains why the 

discretization based on terciles is higher than that based on the median value. The implications 

are particularly worrying for policy assessment, as these estimates can easily provide downward 

or upward biased wealth IOp measures, directly provoked by the arbitrary criteria of the 

researcher. Indeed, the problem lies, precisely, on when should the cutting process stop, as 

including too many types would provoke upward biased estimates and overfitting problems, as 

just a few observations would be attributed to each type.  

Both limitations call for a more objective method to estimate the impact of inheritances on wealth 

inequality. Overcoming these methodological problems, Table 5 presents and compare wealth 

IOp estimated with objective unsupervised (ChiMerge) and supervised (Conditional inference 

trees and forests) ML techniques. 

ChiMerge provides estimates of wealth IOp after performing statistically justified discretizations 

on the inheritances received.17 According to them, in Canada, around 35% of total wealth 

inequality can be attributed to inheritances, while for financial the ratio rises to 41.63%, 

descending to 28.87% for non-financial wealth. In Italy, the ratios ascend to 35.49% in total 

wealth, 29.73% in financial wealth and 36.53% non-financial, while in Spain, they are much 

higher: almost 53.75% for total wealth, 39.31% for financial and 65.93% for non-financial. 

Finally, in the US, we find up to 38.85% of total wealth inequality can be explained by the 

inheritances received, while the ratios ascend to 40.62% in financial and 45.56% in non-financial 

wealth. 

The non-arbitrary types based on ChiMerge algorithms can still be improved. As stated in Brunori 

et al. (2020), it is convenient to also take into account the distribution of the dependent objective 

variable. Consequently, we prefer results obtained through supervised methods, although 

unsupervised techniques can be used to perform discretizations when no information from other 

related variables is advised.  

 

 

                                                            
17 Chimerge and Chi2 algorithms provide the same results. With an alpha of 1%, both algorithms cut the 

value of the inheritances received at 18,250$ in Canada, at 70,356$ in Italy, in Spain at 17,263$, and at 

37,924$ in the US. Types are then generated upon those discretizing points. Other alphas varied those cuts 

points always by less than 1000$, with no meaningful differences on the results. 
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Table 5. IOp measures with ML techniques (only inheritances, Gini). 

CANADA Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 24.46 34.01 21.62 34,62% 40,63% 28,87% 

Tree 29.57 49.35 26.95 41,85% 58,96% 35,98% 

Forest 29.59 47.69 27.39 41,88% 56,98% 36,57% 

       

ITALY Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 20.94 21.99 22.14 35,49% 29,73% 36,53% 

Tree 21.70 31.44 23.75 36,78% 42,51% 39,18% 

Forest 22.01 32.50 23.20 37,31% 43,94% 38,28% 

       

SPAIN Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 31.84 33.07 39.69 53,75% 39,31% 65,93% 

Tree 41.31 55.26 45.91 69,73% 65,68% 76,26% 

Forest 40.77 54.81 46.01 68,82% 65,15% 76,43% 

       

US Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 31.19 37.21 37.44 38,85% 40,62% 45,56% 

Tree 56.50 69.74 56.51 70,38% 76,14% 68,77% 

Forest 55.06 68.66 54.70 68,58% 74,96% 66,57% 

       

Note: ChiMerge measures are calculated applying the Ferreira and Gignoux (2011) approach. Trees and Forests have 

endogenously tuned their respective alphas following the K-fold Cross Validation technique explained in the Technical 

Appendix. Forests are calculated after 500 replications.  

 

Table 5 shows that trees and forests supervised algorithms provide similar measures of IOp.18 

However, random forests with endogenously tuned alphas are more objective and totally based 

on statistical tests. Apart from taking into consideration the distribution of the dependent variable 

of interest, they correct for the particular structure of the data that might bias tree-based estimates. 

Consequently, they are set as our preferred specifications, and all commentaries on the results 

will be based on their estimates.  

In line with Adermon et al (2018), Piketty (2011, 2014), Piketty and Zucman (2015) and Alvaredo 

et al (2017) our results point towards inheritances as a relevant vehicle for intergenerational 

transmission of wealth disparities. Thus, inheritances alone explain more than 68% to total wealth 

                                                            
18 All extra information concerning the algorithm results, such as the tree-plots, is available upon request. 
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inequality in both, the US and Spain, descending the ratios to 41.9% and 37.3% in Canada and 

Italy, respectively. When we look at financial wealth inequality, the contribution ascends in 

Canada (57%), Italy (43.9%) and the US (75%), while it descends to 65.2% in Spain. Finally, the 

inheritances received explain around 36.6% of non-financial inequality in Canada, 38.3% in Italy, 

76.4% in Spain and 66.6% in the US. Table A2 in the Appendix shows the results for exogenous 

alphas of 0.01 and 0.05, while Table A3 replicates the complete analysis for the MLD index.19  

Comparing different wealth definitions shows that, in general, financial wealth is more affected 

by bequests received than non-financial wealth. The former assets are more risky and volatile 

than non-financial, mainly because they are much more liquid (Jordá et al., 2019). In our context, 

we suggest that inheritances may act as insurances or safety nets. After receiving a bequest, 

individuals could be more prone to face risky investments than those who rely on their own 

savings, improving their opportunities to access the financial markets. Nevertheless, more factors 

must be at place since the share of non-financial wealth explained by inheritances is higher than 

that of financial wealth for Spain.  

As said, another important circumstance that is not orthogonal to the inheritances received is 

parental education. Indeed, as shown by Palomino et al. (2020), more educated parents have, in 

general, higher income and saving levels, thus being able to bequeath more. In addition, the 

literature has repeatedly found that individual’s education, occupation and income are highly 

correlated to parental education (Cabrera et al., 2020). Provided that the LWS data includes 

information on parental education for Italy and the US, we incorporate this variable in our study 

so, after dealing with overlapping, we obtain a more refined measure on the impact of inheritances 

on wealth inequality for these two countries. 

Table 6 presents wealth IOp estimates for Italy and the US using two circumstances: the 

inheritances and the parental education.20 Tables A4 and A5 in the Appendix present the rest of 

IOp indexes that confirm the robustness achieved with the proposed ML techniques, with the 

MLD estimates being again always below those obtained with the Gini index. 

 

 

 

 

                                                            
19 As expected, the MLD index provides much lower estimates of wealth IOp. In this respect, Palomino et 

al. (2020) recently studied the contribution of intergenerational transfers and socioeconomic background to 

wealth inequality in France, Spain, the UK and the US, ranging their estimates of the gross inheritance 

contribution measured with the MLD between 32.8% in the UK and 39.3% in France.  
 
20 Wealth IOp estimate with the parental education alone can be found in Table A7, in the row correspondent 

to v=2. The following section deeps into this Table and its interpretation. 
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Table 6. IOp measures with inheritances and parental education (Gini). 

Italy Absolute IOp Relative IOp 

ML method Total Financial 
Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 32.71 44.27 32.55 55,44% 59,86% 53,70% 

Tree 31.71 45.77 31.14 53,75% 61,88% 51,38% 

Forest 30.94 45.58 31.22 52,44% 61,63% 51,51% 

       

US Absolute IOp Relative IOp 

ML method Total Financial 
Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 41.99 50.79 48.48 52,30% 55,45% 59,00% 

Tree 62.15 74.62 53.20 77,42% 81,46% 64,74% 

Forest 55.65 68.83 53.55 69,32% 75,14% 65,17% 

Note: ChiMerge measures are calculated applying the Ferreira and Gignoux (2011) approach. Trees and Forests have 

endogenously tuned their respective alphas following the K-fold Cross Validation technique explained in the Technical 

Appendix.  Forests are calculated after 500 replications.  

 

In Italy, including parental education as circumstance increases absolute and relative IOp 

measures. Using the Gini index, more than 52% of total inequality can be explained with both 

factors, reaching up to 61.63% in financial and 51.51% in non-financial wealth inequality. 

However, the US estimates do not significantly vary when compared to those presented in Table 

5, showing that more information available on individual’s background does not necessarily lead 

to higher contributions. Interestingly, deepening into the algorithm results, we have found that in 

the first step of tree construction, parental education is barely selected as a meaningful 

circumstance in the US. This result should not lead us to claim that parental education is not 

relevant to accumulate wealth in the US, nor that its contribution in Italy is the gross difference 

with respect to the IOp estimates presented in Table 5, as there might be some overlapping. The 

inheritances received are, potentially, a comprehensive variable that collects many different 

aspects of individual’s background. Considering this possibility, Figure 1 plots the relative 

contribution of each circumstance to overall inequality, calculated with the Shapley value 

decomposition over the random forest indexes calculated in Table 6. 
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 Figure 1. Shapley Value Decomposition of wealth IOp. 

Note: Shapley value decomposition applied over the relative wealth IOp measures obtained in Table 6. 

 

In Italy, around 26% of total and non-financial inequality is explained by the distribution of 

bequests, being the rest attributed to parental education. Indeed, this circumstance explains up to 

35% of financial wealth inequality, while around 26% is finally attributed to the inheritances 

received. In the US, around 22% of overall inequality is actually explained by the parental 

education, being the distribution of inheritances able to explain 47% of total, 52% of financial 

and 43% of non-financial wealth inequality. Our results show that parents do not exclusively 

affect the individual opportunities to accumulate wealth through the bequest transmission itself, 

as other factors such as human capital transmission may also be important.  

In the next section we study whether the effect of inheritances is homogeneous across the wealth 

distribution or, on the contrary, it depends on the part of the wealth distribution that is considered. 

 

6. Inheritances and Parental Education 

The distributions of wealth and inheritances are highly non-linear, so it is pertinent to check 

whether their relationship is homogeneous along the wealth distribution or, rather, more 

accentuated at the tails or the middle (see Rodríguez, 2008). For this task, we expand our analysis 

by using the Single-Parameter Gini (S-Gini) proposed in Donaldson and Weymark (1980) and 

Yitzhaki (1983).  

S-Gini indexes are born from the idea that the canonical Gini index weights equally all parts of 

the wealth distribution. Thus, they introduce a vector of weights, defined by a parameter 𝑣 of 

inequality aversion which modifies the weight given to different percentile positions, 𝑞. In 
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particular, as 𝑣 increases, the delivered weights give more (less) importance to the lower (upper) 

part of the distribution. Formally, the S-Gini index is: 

𝐼𝑆−𝐺𝑖𝑛𝑖(𝐹; 𝑣) = 1 − 𝑣[𝑣 − 1] ∫ [1 − 𝑞]𝑣−2𝐿(𝐹; 𝑞)𝑑𝑞                                            (13)
1

0

 

where 𝐿 is the Lorenz curve, and 𝑣 >  1 is an inequality aversion parameter. For the particular 

case 𝑣 =  2, equation (13) provides the traditional Gini index.  

Now, by applying this index to the counterfactual smoothed distribution 𝑤̂, we obtain an absolute 

measure of IOp for an inequality aversion parameter 𝑣, 𝐼𝑂𝑝(𝑣). Interestingly, we might find three 

possible cases when the value of 𝑣 is increased. First, if there were no significant changes in the 

estimates, the circumstances under consideration would have a homogeneous effect along the 

wealth distribution. Second, if absolute IOp increased with the inequality aversion parameter 𝑣, 

we could safely say that the effect of circumstances is higher at the lower tail of the wealth 

distribution. Finally, if absolute IOp decreased when the inequality aversion parameter rose, the 

effect of circumstances would be more intense at the upper tail of the wealth distribution.  

Before continuing, we remark that we do not include relative IOp in these results, because its 

interpretation can be misleading: changes provoked in relative measures could not only be caused 

by absolute IOp, but also by overall inequality. As a result, the calculated variation in the relative 

IOp measures would not exclusively be explained by the heterogeneous effect of the 

circumstances at different parts of the wealth distribution but, rather, by their interaction with 

overall inequality. 

We estimate the effect of circumstances along the wealth distribution for 𝑣 ∈ [2, 5]. The precise 

values are included in Tables A6 and A7 in the Appendix, while Figure 2 plots the evolution 

of 𝐼𝑂𝑝(𝑣) for the inheritances received. It is clearly observed that the higher the weight on the 

lower tail of the distribution, the smaller the value of 𝐼𝑂𝑝(𝑣), with this index being close to zero 

for 𝑣 = 5 in all countries and wealth measures. Hence, our findings show a persistent fact: the 

inheritances received lose importance when we focus at the lower tail of the wealth distribution, 

i.e., the significant contribution to wealth inequality shown in Tables 5 and 6 is mainly explained 

by their effect on the opportunities of the middle class and, particularly, the wealthy people.  

The same analysis is replicated in Figure 3 for inheritances and parental education in Italy and the 

US. In the first country, 𝐼𝑂𝑝(𝑣)declines again, although at a lower rate than in Figure 2. Thus, 

𝐼𝑂𝑝(𝑣) in Italy descends from 22.06 to 11.80 in total wealth, from 39.10 to 34.05 in financial 

wealth and from 20.97 to 10.33 in non-financial wealth. On the contrary, 𝐼𝑂𝑝(𝑣) rise in the US 

for total wealth (from 34.74 to 37.27) and financial wealth (from 42.42 to 48.89), while it remains 

stable for non-financial wealth (from 36.85 to 34.55). This result suggests that, for those located 
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at the lower part of the wealth distribution, parental education gains importance to determine the 

individual opportunities to accumulate wealth.21  

 

Figure 2. S-Gini wealth IOp with inheritances. 

Note: Absolute IOp measures with different inequality aversion parameters calculated with random forests with 

endogenously tuned alphas. 

 

 

 

 

                                                            
21 In line with Lusardi et al (2017), parental education in the US seems to be a relevant factor explaining 

financial wealth inequality, particularly at the bottom of the wealth distribution. A successful participation 

in the financial markets usually requires some skills highly affected by human capital. See also Cabrera et 

al (2020).  
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Figure 3. S-Gini wealth IOp with inheritances and parental education.  

Note: Absolute IOp measures with different inequality aversion parameters calculated with random forests with 

endogenously tuned alphas. 

 

Employing S-Gini indexes highlight the heterogeneous transmission of opportunities at different 

parts of the distribution, otherwise hidden under other traditional approaches. On the one hand, 

as inheritances are typically concentrated at the upper tail of the wealth distribution (Nolan et al, 

2020), diminishing the weight on this part of the distribution makes the effect of inheritances on 

inequality to disappear. This fact together, with the large non-linearities of both, wealth and 

inheritances, might explain why inheritances are so relevant to explain wealth inequality, as they 

would intensively foster the individual opportunities of the wealthy. On the other hand, as 

inheritances at the lower tail of the wealth distribution are rather small, the individual 

opportunities of those at this part of the distribution are conditioned by other factors such as 

parental education. 

 

7. Conclusions  

In this paper we estimate the impact of the inheritances received on wealth inequality for four 

developed western economies: Canada, Italy, Spain and the US. Following Palomino et al. (2020) 

we estimate this impact by the between-types component of total wealth inequality. The idea is 

simple: after controlling by age and sex, and computing the type distributions based on the 

inheritances received, there should not exist any dispersion between types. Otherwise, overall 

wealth inequality is conditioned by the bequest distribution.  

Unfortunately, the traditional definition of types in the literature (Ferreira and Guignoux, 2011) 

for a continuous circumstance like inheritances, requires a discretization process that, when left 

to the researchers’ criteria, leads to arbitrary results. Depending on how the bequests are cut to 

define the types, the between-types component of overall inequality changes its size, impeding a 

0

10

20

30

40

50

60

70

2 2.5 3 3,5 4 4,5 5

A
b

so
lu

te
 IO

p
v

Inequality aversion (v)

Italy

Total Financial Non-financial

0

10

20

30

40

50

60

70

2 2.5 3 3,5 4 4,5 5

A
b

so
lu

te
 IO

p
v

Inequality aversion (v)

US

Total Financial Non-financial



27 
 

correct cross-country comparison or policy advising. To overcome this limitation, we propose the 

application of Machine Learning techniques which objectivize the discretization process, 

statistically justifying the cuts on the inheritances variable. Among all available methods, we 

select the endogenously tuned random forests as the approach that provides the most objective 

estimates of the impact of inheritances on wealth inequality.  

Our results show that a remarkable share of overall wealth inequality is explained by the 

inheritances received. Particularly, this variable alone explains up to 43.94% of financial wealth 

inequality in Italy, 56.98% in Canada, 65.15% in Spain and 74.96% in the US. In the case of non-

financial wealth, inheritances explain 36.57% overall inequality in Canada, 38.28% in Italy, 

66.57% in the US and a significant 76.43% in Spain. On aggregate, almost 41.88% (Canada), 

37.31% (Italy), 68.82% (Spain) and 68.58 (the US) of total wealth inequality can be assigned to 

this circumstance. 

If we include parental education as an additional circumstance, both circumstances explain up to 

61.63% in financial wealth, 51.51% in non-financial wealth and 52.44% of total wealth inequality 

in Italy. For the US, including parental education does not change our previous estimates. The 

literature has already shown that these two circumstances are not orthogonal (Adermon, 2018; 

Palomino et al., 2020), so we check for the existence of overlapping in their effects. For this task, 

we perform a Shapley value decomposition and find that, in the US, around two-thirds of wealth 

IOp can be attributed to the inheritances received, while the rest is actually explained by parental 

education. In Italy, the shares attributed to both circumstances, inheritances and parental 

education, are similar.  

Finally, due to the remarkable non-linearities of the wealth and inheritance distributions, we apply 

the S-Gini index for several parameters of inequality aversion. The higher the aversion parameter, 

the larger the weight on the lower tail of the wealth distribution. We find that, the more we focus 

on the asset-poor, the inheritances received are less important to explain their opportunities to 

acquire wealth, while the opposite happens with parental education. That is, both circumstances, 

inheritances and parental education, have a heterogeneous effect along the wealth distribution, 

although these effects influence different tails of the distribution. Therefore, policies having a 

bearing on inheritances and on parental education are complementary (not substitutive) for the 

reduction of wealth inequality. 
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Appendix 

 

Table A.1: IOp with ad-hoc discretizations (MLD). 

 

CANADA Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Total Total Total Financial 

Non-

Financial 

> 0$ 0.08 0.14 0.06 5.30% 5.36% 3.14% 

Median 0.13 0.29 0.10 8.61% 11.11% 5.24% 

Terciles 0.18 0.39 0.15 11.92% 14.94% 7.85% 

P75 0.17 0.38 0.15 11.26% 14.56% 7.85% 

     

ITALY Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Total Total Total Financial 

Non-

Financial 

> 0$ 0.07 0.06 0.07 7.87% 2.71% 6.93% 

Median 0.09 0.07 0.10 10.11% 3.17% 9.90% 

Terciles 0.12 0.13 0.14 13.48% 5.88% 13.86% 

P75 0.08 0.13 0.10 8.99% 5.88% 9.90% 

     

SPAIN Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Total Total Total Financial 

Non-

Financial 

> 0$ 0.14 0.16 0.24 14.29% 6.48% 18.05% 

Median 0.15 0.12 0.24 15.31% 4.86% 18.05% 

Terciles 0.22 0.20 0.33 22.45% 8.10% 24.81% 

P75 0.10 0.08 0.15 10.20% 3.24% 11.28% 

     

US Absolute IOp Relative IOp 

Partition of 

inheritances 
Total Total Total Total Financial 

Non-

Financial 

> 0$ 0.15 0.21 0.24 8.11% 6.48% 9.84% 

Median 0.20 0.36 0.22 10.81% 11.11% 9.02% 

Terciles 0.28 0.46 0.32 15.14% 14.20% 13.11% 

P75 0.23 0.43 0.18 12.43% 13.27% 7.38% 

     

Note: IOp measures calculated with the ex-ante parametric Ferreira and Guignoux (2011) approach, with different 

ad-hoc discretizations over the continuous circumstance (inheritances).  
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Table A.2: IOp with Trees and Forests, alphas at 1% and 5% (Gini). 

 

CANADA Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

Tree 1% 28.16 42.72 26.95 39.85% 51.04% 35.98% 

Tree 5% 29.57 49.35 26.95 41.85% 58.96% 35.98% 

Forest 1% 29.61 48.59 27.47 41.90% 58.05% 36.68% 

Forest 5% 29.59 48.66 27.44 41.88% 58.14% 36.64% 

       

ITALY Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

Tree 1% 21.71 31.45 22.76 36.80% 42.52% 37.55% 

Tree 5% 21.71 31.45 23.75 36.80% 42.52% 39.18% 

Forest 1% 22.02 32.47 23.32 37.32% 43.90% 38.48% 

Forest 5% 22.02 32.62 23.20 37.32% 44.10% 38.28% 

       

SPAIN Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

Tree 1% 41.37 55.68 46.08 69.83% 66.18% 76.54% 

Tree 5% 41.31 55.27 45.91 69.73% 65.70% 76.26% 

Forest 1% 40.73 54.95 45.97 68.75% 65.32% 76.36% 

Forest 5% 40.74 54.87 45.98 68.77% 65.22% 76.38% 

       

US Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

Tree 1% 55.84 69.74 54.74 69.56% 76.14% 66.62% 

Tree 5% 56.50 69.74 56.51 70.38% 76.14% 68.77% 

Forest 1% 55.11 68.43 54.72 68.65% 74.71% 66.59% 

Forest 5% 54.87 68.82 54.83 68.35% 75.13% 66.73% 

       

Note: IOp measures using trees and random forests. Alphas are exogenously set to 1% and 5%. Forests are calculated 

after 500 replications.  
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Table A.3: IOp with ChiMerge, Trees and Forests, alphas endogenous at 1% and 5% (MLD). 

 

CANADA Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 0,12 0,23 0,10 7.95% 8.81% 5.24% 

Tree 1% 0,16 0,36 0,15 10.60% 13.79% 7.85% 

Tree 5% 0,18 0,44 0,15 11.92% 16.86% 7.85% 

Tree end 0,18 0,44 0,15 11.92% 16.86% 7.85% 

Forest 1% 0,18 0,42 0,15 11.92% 16.09% 7.85% 

Forest 5% 0,18 0,43 0,15 11.92% 16.48% 7.85% 

Forest end. 0,17 0,42 0,15 11.26% 16.09% 7.85% 

       

ITALY Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 0,11 0,12 0,12 12.36% 5.43% 11.88% 

Tree 1% 0,12 0,21 0,14 13.48% 9.50% 13.86% 

Tree 5% 0,12 0,21 0,14 13.48% 9.50% 13.86% 

Tree end 0,12 0,21 0,14 13.48% 9.50% 13.86% 

Forest 1% 0,12 0,24 0,13 13.48% 10.86% 12.87% 

Forest 5% 0,12 0,24 0,13 13.48% 10.86% 12.87% 

Forest end. 0,12 0,22 0,13 13.48% 9.95% 12.87% 

       

SPAIN Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 0.17 0.16 0.28 17.35% 6.48% 21.05% 

Tree 1% 0.29 0.55 0.36 29.59% 22.27% 27.07% 

Tree 5% 0.28 0.55 0.36 28.57% 22.27% 27.07% 

Tree end 0.29 0.55 0.36 29.59% 22.27% 27.07% 

Forest 1% 0,29 0,53 0,35 29.59% 21.46% 26.32% 

Forest 5% 0,29 0,53 0,36 29.59% 21.46% 27.07% 

Forest end. 0,28 0,53 0,35 28.57% 21.46% 26.32% 

       

US Absolute IOp Relative IOp 

ML 

method 
Total Financial 

Non-

Financial 
Total Financial 

Non-

Financial 

ChiMerge 0,19 0,27 0,27 10.27% 8.33% 11.07% 

Tree 1% 0,63 0,99 0,61 34.05% 30.56% 25.00% 

Tree 5% 0,65 0,99 0,61 35.14% 30.56% 25.00% 

Tree end 0,65 0,99 0,61 35.14% 30.56% 25.00% 

Forest 1% 0,59 0,93 0,56 31.89% 28.70% 22.95% 

Forest 5% 0,59 0,94 0,56 31.89% 29.01% 22.95% 

Forest end. 0,60 0,94 0,56 32.43% 29.01% 22.95% 

Note: IOp measures calculated with several Machine Learning techniques. ChiMerge measures are calculated 

applying the Ferreira and Gignoux (2011). Trees and Forests have endogenously tuned their respective alphas 

following the K-fold Cross Validation technique explained in the Technical Appendix. Other alphas are exogenously 

set to 1% and 5%.  Forests are calculated after 500 replications. 
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Table A.4: IOp estimates with the inheritances and parental education (Italy). 

 

Italy Absolute IOp Relative IOp 

Partition 

and ML 

method 

Total Financial 
Non-

Financial 
Total Financial 

Non-

Financial 

Gini       

> 0$ 30.43 42.15 29.81 51.58% 56.99% 49.18% 

Median 31.18 41.64 31.21 52.85% 56.30% 51.49% 

Terciles 34.02 44.90 34.17 57.66% 60.71% 56.38% 

P75 29.44 43.83 28.89 49.90% 59.26% 47.67% 

Tree 1% 30.73 43.20 30.71 52.08% 58.41% 50.67% 

Tree 5% 31.71 45.77 31.13 53.75% 61.88% 51.36% 

Forest 1% 31.11 46.39 31.37 52.73% 62.72% 51.76% 

Forest 5% 31.12 46.39 31.35 52.75% 62.72% 51.72% 

       

MLD       

> 0$ 0.15 0.31 0.14 16.85% 14.03% 13.86% 

Median 0,16 0,31 0,17 17.98% 14.03% 16.83% 

Terciles 0,20 0,35 0,20 22.47% 15.84% 19.80% 

P75 0.15 0.35 0.16 16.85% 15.84% 15.84% 

ChiMerge 0,18 0,35 0,18 20.22% 15.84% 17.82% 

Tree 1% 0,17 0,38 0,17 19.10% 17.19% 16.83% 

Tree 5% 0,18 0,41 0,17 20.22% 18.55% 16.83% 

Tree end 0.18 0.41 0.17 20.22% 18.55% 16.83% 

Forest 1% 0,17 0,41 0,17 19.10% 18.55% 16.83% 

Forest 5% 0,17 0,41 0,17 19.10% 18.55% 16.83% 

Forest end 0.17 0.41 0.17 19.10% 18.55% 16.83% 

       

Note: IOp measures calculated with several Machine Learning techniques. ChiMerge measures are calculated 

applying the Ferreira and Gignoux (2011). Trees and Forests have endogenously tuned their respective alphas 

following the K-fold Cross Validation technique explained in the Technical Appendix. Other alphas are exogenously 

set to 1% and 5%.  Forests are calculated after 500 replications. 
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Table A.5: IOp estimates with the inheritances and parental education (the US). 

 

US Absolute IOp Relative IOp 

Partition 

and ML 

method 

Total Financial 
Non-

Financial 
Total Financial 

Non-

Financial 

Gini       

> 0$ 38.51 46.91 46.09 47.97% 51.21% 56.09% 

Median 42.07 54.37 45.98 52.40% 59.36% 55.96% 

Terciles 46.61 58.60 51.18 58.06% 63.97% 62.29% 

P75 42.52 56.19 42.24 52.96% 61.34% 51.41% 

Tree 1% 61.85 73.53 53.20 77.04% 80.27% 64.74% 

Tree 5% 62.14 74.62 53.20 77.40% 81.46% 64.74% 

Forest 1% 55.54 69.82 53.99 69.18% 76.22% 65.71% 

Forest 5% 55.46 69.10 53.71 69.08% 75.44% 65.36% 

       

MLD       

> 0$ 0.26 0.45 0.38 14.05% 13.89% 15.57% 

Median 0,33 0,59 0,38 17.84% 18.21% 15.57% 

Terciles 0,39 0,67 0,46 21.08% 20.68% 18.85% 

P75 0.35 0.66 0.34 18.92% 20.37% 13.93% 

ChiMerge 0,31 0,51 0,42 16.76% 15.74% 17.21% 

Tree 1% 0,73 1,18 0,57 39.46% 36.42% 23.36% 

Tree 5% 0,74 1,21 0,57 40.00% 37.35% 23.36% 

Tree end 0,74 1,21 0,57 40.00% 37.35% 23.36% 

Forest 1% 0,61 1,05 0,60 32.97% 32.41% 24.59% 

Forest 5% 0,58 1,02 0,56 31.35% 31.48% 22.95% 

Forest end. 0,61 1,04 0,55 14.05% 13.89% 15.57% 

       

Note: IOp measures calculated with several Machine Learning techniques. ChiMerge measures are calculated 

applying the Ferreira and Gignoux (2011). Trees and Forests have endogenously tuned their respective alphas 

following the K-fold Cross Validation technique explained in the Technical Appendix. Other alphas are exogenously 

set to 1% and 5%.  Forests are calculated after 500 replications. 
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Table A.6: Single Parameter Gini Absolute IOp with inheritances. 

 

Canada Total Financial Non-financial 

v=2 29.59 47.69 27.39 

v=2.5 14.79 25.81 13.95 

v=3 6.93 12.76 6.86 

v=3.5 3.28 6.26 3.55 

v=4 1.59 3.14 2.07 

v=4.5 0.80 1.62 1.44 

v=5 0.42 0.86 1.19 

    

Spain Total Financial Non-financial 

v=2 40.77 54.81 46.01 

v=2.5 29.70 42.10 35.98 

v=3 20.66 30.63 26.72 

v=3.5 13.98 21.59 19.12 

v=4 9.33 15.01 13.39 

v=4.5 6.20 10.44 9.27 

v=5 4.12 7.35 6.39 

    

Italy Total Financial Non-financial 

v=2 22.01 32.50 23.20 

v=2.5 8.09 14.27 8.49 

v=3 3.16 6.06 3.29 

v=3.5 1.28 2.61 1.32 

v=4 0.53 1.17 0.54 

v=4.5 0.22 0.58 0.22 

v=5 0.09 0.34 0.09 

    

US Total Financial Non-financial 

v=2 55.06 68.66 54.70 

v=2.5 28.43 40.70 32.55 

v=3 12.46 18.71 16.62 

v=3.5 5.33 7.95 8.03 

v=4 2.40 3.65 3.90 

v=4.5 1.21 2.03 1.98 

v=5 0.73 1.45 1.10 

    

Note: IOp measures calculated with random forests with 500 replications and an alpha endogenously tuned following 

the K-fold Cross Validation technique explained in the Technical Appendix.  
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Table A.7: Single Parameter Gini Absolute IOp with inheritances and parental education. 

 

Italy Parental Education Parental Education and Inheritances 

 Total Financial Non-financial Total Financial Non-financial 

v=2 22.06 39.10 20.97 30.94 45.58 31.22 

v=2.5 18.24 37.56 17.17 20.42 41.36 19.88 

v=3 15.71 36.04 14.57 15.71 38.88 14.85 

v=3.5 14.10 34.99 12.86 13.32 35.89 12.25 

v=4 13.07 34.42 11.73 11.90 34.78 10.68 

v=4.5 12.35 34.17 10.94 10.87 33.92 9.59 

v=5 11.80 34.05 10.33 10.06 32.91 8.71 

       

US Parental Education Parental Education and Inheritances 

 Total Financial Non-financial Total Financial Non-financial 

v=2 34.74 42.42 36.85 55.65 68.83 53.55 

v=2.5 36.75 45.85 37.42 45.06 56.26 46.90 

v=3 37.73 47.90 37.15 40.06 50.75 42.56 

v=3.5 38.05 48.96 36.50 37.70 48.65 39.44 

v=4 37.97 49.34 35.77 36.31 47.51 37.24 

v=4.5 37.67 49.26 35.10 35.34 46.57 35.79 

v=5 37.27 48.89 34.55 34.63 45.68 34.91 

       

Note: IOp measures calculated with random forests with 500 replications and an alpha endogenously tuned following 

the K-fold Cross Validation technique explained in the Technical Appendix.  
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Technical Appendix 

In this Appendix we offer a detailed explanation of the Chi-test and the K-fold cross validation 

methods. 

 

The Chi-Test Method 

The null hypothesis of this test can be stated as “The relative cumulative distribution in two 

adjacent intervals are realizations of the same underlying distribution”, while, the alternative 

hypothesis says that “The relative cumulative distribution in two adjacent intervals are 

realizations of different underlying distributions” (Holmes and Jain, 2012). The test is performed 

using the basic Pearson’s 𝜒2 test: 

𝐷 = ∑ ∑ (
𝑁𝑙𝑏 − 𝐸𝑙𝑏

𝐸𝑙𝑏
)

2𝑐

𝑏=1

𝑚

𝑙=1

                                                       (𝑇. 𝐴. 1) 

𝐸𝑙𝑏 =
𝑅𝑙𝐶𝑏

𝑁
                                                                        (𝑇. 𝐴. 2) 

𝑅𝑖 = ∑ 𝑁𝑙𝑏

𝑐

𝑏=1

                                                                        (𝑇. 𝐴. 3) 

 𝐶𝑗 = ∑ 𝑁𝑙𝑏 ,

2

𝑙=1

                                                                      (𝑇. 𝐴. 4) 

𝑁 = ∑ 𝐶𝑏

𝑐

𝑏=1

                                                                      (𝑇. 𝐴. 5) 

where m = 2, as there are 2 intervals being compared, and c is the total number of classes. 𝑁𝑙𝑏 is 

the number of observations in the 𝑙𝑡ℎ interval and 𝑏𝑡ℎ class, while 𝐸𝑙𝑏 is the expected frequency 

of 𝑁𝑙𝑏. Note that 𝑅𝑙 is the number of observations in the 𝑙𝑡ℎ interval, 𝐶𝑏 is the number of 

observations in the 𝑏𝑡ℎ class, and 𝑁 is the total number of observations,.  

In short, this test sums the relative squared differences between the expected and the observed 

class occurrences in both intervals potentially combined. This deviation is assumed to be 

distributed as a 𝜒2 with 𝑓 = 𝑐 −  1 degrees of freedom. Then, we compare the obtained statistic 

D with the critical value of 𝜒2, given a predefined level of significance. If D is smaller than the 

critical value, we do not reject the null hypothesis and combine the two intervals under scrutiny. 

If D is higher than the selected critical value, we reject the null hypothesis and leave the cut point.  
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The K-fold Cross Validation Method 

Imposing a certain alpha level, such as 0.01 or 0.05, can bias the results, as they are exogenous 

econometric conventions that might not allow us to collect all information gathered in the data 

(Brunori et al. 2020). To solve this issue and test the accuracy of our results we implement the so-

called K-fold Cross Validation method, one of the most popular ML techniques (Rodríguez et al., 

2009; Fushiki, 2011).  

First, the algorithm divides the whole sample into K subsamples, also called folds. The optimal 

number of possible folds depends on the dataset. To make sure that we always have enough 

degrees of freedom in every fold, we set 𝐾 =  5. For robustness, we have also tested 𝐾 = 6 and 

𝐾 = 7, without significant changes in the results. 

The conditional inference tree algorithm is run on the union of 𝐾 − 1 folds (training sample, m) 

for varying levels of alpha, while taking out the last 𝑘𝑡ℎ fold (validation sample, k). After that, 

we use the mean squared prediction error (MSPE) to evaluate the difference of the prediction in 

the training sample with respect to the validation sample:   

𝑀𝑆𝑃𝐸𝑘(𝛼) = ∑
𝑁𝑚

𝑁𝑘
∑

1

𝑁𝑚
(𝑤𝑖

𝑘 − 𝜇𝑚(𝛼))
2

,                         (𝑇. 𝐴. 6) 

where 𝑤𝑖
𝑘 is the output vector of the validation fold, and 𝜇𝑚(𝛼) collects the predictions emanated 

from the training sample for a certain alpha level. Note that 𝑁𝑚 and 𝑁𝑘 are the sample sizes of 

the training and validation folds, respectively. This exercise is repeated four times more for the 

same alpha level, sequentially leaving out one K-fold at a time.  

Finally, we construct the average mean squared error of the cross-validation process (MSECV) 

as the average of the five MSPEs: 

𝑀𝑆𝐸𝐶𝑉(𝛼) =
1

5
∑ 𝑀𝑆𝑃𝐸𝑘(𝛼)

5

𝑘=1

                                     (𝑇. 𝐴. 7) 

After running the algorithm a set of possible alpha levels, we select the one that provides the 

smallest MSECV.  

 

 

 

 


